Spatio-Temporal Prediction for the Monitoring-Blind Area of Industrial Atmosphere Based on the Fusion Network
The monitoring-blind area exists in the industrial park because of private interest and limited administrative power. As the atmospheric quality in the blind area impacts the environment management seriously, the prediction and inference of the blind area is explored in this paper. Firstly, the fusi...
Saved in:
Published in | International journal of environmental research and public health Vol. 16; no. 20; p. 3788 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
09.10.2019
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The monitoring-blind area exists in the industrial park because of private interest and limited administrative power. As the atmospheric quality in the blind area impacts the environment management seriously, the prediction and inference of the blind area is explored in this paper. Firstly, the fusion network framework was designed for the solution of “Circumjacent Monitoring-Blind Area Inference”. In the fusion network, the nonlinear autoregressive network was set up for the time series prediction of circumjacent points, and the full connection layer was built for the nonlinear relation fitting of multiple points. Secondly, the physical structure and learning method was studied for the sub-elements in the fusion network. Thirdly, the spatio-temporal prediction algorithm was proposed based on the network for the blind area monitoring problem. Finally, the experiment was conducted with the practical monitoring data in an industrial park in Hebei Province, China. The results show that the solution is feasible for the blind area analysis in the view of spatial and temporal dimensions. |
---|---|
AbstractList | The monitoring-blind area exists in the industrial park because of private interest and limited administrative power. As the atmospheric quality in the blind area impacts the environment management seriously, the prediction and inference of the blind area is explored in this paper. Firstly, the fusion network framework was designed for the solution of “Circumjacent Monitoring-Blind Area Inference”. In the fusion network, the nonlinear autoregressive network was set up for the time series prediction of circumjacent points, and the full connection layer was built for the nonlinear relation fitting of multiple points. Secondly, the physical structure and learning method was studied for the sub-elements in the fusion network. Thirdly, the spatio-temporal prediction algorithm was proposed based on the network for the blind area monitoring problem. Finally, the experiment was conducted with the practical monitoring data in an industrial park in Hebei Province, China. The results show that the solution is feasible for the blind area analysis in the view of spatial and temporal dimensions. The monitoring-blind area exists in the industrial park because of private interest and limited administrative power. As the atmospheric quality in the blind area impacts the environment management seriously, the prediction and inference of the blind area is explored in this paper. Firstly, the fusion network framework was designed for the solution of "Circumjacent Monitoring-Blind Area Inference". In the fusion network, the nonlinear autoregressive network was set up for the time series prediction of circumjacent points, and the full connection layer was built for the nonlinear relation fitting of multiple points. Secondly, the physical structure and learning method was studied for the sub-elements in the fusion network. Thirdly, the spatio-temporal prediction algorithm was proposed based on the network for the blind area monitoring problem. Finally, the experiment was conducted with the practical monitoring data in an industrial park in Hebei Province, China. The results show that the solution is feasible for the blind area analysis in the view of spatial and temporal dimensions.The monitoring-blind area exists in the industrial park because of private interest and limited administrative power. As the atmospheric quality in the blind area impacts the environment management seriously, the prediction and inference of the blind area is explored in this paper. Firstly, the fusion network framework was designed for the solution of "Circumjacent Monitoring-Blind Area Inference". In the fusion network, the nonlinear autoregressive network was set up for the time series prediction of circumjacent points, and the full connection layer was built for the nonlinear relation fitting of multiple points. Secondly, the physical structure and learning method was studied for the sub-elements in the fusion network. Thirdly, the spatio-temporal prediction algorithm was proposed based on the network for the blind area monitoring problem. Finally, the experiment was conducted with the practical monitoring data in an industrial park in Hebei Province, China. The results show that the solution is feasible for the blind area analysis in the view of spatial and temporal dimensions. In the studies of time series prediction, the statistical methods and machine learning models are the mainstream. [...]machine learning has attracted more attention because of its strong ability in nonlinear regression with data features. [...]a sufficient time series prediction model should be established. [...]how to merge the two functions in a unified model is a challenge. [...]the study of the paper is concluded in Section 6. The underlying network and the improvements combined with other optimization methods have been applied in different atmospheric indexes [17,18,19]. [...]machine learning methods fused with other numeric analysis methods were also tested. |
Author | Sun, Qian Jin, Xue-bo Su, Ting-li Wang, Xiao-kai Wang, Xiao-yi Bai, Yu-ting Kong, Jian-lei |
AuthorAffiliation | 1 School of Computer and Information Engineering, Beijing Technology and Business University, Beijing 100048, China 3 College of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, China 2 Beijing Key Laboratory of Big Data Technology for Food Safety, Beijing Technology and Business University, Beijing 100048, China |
AuthorAffiliation_xml | – name: 2 Beijing Key Laboratory of Big Data Technology for Food Safety, Beijing Technology and Business University, Beijing 100048, China – name: 3 College of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, China – name: 1 School of Computer and Information Engineering, Beijing Technology and Business University, Beijing 100048, China |
Author_xml | – sequence: 1 givenname: Yu-ting orcidid: 0000-0001-8047-1010 surname: Bai fullname: Bai, Yu-ting – sequence: 2 givenname: Xiao-yi surname: Wang fullname: Wang, Xiao-yi – sequence: 3 givenname: Qian surname: Sun fullname: Sun, Qian – sequence: 4 givenname: Xue-bo orcidid: 0000-0002-2230-0077 surname: Jin fullname: Jin, Xue-bo – sequence: 5 givenname: Xiao-kai surname: Wang fullname: Wang, Xiao-kai – sequence: 6 givenname: Ting-li surname: Su fullname: Su, Ting-li – sequence: 7 givenname: Jian-lei surname: Kong fullname: Kong, Jian-lei |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31600885$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU1vFSEYhYmpsR-6dWlI3LiZCgPDMBuT28Zqk_qRWNeEwksv1xkYgdH472XS1rRNXEHgPIfzcg7RXogBEHpJyTFjA3nrd5DmLRUtYb2UT9ABFYI0XBC6d2-_jw5z3hHCJBfDM7TPqCBEyu4ATd9mXXxsLmGaY9Ij_prAelOPAnYx4bIF_CkGX2Ly4bo5GX2weJNA4-jwebBLLslXbFOmmOctJMAnOoPFlV_ZsyWvVp-h_I7px3P01Okxw4vb9Qh9P3t_efqxufjy4fx0c9EYTmVpNGjDTdeTnrdOmI5p44TsWnJFjQXSuWGwjBlGwQJwa1vZO2lI3xLpBsIoO0Lvbnzn5WoCayCUOpuak590-qOi9urhTfBbdR1_KSF5_UdWDd7cGqT4c4Fc1OSzgXHUAeKSVctIVx_inazS14-ku7ikUMerqnYQnHeUVNWr-4n-Rblrogr4jcCkmHMCp4wvazVrQD8qStRauHpYeMWOH2F3zv8B_gJEQ6_d |
CitedBy_id | crossref_primary_10_1016_j_aej_2019_12_050 crossref_primary_10_1142_S0218348X20400186 crossref_primary_10_3390_math8020214 crossref_primary_10_1016_j_knosys_2020_106523 crossref_primary_10_1002_tqem_22236 crossref_primary_10_3390_su12041494 crossref_primary_10_3390_ijerph17010360 crossref_primary_10_3390_s20010299 crossref_primary_10_3390_s20051334 crossref_primary_10_3390_e23020219 crossref_primary_10_3390_e24030360 crossref_primary_10_1155_2022_3672905 crossref_primary_10_3390_a12120253 crossref_primary_10_3390_s21062085 crossref_primary_10_1155_2021_8810046 |
Cites_doi | 10.1007/s10666-017-9578-y 10.1109/78.650093 10.1214/09-AOS698 10.1016/j.neucom.2008.01.030 10.1037/0033-295X.113.2.201 10.1111/j.1553-2712.1998.tb02493.x 10.1016/j.apr.2017.01.003 10.1007/s40808-018-0493-2 10.1162/neco.1997.9.8.1735 10.1016/j.jpowsour.2006.09.038 10.1007/s10546-011-9595-3 10.1109/ICMLA.2016.0171 10.4028/www.scientific.net/AMR.785-786.1384 10.1097/HP.0000000000000567 10.1080/2150704X.2017.1418992 10.4028/www.scientific.net/AMM.580-583.1254 10.1016/j.atmosenv.2017.01.014 10.1016/0378-7796(95)00977-1 10.1177/0734242X0302100408 10.1007/s11269-011-9957-0 10.1371/journal.pone.0065012 10.1007/978-3-540-74690-4_56 |
ContentType | Journal Article |
Copyright | 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2019 by the authors. 2019 |
Copyright_xml | – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2019 by the authors. 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8C1 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.3390/ijerph16203788 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Public Health Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Public Health ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health |
EISSN | 1660-4601 |
ExternalDocumentID | PMC6843783 31600885 10_3390_ijerph16203788 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --- 29J 2WC 53G 5GY 5VS 7X7 7XC 88E 8C1 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 A8Z AADQD AAFWJ AAHBH AAYXX ABGAM ABUWG ACGFO ACGOD ACIWK ADBBV AENEX AFKRA AFRAH AFZYC AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION CS3 DIK DU5 E3Z EBD EBS EJD EMB EMOBN F5P FYUFA GX1 HH5 HMCUK HYE KQ8 L6V M1P M48 MODMG O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO Q2X RNS RPM SV3 TR2 UKHRP XSB CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c418t-aeac4c570742f6c53acf68520b1cde05f99d33c31edee4dd287f8c07208f90313 |
IEDL.DBID | M48 |
ISSN | 1660-4601 1661-7827 |
IngestDate | Thu Aug 21 18:08:28 EDT 2025 Mon Jul 21 10:45:15 EDT 2025 Fri Jul 25 20:01:19 EDT 2025 Thu Apr 03 07:01:47 EDT 2025 Tue Jul 01 04:04:05 EDT 2025 Thu Apr 24 23:07:29 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Keywords | time series prediction unknown inference neural network atmospheric quality |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c418t-aeac4c570742f6c53acf68520b1cde05f99d33c31edee4dd287f8c07208f90313 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8047-1010 0000-0002-2230-0077 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijerph16203788 |
PMID | 31600885 |
PQID | 2329644510 |
PQPubID | 54923 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6843783 proquest_miscellaneous_2305031458 proquest_journals_2329644510 pubmed_primary_31600885 crossref_citationtrail_10_3390_ijerph16203788 crossref_primary_10_3390_ijerph16203788 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-09 |
PublicationDateYYYYMMDD | 2019-10-09 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-09 day: 09 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | International journal of environmental research and public health |
PublicationTitleAlternate | Int J Environ Res Public Health |
PublicationYear | 2019 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Schuster (ref_15) 1997; 45 Wang (ref_23) 2017; 8 ref_14 Cao (ref_2) 2011; 139 Wang (ref_4) 2017; 152 Yu (ref_21) 2017; 50 Shimpalee (ref_25) 2006; 163 Liu (ref_7) 2014; 1 Nelson (ref_9) 2014; 5 Shang (ref_3) 2013; 785–786 Chen (ref_8) 1995; 34 Gao (ref_6) 2009; 37 Botvinick (ref_13) 2006; 113 Zhou (ref_29) 2017; 2 (ref_24) 2018; 23 Menezes (ref_31) 2008; 71 Chang (ref_32) 2012; 26 Overcamp (ref_5) 2016; 111 Hochreiter (ref_16) 1997; 9 Yang (ref_12) 2019; 46 Wang (ref_18) 2018; 7 Eknath (ref_10) 2018; 4 ref_22 Zheng (ref_1) 2017; 46 ref_20 Wang (ref_11) 2018; 9 Poulsen (ref_27) 2003; 21 Gao (ref_30) 2016; 33 ref_28 Xing (ref_26) 2014; 580–583 Xie (ref_17) 2014; 1003 Zhang (ref_19) 2017; 30 |
References_xml | – volume: 46 start-page: 298 year: 2017 ident: ref_1 article-title: Study on VOCs in atmosphere and their sources of atypical industrial park in Shanghai publication-title: J. Shanghai Norm. Univ. (Nat. Sci.) – volume: 23 start-page: 229 year: 2018 ident: ref_24 article-title: Air quality modeling using the PSO-SVM-based approach, MLP neural network, and M5 model tree in the metropolitan area of Oviedo (Northern Spain) publication-title: Environ. Model. Assess. doi: 10.1007/s10666-017-9578-y – volume: 45 start-page: 2673 year: 1997 ident: ref_15 article-title: Bidirectional recurrent neural networks publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.650093 – volume: 37 start-page: 3893 year: 2009 ident: ref_6 article-title: Specification testing in nonlinear and nonstationary time series autoregression publication-title: Ann. Stat. doi: 10.1214/09-AOS698 – volume: 71 start-page: 3335 year: 2008 ident: ref_31 article-title: Long-term time series prediction with the NARX network: An empirical evaluation publication-title: Neurocomputing doi: 10.1016/j.neucom.2008.01.030 – volume: 113 start-page: 201 year: 2006 ident: ref_13 article-title: Short-term memory for serial order: A recurrent neural network model publication-title: Psychol. Rev. doi: 10.1037/0033-295X.113.2.201 – volume: 7 start-page: 279 year: 2018 ident: ref_18 article-title: Construction of air quality evaluation system based on FCM algorithm and BP neural network publication-title: Agric. Biotechnol. – volume: 5 start-page: 739 year: 2014 ident: ref_9 article-title: Statistical methodology: V. Time series analysis using autoregressive integrated moving average (ARIMA) models publication-title: Acad. Emerg. Med. doi: 10.1111/j.1553-2712.1998.tb02493.x – volume: 8 start-page: 850 year: 2017 ident: ref_23 article-title: A novel hybrid-Garch model based on ARIMA and SVM for PM2.5 concentrations forecasting publication-title: Atmos. Pollut. Res. doi: 10.1016/j.apr.2017.01.003 – volume: 1 start-page: 404 year: 2014 ident: ref_7 article-title: Fusing moving average model and stationary wavelet decomposition for automatic incident detection: Case study of Tokyo Expressway publication-title: J. Traff. Transp. Eng. – volume: 33 start-page: 12 year: 2016 ident: ref_30 article-title: Research of air pollution diffusion problem based on Gaussian model publication-title: J. Fuyang Teach. Coll. (Nat. Sci. Ed.) – volume: 4 start-page: 1435 year: 2018 ident: ref_10 article-title: Autoregressive integrated moving average time series model for forecasting air pollution in Nanded city, Maharashtra, India publication-title: Model. Earth Syst. Environ. doi: 10.1007/s40808-018-0493-2 – volume: 9 start-page: 1735 year: 1997 ident: ref_16 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 163 start-page: 480 year: 2006 ident: ref_25 article-title: Investigation of gas diffusion media inside PEMFC using CFD modeling publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2006.09.038 – volume: 139 start-page: 487 year: 2011 ident: ref_2 article-title: Dispersion coefficients for Gaussian puff models publication-title: Bound. Layer Meteor. doi: 10.1007/s10546-011-9595-3 – volume: 1003 start-page: 4 year: 2014 ident: ref_17 article-title: Research on applied-information technology with PM2.5 generation and evolution model based on BP neural network publication-title: Adv. Mater. Res. – volume: 50 start-page: 105 year: 2017 ident: ref_21 article-title: Tracking prediction model for PM2.5 hourly concentration based on ARMAX publication-title: J. Tianjin Univ. – ident: ref_22 doi: 10.1109/ICMLA.2016.0171 – volume: 785–786 start-page: 1384 year: 2013 ident: ref_3 article-title: Modification and application of gaussian plume model for an industrial transfer park publication-title: Adv. Mater. Res. doi: 10.4028/www.scientific.net/AMR.785-786.1384 – volume: 111 start-page: 403 year: 2016 ident: ref_5 article-title: An Exact solution for the ground-level gamma dose rate from a spherical Gaussian puff publication-title: Health Phys. doi: 10.1097/HP.0000000000000567 – volume: 30 start-page: 360 year: 2017 ident: ref_19 article-title: The humidity compensation for measurement systems of aerosol mass concentrations based on the PSO-BP neural network publication-title: Chin. J. Sens. Actuators – volume: 46 start-page: 21 year: 2019 ident: ref_12 article-title: Review of time series prediction methods publication-title: Comput. Sci. – volume: 9 start-page: 275 year: 2018 ident: ref_11 article-title: Short-term cloud coverage prediction using the ARIMA time series model publication-title: Remote Sens. Lett. doi: 10.1080/2150704X.2017.1418992 – volume: 580–583 start-page: 1254 year: 2014 ident: ref_26 article-title: Approach on pollution gases diffusion path of small spacing tunnel entrance based on CFD publication-title: Appl. Mech. Mater. doi: 10.4028/www.scientific.net/AMM.580-583.1254 – volume: 152 start-page: 519 year: 2017 ident: ref_4 article-title: Evaluation of Bayesian source estimation methods with Prairie Grass observations and Gaussian plume model: A comparison of likelihood functions and distance measures publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2017.01.014 – volume: 34 start-page: 187 year: 1995 ident: ref_8 article-title: Analysis of an adaptive time-series autoregressive moving-average (ARMA) model for short-term load forecasting publication-title: Electr. Power Syst. Res. doi: 10.1016/0378-7796(95)00977-1 – volume: 21 start-page: 356 year: 2003 ident: ref_27 article-title: Relating landfill gas emissions to atmospheric pressure using numerical modelling and state-space analysis publication-title: Waste Manag. Res. doi: 10.1177/0734242X0302100408 – volume: 26 start-page: 1253 year: 2012 ident: ref_32 article-title: Integration of optimal dynamic control and neural network for groundwater quality management publication-title: Water Resour. Manag. doi: 10.1007/s11269-011-9957-0 – ident: ref_20 – volume: 2 start-page: 45 year: 2017 ident: ref_29 article-title: Research on air quality of Chengdu city based on Gaussian diffusion model publication-title: J. Green Sci. Technol. – ident: ref_28 doi: 10.1371/journal.pone.0065012 – ident: ref_14 doi: 10.1007/978-3-540-74690-4_56 |
SSID | ssj0038469 |
Score | 2.3065383 |
Snippet | The monitoring-blind area exists in the industrial park because of private interest and limited administrative power. As the atmospheric quality in the blind... In the studies of time series prediction, the statistical methods and machine learning models are the mainstream. [...]machine learning has attracted more... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 3788 |
SubjectTerms | Air Pollution Algorithms Artificial intelligence Atmosphere China Deep learning Environmental Monitoring - methods Factories Industry Machine learning Models, Theoretical Neural networks Neural Networks, Computer Quality Sensors Spatial analysis Statistical methods Stochastic models Time series |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEA4-LoKIb1dXiSB4CrZN0iYnUXFZBEVQYW-lTVJU1lb38f-dabrVVfTcJC35ksw3k-k3hJyE3GmZ24jFgCkTubZMZVHBrHQO1k_uRC27eHsX95_EzUAOmoDbuEmrnJ2J9UFtK4Mx8jOw_DpGNa3g_P2DYdUovF1tSmgskmWULsOUrmTQOlwcbCvS3xBsEANLmHjRRg5u_tnLqxthlYAoQEH1eaP0i2n-TJj8ZoF662StoY70wmO9QRZcuUlWfdyN-t-JtsjbQ50izR695NSQ3o_wKgannwI_pcD3qN_HGNBjl8AyLQzpMloV9KuOB72YvFVjlBxw9BIMnaXQH_v2phheo3c-e3ybPPWuH6_6rCmpwIwI1YRlcM4KIxP0iIvYSJ6ZIlYyCvLQWBfIQmvLueGhs84Ja8GfKpQJkihQhUaZxx2yVFal2yPUyEhGosiTwAALEC7PsTagApQAI53FHcJmc5qaRm8cy14MU_A7EIN0HoMOOW3bv3uljT9bdmcQpc2OG6df66NDjtvHsFfwAiQrXTXFNqh-EwoJQ-x6RNtX8RCon1KyQ5I5rNsGqMM9_6R8ea71uGMFC1rx_f8_64CsANnSdSKg7pKlyWjqDoHQTPKjetV-Agqz9sw priority: 102 providerName: ProQuest |
Title | Spatio-Temporal Prediction for the Monitoring-Blind Area of Industrial Atmosphere Based on the Fusion Network |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31600885 https://www.proquest.com/docview/2329644510 https://www.proquest.com/docview/2305031458 https://pubmed.ncbi.nlm.nih.gov/PMC6843783 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED_WFkphjK0fW7YuqDDYk1p_SLb0MEZSmpZCQ9kayJuxJZlmpE6bJrD997uzEqfZupe9-EU6GXR3vt9J598BfApjp2VhI56gTrkotOUqj0pupXNoP4UTNe3iVT-5GIjLoRyu6p8WG_j4bGpH_aQG0_Hxz4dfX9Hhv1DGiSn7yeiHmxLjfxQQOfoGbGFUSslJr0RzoxBjnCUoHGI84hgVU0_g-Iz8DmzHIcIARe2Vn8aqvwDon3WUTwJT7zW8WiBK1vEm8AZeuGoXXvrjOOb_MtqDu-915TS_8UxUY3Y9pRsa0gpD2MoQBjLv3nTOx7sIPi0u6XI2KdmqvQfrzO4mj8RE4FgX459lKE-yvTmdurG-Lyrfh0Hv7Ob0gi86LXAjQjXjOX5-hZEpJcplYmScmzJRMgqK0FgXyFJrG8cmDp11TliLaVapTJBGgSo1sT8ewGY1qdw7YEZGMhJlkQYG1SBcUVDLQBXpBL1f50kL-HJPM7OgIaduGOMM0xFSR7aujhZ8bubfewKOf848XKooW9pRhoBRJ0TCFrTgqBlGF6J7kbxykznNIVKcUEhc4q3XaPOqpSm0IF3TdTOB6LnXR6rRbU3TnSi0cxW__2_JD7CD8EzXpYP6EDZn07n7iBBoVrRhIx2m-FSnIT17523Y6p71r7-1a6v_DY7WC_M |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAJId4sFDASiJPVJLYT-4BQC6y2tF0hsZX2FhLbEa3apN2HEH-K38hMvElZENx69iORZ8bzjT3-BuBVLLxRpUt4ijLlsjSO6yKpuFPeo_6UXra0i4fjdHQkP03VdAN-dm9hKK2y2xPbjdo1ls7It9Hzm5TYtKJ35xecqkbR7WpXQiOoxb7_8R1DtvnbvQ8o39dJMvw4eT_iq6oC3MpYL3iBW420KqOgsEqtEoWtUq2SqIyt85GqjHFCWBF75710DkOKStsoSyJdGWI6xHmvwXV0vBFZVDbtAzyBvpzgdow-j6PnzQJJpBAm2j4-8TOqSpBEROC-7gT_QrZ_Jmj-5vGGd-D2CqqynaBbd2HD1_fgVjjnY-H50n04-9KmZPNJoLg6ZZ9ndPVD4maIhxniSxb2DTpA5LuIah1O6QvWVOyybgjbWZw1c6I48GwXHatjOJ7GDpd0nMfGIVv9ARxdyWI_hM26qf1jYFYlKpFVmUUWUYf0ZUm1CDVqBeqEKdIB8G5Nc7viN6cyG6c5xjkkg3xdBgN40_c_D8we_-y51YkoX1n4PL_UxwG87JvRNunCpah9s6Q-xLYTS4VTPAoS7T8lYoSaWqsBZGuy7jsQ7_d6S338reX_TjUakBZP_v9bL-DGaHJ4kB_sjfefwk0EeqZNQjRbsLmYLf0zBFOL8nmrwQy-XrXJ_AKyVDQ2 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiEkhHizUMBIIE7WJnac2AeEWsqqpbCqRCvtLSS2I4rapOxDiL_Gr2MmTlIWBLee_UjkmfF8Y4-_AXgRS29U6QRPUaY8KY3juhAVd8p71J_SJy3t4sdpunecvJ-p2Qb87N_CUFplvye2G7VrLJ2Rj9Hzm5TYtKJx1aVFHO5O3px_41RBim5a-3IaQUUO_I_vGL4tXu_voqxfCjF5d_R2j3cVBrhNYr3kBW47iVUZBYhVapUsbJVqJaIyts5HqjLGSWll7J33iXMYXlTaRpmIdGWI9RDnvQJXM6lisrFsNgR7Ev06Qe8Y_R9HL5wFwkgpTTQ--ernVKFARETmvu4Q_0K5fyZr_ub9JrfgZgdb2XbQs9uw4es7cCOc-bHwlOkunH1q07P5UaC7OmWHc7oGItEzxMYMsSYLewgdJvIdRLgOp_QFayp2UUOEbS_PmgXRHXi2g07WMRxPYycrOtpj05C5fg-OL2Wx78Nm3dT-ITCrhBJJVWaRRQSS-LKkuoQaNQT1wxTpCHi_prntuM6p5MZpjjEPySBfl8EIXg39zwPLxz97bvUiyjtrX-QXujmC50Mz2ildvhS1b1bUh5h34kThFA-CRIdPyRhhp9ZqBNmarIcOxAG-3lKffGm5wFONxqTlo___1jO4hsaSf9ifHjyG64j5TJuPaLZgczlf-SeIq5bl01aBGXy-bIv5Bc57OGw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatio-Temporal+Prediction+for+the+Monitoring-Blind+Area+of+Industrial+Atmosphere+Based+on+the+Fusion+Network&rft.jtitle=International+journal+of+environmental+research+and+public+health&rft.au=Bai%2C+Yu-ting&rft.au=Wang%2C+Xiao-yi&rft.au=Sun%2C+Qian&rft.au=Jin%2C+Xue-bo&rft.date=2019-10-09&rft.pub=MDPI&rft.issn=1661-7827&rft.eissn=1660-4601&rft.volume=16&rft.issue=20&rft_id=info:doi/10.3390%2Fijerph16203788&rft_id=info%3Apmid%2F31600885&rft.externalDocID=PMC6843783 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1660-4601&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1660-4601&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1660-4601&client=summon |