Spatio-Temporal Prediction for the Monitoring-Blind Area of Industrial Atmosphere Based on the Fusion Network

The monitoring-blind area exists in the industrial park because of private interest and limited administrative power. As the atmospheric quality in the blind area impacts the environment management seriously, the prediction and inference of the blind area is explored in this paper. Firstly, the fusi...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of environmental research and public health Vol. 16; no. 20; p. 3788
Main Authors Bai, Yu-ting, Wang, Xiao-yi, Sun, Qian, Jin, Xue-bo, Wang, Xiao-kai, Su, Ting-li, Kong, Jian-lei
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 09.10.2019
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The monitoring-blind area exists in the industrial park because of private interest and limited administrative power. As the atmospheric quality in the blind area impacts the environment management seriously, the prediction and inference of the blind area is explored in this paper. Firstly, the fusion network framework was designed for the solution of “Circumjacent Monitoring-Blind Area Inference”. In the fusion network, the nonlinear autoregressive network was set up for the time series prediction of circumjacent points, and the full connection layer was built for the nonlinear relation fitting of multiple points. Secondly, the physical structure and learning method was studied for the sub-elements in the fusion network. Thirdly, the spatio-temporal prediction algorithm was proposed based on the network for the blind area monitoring problem. Finally, the experiment was conducted with the practical monitoring data in an industrial park in Hebei Province, China. The results show that the solution is feasible for the blind area analysis in the view of spatial and temporal dimensions.
AbstractList The monitoring-blind area exists in the industrial park because of private interest and limited administrative power. As the atmospheric quality in the blind area impacts the environment management seriously, the prediction and inference of the blind area is explored in this paper. Firstly, the fusion network framework was designed for the solution of “Circumjacent Monitoring-Blind Area Inference”. In the fusion network, the nonlinear autoregressive network was set up for the time series prediction of circumjacent points, and the full connection layer was built for the nonlinear relation fitting of multiple points. Secondly, the physical structure and learning method was studied for the sub-elements in the fusion network. Thirdly, the spatio-temporal prediction algorithm was proposed based on the network for the blind area monitoring problem. Finally, the experiment was conducted with the practical monitoring data in an industrial park in Hebei Province, China. The results show that the solution is feasible for the blind area analysis in the view of spatial and temporal dimensions.
The monitoring-blind area exists in the industrial park because of private interest and limited administrative power. As the atmospheric quality in the blind area impacts the environment management seriously, the prediction and inference of the blind area is explored in this paper. Firstly, the fusion network framework was designed for the solution of "Circumjacent Monitoring-Blind Area Inference". In the fusion network, the nonlinear autoregressive network was set up for the time series prediction of circumjacent points, and the full connection layer was built for the nonlinear relation fitting of multiple points. Secondly, the physical structure and learning method was studied for the sub-elements in the fusion network. Thirdly, the spatio-temporal prediction algorithm was proposed based on the network for the blind area monitoring problem. Finally, the experiment was conducted with the practical monitoring data in an industrial park in Hebei Province, China. The results show that the solution is feasible for the blind area analysis in the view of spatial and temporal dimensions.The monitoring-blind area exists in the industrial park because of private interest and limited administrative power. As the atmospheric quality in the blind area impacts the environment management seriously, the prediction and inference of the blind area is explored in this paper. Firstly, the fusion network framework was designed for the solution of "Circumjacent Monitoring-Blind Area Inference". In the fusion network, the nonlinear autoregressive network was set up for the time series prediction of circumjacent points, and the full connection layer was built for the nonlinear relation fitting of multiple points. Secondly, the physical structure and learning method was studied for the sub-elements in the fusion network. Thirdly, the spatio-temporal prediction algorithm was proposed based on the network for the blind area monitoring problem. Finally, the experiment was conducted with the practical monitoring data in an industrial park in Hebei Province, China. The results show that the solution is feasible for the blind area analysis in the view of spatial and temporal dimensions.
In the studies of time series prediction, the statistical methods and machine learning models are the mainstream. [...]machine learning has attracted more attention because of its strong ability in nonlinear regression with data features. [...]a sufficient time series prediction model should be established. [...]how to merge the two functions in a unified model is a challenge. [...]the study of the paper is concluded in Section 6. The underlying network and the improvements combined with other optimization methods have been applied in different atmospheric indexes [17,18,19]. [...]machine learning methods fused with other numeric analysis methods were also tested.
Author Sun, Qian
Jin, Xue-bo
Su, Ting-li
Wang, Xiao-kai
Wang, Xiao-yi
Bai, Yu-ting
Kong, Jian-lei
AuthorAffiliation 1 School of Computer and Information Engineering, Beijing Technology and Business University, Beijing 100048, China
3 College of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, China
2 Beijing Key Laboratory of Big Data Technology for Food Safety, Beijing Technology and Business University, Beijing 100048, China
AuthorAffiliation_xml – name: 2 Beijing Key Laboratory of Big Data Technology for Food Safety, Beijing Technology and Business University, Beijing 100048, China
– name: 3 College of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, China
– name: 1 School of Computer and Information Engineering, Beijing Technology and Business University, Beijing 100048, China
Author_xml – sequence: 1
  givenname: Yu-ting
  orcidid: 0000-0001-8047-1010
  surname: Bai
  fullname: Bai, Yu-ting
– sequence: 2
  givenname: Xiao-yi
  surname: Wang
  fullname: Wang, Xiao-yi
– sequence: 3
  givenname: Qian
  surname: Sun
  fullname: Sun, Qian
– sequence: 4
  givenname: Xue-bo
  orcidid: 0000-0002-2230-0077
  surname: Jin
  fullname: Jin, Xue-bo
– sequence: 5
  givenname: Xiao-kai
  surname: Wang
  fullname: Wang, Xiao-kai
– sequence: 6
  givenname: Ting-li
  surname: Su
  fullname: Su, Ting-li
– sequence: 7
  givenname: Jian-lei
  surname: Kong
  fullname: Kong, Jian-lei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31600885$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1vFSEYhYmpsR-6dWlI3LiZCgPDMBuT28Zqk_qRWNeEwksv1xkYgdH472XS1rRNXEHgPIfzcg7RXogBEHpJyTFjA3nrd5DmLRUtYb2UT9ABFYI0XBC6d2-_jw5z3hHCJBfDM7TPqCBEyu4ATd9mXXxsLmGaY9Ij_prAelOPAnYx4bIF_CkGX2Ly4bo5GX2weJNA4-jwebBLLslXbFOmmOctJMAnOoPFlV_ZsyWvVp-h_I7px3P01Okxw4vb9Qh9P3t_efqxufjy4fx0c9EYTmVpNGjDTdeTnrdOmI5p44TsWnJFjQXSuWGwjBlGwQJwa1vZO2lI3xLpBsIoO0Lvbnzn5WoCayCUOpuak590-qOi9urhTfBbdR1_KSF5_UdWDd7cGqT4c4Fc1OSzgXHUAeKSVctIVx_inazS14-ku7ikUMerqnYQnHeUVNWr-4n-Rblrogr4jcCkmHMCp4wvazVrQD8qStRauHpYeMWOH2F3zv8B_gJEQ6_d
CitedBy_id crossref_primary_10_1016_j_aej_2019_12_050
crossref_primary_10_1142_S0218348X20400186
crossref_primary_10_3390_math8020214
crossref_primary_10_1016_j_knosys_2020_106523
crossref_primary_10_1002_tqem_22236
crossref_primary_10_3390_su12041494
crossref_primary_10_3390_ijerph17010360
crossref_primary_10_3390_s20010299
crossref_primary_10_3390_s20051334
crossref_primary_10_3390_e23020219
crossref_primary_10_3390_e24030360
crossref_primary_10_1155_2022_3672905
crossref_primary_10_3390_a12120253
crossref_primary_10_3390_s21062085
crossref_primary_10_1155_2021_8810046
Cites_doi 10.1007/s10666-017-9578-y
10.1109/78.650093
10.1214/09-AOS698
10.1016/j.neucom.2008.01.030
10.1037/0033-295X.113.2.201
10.1111/j.1553-2712.1998.tb02493.x
10.1016/j.apr.2017.01.003
10.1007/s40808-018-0493-2
10.1162/neco.1997.9.8.1735
10.1016/j.jpowsour.2006.09.038
10.1007/s10546-011-9595-3
10.1109/ICMLA.2016.0171
10.4028/www.scientific.net/AMR.785-786.1384
10.1097/HP.0000000000000567
10.1080/2150704X.2017.1418992
10.4028/www.scientific.net/AMM.580-583.1254
10.1016/j.atmosenv.2017.01.014
10.1016/0378-7796(95)00977-1
10.1177/0734242X0302100408
10.1007/s11269-011-9957-0
10.1371/journal.pone.0065012
10.1007/978-3-540-74690-4_56
ContentType Journal Article
Copyright 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019 by the authors. 2019
Copyright_xml – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019 by the authors. 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8C1
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.3390/ijerph16203788
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Public Health Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Public Health
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic
MEDLINE
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
EISSN 1660-4601
ExternalDocumentID PMC6843783
31600885
10_3390_ijerph16203788
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
29J
2WC
53G
5GY
5VS
7X7
7XC
88E
8C1
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABGAM
ABUWG
ACGFO
ACGOD
ACIWK
ADBBV
AENEX
AFKRA
AFRAH
AFZYC
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EBD
EBS
EJD
EMB
EMOBN
F5P
FYUFA
GX1
HH5
HMCUK
HYE
KQ8
L6V
M1P
M48
MODMG
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
Q2X
RNS
RPM
SV3
TR2
UKHRP
XSB
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c418t-aeac4c570742f6c53acf68520b1cde05f99d33c31edee4dd287f8c07208f90313
IEDL.DBID M48
ISSN 1660-4601
1661-7827
IngestDate Thu Aug 21 18:08:28 EDT 2025
Mon Jul 21 10:45:15 EDT 2025
Fri Jul 25 20:01:19 EDT 2025
Thu Apr 03 07:01:47 EDT 2025
Tue Jul 01 04:04:05 EDT 2025
Thu Apr 24 23:07:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Keywords time series prediction
unknown inference
neural network
atmospheric quality
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-aeac4c570742f6c53acf68520b1cde05f99d33c31edee4dd287f8c07208f90313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8047-1010
0000-0002-2230-0077
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijerph16203788
PMID 31600885
PQID 2329644510
PQPubID 54923
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6843783
proquest_miscellaneous_2305031458
proquest_journals_2329644510
pubmed_primary_31600885
crossref_citationtrail_10_3390_ijerph16203788
crossref_primary_10_3390_ijerph16203788
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-09
PublicationDateYYYYMMDD 2019-10-09
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-09
  day: 09
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle International journal of environmental research and public health
PublicationTitleAlternate Int J Environ Res Public Health
PublicationYear 2019
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Schuster (ref_15) 1997; 45
Wang (ref_23) 2017; 8
ref_14
Cao (ref_2) 2011; 139
Wang (ref_4) 2017; 152
Yu (ref_21) 2017; 50
Shimpalee (ref_25) 2006; 163
Liu (ref_7) 2014; 1
Nelson (ref_9) 2014; 5
Shang (ref_3) 2013; 785–786
Chen (ref_8) 1995; 34
Gao (ref_6) 2009; 37
Botvinick (ref_13) 2006; 113
Zhou (ref_29) 2017; 2
(ref_24) 2018; 23
Menezes (ref_31) 2008; 71
Chang (ref_32) 2012; 26
Overcamp (ref_5) 2016; 111
Hochreiter (ref_16) 1997; 9
Yang (ref_12) 2019; 46
Wang (ref_18) 2018; 7
Eknath (ref_10) 2018; 4
ref_22
Zheng (ref_1) 2017; 46
ref_20
Wang (ref_11) 2018; 9
Poulsen (ref_27) 2003; 21
Gao (ref_30) 2016; 33
ref_28
Xing (ref_26) 2014; 580–583
Xie (ref_17) 2014; 1003
Zhang (ref_19) 2017; 30
References_xml – volume: 46
  start-page: 298
  year: 2017
  ident: ref_1
  article-title: Study on VOCs in atmosphere and their sources of atypical industrial park in Shanghai
  publication-title: J. Shanghai Norm. Univ. (Nat. Sci.)
– volume: 23
  start-page: 229
  year: 2018
  ident: ref_24
  article-title: Air quality modeling using the PSO-SVM-based approach, MLP neural network, and M5 model tree in the metropolitan area of Oviedo (Northern Spain)
  publication-title: Environ. Model. Assess.
  doi: 10.1007/s10666-017-9578-y
– volume: 45
  start-page: 2673
  year: 1997
  ident: ref_15
  article-title: Bidirectional recurrent neural networks
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.650093
– volume: 37
  start-page: 3893
  year: 2009
  ident: ref_6
  article-title: Specification testing in nonlinear and nonstationary time series autoregression
  publication-title: Ann. Stat.
  doi: 10.1214/09-AOS698
– volume: 71
  start-page: 3335
  year: 2008
  ident: ref_31
  article-title: Long-term time series prediction with the NARX network: An empirical evaluation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.01.030
– volume: 113
  start-page: 201
  year: 2006
  ident: ref_13
  article-title: Short-term memory for serial order: A recurrent neural network model
  publication-title: Psychol. Rev.
  doi: 10.1037/0033-295X.113.2.201
– volume: 7
  start-page: 279
  year: 2018
  ident: ref_18
  article-title: Construction of air quality evaluation system based on FCM algorithm and BP neural network
  publication-title: Agric. Biotechnol.
– volume: 5
  start-page: 739
  year: 2014
  ident: ref_9
  article-title: Statistical methodology: V. Time series analysis using autoregressive integrated moving average (ARIMA) models
  publication-title: Acad. Emerg. Med.
  doi: 10.1111/j.1553-2712.1998.tb02493.x
– volume: 8
  start-page: 850
  year: 2017
  ident: ref_23
  article-title: A novel hybrid-Garch model based on ARIMA and SVM for PM2.5 concentrations forecasting
  publication-title: Atmos. Pollut. Res.
  doi: 10.1016/j.apr.2017.01.003
– volume: 1
  start-page: 404
  year: 2014
  ident: ref_7
  article-title: Fusing moving average model and stationary wavelet decomposition for automatic incident detection: Case study of Tokyo Expressway
  publication-title: J. Traff. Transp. Eng.
– volume: 33
  start-page: 12
  year: 2016
  ident: ref_30
  article-title: Research of air pollution diffusion problem based on Gaussian model
  publication-title: J. Fuyang Teach. Coll. (Nat. Sci. Ed.)
– volume: 4
  start-page: 1435
  year: 2018
  ident: ref_10
  article-title: Autoregressive integrated moving average time series model for forecasting air pollution in Nanded city, Maharashtra, India
  publication-title: Model. Earth Syst. Environ.
  doi: 10.1007/s40808-018-0493-2
– volume: 9
  start-page: 1735
  year: 1997
  ident: ref_16
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 163
  start-page: 480
  year: 2006
  ident: ref_25
  article-title: Investigation of gas diffusion media inside PEMFC using CFD modeling
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2006.09.038
– volume: 139
  start-page: 487
  year: 2011
  ident: ref_2
  article-title: Dispersion coefficients for Gaussian puff models
  publication-title: Bound. Layer Meteor.
  doi: 10.1007/s10546-011-9595-3
– volume: 1003
  start-page: 4
  year: 2014
  ident: ref_17
  article-title: Research on applied-information technology with PM2.5 generation and evolution model based on BP neural network
  publication-title: Adv. Mater. Res.
– volume: 50
  start-page: 105
  year: 2017
  ident: ref_21
  article-title: Tracking prediction model for PM2.5 hourly concentration based on ARMAX
  publication-title: J. Tianjin Univ.
– ident: ref_22
  doi: 10.1109/ICMLA.2016.0171
– volume: 785–786
  start-page: 1384
  year: 2013
  ident: ref_3
  article-title: Modification and application of gaussian plume model for an industrial transfer park
  publication-title: Adv. Mater. Res.
  doi: 10.4028/www.scientific.net/AMR.785-786.1384
– volume: 111
  start-page: 403
  year: 2016
  ident: ref_5
  article-title: An Exact solution for the ground-level gamma dose rate from a spherical Gaussian puff
  publication-title: Health Phys.
  doi: 10.1097/HP.0000000000000567
– volume: 30
  start-page: 360
  year: 2017
  ident: ref_19
  article-title: The humidity compensation for measurement systems of aerosol mass concentrations based on the PSO-BP neural network
  publication-title: Chin. J. Sens. Actuators
– volume: 46
  start-page: 21
  year: 2019
  ident: ref_12
  article-title: Review of time series prediction methods
  publication-title: Comput. Sci.
– volume: 9
  start-page: 275
  year: 2018
  ident: ref_11
  article-title: Short-term cloud coverage prediction using the ARIMA time series model
  publication-title: Remote Sens. Lett.
  doi: 10.1080/2150704X.2017.1418992
– volume: 580–583
  start-page: 1254
  year: 2014
  ident: ref_26
  article-title: Approach on pollution gases diffusion path of small spacing tunnel entrance based on CFD
  publication-title: Appl. Mech. Mater.
  doi: 10.4028/www.scientific.net/AMM.580-583.1254
– volume: 152
  start-page: 519
  year: 2017
  ident: ref_4
  article-title: Evaluation of Bayesian source estimation methods with Prairie Grass observations and Gaussian plume model: A comparison of likelihood functions and distance measures
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2017.01.014
– volume: 34
  start-page: 187
  year: 1995
  ident: ref_8
  article-title: Analysis of an adaptive time-series autoregressive moving-average (ARMA) model for short-term load forecasting
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/0378-7796(95)00977-1
– volume: 21
  start-page: 356
  year: 2003
  ident: ref_27
  article-title: Relating landfill gas emissions to atmospheric pressure using numerical modelling and state-space analysis
  publication-title: Waste Manag. Res.
  doi: 10.1177/0734242X0302100408
– volume: 26
  start-page: 1253
  year: 2012
  ident: ref_32
  article-title: Integration of optimal dynamic control and neural network for groundwater quality management
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-011-9957-0
– ident: ref_20
– volume: 2
  start-page: 45
  year: 2017
  ident: ref_29
  article-title: Research on air quality of Chengdu city based on Gaussian diffusion model
  publication-title: J. Green Sci. Technol.
– ident: ref_28
  doi: 10.1371/journal.pone.0065012
– ident: ref_14
  doi: 10.1007/978-3-540-74690-4_56
SSID ssj0038469
Score 2.3065383
Snippet The monitoring-blind area exists in the industrial park because of private interest and limited administrative power. As the atmospheric quality in the blind...
In the studies of time series prediction, the statistical methods and machine learning models are the mainstream. [...]machine learning has attracted more...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3788
SubjectTerms Air Pollution
Algorithms
Artificial intelligence
Atmosphere
China
Deep learning
Environmental Monitoring - methods
Factories
Industry
Machine learning
Models, Theoretical
Neural networks
Neural Networks, Computer
Quality
Sensors
Spatial analysis
Statistical methods
Stochastic models
Time series
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEA4-LoKIb1dXiSB4CrZN0iYnUXFZBEVQYW-lTVJU1lb38f-dabrVVfTcJC35ksw3k-k3hJyE3GmZ24jFgCkTubZMZVHBrHQO1k_uRC27eHsX95_EzUAOmoDbuEmrnJ2J9UFtK4Mx8jOw_DpGNa3g_P2DYdUovF1tSmgskmWULsOUrmTQOlwcbCvS3xBsEANLmHjRRg5u_tnLqxthlYAoQEH1eaP0i2n-TJj8ZoF662StoY70wmO9QRZcuUlWfdyN-t-JtsjbQ50izR695NSQ3o_wKgannwI_pcD3qN_HGNBjl8AyLQzpMloV9KuOB72YvFVjlBxw9BIMnaXQH_v2phheo3c-e3ybPPWuH6_6rCmpwIwI1YRlcM4KIxP0iIvYSJ6ZIlYyCvLQWBfIQmvLueGhs84Ja8GfKpQJkihQhUaZxx2yVFal2yPUyEhGosiTwAALEC7PsTagApQAI53FHcJmc5qaRm8cy14MU_A7EIN0HoMOOW3bv3uljT9bdmcQpc2OG6df66NDjtvHsFfwAiQrXTXFNqh-EwoJQ-x6RNtX8RCon1KyQ5I5rNsGqMM9_6R8ea71uGMFC1rx_f8_64CsANnSdSKg7pKlyWjqDoHQTPKjetV-Agqz9sw
  priority: 102
  providerName: ProQuest
Title Spatio-Temporal Prediction for the Monitoring-Blind Area of Industrial Atmosphere Based on the Fusion Network
URI https://www.ncbi.nlm.nih.gov/pubmed/31600885
https://www.proquest.com/docview/2329644510
https://www.proquest.com/docview/2305031458
https://pubmed.ncbi.nlm.nih.gov/PMC6843783
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED_WFkphjK0fW7YuqDDYk1p_SLb0MEZSmpZCQ9kayJuxJZlmpE6bJrD997uzEqfZupe9-EU6GXR3vt9J598BfApjp2VhI56gTrkotOUqj0pupXNoP4UTNe3iVT-5GIjLoRyu6p8WG_j4bGpH_aQG0_Hxz4dfX9Hhv1DGiSn7yeiHmxLjfxQQOfoGbGFUSslJr0RzoxBjnCUoHGI84hgVU0_g-Iz8DmzHIcIARe2Vn8aqvwDon3WUTwJT7zW8WiBK1vEm8AZeuGoXXvrjOOb_MtqDu-915TS_8UxUY3Y9pRsa0gpD2MoQBjLv3nTOx7sIPi0u6XI2KdmqvQfrzO4mj8RE4FgX459lKE-yvTmdurG-Lyrfh0Hv7Ob0gi86LXAjQjXjOX5-hZEpJcplYmScmzJRMgqK0FgXyFJrG8cmDp11TliLaVapTJBGgSo1sT8ewGY1qdw7YEZGMhJlkQYG1SBcUVDLQBXpBL1f50kL-HJPM7OgIaduGOMM0xFSR7aujhZ8bubfewKOf848XKooW9pRhoBRJ0TCFrTgqBlGF6J7kbxykznNIVKcUEhc4q3XaPOqpSm0IF3TdTOB6LnXR6rRbU3TnSi0cxW__2_JD7CD8EzXpYP6EDZn07n7iBBoVrRhIx2m-FSnIT17523Y6p71r7-1a6v_DY7WC_M
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAJId4sFDASiJPVJLYT-4BQC6y2tF0hsZX2FhLbEa3apN2HEH-K38hMvElZENx69iORZ8bzjT3-BuBVLLxRpUt4ijLlsjSO6yKpuFPeo_6UXra0i4fjdHQkP03VdAN-dm9hKK2y2xPbjdo1ls7It9Hzm5TYtKJ35xecqkbR7WpXQiOoxb7_8R1DtvnbvQ8o39dJMvw4eT_iq6oC3MpYL3iBW420KqOgsEqtEoWtUq2SqIyt85GqjHFCWBF75710DkOKStsoSyJdGWI6xHmvwXV0vBFZVDbtAzyBvpzgdow-j6PnzQJJpBAm2j4-8TOqSpBEROC-7gT_QrZ_Jmj-5vGGd-D2CqqynaBbd2HD1_fgVjjnY-H50n04-9KmZPNJoLg6ZZ9ndPVD4maIhxniSxb2DTpA5LuIah1O6QvWVOyybgjbWZw1c6I48GwXHatjOJ7GDpd0nMfGIVv9ARxdyWI_hM26qf1jYFYlKpFVmUUWUYf0ZUm1CDVqBeqEKdIB8G5Nc7viN6cyG6c5xjkkg3xdBgN40_c_D8we_-y51YkoX1n4PL_UxwG87JvRNunCpah9s6Q-xLYTS4VTPAoS7T8lYoSaWqsBZGuy7jsQ7_d6S338reX_TjUakBZP_v9bL-DGaHJ4kB_sjfefwk0EeqZNQjRbsLmYLf0zBFOL8nmrwQy-XrXJ_AKyVDQ2
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiEkhHizUMBIIE7WJnac2AeEWsqqpbCqRCvtLSS2I4rapOxDiL_Gr2MmTlIWBLee_UjkmfF8Y4-_AXgRS29U6QRPUaY8KY3juhAVd8p71J_SJy3t4sdpunecvJ-p2Qb87N_CUFplvye2G7VrLJ2Rj9Hzm5TYtKJx1aVFHO5O3px_41RBim5a-3IaQUUO_I_vGL4tXu_voqxfCjF5d_R2j3cVBrhNYr3kBW47iVUZBYhVapUsbJVqJaIyts5HqjLGSWll7J33iXMYXlTaRpmIdGWI9RDnvQJXM6lisrFsNgR7Ev06Qe8Y_R9HL5wFwkgpTTQ--ernVKFARETmvu4Q_0K5fyZr_ub9JrfgZgdb2XbQs9uw4es7cCOc-bHwlOkunH1q07P5UaC7OmWHc7oGItEzxMYMsSYLewgdJvIdRLgOp_QFayp2UUOEbS_PmgXRHXi2g07WMRxPYycrOtpj05C5fg-OL2Wx78Nm3dT-ITCrhBJJVWaRRQSS-LKkuoQaNQT1wxTpCHi_prntuM6p5MZpjjEPySBfl8EIXg39zwPLxz97bvUiyjtrX-QXujmC50Mz2ildvhS1b1bUh5h34kThFA-CRIdPyRhhp9ZqBNmarIcOxAG-3lKffGm5wFONxqTlo___1jO4hsaSf9ifHjyG64j5TJuPaLZgczlf-SeIq5bl01aBGXy-bIv5Bc57OGw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatio-Temporal+Prediction+for+the+Monitoring-Blind+Area+of+Industrial+Atmosphere+Based+on+the+Fusion+Network&rft.jtitle=International+journal+of+environmental+research+and+public+health&rft.au=Bai%2C+Yu-ting&rft.au=Wang%2C+Xiao-yi&rft.au=Sun%2C+Qian&rft.au=Jin%2C+Xue-bo&rft.date=2019-10-09&rft.pub=MDPI&rft.issn=1661-7827&rft.eissn=1660-4601&rft.volume=16&rft.issue=20&rft_id=info:doi/10.3390%2Fijerph16203788&rft_id=info%3Apmid%2F31600885&rft.externalDocID=PMC6843783
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1660-4601&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1660-4601&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1660-4601&client=summon