In situ synthesis of Mo-doped carbon-coated NiCo2S4 nanosheet networks for supercapacitors
•Double-layer carbon and NiCo2S4 form SC.•NiCo2S4 is in-situ grown on foam nickel for improved quality.•Effect of ion doping on NiCo2S4's electrochemical properties studied. Supercapacitors offer numerous advantages, including high power output, quick charging and discharging rates, and stable...
Saved in:
Published in | Electrochemistry communications Vol. 170; p. 107853 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2025
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Double-layer carbon and NiCo2S4 form SC.•NiCo2S4 is in-situ grown on foam nickel for improved quality.•Effect of ion doping on NiCo2S4's electrochemical properties studied.
Supercapacitors offer numerous advantages, including high power output, quick charging and discharging rates, and stable cycling performance. Nevertheless, their energy density and cycle life still fall short of current industry demands for energy storage. To address these challenges, this work fabricated nanostructured electrodes by synthesizing molybdenum-doped carbon-coated NiCo2S4 (C@NiCo2S4-Mo), using NiCo2S4 as the precursor. The doping of molybdenum, a transition metal with many oxidation states, significantly improved the electronic structure and stability of the electrode material. Additionally, incorporating a carbon-coated structure enhanced the material’s stability during cycling, extending its operational lifespan. The results demonstrated that C@NiCo2S4-Mo exhibited exceptional electrochemical properties, featuring a defined capacitance of 931.75 Farad/g under the current flux of 1 A/g. This high specific capacitance value, a vital factor regarding capacitor performance, directly influences the energy storage capacity of the device, indicating the high potential of the C@NiCo2S4-Mo material for supercapacitors. It was observed that the particular capacity retention was 76.6 % when the current density was increased by a factor of 10. The substance also showed favorable pseudocapacitive characteristics, retaining 87.7 % of its particular capacitance after prolonged cycling in cyclic voltammetry (CV) tests, highlighting its outstanding cyclic stability. Furthermore, supercapacitors constructed from C@NiCo2S4-Mo achieved an energy density of 14.5 Wh/kg at a power density of 700 kW/kg, making them promising candidates for energy storage applications. |
---|---|
AbstractList | •Double-layer carbon and NiCo2S4 form SC.•NiCo2S4 is in-situ grown on foam nickel for improved quality.•Effect of ion doping on NiCo2S4's electrochemical properties studied.
Supercapacitors offer numerous advantages, including high power output, quick charging and discharging rates, and stable cycling performance. Nevertheless, their energy density and cycle life still fall short of current industry demands for energy storage. To address these challenges, this work fabricated nanostructured electrodes by synthesizing molybdenum-doped carbon-coated NiCo2S4 (C@NiCo2S4-Mo), using NiCo2S4 as the precursor. The doping of molybdenum, a transition metal with many oxidation states, significantly improved the electronic structure and stability of the electrode material. Additionally, incorporating a carbon-coated structure enhanced the material’s stability during cycling, extending its operational lifespan. The results demonstrated that C@NiCo2S4-Mo exhibited exceptional electrochemical properties, featuring a defined capacitance of 931.75 Farad/g under the current flux of 1 A/g. This high specific capacitance value, a vital factor regarding capacitor performance, directly influences the energy storage capacity of the device, indicating the high potential of the C@NiCo2S4-Mo material for supercapacitors. It was observed that the particular capacity retention was 76.6 % when the current density was increased by a factor of 10. The substance also showed favorable pseudocapacitive characteristics, retaining 87.7 % of its particular capacitance after prolonged cycling in cyclic voltammetry (CV) tests, highlighting its outstanding cyclic stability. Furthermore, supercapacitors constructed from C@NiCo2S4-Mo achieved an energy density of 14.5 Wh/kg at a power density of 700 kW/kg, making them promising candidates for energy storage applications. Supercapacitors offer numerous advantages, including high power output, quick charging and discharging rates, and stable cycling performance. Nevertheless, their energy density and cycle life still fall short of current industry demands for energy storage. To address these challenges, this work fabricated nanostructured electrodes by synthesizing molybdenum-doped carbon-coated NiCo2S4 (C@NiCo2S4-Mo), using NiCo2S4 as the precursor. The doping of molybdenum, a transition metal with many oxidation states, significantly improved the electronic structure and stability of the electrode material. Additionally, incorporating a carbon-coated structure enhanced the material’s stability during cycling, extending its operational lifespan. The results demonstrated that C@NiCo2S4-Mo exhibited exceptional electrochemical properties, featuring a defined capacitance of 931.75 Farad/g under the current flux of 1 A/g. This high specific capacitance value, a vital factor regarding capacitor performance, directly influences the energy storage capacity of the device, indicating the high potential of the C@NiCo2S4-Mo material for supercapacitors. It was observed that the particular capacity retention was 76.6 % when the current density was increased by a factor of 10. The substance also showed favorable pseudocapacitive characteristics, retaining 87.7 % of its particular capacitance after prolonged cycling in cyclic voltammetry (CV) tests, highlighting its outstanding cyclic stability. Furthermore, supercapacitors constructed from C@NiCo2S4-Mo achieved an energy density of 14.5 Wh/kg at a power density of 700 kW/kg, making them promising candidates for energy storage applications. |
ArticleNumber | 107853 |
Author | Wang, Kaiyu Ouyang, Wenchong Wu, Zhengwei Zhou, Fan Wang, Kun Chu, Jiangnan |
Author_xml | – sequence: 1 givenname: Kaiyu surname: Wang fullname: Wang, Kaiyu organization: Institute of Advanced Technology, University of Science and Technology of China, Hefei 230022, China – sequence: 2 givenname: Fan surname: Zhou fullname: Zhou, Fan organization: Institute of Advanced Technology, University of Science and Technology of China, Hefei 230022, China – sequence: 3 givenname: Jiangnan surname: Chu fullname: Chu, Jiangnan organization: Institute of Advanced Technology, University of Science and Technology of China, Hefei 230022, China – sequence: 4 givenname: Wenchong surname: Ouyang fullname: Ouyang, Wenchong organization: School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China – sequence: 5 givenname: Kun surname: Wang fullname: Wang, Kun email: fanz@mail.ustc.edu.cn, wangkun@ahedi.com.cn organization: China Energy Engineering Group Anhui Electric Power Design Institute Company Limited, Hefei 230601, China – sequence: 6 givenname: Zhengwei surname: Wu fullname: Wu, Zhengwei email: wuzw@ustc.edu.cn organization: Institute of Advanced Technology, University of Science and Technology of China, Hefei 230022, China |
BookMark | eNqFkD1vFDEQQF0EKR_kH1D4D-zhr921KZDQCchJAQqShsaatWeJj4vnZDug_Hs2LKKggGo0I70nzTtnJ5kyMvZCio0Ucni53-ABA91vlFBmOY221yfsTGprO2WsPGXnte6FkMo5fca-7DKvqT3w-pjbHdZUOc38A3WRjhh5gDJR7gJBW7aPaUvqs-EZMtU7xMYzth9UvlU-U-H14YglwBFCalTqc_ZshkPFy9_zgt2-e3uzvequP73fbd9cd8FI2zrAwUgUMooRgnA4qmFSBkc9WOPi3BuUAlG7OfRjPzgZhLaTgjgLB8ZNRl-w3eqNBHt_LOkeyqMnSP7XgcpXD6WlcEAv-2CtHGyUWhsIOKnYO22isFOU_TwtLrO6QqFaC85_fFL4p75-79e-_qmvX_su2Ku_sCUBtES5FUiH_8GvVxiXSN8TFl9DwhwwpoKhLV-kfwt-AmGlnT0 |
CitedBy_id | crossref_primary_10_1016_j_jallcom_2025_178774 |
Cites_doi | 10.1002/er.5102 10.1016/j.jpowsour.2024.234456 10.1016/j.cej.2018.08.008 10.1149/2.074205jes 10.1002/smll.202002806 10.1016/j.nanoen.2015.06.018 10.1002/cey2.107 10.1016/j.ccr.2019.213093 10.1016/j.ijhydene.2020.05.143 10.1016/S0927-7757(98)00627-X 10.1016/j.jallcom.2024.175367 10.1039/C9NA00543A 10.1016/j.jpowsour.2022.232090 10.1021/acsnano.4c06737 10.1016/j.jpowsour.2021.230333 10.1016/j.matlet.2018.08.135 10.1016/j.ijhydene.2020.08.075 10.1016/j.apsusc.2018.10.100 10.1039/C5CC07296D 10.1016/j.jpowsour.2022.232558 10.1016/j.matlet.2017.12.014 10.1039/C8SE00009C 10.1002/celc.202300810 10.1016/j.cej.2024.149591 10.1016/j.cej.2019.123541 10.1002/anie.201400226 10.1007/s10853-020-05408-6 10.1016/j.cej.2024.152609 10.1016/j.apsusc.2021.151561 10.1021/acsaem.1c00557 10.1039/D2NJ01729F 10.1039/C9SC01662G 10.1007/s42114-024-00913-7 10.1016/j.seppur.2023.124577 |
ContentType | Journal Article |
Copyright | 2024 The Authors |
Copyright_xml | – notice: 2024 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.elecom.2024.107853 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
ExternalDocumentID | oai_doaj_org_article_15c88168d1334aceb2d5934d08bd15fb 10_1016_j_elecom_2024_107853 S1388248124001966 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAFTH AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXKI AAXUO ABFNM ABFRF ABJNI ABMAC ABNUV ABWVN ABXDB ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACRPL ADBBV ADECG ADEWK ADEZE ADMUD ADNMO ADVLN AEBSH AEFWE AEIPS AEKER AENEX AFJKZ AFKWA AFPKN AFTJW AFZHZ AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJOXV AJSZI AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BCNDV BKOJK BLXMC CS3 DU5 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ HVGLF HZ~ IHE J1W KOM M41 MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCB SDF SDG SDP SES SEW SPC SSG SSK SSZ T5K UNMZH XPP ZMT ~G- AATTM AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS |
ID | FETCH-LOGICAL-c418t-ae641e01d07ac09e726b24e736849df54e10ee39fc575691c038b2adf09a49b43 |
IEDL.DBID | DOA |
ISSN | 1388-2481 |
IngestDate | Wed Aug 27 01:32:47 EDT 2025 Tue Jul 01 03:05:03 EDT 2025 Thu Apr 24 22:54:40 EDT 2025 Sat Jan 18 16:11:06 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Supercapacitor C@NiCo2S4-Mo Composite Molybdenum doping |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c418t-ae641e01d07ac09e726b24e736849df54e10ee39fc575691c038b2adf09a49b43 |
OpenAccessLink | https://doaj.org/article/15c88168d1334aceb2d5934d08bd15fb |
ParticipantIDs | doaj_primary_oai_doaj_org_article_15c88168d1334aceb2d5934d08bd15fb crossref_primary_10_1016_j_elecom_2024_107853 crossref_citationtrail_10_1016_j_elecom_2024_107853 elsevier_sciencedirect_doi_10_1016_j_elecom_2024_107853 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2025 2025-01-00 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: January 2025 |
PublicationDecade | 2020 |
PublicationTitle | Electrochemistry communications |
PublicationYear | 2025 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Wang (b0015) 2020; 404 Chen, Wei, Wang (b0165) 2020; 85 Kolavada, Gajjar, Gupta (b0070) 2024; 81 Panchu, Raju, Swart (b0045) 2024; 11 Xu (b0130) 2024; 77 Cui (b0160) 2022; 46 Wen (b0220) 2021; 4 Sowbakkiyavathi (b0110) 2024; 7 Shinde (b0170) 2019; 466 Shin (b0010) 2023 Sundriyal (b0210) 2020; 45 Chen (b0075) 2024; 603 Jia (b0090) 2018; 354 Costentin, Saveant (b0030) 2019; 10 Gao (b0040) 2023; 324 Park, Roh (b0025) 2023; 557 Lin (b0115) 2021; 56 Gao, Zhao (b0060) 2022; 430 Tang, Tang, Gong (b0195) 2012; 159 Qi (b0125) 2024 Jia (b0095) 2018; 233 Shao (b0055) 2015; 51 Jia (b0085) 2020; 391 An (b0050) 2019; 1 Zhu (b0145) 2020; 44 Libich (b0005) 2018; 17 Yu (b0215) 2014; 53 Peng (b0105) 2022; 573 Shi (b0155) 2021; 509 Chai (b0185) 2022; 918 Moradighadi, Nesic, Tribollet (b0175) 2021; 400 Xu, Han (b0150) 2022; 30 Chodankar (b0180) 2020; 16 Li (b0140) 2020; 45 Huang, Xie (b0035) 2024; 1002 Zeng (b0065) 2021; 3 Zheng (b0100) 2024; 493 Liu, Wen, Shi (b0200) 2018; 214 Gao (b0205) 2018; 2 Jia (b0080) 2024; 484 Deleu (b0120) 1999 Li (b0135) 2023; 73 Bothe, Balducci (b0020) 2022; 548 Xiong (b0190) 2015; 16 Jia (10.1016/j.elecom.2024.107853_b0090) 2018; 354 Chen (10.1016/j.elecom.2024.107853_b0075) 2024; 603 Cui (10.1016/j.elecom.2024.107853_b0160) 2022; 46 Panchu (10.1016/j.elecom.2024.107853_b0045) 2024; 11 Sowbakkiyavathi (10.1016/j.elecom.2024.107853_b0110) 2024; 7 Sundriyal (10.1016/j.elecom.2024.107853_b0210) 2020; 45 Xu (10.1016/j.elecom.2024.107853_b0130) 2024; 77 Huang (10.1016/j.elecom.2024.107853_b0035) 2024; 1002 Shao (10.1016/j.elecom.2024.107853_b0055) 2015; 51 Wang (10.1016/j.elecom.2024.107853_b0015) 2020; 404 Zhu (10.1016/j.elecom.2024.107853_b0145) 2020; 44 Tang (10.1016/j.elecom.2024.107853_b0195) 2012; 159 Gao (10.1016/j.elecom.2024.107853_b0205) 2018; 2 Chodankar (10.1016/j.elecom.2024.107853_b0180) 2020; 16 Chen (10.1016/j.elecom.2024.107853_b0165) 2020; 85 Costentin (10.1016/j.elecom.2024.107853_b0030) 2019; 10 Shin (10.1016/j.elecom.2024.107853_b0010) 2023 Zheng (10.1016/j.elecom.2024.107853_b0100) 2024; 493 Peng (10.1016/j.elecom.2024.107853_b0105) 2022; 573 Shinde (10.1016/j.elecom.2024.107853_b0170) 2019; 466 Jia (10.1016/j.elecom.2024.107853_b0095) 2018; 233 Deleu (10.1016/j.elecom.2024.107853_b0120) 1999 Park (10.1016/j.elecom.2024.107853_b0025) 2023; 557 Gao (10.1016/j.elecom.2024.107853_b0060) 2022; 430 Xiong (10.1016/j.elecom.2024.107853_b0190) 2015; 16 Libich (10.1016/j.elecom.2024.107853_b0005) 2018; 17 Jia (10.1016/j.elecom.2024.107853_b0085) 2020; 391 Shi (10.1016/j.elecom.2024.107853_b0155) 2021; 509 Xu (10.1016/j.elecom.2024.107853_b0150) 2022; 30 Jia (10.1016/j.elecom.2024.107853_b0080) 2024; 484 Qi (10.1016/j.elecom.2024.107853_b0125) 2024 Chai (10.1016/j.elecom.2024.107853_b0185) 2022; 918 Bothe (10.1016/j.elecom.2024.107853_b0020) 2022; 548 An (10.1016/j.elecom.2024.107853_b0050) 2019; 1 Kolavada (10.1016/j.elecom.2024.107853_b0070) 2024; 81 Moradighadi (10.1016/j.elecom.2024.107853_b0175) 2021; 400 Gao (10.1016/j.elecom.2024.107853_b0040) 2023; 324 Wen (10.1016/j.elecom.2024.107853_b0220) 2021; 4 Lin (10.1016/j.elecom.2024.107853_b0115) 2021; 56 Li (10.1016/j.elecom.2024.107853_b0140) 2020; 45 Liu (10.1016/j.elecom.2024.107853_b0200) 2018; 214 Li (10.1016/j.elecom.2024.107853_b0135) 2023; 73 Yu (10.1016/j.elecom.2024.107853_b0215) 2014; 53 Zeng (10.1016/j.elecom.2024.107853_b0065) 2021; 3 |
References_xml | – volume: 404 year: 2020 ident: b0015 article-title: Metal-organic framework-based materials for hybrid supercapacitor application publication-title: Coord. Chem. Rev. – volume: 391 year: 2020 ident: b0085 article-title: In-situ MOFs-derived hollow Co9S8 polyhedron welding on the top of MnCo2S4 nanoneedles for high performance hybrid supercapacitors publication-title: Chem. Eng. J. – volume: 354 start-page: 254 year: 2018 end-page: 260 ident: b0090 article-title: A novel three-dimensional hierarchical NiCo2O4/Ni2P electrode for high energy asymmetric supercapacitor publication-title: Chem. Eng. J. – volume: 233 start-page: 55 year: 2018 end-page: 58 ident: b0095 article-title: A novel P-doped MnCo2S4 nanoneedles assembled dandelion-like structure for high performance hybrid supercapacitors publication-title: Mater. Lett. – volume: 77 year: 2024 ident: b0130 article-title: Mo-doped NiCo-LDH nanoflower derived from ZIF-67 nanosheet arrays for high-performance supercapacitors publication-title: J. Storage Mater. – volume: 1 start-page: 4644 year: 2019 end-page: 4658 ident: b0050 article-title: Metal oxide-based supercapacitors: progress and prospectives publication-title: Nanoscale Adv. – volume: 324 year: 2023 ident: b0040 article-title: Recent advanced freestanding pseudocapacitive electrodes for efficient capacitive deionization publication-title: Sep. Purif. Technol. – volume: 56 start-page: 1897 year: 2021 end-page: 1918 ident: b0115 article-title: Prospect of Ni-related metal oxides for high-performance supercapacitor electrodes publication-title: J. Mater. Sci. – volume: 159 start-page: A651 year: 2012 end-page: A656 ident: b0195 article-title: Hierarchically porous Ni-Co oxide for high reversibility asymmetric full-cell supercapacitors publication-title: J. Electrochem. Soc. – volume: 85 start-page: 43 year: 2020 end-page: 56 ident: b0165 article-title: NiCo2S4‐based composite materials for supercapacitors publication-title: ChemPlusChem (Weinheim, Germany) – start-page: 3 year: 1999 end-page: 10 ident: b0120 publication-title: Colloids Surf. A: Physicochem. Eng. Aspects – volume: 45 start-page: 20820 year: 2020 end-page: 20831 ident: b0140 article-title: Self-assembled Mo doped Ni-MOF nanosheets based electrode material for high performance battery-supercapacitor hybrid device publication-title: Int. J. Hydrogen Energy – volume: 918 year: 2022 ident: b0185 article-title: Boosting electrochemical kinetics by loading CoB on vermiculite for supercapacitor application publication-title: J. Electroanaly. Chem. (Lausanne, Switzerland) – volume: 573 year: 2022 ident: b0105 article-title: Double-shelled Mn-doped NiCo2S4 hollow nanowire arrays for high-reactivity hybrid supercapacitors publication-title: Appl. Surf. Sci. – volume: 53 start-page: 3711 year: 2014 end-page: 3714 ident: b0215 article-title: Formation of NixCo3−xS4 Hollow Nanoprisms with Enhanced Pseudocapacitive Properties publication-title: Angew. Chem. Int. Edit. – volume: 484 year: 2024 ident: b0080 article-title: Synergistic enhancement of supercapacitor performance: Modish designation of BPQD modified NiCo-LDH/NiCo2S4 hybrid nanotube arrays with improved conductivity and OH– adsorption publication-title: Chem. Eng. J. – volume: 44 start-page: 2864 year: 2020 end-page: 2874 ident: b0145 article-title: Synthesis of porous flower‐like Ni‐Co‐Mo‐S nanostructures on Ni foam for battery‐supercapacitor hybrid devices publication-title: Int. J. Energy Res. – volume: 214 start-page: 194 year: 2018 end-page: 197 ident: b0200 article-title: Co 3 S 4 nanoneedles decorated on NiCo2O4 nanosheets for high-performance asymmetric supercapacitors publication-title: Mater. Lett. – volume: 557 year: 2023 ident: b0025 article-title: Recent advances in and perspectives on pseudocapacitive materials for Supercapacitors–A review publication-title: J. Power Sources – volume: 51 start-page: 15880 year: 2015 end-page: 15893 ident: b0055 article-title: Layered double hydroxides toward electrochemical energy storage and conversion: design, synthesis and applications publication-title: Chem. Commun. (Camb.) – volume: 548 year: 2022 ident: b0020 article-title: Thermal analysis of electrical double layer capacitors: Present status and remaining challenges publication-title: J. Power Sources – volume: 493 year: 2024 ident: b0100 article-title: In-situ construction of P-doped Ni0.5Cu0.5Co2O4 with 1D/2D hierarchical nanostructure for high-performance hybrid supercapacitors publication-title: Chem. Eng. J. – volume: 3 start-page: 193 year: 2021 end-page: 224 ident: b0065 article-title: Porous monoliths of 3D graphene for electric double‐layer supercapacitors publication-title: Carbon Energy – volume: 603 year: 2024 ident: b0075 article-title: Deciphering multistep transformation mechanism of cobalt-vanadium bimetallic sulfides anode in sodium storage publication-title: J. Power Sources – volume: 7 year: 2024 ident: b0110 article-title: Research progress in the development of transition metal chalcogenides and their composite-based electrode materials for supercapacitors publication-title: Adv. Compos. Hybrid Mater. – volume: 45 start-page: 30859 year: 2020 end-page: 30869 ident: b0210 article-title: Enhanced electrochemical performance of nickel intercalated ZIF-67/rGO composite electrode for solid-state supercapacitors publication-title: Int. J. Hydrogen Energy – volume: 73 year: 2023 ident: b0135 article-title: Mo-doped ZIF-67 derived Ni Co, Mo trimetallic sulfide/carbon nanotubes for supercapacitors publication-title: J. Storage Mater. – volume: 30 year: 2022 ident: b0150 article-title: Flower-like Mo doped Ni(OH)2@Co3S4-Ni3S2 heterostructure for asymmetric supercapacitors publication-title: Surf. Interfaces – volume: 16 start-page: 71 year: 2015 end-page: 80 ident: b0190 article-title: Controlled synthesis of NiCo2S4 nanostructured arrays on carbon fiber paper for high-performance pseudocapacitors publication-title: Nano Energy – volume: 17 start-page: 224 year: 2018 end-page: 227 ident: b0005 article-title: Supercapacitors: Properties and applications publication-title: J. Storage Mater. – year: 2023 ident: b0010 article-title: Metal–organic framework supercapacitors: challenges and opportunities publication-title: Adv. Funct. Mater. – volume: 1002 year: 2024 ident: b0035 article-title: Matching Faradaic reaction of multi-transition metal compounds as supercapacitor electrode materials: A review publication-title: J. Alloy. Compd. – volume: 11 year: 2024 ident: b0045 article-title: Emerging two–dimensional intercalation pseudocapacitive electrodes for supercapacitors publication-title: ChemElectroChem – volume: 81 year: 2024 ident: b0070 article-title: Unraveling quantum capacitance in supercapacitors: Energy storage applications publication-title: J. Storage Mater. – volume: 400 year: 2021 ident: b0175 article-title: Identifying the dominant electrochemical reaction in electrochemical impedance spectroscopy publication-title: Electrochim. Acta – volume: 430 year: 2022 ident: b0060 article-title: Review on recent advances in nanostructured transition-metal-sulfide-based electrode materials for cathode materials of asymmetric supercapacitors publication-title: Chem. Eng. J. (Lausanne, Switzerland: 1996) – year: 2024 ident: b0125 article-title: Emerging two-dimensional materials for proton-based energy storage publication-title: ACS Nano – volume: 4 start-page: 6531 year: 2021 end-page: 6541 ident: b0220 article-title: High-Mass-Loading Ni–Co–S Electrodes with Unfading Electrochemical Performance for Supercapacitors publication-title: ACS Appl. Energy Mater. – volume: 10 start-page: 5656 year: 2019 end-page: 5666 ident: b0030 article-title: Energy storage: pseudocapacitance in prospect publication-title: Chem. Sci. – volume: 16 year: 2020 ident: b0180 article-title: True meaning of pseudocapacitors and their performance metrics: asymmetric versus hybrid supercapacitors publication-title: Small – volume: 509 year: 2021 ident: b0155 article-title: Novel Mo-doped nickel sulfide thin sheets decorated with Ni–Co layered double hydroxide sheets as an advanced electrode for aqueous asymmetric super-capacitor battery publication-title: J. Power Sources – volume: 466 start-page: 822 year: 2019 end-page: 829 ident: b0170 article-title: Chemically synthesized nanoflakes-like NiCo2S4 electrodes for high-performance supercapacitor application publication-title: Appl. Surf. Sci. – volume: 2 start-page: 1178 year: 2018 end-page: 1188 ident: b0205 article-title: Solid-phase synthesis and electrochemical pseudo-capacitance of nitrogen-atom interstitial compound Co3N publication-title: Sustainable Energy Fuels – volume: 46 start-page: 12419 year: 2022 end-page: 12426 ident: b0160 article-title: Electrodeposition preparation of NiCo2S4 nanoparticles on a N-doped activated carbon modified graphene film for asymmetric all-solid-state supercapacitors publication-title: New J. Chem. – volume: 44 start-page: 2864 issue: 4 year: 2020 ident: 10.1016/j.elecom.2024.107853_b0145 article-title: Synthesis of porous flower‐like Ni‐Co‐Mo‐S nanostructures on Ni foam for battery‐supercapacitor hybrid devices publication-title: Int. J. Energy Res. doi: 10.1002/er.5102 – volume: 603 year: 2024 ident: 10.1016/j.elecom.2024.107853_b0075 article-title: Deciphering multistep transformation mechanism of cobalt-vanadium bimetallic sulfides anode in sodium storage publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2024.234456 – volume: 81 year: 2024 ident: 10.1016/j.elecom.2024.107853_b0070 article-title: Unraveling quantum capacitance in supercapacitors: Energy storage applications publication-title: J. Storage Mater. – volume: 354 start-page: 254 year: 2018 ident: 10.1016/j.elecom.2024.107853_b0090 article-title: A novel three-dimensional hierarchical NiCo2O4/Ni2P electrode for high energy asymmetric supercapacitor publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.08.008 – volume: 159 start-page: A651 issue: 5 year: 2012 ident: 10.1016/j.elecom.2024.107853_b0195 article-title: Hierarchically porous Ni-Co oxide for high reversibility asymmetric full-cell supercapacitors publication-title: J. Electrochem. Soc. doi: 10.1149/2.074205jes – volume: 73 year: 2023 ident: 10.1016/j.elecom.2024.107853_b0135 article-title: Mo-doped ZIF-67 derived Ni Co, Mo trimetallic sulfide/carbon nanotubes for supercapacitors publication-title: J. Storage Mater. – volume: 16 issue: 37 year: 2020 ident: 10.1016/j.elecom.2024.107853_b0180 article-title: True meaning of pseudocapacitors and their performance metrics: asymmetric versus hybrid supercapacitors publication-title: Small doi: 10.1002/smll.202002806 – volume: 16 start-page: 71 year: 2015 ident: 10.1016/j.elecom.2024.107853_b0190 article-title: Controlled synthesis of NiCo2S4 nanostructured arrays on carbon fiber paper for high-performance pseudocapacitors publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.06.018 – volume: 3 start-page: 193 issue: 2 year: 2021 ident: 10.1016/j.elecom.2024.107853_b0065 article-title: Porous monoliths of 3D graphene for electric double‐layer supercapacitors publication-title: Carbon Energy doi: 10.1002/cey2.107 – volume: 404 year: 2020 ident: 10.1016/j.elecom.2024.107853_b0015 article-title: Metal-organic framework-based materials for hybrid supercapacitor application publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2019.213093 – volume: 45 start-page: 20820 issue: 41 year: 2020 ident: 10.1016/j.elecom.2024.107853_b0140 article-title: Self-assembled Mo doped Ni-MOF nanosheets based electrode material for high performance battery-supercapacitor hybrid device publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.05.143 – start-page: 3 year: 1999 ident: 10.1016/j.elecom.2024.107853_b0120 publication-title: Colloids Surf. A: Physicochem. Eng. Aspects doi: 10.1016/S0927-7757(98)00627-X – volume: 1002 year: 2024 ident: 10.1016/j.elecom.2024.107853_b0035 article-title: Matching Faradaic reaction of multi-transition metal compounds as supercapacitor electrode materials: A review publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2024.175367 – volume: 1 start-page: 4644 issue: 12 year: 2019 ident: 10.1016/j.elecom.2024.107853_b0050 article-title: Metal oxide-based supercapacitors: progress and prospectives publication-title: Nanoscale Adv. doi: 10.1039/C9NA00543A – volume: 548 year: 2022 ident: 10.1016/j.elecom.2024.107853_b0020 article-title: Thermal analysis of electrical double layer capacitors: Present status and remaining challenges publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2022.232090 – year: 2024 ident: 10.1016/j.elecom.2024.107853_b0125 article-title: Emerging two-dimensional materials for proton-based energy storage publication-title: ACS Nano doi: 10.1021/acsnano.4c06737 – volume: 85 start-page: 43 issue: 1 year: 2020 ident: 10.1016/j.elecom.2024.107853_b0165 article-title: NiCo2S4‐based composite materials for supercapacitors publication-title: ChemPlusChem (Weinheim, Germany) – volume: 509 year: 2021 ident: 10.1016/j.elecom.2024.107853_b0155 article-title: Novel Mo-doped nickel sulfide thin sheets decorated with Ni–Co layered double hydroxide sheets as an advanced electrode for aqueous asymmetric super-capacitor battery publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2021.230333 – volume: 233 start-page: 55 year: 2018 ident: 10.1016/j.elecom.2024.107853_b0095 article-title: A novel P-doped MnCo2S4 nanoneedles assembled dandelion-like structure for high performance hybrid supercapacitors publication-title: Mater. Lett. doi: 10.1016/j.matlet.2018.08.135 – volume: 17 start-page: 224 year: 2018 ident: 10.1016/j.elecom.2024.107853_b0005 article-title: Supercapacitors: Properties and applications publication-title: J. Storage Mater. – volume: 45 start-page: 30859 issue: 55 year: 2020 ident: 10.1016/j.elecom.2024.107853_b0210 article-title: Enhanced electrochemical performance of nickel intercalated ZIF-67/rGO composite electrode for solid-state supercapacitors publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.08.075 – volume: 466 start-page: 822 year: 2019 ident: 10.1016/j.elecom.2024.107853_b0170 article-title: Chemically synthesized nanoflakes-like NiCo2S4 electrodes for high-performance supercapacitor application publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.10.100 – volume: 51 start-page: 15880 issue: 88 year: 2015 ident: 10.1016/j.elecom.2024.107853_b0055 article-title: Layered double hydroxides toward electrochemical energy storage and conversion: design, synthesis and applications publication-title: Chem. Commun. (Camb.) doi: 10.1039/C5CC07296D – volume: 557 year: 2023 ident: 10.1016/j.elecom.2024.107853_b0025 article-title: Recent advances in and perspectives on pseudocapacitive materials for Supercapacitors–A review publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2022.232558 – volume: 214 start-page: 194 year: 2018 ident: 10.1016/j.elecom.2024.107853_b0200 article-title: Co 3 S 4 nanoneedles decorated on NiCo2O4 nanosheets for high-performance asymmetric supercapacitors publication-title: Mater. Lett. doi: 10.1016/j.matlet.2017.12.014 – volume: 918 year: 2022 ident: 10.1016/j.elecom.2024.107853_b0185 article-title: Boosting electrochemical kinetics by loading CoB on vermiculite for supercapacitor application publication-title: J. Electroanaly. Chem. (Lausanne, Switzerland) – volume: 430 year: 2022 ident: 10.1016/j.elecom.2024.107853_b0060 article-title: Review on recent advances in nanostructured transition-metal-sulfide-based electrode materials for cathode materials of asymmetric supercapacitors publication-title: Chem. Eng. J. (Lausanne, Switzerland: 1996) – volume: 30 year: 2022 ident: 10.1016/j.elecom.2024.107853_b0150 article-title: Flower-like Mo doped Ni(OH)2@Co3S4-Ni3S2 heterostructure for asymmetric supercapacitors publication-title: Surf. Interfaces – volume: 2 start-page: 1178 issue: 6 year: 2018 ident: 10.1016/j.elecom.2024.107853_b0205 article-title: Solid-phase synthesis and electrochemical pseudo-capacitance of nitrogen-atom interstitial compound Co3N publication-title: Sustainable Energy Fuels doi: 10.1039/C8SE00009C – volume: 11 issue: 15 year: 2024 ident: 10.1016/j.elecom.2024.107853_b0045 article-title: Emerging two–dimensional intercalation pseudocapacitive electrodes for supercapacitors publication-title: ChemElectroChem doi: 10.1002/celc.202300810 – volume: 484 year: 2024 ident: 10.1016/j.elecom.2024.107853_b0080 article-title: Synergistic enhancement of supercapacitor performance: Modish designation of BPQD modified NiCo-LDH/NiCo2S4 hybrid nanotube arrays with improved conductivity and OH– adsorption publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2024.149591 – volume: 391 year: 2020 ident: 10.1016/j.elecom.2024.107853_b0085 article-title: In-situ MOFs-derived hollow Co9S8 polyhedron welding on the top of MnCo2S4 nanoneedles for high performance hybrid supercapacitors publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123541 – volume: 77 year: 2024 ident: 10.1016/j.elecom.2024.107853_b0130 article-title: Mo-doped NiCo-LDH nanoflower derived from ZIF-67 nanosheet arrays for high-performance supercapacitors publication-title: J. Storage Mater. – volume: 53 start-page: 3711 issue: 14 year: 2014 ident: 10.1016/j.elecom.2024.107853_b0215 article-title: Formation of NixCo3−xS4 Hollow Nanoprisms with Enhanced Pseudocapacitive Properties publication-title: Angew. Chem. Int. Edit. doi: 10.1002/anie.201400226 – volume: 56 start-page: 1897 issue: 3 year: 2021 ident: 10.1016/j.elecom.2024.107853_b0115 article-title: Prospect of Ni-related metal oxides for high-performance supercapacitor electrodes publication-title: J. Mater. Sci. doi: 10.1007/s10853-020-05408-6 – volume: 493 year: 2024 ident: 10.1016/j.elecom.2024.107853_b0100 article-title: In-situ construction of P-doped Ni0.5Cu0.5Co2O4 with 1D/2D hierarchical nanostructure for high-performance hybrid supercapacitors publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2024.152609 – volume: 573 year: 2022 ident: 10.1016/j.elecom.2024.107853_b0105 article-title: Double-shelled Mn-doped NiCo2S4 hollow nanowire arrays for high-reactivity hybrid supercapacitors publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2021.151561 – volume: 4 start-page: 6531 issue: 7 year: 2021 ident: 10.1016/j.elecom.2024.107853_b0220 article-title: High-Mass-Loading Ni–Co–S Electrodes with Unfading Electrochemical Performance for Supercapacitors publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.1c00557 – volume: 400 issue: 400 year: 2021 ident: 10.1016/j.elecom.2024.107853_b0175 article-title: Identifying the dominant electrochemical reaction in electrochemical impedance spectroscopy publication-title: Electrochim. Acta – year: 2023 ident: 10.1016/j.elecom.2024.107853_b0010 article-title: Metal–organic framework supercapacitors: challenges and opportunities publication-title: Adv. Funct. Mater. – volume: 46 start-page: 12419 issue: 25 year: 2022 ident: 10.1016/j.elecom.2024.107853_b0160 article-title: Electrodeposition preparation of NiCo2S4 nanoparticles on a N-doped activated carbon modified graphene film for asymmetric all-solid-state supercapacitors publication-title: New J. Chem. doi: 10.1039/D2NJ01729F – volume: 10 start-page: 5656 issue: 22 year: 2019 ident: 10.1016/j.elecom.2024.107853_b0030 article-title: Energy storage: pseudocapacitance in prospect publication-title: Chem. Sci. doi: 10.1039/C9SC01662G – volume: 7 issue: 4 year: 2024 ident: 10.1016/j.elecom.2024.107853_b0110 article-title: Research progress in the development of transition metal chalcogenides and their composite-based electrode materials for supercapacitors publication-title: Adv. Compos. Hybrid Mater. doi: 10.1007/s42114-024-00913-7 – volume: 324 year: 2023 ident: 10.1016/j.elecom.2024.107853_b0040 article-title: Recent advanced freestanding pseudocapacitive electrodes for efficient capacitive deionization publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2023.124577 |
SSID | ssj0012993 |
Score | 2.479437 |
Snippet | •Double-layer carbon and NiCo2S4 form SC.•NiCo2S4 is in-situ grown on foam nickel for improved quality.•Effect of ion doping on NiCo2S4's electrochemical... Supercapacitors offer numerous advantages, including high power output, quick charging and discharging rates, and stable cycling performance. Nevertheless,... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 107853 |
SubjectTerms | C@NiCo2S4-Mo Composite Molybdenum doping Supercapacitor |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqXuCCoIBYHpUPXM3Gj8T2EVZULVJ7KZUqLpGfEITs1SZ74MJvx5PHqr2A1Ks1dqLx2PMlmvk-hN5b44OvrSG2YFkiVDnpWjU1idJ55RmTsoJ-58ur5vxGfLmtb4_QZumFgbLK-e6f7vTxtp5H1rM319uuW19TXtChgAQ1krwA7bYQEqL8w59DmUdJZyPxLhgTsF7a58YaL5CaydCPzkQZkqrm99LTyOJ_J0vdyTxnT9GTGTLij9NbPUNHIZ2gR5tFqe05-naRcN8Ne9z_TgXP9V2Pc8SXmfi8DR47s7M5EZcLrPT4qttkdi1wMin3P0IYcJoqwXtc8Cvu99uwcyWDug50eF6gm7PPXzfnZNZMIE5QNRATGkFDRX0ljat0kKyxTATJGyW0j7UItAqB6-gKTms0dRVXlhkfK22EtoK_RMcpp_AKYUYjrcuGaRvLMZdciwAEWSF6DSR5eoX44qrWzYTioGvxq10qx362k4NbcHA7OXiFyGHWdiLU-I_9J9iFgy3QYY8Defe9neOhpbVTICDiyxe3MC5Y5mvNha-U9bSOdoXksoftvegqS3X_fPzrB898gx4z0Aoef9e8RcfDbh_eFQAz2NMxQv8Cnl_tcg priority: 102 providerName: Elsevier |
Title | In situ synthesis of Mo-doped carbon-coated NiCo2S4 nanosheet networks for supercapacitors |
URI | https://dx.doi.org/10.1016/j.elecom.2024.107853 https://doaj.org/article/15c88168d1334aceb2d5934d08bd15fb |
Volume | 170 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07bxQxELYgFNCg8BJHkpMLWsP6tbbL5ER0AeUaiBTRrPwUi5B9ut0raPjt2PuIjiZpaC3v2poZez7vjr8PgPdGO--40chkLIuYzCtdyZqjIKyTjhAhqnLf-XpTr2_Y51t-eyD1VWrCRnrg0XAfMbeyaEO4fJhi2uaDoOOKMldJ4zAPpuy-OefNh6np_0HeZIfSelriIM9gvjQ3VHYVgZlUbqETlpuE5PSfpDRw9x_kpoN8c3kMnk9AEZ6PE3wBHvn4Ejxdzfpsr8D3qwi7tt_D7nfMKK5rO5gCvE7Ipa130OqdSRHZlMGkg5t2lchXBqOOqfvhfQ_jWP_dwYxaYbff-p3NedO2RX3nNbi5_PRttUaTUgKyDMseaV8z7CvsKqFtpbwgtSHMC1pLplzgzOPKe6qCzeisVthWVBqiXaiUZsow-gYcxRT9WwAJDphnNykT8uIWVDFfaLF8cKpQ46kFoLOpGjvRiBc1i1_NXC_2sxkN3BQDN6OBFwDdPbUdaTQe6H9RvHDXt5BgDw05NJopNJqHQmMBxOzDZsITI07Ir2rvHf7d_xj-BDwjRSx4-F5zCo763d6fZQTTmyV4_OEPXoIn51df1pvlELp_AcW47wA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swED6kzpAuRZ-o--TQVbD4ksQxNRrYTewlCRB0IfhSq6IgDUse-u9L6mEkSwt0JUhJOB7vPkl33wfwSSvrLNcq0xHLZqyKJ11UBc_q0tjKElKWeep33myL1S37esfvTmA59cKkssox9g8xvY_W48hitOZi1zSLa0wjOmQpQfUkL8UjOE3sVHwGp-fry9X2-DMhRty-zp4mp4gLpg66vswrqc2E1JJOWBwqK04fZKieyP9eorqXfC6ewpMRNaLz4cGewYnzz-FsOYm1vYBva4_apjug9rePkK5tWhRqtAmZDTtnkVF7HXxmQkSWFm2bZSDXDHnlQ_vDuQ75oRi8RRHCovawc3sTk6hpkhTPS7i9-HKzXGWjbEJmGK66TLmCYZdjm5fK5MKVpNCEuZIWFRO25szh3DkqahOhWiGwyWmlibJ1LhQTmtFXMPPBu9eACK4xj3smdB1PekkFc4kjy9VWJJ48MQc6mUqakVM8SVv8klPx2E85GFgmA8vBwHPIjqt2A6fGP-Z_TrtwnJsYsfuBsP8uR5eQmJsqaYjY-NLNlHGaWC4os3mlLea1nkM57aF84GDxUs1fb__mv1d-hLPVzeZKXq23l2_hMUnSwf3Xm3cw6_YH9z7imU5_GP31D0XF8bE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+situ+synthesis+of+Mo-doped+carbon-coated+NiCo2S4+nanosheet+networks+for+supercapacitors&rft.jtitle=Electrochemistry+communications&rft.au=Kaiyu+Wang&rft.au=Fan+Zhou&rft.au=Jiangnan+Chu&rft.au=Wenchong+Ouyang&rft.date=2025-01-01&rft.pub=Elsevier&rft.issn=1388-2481&rft.volume=170&rft.spage=107853&rft_id=info:doi/10.1016%2Fj.elecom.2024.107853&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_15c88168d1334aceb2d5934d08bd15fb |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1388-2481&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1388-2481&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1388-2481&client=summon |