In situ synthesis of Mo-doped carbon-coated NiCo2S4 nanosheet networks for supercapacitors

•Double-layer carbon and NiCo2S4 form SC.•NiCo2S4 is in-situ grown on foam nickel for improved quality.•Effect of ion doping on NiCo2S4's electrochemical properties studied. Supercapacitors offer numerous advantages, including high power output, quick charging and discharging rates, and stable...

Full description

Saved in:
Bibliographic Details
Published inElectrochemistry communications Vol. 170; p. 107853
Main Authors Wang, Kaiyu, Zhou, Fan, Chu, Jiangnan, Ouyang, Wenchong, Wang, Kun, Wu, Zhengwei
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2025
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Double-layer carbon and NiCo2S4 form SC.•NiCo2S4 is in-situ grown on foam nickel for improved quality.•Effect of ion doping on NiCo2S4's electrochemical properties studied. Supercapacitors offer numerous advantages, including high power output, quick charging and discharging rates, and stable cycling performance. Nevertheless, their energy density and cycle life still fall short of current industry demands for energy storage. To address these challenges, this work fabricated nanostructured electrodes by synthesizing molybdenum-doped carbon-coated NiCo2S4 (C@NiCo2S4-Mo), using NiCo2S4 as the precursor. The doping of molybdenum, a transition metal with many oxidation states, significantly improved the electronic structure and stability of the electrode material. Additionally, incorporating a carbon-coated structure enhanced the material’s stability during cycling, extending its operational lifespan. The results demonstrated that C@NiCo2S4-Mo exhibited exceptional electrochemical properties, featuring a defined capacitance of 931.75 Farad/g under the current flux of 1 A/g. This high specific capacitance value, a vital factor regarding capacitor performance, directly influences the energy storage capacity of the device, indicating the high potential of the C@NiCo2S4-Mo material for supercapacitors. It was observed that the particular capacity retention was 76.6 % when the current density was increased by a factor of 10. The substance also showed favorable pseudocapacitive characteristics, retaining 87.7 % of its particular capacitance after prolonged cycling in cyclic voltammetry (CV) tests, highlighting its outstanding cyclic stability. Furthermore, supercapacitors constructed from C@NiCo2S4-Mo achieved an energy density of 14.5 Wh/kg at a power density of 700 kW/kg, making them promising candidates for energy storage applications.
AbstractList •Double-layer carbon and NiCo2S4 form SC.•NiCo2S4 is in-situ grown on foam nickel for improved quality.•Effect of ion doping on NiCo2S4's electrochemical properties studied. Supercapacitors offer numerous advantages, including high power output, quick charging and discharging rates, and stable cycling performance. Nevertheless, their energy density and cycle life still fall short of current industry demands for energy storage. To address these challenges, this work fabricated nanostructured electrodes by synthesizing molybdenum-doped carbon-coated NiCo2S4 (C@NiCo2S4-Mo), using NiCo2S4 as the precursor. The doping of molybdenum, a transition metal with many oxidation states, significantly improved the electronic structure and stability of the electrode material. Additionally, incorporating a carbon-coated structure enhanced the material’s stability during cycling, extending its operational lifespan. The results demonstrated that C@NiCo2S4-Mo exhibited exceptional electrochemical properties, featuring a defined capacitance of 931.75 Farad/g under the current flux of 1 A/g. This high specific capacitance value, a vital factor regarding capacitor performance, directly influences the energy storage capacity of the device, indicating the high potential of the C@NiCo2S4-Mo material for supercapacitors. It was observed that the particular capacity retention was 76.6 % when the current density was increased by a factor of 10. The substance also showed favorable pseudocapacitive characteristics, retaining 87.7 % of its particular capacitance after prolonged cycling in cyclic voltammetry (CV) tests, highlighting its outstanding cyclic stability. Furthermore, supercapacitors constructed from C@NiCo2S4-Mo achieved an energy density of 14.5 Wh/kg at a power density of 700 kW/kg, making them promising candidates for energy storage applications.
Supercapacitors offer numerous advantages, including high power output, quick charging and discharging rates, and stable cycling performance. Nevertheless, their energy density and cycle life still fall short of current industry demands for energy storage. To address these challenges, this work fabricated nanostructured electrodes by synthesizing molybdenum-doped carbon-coated NiCo2S4 (C@NiCo2S4-Mo), using NiCo2S4 as the precursor. The doping of molybdenum, a transition metal with many oxidation states, significantly improved the electronic structure and stability of the electrode material. Additionally, incorporating a carbon-coated structure enhanced the material’s stability during cycling, extending its operational lifespan. The results demonstrated that C@NiCo2S4-Mo exhibited exceptional electrochemical properties, featuring a defined capacitance of 931.75 Farad/g under the current flux of 1 A/g. This high specific capacitance value, a vital factor regarding capacitor performance, directly influences the energy storage capacity of the device, indicating the high potential of the C@NiCo2S4-Mo material for supercapacitors. It was observed that the particular capacity retention was 76.6 % when the current density was increased by a factor of 10. The substance also showed favorable pseudocapacitive characteristics, retaining 87.7 % of its particular capacitance after prolonged cycling in cyclic voltammetry (CV) tests, highlighting its outstanding cyclic stability. Furthermore, supercapacitors constructed from C@NiCo2S4-Mo achieved an energy density of 14.5 Wh/kg at a power density of 700 kW/kg, making them promising candidates for energy storage applications.
ArticleNumber 107853
Author Wang, Kaiyu
Ouyang, Wenchong
Wu, Zhengwei
Zhou, Fan
Wang, Kun
Chu, Jiangnan
Author_xml – sequence: 1
  givenname: Kaiyu
  surname: Wang
  fullname: Wang, Kaiyu
  organization: Institute of Advanced Technology, University of Science and Technology of China, Hefei 230022, China
– sequence: 2
  givenname: Fan
  surname: Zhou
  fullname: Zhou, Fan
  organization: Institute of Advanced Technology, University of Science and Technology of China, Hefei 230022, China
– sequence: 3
  givenname: Jiangnan
  surname: Chu
  fullname: Chu, Jiangnan
  organization: Institute of Advanced Technology, University of Science and Technology of China, Hefei 230022, China
– sequence: 4
  givenname: Wenchong
  surname: Ouyang
  fullname: Ouyang, Wenchong
  organization: School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China
– sequence: 5
  givenname: Kun
  surname: Wang
  fullname: Wang, Kun
  email: fanz@mail.ustc.edu.cn, wangkun@ahedi.com.cn
  organization: China Energy Engineering Group Anhui Electric Power Design Institute Company Limited, Hefei 230601, China
– sequence: 6
  givenname: Zhengwei
  surname: Wu
  fullname: Wu, Zhengwei
  email: wuzw@ustc.edu.cn
  organization: Institute of Advanced Technology, University of Science and Technology of China, Hefei 230022, China
BookMark eNqFkD1vFDEQQF0EKR_kH1D4D-zhr921KZDQCchJAQqShsaatWeJj4vnZDug_Hs2LKKggGo0I70nzTtnJ5kyMvZCio0Ucni53-ABA91vlFBmOY221yfsTGprO2WsPGXnte6FkMo5fca-7DKvqT3w-pjbHdZUOc38A3WRjhh5gDJR7gJBW7aPaUvqs-EZMtU7xMYzth9UvlU-U-H14YglwBFCalTqc_ZshkPFy9_zgt2-e3uzvequP73fbd9cd8FI2zrAwUgUMooRgnA4qmFSBkc9WOPi3BuUAlG7OfRjPzgZhLaTgjgLB8ZNRl-w3eqNBHt_LOkeyqMnSP7XgcpXD6WlcEAv-2CtHGyUWhsIOKnYO22isFOU_TwtLrO6QqFaC85_fFL4p75-79e-_qmvX_su2Ku_sCUBtES5FUiH_8GvVxiXSN8TFl9DwhwwpoKhLV-kfwt-AmGlnT0
CitedBy_id crossref_primary_10_1016_j_jallcom_2025_178774
Cites_doi 10.1002/er.5102
10.1016/j.jpowsour.2024.234456
10.1016/j.cej.2018.08.008
10.1149/2.074205jes
10.1002/smll.202002806
10.1016/j.nanoen.2015.06.018
10.1002/cey2.107
10.1016/j.ccr.2019.213093
10.1016/j.ijhydene.2020.05.143
10.1016/S0927-7757(98)00627-X
10.1016/j.jallcom.2024.175367
10.1039/C9NA00543A
10.1016/j.jpowsour.2022.232090
10.1021/acsnano.4c06737
10.1016/j.jpowsour.2021.230333
10.1016/j.matlet.2018.08.135
10.1016/j.ijhydene.2020.08.075
10.1016/j.apsusc.2018.10.100
10.1039/C5CC07296D
10.1016/j.jpowsour.2022.232558
10.1016/j.matlet.2017.12.014
10.1039/C8SE00009C
10.1002/celc.202300810
10.1016/j.cej.2024.149591
10.1016/j.cej.2019.123541
10.1002/anie.201400226
10.1007/s10853-020-05408-6
10.1016/j.cej.2024.152609
10.1016/j.apsusc.2021.151561
10.1021/acsaem.1c00557
10.1039/D2NJ01729F
10.1039/C9SC01662G
10.1007/s42114-024-00913-7
10.1016/j.seppur.2023.124577
ContentType Journal Article
Copyright 2024 The Authors
Copyright_xml – notice: 2024 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.elecom.2024.107853
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
ExternalDocumentID oai_doaj_org_article_15c88168d1334aceb2d5934d08bd15fb
10_1016_j_elecom_2024_107853
S1388248124001966
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXKI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABWVN
ABXDB
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ADBBV
ADECG
ADEWK
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AFJKZ
AFKWA
AFPKN
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BCNDV
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCB
SDF
SDG
SDP
SES
SEW
SPC
SSG
SSK
SSZ
T5K
UNMZH
XPP
ZMT
~G-
AATTM
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
ID FETCH-LOGICAL-c418t-ae641e01d07ac09e726b24e736849df54e10ee39fc575691c038b2adf09a49b43
IEDL.DBID DOA
ISSN 1388-2481
IngestDate Wed Aug 27 01:32:47 EDT 2025
Tue Jul 01 03:05:03 EDT 2025
Thu Apr 24 22:54:40 EDT 2025
Sat Jan 18 16:11:06 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Supercapacitor
C@NiCo2S4-Mo
Composite
Molybdenum doping
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-ae641e01d07ac09e726b24e736849df54e10ee39fc575691c038b2adf09a49b43
OpenAccessLink https://doaj.org/article/15c88168d1334aceb2d5934d08bd15fb
ParticipantIDs doaj_primary_oai_doaj_org_article_15c88168d1334aceb2d5934d08bd15fb
crossref_primary_10_1016_j_elecom_2024_107853
crossref_citationtrail_10_1016_j_elecom_2024_107853
elsevier_sciencedirect_doi_10_1016_j_elecom_2024_107853
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2025
2025-01-00
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: January 2025
PublicationDecade 2020
PublicationTitle Electrochemistry communications
PublicationYear 2025
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Wang (b0015) 2020; 404
Chen, Wei, Wang (b0165) 2020; 85
Kolavada, Gajjar, Gupta (b0070) 2024; 81
Panchu, Raju, Swart (b0045) 2024; 11
Xu (b0130) 2024; 77
Cui (b0160) 2022; 46
Wen (b0220) 2021; 4
Sowbakkiyavathi (b0110) 2024; 7
Shinde (b0170) 2019; 466
Shin (b0010) 2023
Sundriyal (b0210) 2020; 45
Chen (b0075) 2024; 603
Jia (b0090) 2018; 354
Costentin, Saveant (b0030) 2019; 10
Gao (b0040) 2023; 324
Park, Roh (b0025) 2023; 557
Lin (b0115) 2021; 56
Gao, Zhao (b0060) 2022; 430
Tang, Tang, Gong (b0195) 2012; 159
Qi (b0125) 2024
Jia (b0095) 2018; 233
Shao (b0055) 2015; 51
Jia (b0085) 2020; 391
An (b0050) 2019; 1
Zhu (b0145) 2020; 44
Libich (b0005) 2018; 17
Yu (b0215) 2014; 53
Peng (b0105) 2022; 573
Shi (b0155) 2021; 509
Chai (b0185) 2022; 918
Moradighadi, Nesic, Tribollet (b0175) 2021; 400
Xu, Han (b0150) 2022; 30
Chodankar (b0180) 2020; 16
Li (b0140) 2020; 45
Huang, Xie (b0035) 2024; 1002
Zeng (b0065) 2021; 3
Zheng (b0100) 2024; 493
Liu, Wen, Shi (b0200) 2018; 214
Gao (b0205) 2018; 2
Jia (b0080) 2024; 484
Deleu (b0120) 1999
Li (b0135) 2023; 73
Bothe, Balducci (b0020) 2022; 548
Xiong (b0190) 2015; 16
Jia (10.1016/j.elecom.2024.107853_b0090) 2018; 354
Chen (10.1016/j.elecom.2024.107853_b0075) 2024; 603
Cui (10.1016/j.elecom.2024.107853_b0160) 2022; 46
Panchu (10.1016/j.elecom.2024.107853_b0045) 2024; 11
Sowbakkiyavathi (10.1016/j.elecom.2024.107853_b0110) 2024; 7
Sundriyal (10.1016/j.elecom.2024.107853_b0210) 2020; 45
Xu (10.1016/j.elecom.2024.107853_b0130) 2024; 77
Huang (10.1016/j.elecom.2024.107853_b0035) 2024; 1002
Shao (10.1016/j.elecom.2024.107853_b0055) 2015; 51
Wang (10.1016/j.elecom.2024.107853_b0015) 2020; 404
Zhu (10.1016/j.elecom.2024.107853_b0145) 2020; 44
Tang (10.1016/j.elecom.2024.107853_b0195) 2012; 159
Gao (10.1016/j.elecom.2024.107853_b0205) 2018; 2
Chodankar (10.1016/j.elecom.2024.107853_b0180) 2020; 16
Chen (10.1016/j.elecom.2024.107853_b0165) 2020; 85
Costentin (10.1016/j.elecom.2024.107853_b0030) 2019; 10
Shin (10.1016/j.elecom.2024.107853_b0010) 2023
Zheng (10.1016/j.elecom.2024.107853_b0100) 2024; 493
Peng (10.1016/j.elecom.2024.107853_b0105) 2022; 573
Shinde (10.1016/j.elecom.2024.107853_b0170) 2019; 466
Jia (10.1016/j.elecom.2024.107853_b0095) 2018; 233
Deleu (10.1016/j.elecom.2024.107853_b0120) 1999
Park (10.1016/j.elecom.2024.107853_b0025) 2023; 557
Gao (10.1016/j.elecom.2024.107853_b0060) 2022; 430
Xiong (10.1016/j.elecom.2024.107853_b0190) 2015; 16
Libich (10.1016/j.elecom.2024.107853_b0005) 2018; 17
Jia (10.1016/j.elecom.2024.107853_b0085) 2020; 391
Shi (10.1016/j.elecom.2024.107853_b0155) 2021; 509
Xu (10.1016/j.elecom.2024.107853_b0150) 2022; 30
Jia (10.1016/j.elecom.2024.107853_b0080) 2024; 484
Qi (10.1016/j.elecom.2024.107853_b0125) 2024
Chai (10.1016/j.elecom.2024.107853_b0185) 2022; 918
Bothe (10.1016/j.elecom.2024.107853_b0020) 2022; 548
An (10.1016/j.elecom.2024.107853_b0050) 2019; 1
Kolavada (10.1016/j.elecom.2024.107853_b0070) 2024; 81
Moradighadi (10.1016/j.elecom.2024.107853_b0175) 2021; 400
Gao (10.1016/j.elecom.2024.107853_b0040) 2023; 324
Wen (10.1016/j.elecom.2024.107853_b0220) 2021; 4
Lin (10.1016/j.elecom.2024.107853_b0115) 2021; 56
Li (10.1016/j.elecom.2024.107853_b0140) 2020; 45
Liu (10.1016/j.elecom.2024.107853_b0200) 2018; 214
Li (10.1016/j.elecom.2024.107853_b0135) 2023; 73
Yu (10.1016/j.elecom.2024.107853_b0215) 2014; 53
Zeng (10.1016/j.elecom.2024.107853_b0065) 2021; 3
References_xml – volume: 404
  year: 2020
  ident: b0015
  article-title: Metal-organic framework-based materials for hybrid supercapacitor application
  publication-title: Coord. Chem. Rev.
– volume: 391
  year: 2020
  ident: b0085
  article-title: In-situ MOFs-derived hollow Co9S8 polyhedron welding on the top of MnCo2S4 nanoneedles for high performance hybrid supercapacitors
  publication-title: Chem. Eng. J.
– volume: 354
  start-page: 254
  year: 2018
  end-page: 260
  ident: b0090
  article-title: A novel three-dimensional hierarchical NiCo2O4/Ni2P electrode for high energy asymmetric supercapacitor
  publication-title: Chem. Eng. J.
– volume: 233
  start-page: 55
  year: 2018
  end-page: 58
  ident: b0095
  article-title: A novel P-doped MnCo2S4 nanoneedles assembled dandelion-like structure for high performance hybrid supercapacitors
  publication-title: Mater. Lett.
– volume: 77
  year: 2024
  ident: b0130
  article-title: Mo-doped NiCo-LDH nanoflower derived from ZIF-67 nanosheet arrays for high-performance supercapacitors
  publication-title: J. Storage Mater.
– volume: 1
  start-page: 4644
  year: 2019
  end-page: 4658
  ident: b0050
  article-title: Metal oxide-based supercapacitors: progress and prospectives
  publication-title: Nanoscale Adv.
– volume: 324
  year: 2023
  ident: b0040
  article-title: Recent advanced freestanding pseudocapacitive electrodes for efficient capacitive deionization
  publication-title: Sep. Purif. Technol.
– volume: 56
  start-page: 1897
  year: 2021
  end-page: 1918
  ident: b0115
  article-title: Prospect of Ni-related metal oxides for high-performance supercapacitor electrodes
  publication-title: J. Mater. Sci.
– volume: 159
  start-page: A651
  year: 2012
  end-page: A656
  ident: b0195
  article-title: Hierarchically porous Ni-Co oxide for high reversibility asymmetric full-cell supercapacitors
  publication-title: J. Electrochem. Soc.
– volume: 85
  start-page: 43
  year: 2020
  end-page: 56
  ident: b0165
  article-title: NiCo2S4‐based composite materials for supercapacitors
  publication-title: ChemPlusChem (Weinheim, Germany)
– start-page: 3
  year: 1999
  end-page: 10
  ident: b0120
  publication-title: Colloids Surf. A: Physicochem. Eng. Aspects
– volume: 45
  start-page: 20820
  year: 2020
  end-page: 20831
  ident: b0140
  article-title: Self-assembled Mo doped Ni-MOF nanosheets based electrode material for high performance battery-supercapacitor hybrid device
  publication-title: Int. J. Hydrogen Energy
– volume: 918
  year: 2022
  ident: b0185
  article-title: Boosting electrochemical kinetics by loading CoB on vermiculite for supercapacitor application
  publication-title: J. Electroanaly. Chem. (Lausanne, Switzerland)
– volume: 573
  year: 2022
  ident: b0105
  article-title: Double-shelled Mn-doped NiCo2S4 hollow nanowire arrays for high-reactivity hybrid supercapacitors
  publication-title: Appl. Surf. Sci.
– volume: 53
  start-page: 3711
  year: 2014
  end-page: 3714
  ident: b0215
  article-title: Formation of NixCo3−xS4 Hollow Nanoprisms with Enhanced Pseudocapacitive Properties
  publication-title: Angew. Chem. Int. Edit.
– volume: 484
  year: 2024
  ident: b0080
  article-title: Synergistic enhancement of supercapacitor performance: Modish designation of BPQD modified NiCo-LDH/NiCo2S4 hybrid nanotube arrays with improved conductivity and OH– adsorption
  publication-title: Chem. Eng. J.
– volume: 44
  start-page: 2864
  year: 2020
  end-page: 2874
  ident: b0145
  article-title: Synthesis of porous flower‐like Ni‐Co‐Mo‐S nanostructures on Ni foam for battery‐supercapacitor hybrid devices
  publication-title: Int. J. Energy Res.
– volume: 214
  start-page: 194
  year: 2018
  end-page: 197
  ident: b0200
  article-title: Co 3 S 4 nanoneedles decorated on NiCo2O4 nanosheets for high-performance asymmetric supercapacitors
  publication-title: Mater. Lett.
– volume: 557
  year: 2023
  ident: b0025
  article-title: Recent advances in and perspectives on pseudocapacitive materials for Supercapacitors–A review
  publication-title: J. Power Sources
– volume: 51
  start-page: 15880
  year: 2015
  end-page: 15893
  ident: b0055
  article-title: Layered double hydroxides toward electrochemical energy storage and conversion: design, synthesis and applications
  publication-title: Chem. Commun. (Camb.)
– volume: 548
  year: 2022
  ident: b0020
  article-title: Thermal analysis of electrical double layer capacitors: Present status and remaining challenges
  publication-title: J. Power Sources
– volume: 493
  year: 2024
  ident: b0100
  article-title: In-situ construction of P-doped Ni0.5Cu0.5Co2O4 with 1D/2D hierarchical nanostructure for high-performance hybrid supercapacitors
  publication-title: Chem. Eng. J.
– volume: 3
  start-page: 193
  year: 2021
  end-page: 224
  ident: b0065
  article-title: Porous monoliths of 3D graphene for electric double‐layer supercapacitors
  publication-title: Carbon Energy
– volume: 603
  year: 2024
  ident: b0075
  article-title: Deciphering multistep transformation mechanism of cobalt-vanadium bimetallic sulfides anode in sodium storage
  publication-title: J. Power Sources
– volume: 7
  year: 2024
  ident: b0110
  article-title: Research progress in the development of transition metal chalcogenides and their composite-based electrode materials for supercapacitors
  publication-title: Adv. Compos. Hybrid Mater.
– volume: 45
  start-page: 30859
  year: 2020
  end-page: 30869
  ident: b0210
  article-title: Enhanced electrochemical performance of nickel intercalated ZIF-67/rGO composite electrode for solid-state supercapacitors
  publication-title: Int. J. Hydrogen Energy
– volume: 73
  year: 2023
  ident: b0135
  article-title: Mo-doped ZIF-67 derived Ni Co, Mo trimetallic sulfide/carbon nanotubes for supercapacitors
  publication-title: J. Storage Mater.
– volume: 30
  year: 2022
  ident: b0150
  article-title: Flower-like Mo doped Ni(OH)2@Co3S4-Ni3S2 heterostructure for asymmetric supercapacitors
  publication-title: Surf. Interfaces
– volume: 16
  start-page: 71
  year: 2015
  end-page: 80
  ident: b0190
  article-title: Controlled synthesis of NiCo2S4 nanostructured arrays on carbon fiber paper for high-performance pseudocapacitors
  publication-title: Nano Energy
– volume: 17
  start-page: 224
  year: 2018
  end-page: 227
  ident: b0005
  article-title: Supercapacitors: Properties and applications
  publication-title: J. Storage Mater.
– year: 2023
  ident: b0010
  article-title: Metal–organic framework supercapacitors: challenges and opportunities
  publication-title: Adv. Funct. Mater.
– volume: 1002
  year: 2024
  ident: b0035
  article-title: Matching Faradaic reaction of multi-transition metal compounds as supercapacitor electrode materials: A review
  publication-title: J. Alloy. Compd.
– volume: 11
  year: 2024
  ident: b0045
  article-title: Emerging two–dimensional intercalation pseudocapacitive electrodes for supercapacitors
  publication-title: ChemElectroChem
– volume: 81
  year: 2024
  ident: b0070
  article-title: Unraveling quantum capacitance in supercapacitors: Energy storage applications
  publication-title: J. Storage Mater.
– volume: 400
  year: 2021
  ident: b0175
  article-title: Identifying the dominant electrochemical reaction in electrochemical impedance spectroscopy
  publication-title: Electrochim. Acta
– volume: 430
  year: 2022
  ident: b0060
  article-title: Review on recent advances in nanostructured transition-metal-sulfide-based electrode materials for cathode materials of asymmetric supercapacitors
  publication-title: Chem. Eng. J. (Lausanne, Switzerland: 1996)
– year: 2024
  ident: b0125
  article-title: Emerging two-dimensional materials for proton-based energy storage
  publication-title: ACS Nano
– volume: 4
  start-page: 6531
  year: 2021
  end-page: 6541
  ident: b0220
  article-title: High-Mass-Loading Ni–Co–S Electrodes with Unfading Electrochemical Performance for Supercapacitors
  publication-title: ACS Appl. Energy Mater.
– volume: 10
  start-page: 5656
  year: 2019
  end-page: 5666
  ident: b0030
  article-title: Energy storage: pseudocapacitance in prospect
  publication-title: Chem. Sci.
– volume: 16
  year: 2020
  ident: b0180
  article-title: True meaning of pseudocapacitors and their performance metrics: asymmetric versus hybrid supercapacitors
  publication-title: Small
– volume: 509
  year: 2021
  ident: b0155
  article-title: Novel Mo-doped nickel sulfide thin sheets decorated with Ni–Co layered double hydroxide sheets as an advanced electrode for aqueous asymmetric super-capacitor battery
  publication-title: J. Power Sources
– volume: 466
  start-page: 822
  year: 2019
  end-page: 829
  ident: b0170
  article-title: Chemically synthesized nanoflakes-like NiCo2S4 electrodes for high-performance supercapacitor application
  publication-title: Appl. Surf. Sci.
– volume: 2
  start-page: 1178
  year: 2018
  end-page: 1188
  ident: b0205
  article-title: Solid-phase synthesis and electrochemical pseudo-capacitance of nitrogen-atom interstitial compound Co3N
  publication-title: Sustainable Energy Fuels
– volume: 46
  start-page: 12419
  year: 2022
  end-page: 12426
  ident: b0160
  article-title: Electrodeposition preparation of NiCo2S4 nanoparticles on a N-doped activated carbon modified graphene film for asymmetric all-solid-state supercapacitors
  publication-title: New J. Chem.
– volume: 44
  start-page: 2864
  issue: 4
  year: 2020
  ident: 10.1016/j.elecom.2024.107853_b0145
  article-title: Synthesis of porous flower‐like Ni‐Co‐Mo‐S nanostructures on Ni foam for battery‐supercapacitor hybrid devices
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.5102
– volume: 603
  year: 2024
  ident: 10.1016/j.elecom.2024.107853_b0075
  article-title: Deciphering multistep transformation mechanism of cobalt-vanadium bimetallic sulfides anode in sodium storage
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2024.234456
– volume: 81
  year: 2024
  ident: 10.1016/j.elecom.2024.107853_b0070
  article-title: Unraveling quantum capacitance in supercapacitors: Energy storage applications
  publication-title: J. Storage Mater.
– volume: 354
  start-page: 254
  year: 2018
  ident: 10.1016/j.elecom.2024.107853_b0090
  article-title: A novel three-dimensional hierarchical NiCo2O4/Ni2P electrode for high energy asymmetric supercapacitor
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.08.008
– volume: 159
  start-page: A651
  issue: 5
  year: 2012
  ident: 10.1016/j.elecom.2024.107853_b0195
  article-title: Hierarchically porous Ni-Co oxide for high reversibility asymmetric full-cell supercapacitors
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.074205jes
– volume: 73
  year: 2023
  ident: 10.1016/j.elecom.2024.107853_b0135
  article-title: Mo-doped ZIF-67 derived Ni Co, Mo trimetallic sulfide/carbon nanotubes for supercapacitors
  publication-title: J. Storage Mater.
– volume: 16
  issue: 37
  year: 2020
  ident: 10.1016/j.elecom.2024.107853_b0180
  article-title: True meaning of pseudocapacitors and their performance metrics: asymmetric versus hybrid supercapacitors
  publication-title: Small
  doi: 10.1002/smll.202002806
– volume: 16
  start-page: 71
  year: 2015
  ident: 10.1016/j.elecom.2024.107853_b0190
  article-title: Controlled synthesis of NiCo2S4 nanostructured arrays on carbon fiber paper for high-performance pseudocapacitors
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.06.018
– volume: 3
  start-page: 193
  issue: 2
  year: 2021
  ident: 10.1016/j.elecom.2024.107853_b0065
  article-title: Porous monoliths of 3D graphene for electric double‐layer supercapacitors
  publication-title: Carbon Energy
  doi: 10.1002/cey2.107
– volume: 404
  year: 2020
  ident: 10.1016/j.elecom.2024.107853_b0015
  article-title: Metal-organic framework-based materials for hybrid supercapacitor application
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2019.213093
– volume: 45
  start-page: 20820
  issue: 41
  year: 2020
  ident: 10.1016/j.elecom.2024.107853_b0140
  article-title: Self-assembled Mo doped Ni-MOF nanosheets based electrode material for high performance battery-supercapacitor hybrid device
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.05.143
– start-page: 3
  year: 1999
  ident: 10.1016/j.elecom.2024.107853_b0120
  publication-title: Colloids Surf. A: Physicochem. Eng. Aspects
  doi: 10.1016/S0927-7757(98)00627-X
– volume: 1002
  year: 2024
  ident: 10.1016/j.elecom.2024.107853_b0035
  article-title: Matching Faradaic reaction of multi-transition metal compounds as supercapacitor electrode materials: A review
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2024.175367
– volume: 1
  start-page: 4644
  issue: 12
  year: 2019
  ident: 10.1016/j.elecom.2024.107853_b0050
  article-title: Metal oxide-based supercapacitors: progress and prospectives
  publication-title: Nanoscale Adv.
  doi: 10.1039/C9NA00543A
– volume: 548
  year: 2022
  ident: 10.1016/j.elecom.2024.107853_b0020
  article-title: Thermal analysis of electrical double layer capacitors: Present status and remaining challenges
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2022.232090
– year: 2024
  ident: 10.1016/j.elecom.2024.107853_b0125
  article-title: Emerging two-dimensional materials for proton-based energy storage
  publication-title: ACS Nano
  doi: 10.1021/acsnano.4c06737
– volume: 85
  start-page: 43
  issue: 1
  year: 2020
  ident: 10.1016/j.elecom.2024.107853_b0165
  article-title: NiCo2S4‐based composite materials for supercapacitors
  publication-title: ChemPlusChem (Weinheim, Germany)
– volume: 509
  year: 2021
  ident: 10.1016/j.elecom.2024.107853_b0155
  article-title: Novel Mo-doped nickel sulfide thin sheets decorated with Ni–Co layered double hydroxide sheets as an advanced electrode for aqueous asymmetric super-capacitor battery
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2021.230333
– volume: 233
  start-page: 55
  year: 2018
  ident: 10.1016/j.elecom.2024.107853_b0095
  article-title: A novel P-doped MnCo2S4 nanoneedles assembled dandelion-like structure for high performance hybrid supercapacitors
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2018.08.135
– volume: 17
  start-page: 224
  year: 2018
  ident: 10.1016/j.elecom.2024.107853_b0005
  article-title: Supercapacitors: Properties and applications
  publication-title: J. Storage Mater.
– volume: 45
  start-page: 30859
  issue: 55
  year: 2020
  ident: 10.1016/j.elecom.2024.107853_b0210
  article-title: Enhanced electrochemical performance of nickel intercalated ZIF-67/rGO composite electrode for solid-state supercapacitors
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.08.075
– volume: 466
  start-page: 822
  year: 2019
  ident: 10.1016/j.elecom.2024.107853_b0170
  article-title: Chemically synthesized nanoflakes-like NiCo2S4 electrodes for high-performance supercapacitor application
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.10.100
– volume: 51
  start-page: 15880
  issue: 88
  year: 2015
  ident: 10.1016/j.elecom.2024.107853_b0055
  article-title: Layered double hydroxides toward electrochemical energy storage and conversion: design, synthesis and applications
  publication-title: Chem. Commun. (Camb.)
  doi: 10.1039/C5CC07296D
– volume: 557
  year: 2023
  ident: 10.1016/j.elecom.2024.107853_b0025
  article-title: Recent advances in and perspectives on pseudocapacitive materials for Supercapacitors–A review
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2022.232558
– volume: 214
  start-page: 194
  year: 2018
  ident: 10.1016/j.elecom.2024.107853_b0200
  article-title: Co 3 S 4 nanoneedles decorated on NiCo2O4 nanosheets for high-performance asymmetric supercapacitors
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2017.12.014
– volume: 918
  year: 2022
  ident: 10.1016/j.elecom.2024.107853_b0185
  article-title: Boosting electrochemical kinetics by loading CoB on vermiculite for supercapacitor application
  publication-title: J. Electroanaly. Chem. (Lausanne, Switzerland)
– volume: 430
  year: 2022
  ident: 10.1016/j.elecom.2024.107853_b0060
  article-title: Review on recent advances in nanostructured transition-metal-sulfide-based electrode materials for cathode materials of asymmetric supercapacitors
  publication-title: Chem. Eng. J. (Lausanne, Switzerland: 1996)
– volume: 30
  year: 2022
  ident: 10.1016/j.elecom.2024.107853_b0150
  article-title: Flower-like Mo doped Ni(OH)2@Co3S4-Ni3S2 heterostructure for asymmetric supercapacitors
  publication-title: Surf. Interfaces
– volume: 2
  start-page: 1178
  issue: 6
  year: 2018
  ident: 10.1016/j.elecom.2024.107853_b0205
  article-title: Solid-phase synthesis and electrochemical pseudo-capacitance of nitrogen-atom interstitial compound Co3N
  publication-title: Sustainable Energy Fuels
  doi: 10.1039/C8SE00009C
– volume: 11
  issue: 15
  year: 2024
  ident: 10.1016/j.elecom.2024.107853_b0045
  article-title: Emerging two–dimensional intercalation pseudocapacitive electrodes for supercapacitors
  publication-title: ChemElectroChem
  doi: 10.1002/celc.202300810
– volume: 484
  year: 2024
  ident: 10.1016/j.elecom.2024.107853_b0080
  article-title: Synergistic enhancement of supercapacitor performance: Modish designation of BPQD modified NiCo-LDH/NiCo2S4 hybrid nanotube arrays with improved conductivity and OH– adsorption
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2024.149591
– volume: 391
  year: 2020
  ident: 10.1016/j.elecom.2024.107853_b0085
  article-title: In-situ MOFs-derived hollow Co9S8 polyhedron welding on the top of MnCo2S4 nanoneedles for high performance hybrid supercapacitors
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123541
– volume: 77
  year: 2024
  ident: 10.1016/j.elecom.2024.107853_b0130
  article-title: Mo-doped NiCo-LDH nanoflower derived from ZIF-67 nanosheet arrays for high-performance supercapacitors
  publication-title: J. Storage Mater.
– volume: 53
  start-page: 3711
  issue: 14
  year: 2014
  ident: 10.1016/j.elecom.2024.107853_b0215
  article-title: Formation of NixCo3−xS4 Hollow Nanoprisms with Enhanced Pseudocapacitive Properties
  publication-title: Angew. Chem. Int. Edit.
  doi: 10.1002/anie.201400226
– volume: 56
  start-page: 1897
  issue: 3
  year: 2021
  ident: 10.1016/j.elecom.2024.107853_b0115
  article-title: Prospect of Ni-related metal oxides for high-performance supercapacitor electrodes
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-020-05408-6
– volume: 493
  year: 2024
  ident: 10.1016/j.elecom.2024.107853_b0100
  article-title: In-situ construction of P-doped Ni0.5Cu0.5Co2O4 with 1D/2D hierarchical nanostructure for high-performance hybrid supercapacitors
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2024.152609
– volume: 573
  year: 2022
  ident: 10.1016/j.elecom.2024.107853_b0105
  article-title: Double-shelled Mn-doped NiCo2S4 hollow nanowire arrays for high-reactivity hybrid supercapacitors
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2021.151561
– volume: 4
  start-page: 6531
  issue: 7
  year: 2021
  ident: 10.1016/j.elecom.2024.107853_b0220
  article-title: High-Mass-Loading Ni–Co–S Electrodes with Unfading Electrochemical Performance for Supercapacitors
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.1c00557
– volume: 400
  issue: 400
  year: 2021
  ident: 10.1016/j.elecom.2024.107853_b0175
  article-title: Identifying the dominant electrochemical reaction in electrochemical impedance spectroscopy
  publication-title: Electrochim. Acta
– year: 2023
  ident: 10.1016/j.elecom.2024.107853_b0010
  article-title: Metal–organic framework supercapacitors: challenges and opportunities
  publication-title: Adv. Funct. Mater.
– volume: 46
  start-page: 12419
  issue: 25
  year: 2022
  ident: 10.1016/j.elecom.2024.107853_b0160
  article-title: Electrodeposition preparation of NiCo2S4 nanoparticles on a N-doped activated carbon modified graphene film for asymmetric all-solid-state supercapacitors
  publication-title: New J. Chem.
  doi: 10.1039/D2NJ01729F
– volume: 10
  start-page: 5656
  issue: 22
  year: 2019
  ident: 10.1016/j.elecom.2024.107853_b0030
  article-title: Energy storage: pseudocapacitance in prospect
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC01662G
– volume: 7
  issue: 4
  year: 2024
  ident: 10.1016/j.elecom.2024.107853_b0110
  article-title: Research progress in the development of transition metal chalcogenides and their composite-based electrode materials for supercapacitors
  publication-title: Adv. Compos. Hybrid Mater.
  doi: 10.1007/s42114-024-00913-7
– volume: 324
  year: 2023
  ident: 10.1016/j.elecom.2024.107853_b0040
  article-title: Recent advanced freestanding pseudocapacitive electrodes for efficient capacitive deionization
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2023.124577
SSID ssj0012993
Score 2.479437
Snippet •Double-layer carbon and NiCo2S4 form SC.•NiCo2S4 is in-situ grown on foam nickel for improved quality.•Effect of ion doping on NiCo2S4's electrochemical...
Supercapacitors offer numerous advantages, including high power output, quick charging and discharging rates, and stable cycling performance. Nevertheless,...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 107853
SubjectTerms C@NiCo2S4-Mo
Composite
Molybdenum doping
Supercapacitor
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqXuCCoIBYHpUPXM3Gj8T2EVZULVJ7KZUqLpGfEITs1SZ74MJvx5PHqr2A1Ks1dqLx2PMlmvk-hN5b44OvrSG2YFkiVDnpWjU1idJ55RmTsoJ-58ur5vxGfLmtb4_QZumFgbLK-e6f7vTxtp5H1rM319uuW19TXtChgAQ1krwA7bYQEqL8w59DmUdJZyPxLhgTsF7a58YaL5CaydCPzkQZkqrm99LTyOJ_J0vdyTxnT9GTGTLij9NbPUNHIZ2gR5tFqe05-naRcN8Ne9z_TgXP9V2Pc8SXmfi8DR47s7M5EZcLrPT4qttkdi1wMin3P0IYcJoqwXtc8Cvu99uwcyWDug50eF6gm7PPXzfnZNZMIE5QNRATGkFDRX0ljat0kKyxTATJGyW0j7UItAqB6-gKTms0dRVXlhkfK22EtoK_RMcpp_AKYUYjrcuGaRvLMZdciwAEWSF6DSR5eoX44qrWzYTioGvxq10qx362k4NbcHA7OXiFyGHWdiLU-I_9J9iFgy3QYY8Defe9neOhpbVTICDiyxe3MC5Y5mvNha-U9bSOdoXksoftvegqS3X_fPzrB898gx4z0Aoef9e8RcfDbh_eFQAz2NMxQv8Cnl_tcg
  priority: 102
  providerName: Elsevier
Title In situ synthesis of Mo-doped carbon-coated NiCo2S4 nanosheet networks for supercapacitors
URI https://dx.doi.org/10.1016/j.elecom.2024.107853
https://doaj.org/article/15c88168d1334aceb2d5934d08bd15fb
Volume 170
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07bxQxELYgFNCg8BJHkpMLWsP6tbbL5ER0AeUaiBTRrPwUi5B9ut0raPjt2PuIjiZpaC3v2poZez7vjr8PgPdGO--40chkLIuYzCtdyZqjIKyTjhAhqnLf-XpTr2_Y51t-eyD1VWrCRnrg0XAfMbeyaEO4fJhi2uaDoOOKMldJ4zAPpuy-OefNh6np_0HeZIfSelriIM9gvjQ3VHYVgZlUbqETlpuE5PSfpDRw9x_kpoN8c3kMnk9AEZ6PE3wBHvn4Ejxdzfpsr8D3qwi7tt_D7nfMKK5rO5gCvE7Ipa130OqdSRHZlMGkg5t2lchXBqOOqfvhfQ_jWP_dwYxaYbff-p3NedO2RX3nNbi5_PRttUaTUgKyDMseaV8z7CvsKqFtpbwgtSHMC1pLplzgzOPKe6qCzeisVthWVBqiXaiUZsow-gYcxRT9WwAJDphnNykT8uIWVDFfaLF8cKpQ46kFoLOpGjvRiBc1i1_NXC_2sxkN3BQDN6OBFwDdPbUdaTQe6H9RvHDXt5BgDw05NJopNJqHQmMBxOzDZsITI07Ir2rvHf7d_xj-BDwjRSx4-F5zCo763d6fZQTTmyV4_OEPXoIn51df1pvlELp_AcW47wA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swED6kzpAuRZ-o--TQVbD4ksQxNRrYTewlCRB0IfhSq6IgDUse-u9L6mEkSwt0JUhJOB7vPkl33wfwSSvrLNcq0xHLZqyKJ11UBc_q0tjKElKWeep33myL1S37esfvTmA59cKkssox9g8xvY_W48hitOZi1zSLa0wjOmQpQfUkL8UjOE3sVHwGp-fry9X2-DMhRty-zp4mp4gLpg66vswrqc2E1JJOWBwqK04fZKieyP9eorqXfC6ewpMRNaLz4cGewYnzz-FsOYm1vYBva4_apjug9rePkK5tWhRqtAmZDTtnkVF7HXxmQkSWFm2bZSDXDHnlQ_vDuQ75oRi8RRHCovawc3sTk6hpkhTPS7i9-HKzXGWjbEJmGK66TLmCYZdjm5fK5MKVpNCEuZIWFRO25szh3DkqahOhWiGwyWmlibJ1LhQTmtFXMPPBu9eACK4xj3smdB1PekkFc4kjy9VWJJ48MQc6mUqakVM8SVv8klPx2E85GFgmA8vBwHPIjqt2A6fGP-Z_TrtwnJsYsfuBsP8uR5eQmJsqaYjY-NLNlHGaWC4os3mlLea1nkM57aF84GDxUs1fb__mv1d-hLPVzeZKXq23l2_hMUnSwf3Xm3cw6_YH9z7imU5_GP31D0XF8bE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+situ+synthesis+of+Mo-doped+carbon-coated+NiCo2S4+nanosheet+networks+for+supercapacitors&rft.jtitle=Electrochemistry+communications&rft.au=Kaiyu+Wang&rft.au=Fan+Zhou&rft.au=Jiangnan+Chu&rft.au=Wenchong+Ouyang&rft.date=2025-01-01&rft.pub=Elsevier&rft.issn=1388-2481&rft.volume=170&rft.spage=107853&rft_id=info:doi/10.1016%2Fj.elecom.2024.107853&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_15c88168d1334aceb2d5934d08bd15fb
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1388-2481&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1388-2481&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1388-2481&client=summon