Parametric design and IR signature study of exhaust plume from elliptical-shaped exhaust nozzles of a low flying UAV using CFD approach

This paper describes the design, parametric study, and IR signature analysis of plume of a slit-shaped exhaust nozzle. Circular-shaped exhaust nozzles are generally used to get the essential thrust necessary for an aircraft flight. However, the Infrared (IR) signature of the exhaust plume emanating...

Full description

Saved in:
Bibliographic Details
Published inResults in engineering Vol. 13; p. 100320
Main Authors Haq, Fazal, Huang, Jun
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2022
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper describes the design, parametric study, and IR signature analysis of plume of a slit-shaped exhaust nozzle. Circular-shaped exhaust nozzles are generally used to get the essential thrust necessary for an aircraft flight. However, the Infrared (IR) signature of the exhaust plume emanating from these nozzles is very high, and the IR missile can easily lock and hit the aircraft. In this paper, the compressible flow CFD model using a realizable k-ε turbulence model is used to study the flow characteristics of the exhaust nozzle with different aspect ratios. The exit cross-section of the nozzle is kept elliptical up to a maximum aspect ratio of 10. IR signature for each nozzle shaped is calculated using a set of input parameters in Mid-wave IR and Long-wave IR spectral bands. The IR signature of exhaust plume in Long-wave IR spectral band is not significant due to high transmittance of species in the exhaust plume mixture. However, for this particular case of low flying UAV, a considerable reduction in the IR signature is recorded for the high aspect ratio nozzle in MWIR spectral band. •Slit-shaped exhaust nozzle reduce the length of the exhaust plume core.•Thermal signature of the nozzle exit plane is more prominent in MWIR spectral band.•Rapid decrease in the temperature shift the peak of radiant emission to larger wavelength band.
AbstractList This paper describes the design, parametric study, and IR signature analysis of plume of a slit-shaped exhaust nozzle. Circular-shaped exhaust nozzles are generally used to get the essential thrust necessary for an aircraft flight. However, the Infrared (IR) signature of the exhaust plume emanating from these nozzles is very high, and the IR missile can easily lock and hit the aircraft. In this paper, the compressible flow CFD model using a realizable k-ε turbulence model is used to study the flow characteristics of the exhaust nozzle with different aspect ratios. The exit cross-section of the nozzle is kept elliptical up to a maximum aspect ratio of 10. IR signature for each nozzle shaped is calculated using a set of input parameters in Mid-wave IR and Long-wave IR spectral bands. The IR signature of exhaust plume in Long-wave IR spectral band is not significant due to high transmittance of species in the exhaust plume mixture. However, for this particular case of low flying UAV, a considerable reduction in the IR signature is recorded for the high aspect ratio nozzle in MWIR spectral band.
This paper describes the design, parametric study, and IR signature analysis of plume of a slit-shaped exhaust nozzle. Circular-shaped exhaust nozzles are generally used to get the essential thrust necessary for an aircraft flight. However, the Infrared (IR) signature of the exhaust plume emanating from these nozzles is very high, and the IR missile can easily lock and hit the aircraft. In this paper, the compressible flow CFD model using a realizable k-ε turbulence model is used to study the flow characteristics of the exhaust nozzle with different aspect ratios. The exit cross-section of the nozzle is kept elliptical up to a maximum aspect ratio of 10. IR signature for each nozzle shaped is calculated using a set of input parameters in Mid-wave IR and Long-wave IR spectral bands. The IR signature of exhaust plume in Long-wave IR spectral band is not significant due to high transmittance of species in the exhaust plume mixture. However, for this particular case of low flying UAV, a considerable reduction in the IR signature is recorded for the high aspect ratio nozzle in MWIR spectral band. •Slit-shaped exhaust nozzle reduce the length of the exhaust plume core.•Thermal signature of the nozzle exit plane is more prominent in MWIR spectral band.•Rapid decrease in the temperature shift the peak of radiant emission to larger wavelength band.
ArticleNumber 100320
Author Haq, Fazal
Huang, Jun
Author_xml – sequence: 1
  givenname: Fazal
  surname: Haq
  fullname: Haq, Fazal
  email: fazalhaq@buaa.edu.cn
– sequence: 2
  givenname: Jun
  surname: Huang
  fullname: Huang, Jun
BookMark eNqFkcFu1DAQhiNUJErpG3DwC2SxnWTtcECqFgorVSpClKs1sSe7XnntyHYo2xfgtUlIVSEOcPKvkb9PmvlfFmc-eCyK14yuGGXrN4dVtB79bsUpZ9OIVpw-K85509KS8Yqe_ZFfFJcpHSilXE5sJc6Ln58hwhFztJoYTHbnCXhDtl_InCGPEUnKozmR0BP8sYcxZTK48Yikj-FI0Dk7ZKvBlWkPA5qnTz48PDhMMwfEhXvSu5P1O3J39Y2MaU6b6_cEhiEG0PtXxfMeXMLLx_eiuLv-8HXzqby5_bjdXN2UumYyl2DWsgPKJGrR0ZaLSqJoWt22klLgoKFjYi0pF3UrpJEM-4bKToDuay6hqS6K7eI1AQ5qiPYI8aQCWPV7EOJOQZz2cagazYwUzbpmaCZYtB3nWjesbeuGmZpNrnpx6RhSitg_-RhVczfqoJZu1NyNWrqZsLd_YdpmyDb4HMG6_8HvFhinI323GFXSFr1GYyPqPG1h_y34BQMCrug
CitedBy_id crossref_primary_10_1016_j_ijthermalsci_2024_109567
crossref_primary_10_3390_app13084832
crossref_primary_10_1016_j_rineng_2024_102883
crossref_primary_10_1016_j_rineng_2025_104677
crossref_primary_10_1016_j_csite_2024_104835
crossref_primary_10_1016_j_rineng_2024_102451
crossref_primary_10_1017_aer_2024_163
crossref_primary_10_1016_j_applthermaleng_2024_124647
crossref_primary_10_1016_j_rineng_2022_100568
Cites_doi 10.1016/j.rineng.2019.100054
10.1016/0045-7930(94)00032-T
10.1016/j.infrared.2017.08.014
10.1016/j.rineng.2021.100272
10.1017/S0001924000011702
10.2514/1.14686
10.2514/2.6653
10.18284/jss.2013.12.32.2.185
10.2514/1.C033685
10.1016/j.paerosci.2007.06.002
10.1515/tjj.2011.023
10.1515/TJJ.2008.25.1.1
ContentType Journal Article
Copyright 2021 The Authors
Copyright_xml – notice: 2021 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.rineng.2021.100320
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2590-1230
ExternalDocumentID oai_doaj_org_article_5c1d875641ed42879b22cc5199451d41
10_1016_j_rineng_2021_100320
S2590123021001213
GroupedDBID 0SF
6I.
AAEDW
AAFTH
AALRI
AAXUO
ADBBV
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
FDB
GROUPED_DOAJ
M41
M~E
NCXOZ
OK1
ROL
SSZ
0R~
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c418t-ad68ba018ec7b092738e759c99800a2acab17680274978d81ef508b7acf428a53
IEDL.DBID DOA
ISSN 2590-1230
IngestDate Wed Aug 27 01:03:01 EDT 2025
Thu Apr 24 22:51:35 EDT 2025
Tue Jul 01 01:37:13 EDT 2025
Tue Jul 25 20:59:24 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords IR signature
Aspect ratio
Nozzle CFD
Exhaust nozzle
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-ad68ba018ec7b092738e759c99800a2acab17680274978d81ef508b7acf428a53
OpenAccessLink https://doaj.org/article/5c1d875641ed42879b22cc5199451d41
ParticipantIDs doaj_primary_oai_doaj_org_article_5c1d875641ed42879b22cc5199451d41
crossref_primary_10_1016_j_rineng_2021_100320
crossref_citationtrail_10_1016_j_rineng_2021_100320
elsevier_sciencedirect_doi_10_1016_j_rineng_2021_100320
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2022
2022-03-00
2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March 2022
PublicationDecade 2020
PublicationTitle Results in engineering
PublicationYear 2022
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Rao (bib19) 2011; 28
Deyerle (bib10) 1994; 17
Serrano, Piqueras, Sanchis, Diesel (bib17) 2019; 4
Chopra, Walia (bib14) 2020; 9
Bridges, Wernet (bib25) 2011; vol. 44135
Gu, Baek, Jegal, Choi, Kim (bib18) 2017; 86
Xu, Zhu, Pan, Liu (bib20) 2021; 11
Fan, Yang (bib6) 2013; vol. 8896
Mahulikar, Sonawane, Rao (bib8) 2007; 43
Guarnieri, Cizmas (bib1) 2008; 25
Sully, VanDam, Bird, Luisi (bib3) 1996; 12
Mahulikar, Rao, Sane, Marathe (bib15) 2005; 19
Parsons (bib11) 2004; 9
Ab-Rahman, Hassan (bib27) 2009; vol. 2
Rao, Mahulikar (bib13) 2005
Koch (bib9) 2001; vol. 26
Guarnieri (bib12) 2004
Bridges, Wernet (bib24) 2010
Rogalski (bib5) 2010
Grosshandler (bib28) 1993
Jespersen, Pulliam, Childs (bib26) 2016
An, Kang, Baek, Myong, Kim, Choi (bib21) 2016; 53
Shih, Liou, Shabbir, Yang, Zhu (bib22) 1995; 24
Rao, Mahulikar (bib2) 2002; 106
Schlessinger (bib7) 2019
Heragu, Rao, Raghunandan (bib23) 2002; 16
Kim, Chun, Myong, Kim (bib16) 2013; 41
Hudson (bib4) 2006; vol. 1
Sully (10.1016/j.rineng.2021.100320_bib3) 1996; 12
Rao (10.1016/j.rineng.2021.100320_bib13) 2005
Mahulikar (10.1016/j.rineng.2021.100320_bib8) 2007; 43
Bridges (10.1016/j.rineng.2021.100320_bib25) 2011; vol. 44135
Rao (10.1016/j.rineng.2021.100320_bib19) 2011; 28
Shih (10.1016/j.rineng.2021.100320_bib22) 1995; 24
Guarnieri (10.1016/j.rineng.2021.100320_bib12) 2004
Bridges (10.1016/j.rineng.2021.100320_bib24) 2010
Xu (10.1016/j.rineng.2021.100320_bib20) 2021; 11
An (10.1016/j.rineng.2021.100320_bib21) 2016; 53
Koch (10.1016/j.rineng.2021.100320_bib9) 2001; vol. 26
Gu (10.1016/j.rineng.2021.100320_bib18) 2017; 86
Ab-Rahman (10.1016/j.rineng.2021.100320_bib27) 2009; vol. 2
Deyerle (10.1016/j.rineng.2021.100320_bib10) 1994; 17
Schlessinger (10.1016/j.rineng.2021.100320_bib7) 2019
Rogalski (10.1016/j.rineng.2021.100320_bib5) 2010
Grosshandler (10.1016/j.rineng.2021.100320_bib28) 1993
Parsons (10.1016/j.rineng.2021.100320_bib11) 2004; 9
Kim (10.1016/j.rineng.2021.100320_bib16) 2013; 41
Jespersen (10.1016/j.rineng.2021.100320_bib26) 2016
Heragu (10.1016/j.rineng.2021.100320_bib23) 2002; 16
Chopra (10.1016/j.rineng.2021.100320_bib14) 2020; 9
Rao (10.1016/j.rineng.2021.100320_bib2) 2002; 106
Mahulikar (10.1016/j.rineng.2021.100320_bib15) 2005; 19
Guarnieri (10.1016/j.rineng.2021.100320_bib1) 2008; 25
Hudson (10.1016/j.rineng.2021.100320_bib4) 2006; vol. 1
Fan (10.1016/j.rineng.2021.100320_bib6) 2013; vol. 8896
Serrano (10.1016/j.rineng.2021.100320_bib17) 2019; 4
References_xml – volume: 17
  start-page: 70
  year: 1994
  ident: bib10
  article-title: Advanced infrared missile counter-countermeasures
  publication-title: J. Electron. Defense
– start-page: 221
  year: 2005
  ident: bib13
  article-title: Aircraft powerplant and plume infrared signature modelling and analysis
  publication-title: 43rd AIAA Aerospace Sciences Meeting and Exhibit
– volume: vol. 1
  year: 2006
  ident: bib4
  publication-title: Infrared System Engineering
– volume: 19
  start-page: 413
  year: 2005
  end-page: 415
  ident: bib15
  article-title: Aircraft plume infrared signature in nonafterburning mode
  publication-title: J. Thermophys. Heat Tran.
– start-page: 3751
  year: 2010
  ident: bib24
  article-title: Establishing consensus turbulence statistics for hot subsonic jets
  publication-title: 16th AIAA/CEAS Aeroacoustics Conference
– volume: 24
  start-page: 227
  year: 1995
  end-page: 238
  ident: bib22
  article-title: A new k-epsilon eddy viscosity model for high Reynolds number turbulent flows
  publication-title: Comput. Fluids
– volume: 86
  start-page: 11
  year: 2017
  end-page: 22
  ident: bib18
  article-title: Infrared signature characteristic of a microturbine engine exhaust plume
  publication-title: Infrared Phys. Technol.
– year: 2016
  ident: bib26
  article-title: Overflow Turbulence Modeling Resource Validation Results
– volume: 25
  start-page: 1
  year: 2008
  ident: bib1
  article-title: A method for reducing jet engine thermal signature
  publication-title: Int. J. Turbo Jet Engines
– volume: 53
  start-page: 1768
  year: 2016
  end-page: 1778
  ident: bib21
  article-title: Analysis of plume infrared signatures of s-shaped nozzle configurations of aerial vehicle
  publication-title: J. Aircraft
– year: 2010
  ident: bib5
  article-title: Infrared Detectors
– year: 2019
  ident: bib7
  article-title: Infrared Technology Fundamentals
– volume: 43
  start-page: 218
  year: 2007
  end-page: 245
  ident: bib8
  article-title: Infrared signature studies of aerospace vehicles
  publication-title: Prog. Aero. Sci.
– volume: vol. 26
  start-page: 3
  year: 2001
  end-page: 11
  ident: bib9
  publication-title: Review on Pyrotechnic Aerial Infrared Decoys, Propellants, Explosives, Pyrotechnics
– volume: 4
  start-page: 100054
  year: 2019
  ident: bib17
  article-title: A modelling tool for engine and exhaust aftertreatment performance analysis in altitude operation
  publication-title: Results Eng.
– volume: 41
  start-page: 185
  year: 2013
  end-page: 193
  ident: bib16
  article-title: Computational investigation of the effect of various flight conditions on plume infrared signature
  publication-title: J. Korean Soc. Aeronautical Space Sci.
– volume: 106
  start-page: 629
  year: 2002
  end-page: 642
  ident: bib2
  article-title: Integrated review of stealth technology and its role in airpower
  publication-title: Aeronaut. J.
– volume: vol. 44135
  year: 2011
  ident: bib25
  publication-title: The NASA Subsonic Jet Particle Image Veloetry (PIV) Dataset
– volume: 16
  start-page: 68
  year: 2002
  end-page: 76
  ident: bib23
  article-title: Generalized model for infrared perception from an engine exhaust
  publication-title: J. Thermophys. Heat Tran.
– volume: 12
  start-page: 1
  year: 1996
  ident: bib3
  article-title: Development of a tactical helicopter infrared signature suppression (irss) system
  publication-title: Adv. Rotorcraft Technol.
– volume: 28
  start-page: 187
  year: 2011
  end-page: 197
  ident: bib19
  article-title: Infrared signature modeling and analysis of aircraft plume
  publication-title: Int. J. Turbo Jet Engines
– volume: 11
  start-page: 100272
  year: 2021
  ident: bib20
  article-title: Experimental study on combustion parameters and temperature distribution of linear fire under different oxygen concentration in tunnel
  publication-title: Results Eng.
– volume: vol. 8896
  start-page: 889615
  year: 2013
  ident: bib6
  article-title: Trends in infrared imaging detecting technology
  publication-title: Electro-Optical and Infrared Systems: Technology and Applications X
– year: 1993
  ident: bib28
  article-title: RADCAL – a Narrow-Band Model for Radiation Calculations in a Combustion Environment
– volume: vol. 2
  start-page: 472
  year: 2009
  end-page: 477
  ident: bib27
  article-title: Lock-on range of infrared heat seeker missile
  publication-title: 2009 International Conference on Electrical Engineering and Informatics
– volume: 9
  start-page: 220
  year: 2020
  ident: bib14
  article-title: A short technical note on the ir signatures studies and designing aspects of the ir technology devices for defence aircraft
  publication-title: J. Aeronaut Aerospace Eng.
– year: 2004
  ident: bib12
  article-title: Thermal Signature Reduction through Liquid Nitrogen and Water Injection
– volume: 9
  start-page: 57
  year: 2004
  end-page: 60
  ident: bib11
  article-title: Advanced countermeasure dispensing system
  publication-title: J. Defense Sci.
– volume: 4
  start-page: 100054
  year: 2019
  ident: 10.1016/j.rineng.2021.100320_bib17
  article-title: A modelling tool for engine and exhaust aftertreatment performance analysis in altitude operation
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2019.100054
– year: 2010
  ident: 10.1016/j.rineng.2021.100320_bib5
– volume: vol. 44135
  year: 2011
  ident: 10.1016/j.rineng.2021.100320_bib25
– year: 1993
  ident: 10.1016/j.rineng.2021.100320_bib28
– start-page: 221
  year: 2005
  ident: 10.1016/j.rineng.2021.100320_bib13
  article-title: Aircraft powerplant and plume infrared signature modelling and analysis
– volume: vol. 2
  start-page: 472
  year: 2009
  ident: 10.1016/j.rineng.2021.100320_bib27
  article-title: Lock-on range of infrared heat seeker missile
– volume: 24
  start-page: 227
  year: 1995
  ident: 10.1016/j.rineng.2021.100320_bib22
  article-title: A new k-epsilon eddy viscosity model for high Reynolds number turbulent flows
  publication-title: Comput. Fluids
  doi: 10.1016/0045-7930(94)00032-T
– volume: 9
  start-page: 57
  year: 2004
  ident: 10.1016/j.rineng.2021.100320_bib11
  article-title: Advanced countermeasure dispensing system
  publication-title: J. Defense Sci.
– volume: 9
  start-page: 220
  year: 2020
  ident: 10.1016/j.rineng.2021.100320_bib14
  article-title: A short technical note on the ir signatures studies and designing aspects of the ir technology devices for defence aircraft
  publication-title: J. Aeronaut Aerospace Eng.
– volume: 86
  start-page: 11
  year: 2017
  ident: 10.1016/j.rineng.2021.100320_bib18
  article-title: Infrared signature characteristic of a microturbine engine exhaust plume
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2017.08.014
– volume: 11
  start-page: 100272
  year: 2021
  ident: 10.1016/j.rineng.2021.100320_bib20
  article-title: Experimental study on combustion parameters and temperature distribution of linear fire under different oxygen concentration in tunnel
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2021.100272
– start-page: 3751
  year: 2010
  ident: 10.1016/j.rineng.2021.100320_bib24
  article-title: Establishing consensus turbulence statistics for hot subsonic jets
– volume: 106
  start-page: 629
  year: 2002
  ident: 10.1016/j.rineng.2021.100320_bib2
  article-title: Integrated review of stealth technology and its role in airpower
  publication-title: Aeronaut. J.
  doi: 10.1017/S0001924000011702
– volume: 12
  start-page: 1
  year: 1996
  ident: 10.1016/j.rineng.2021.100320_bib3
  article-title: Development of a tactical helicopter infrared signature suppression (irss) system
  publication-title: Adv. Rotorcraft Technol.
– volume: 19
  start-page: 413
  year: 2005
  ident: 10.1016/j.rineng.2021.100320_bib15
  article-title: Aircraft plume infrared signature in nonafterburning mode
  publication-title: J. Thermophys. Heat Tran.
  doi: 10.2514/1.14686
– year: 2019
  ident: 10.1016/j.rineng.2021.100320_bib7
– volume: 16
  start-page: 68
  year: 2002
  ident: 10.1016/j.rineng.2021.100320_bib23
  article-title: Generalized model for infrared perception from an engine exhaust
  publication-title: J. Thermophys. Heat Tran.
  doi: 10.2514/2.6653
– volume: 41
  start-page: 185
  year: 2013
  ident: 10.1016/j.rineng.2021.100320_bib16
  article-title: Computational investigation of the effect of various flight conditions on plume infrared signature
  publication-title: J. Korean Soc. Aeronautical Space Sci.
  doi: 10.18284/jss.2013.12.32.2.185
– year: 2016
  ident: 10.1016/j.rineng.2021.100320_bib26
– year: 2004
  ident: 10.1016/j.rineng.2021.100320_bib12
– volume: 17
  start-page: 70
  year: 1994
  ident: 10.1016/j.rineng.2021.100320_bib10
  article-title: Advanced infrared missile counter-countermeasures
  publication-title: J. Electron. Defense
– volume: vol. 8896
  start-page: 889615
  year: 2013
  ident: 10.1016/j.rineng.2021.100320_bib6
  article-title: Trends in infrared imaging detecting technology
– volume: 53
  start-page: 1768
  year: 2016
  ident: 10.1016/j.rineng.2021.100320_bib21
  article-title: Analysis of plume infrared signatures of s-shaped nozzle configurations of aerial vehicle
  publication-title: J. Aircraft
  doi: 10.2514/1.C033685
– volume: 43
  start-page: 218
  year: 2007
  ident: 10.1016/j.rineng.2021.100320_bib8
  article-title: Infrared signature studies of aerospace vehicles
  publication-title: Prog. Aero. Sci.
  doi: 10.1016/j.paerosci.2007.06.002
– volume: vol. 26
  start-page: 3
  year: 2001
  ident: 10.1016/j.rineng.2021.100320_bib9
– volume: 28
  start-page: 187
  year: 2011
  ident: 10.1016/j.rineng.2021.100320_bib19
  article-title: Infrared signature modeling and analysis of aircraft plume
  publication-title: Int. J. Turbo Jet Engines
  doi: 10.1515/tjj.2011.023
– volume: vol. 1
  year: 2006
  ident: 10.1016/j.rineng.2021.100320_bib4
– volume: 25
  start-page: 1
  year: 2008
  ident: 10.1016/j.rineng.2021.100320_bib1
  article-title: A method for reducing jet engine thermal signature
  publication-title: Int. J. Turbo Jet Engines
  doi: 10.1515/TJJ.2008.25.1.1
SSID ssj0002810137
Score 2.2651424
Snippet This paper describes the design, parametric study, and IR signature analysis of plume of a slit-shaped exhaust nozzle. Circular-shaped exhaust nozzles are...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 100320
SubjectTerms Aspect ratio
Exhaust nozzle
IR signature
Nozzle CFD
Title Parametric design and IR signature study of exhaust plume from elliptical-shaped exhaust nozzles of a low flying UAV using CFD approach
URI https://dx.doi.org/10.1016/j.rineng.2021.100320
https://doaj.org/article/5c1d875641ed42879b22cc5199451d41
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXc_AaTNJH2qOPXVZBEXHFW8mrPli6i64oHrz6t82k7dKTXryUUpK2ZIbMN-Gbbwg55H4DFEpKqsosp7GVhvqwwKnOpbUmYkoaPBq4vEqHo_jiPrnvtPpCTlgtD1wv3FFiuPWYOo25swjvcy2EMQlK2ibchpJ14WNeJ5l6DkdGvBHM9PAe6QcRa-vmArkLK-uqB58eCo48gQjbfXfiUpDv74SnTsgZrJKVBivCcf2Pa2TBVetkuaMguEG-rxWyq1BmH2wgY4CqLJzfAN4H0U4ICrIwKcF9PKLKD0xxQwIsLAGU45yG42z6-qimzs4HVZPPz7F7xXkKxpN3KMdYEQWj4ztAsvwDnA7OoJUk3ySjQf_2dEib3grUxDybUWXTTCvGM2ekZjkW6DiZ5MZnX4wpoYzS3GcimLT6PNNm3JUeymmpTOmtoJJoiyxWk8ptE9BRymyccq1dEkdM54lmwliPA4y0USl6JGpXtjCN8Dj2vxgXLcPsuajtUaA9itoePULns6a18MYf40_QaPOxKJsdHnhnKhpnKv5yph6RrcmLBoHUyMK_6unXz-_8x-d3yZLA6opAcdsji7OXN7fvMc9MHwT39tfLr_4PPOD8yw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parametric+design+and+IR+signature+study+of+exhaust+plume+from+elliptical-shaped+exhaust+nozzles+of+a+low+flying+UAV+using+CFD+approach&rft.jtitle=Results+in+engineering&rft.au=Haq%2C+Fazal&rft.au=Huang%2C+Jun&rft.date=2022-03-01&rft.pub=Elsevier+B.V&rft.issn=2590-1230&rft.eissn=2590-1230&rft.volume=13&rft_id=info:doi/10.1016%2Fj.rineng.2021.100320&rft.externalDocID=S2590123021001213
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-1230&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-1230&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-1230&client=summon