A strategy to construct (reduced graphene oxide, γ-Fe2O3)/C3N4 step-scheme photocatalyst for visible-light water splitting
The interface architecture plays important role in the charge transfer and separation of S-scheme photocatalysis. Herein, we propose a strategy to synthesize (reduced graphene oxide, γ-Fe2O3)/C3N4 S-scheme heterojunctions by thermal treatment of MIL-101(Fe) and melamine. (rGO, γ-Fe2O3)/C3N4 presents...
Saved in:
Published in | Catalysis communications Vol. 157; p. 106327 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2021
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The interface architecture plays important role in the charge transfer and separation of S-scheme photocatalysis. Herein, we propose a strategy to synthesize (reduced graphene oxide, γ-Fe2O3)/C3N4 S-scheme heterojunctions by thermal treatment of MIL-101(Fe) and melamine. (rGO, γ-Fe2O3)/C3N4 presents a high oxygen evolution rate (OER) of 3.85 mmol·g−1·h−1 under visible irradiation, and overall water splitting activity with the hydrogen evolution (HER) and OER rates of 23.3 and 12 μmol·g−1·h−1, respectively. The band alignments by different Fermi levels of C3N4 and (rGO, γ-Fe2O3) result in internal electric field, which significantly enhances the separation efficiency of photogenerated electrons and holes.
[Display omitted]
•The (rGO, γ-Fe2O3)/C3N4 S-scheme junctions are synthetized by thermal treatment.•(rGO, γ-Fe2O3)/C3N4 presents O2 evolution rate of 3.85 mmol·g−1·h−1.•(rGO, γ-Fe2O3)/C3N4 is active for overall water splitting. |
---|---|
AbstractList | The interface architecture plays important role in the charge transfer and separation of S-scheme photocatalysis. Herein, we propose a strategy to synthesize (reduced graphene oxide, γ-Fe2O3)/C3N4 S-scheme heterojunctions by thermal treatment of MIL-101(Fe) and melamine. (rGO, γ-Fe2O3)/C3N4 presents a high oxygen evolution rate (OER) of 3.85 mmol·g−1·h−1 under visible irradiation, and overall water splitting activity with the hydrogen evolution (HER) and OER rates of 23.3 and 12 μmol·g−1·h−1, respectively. The band alignments by different Fermi levels of C3N4 and (rGO, γ-Fe2O3) result in internal electric field, which significantly enhances the separation efficiency of photogenerated electrons and holes. The interface architecture plays important role in the charge transfer and separation of S-scheme photocatalysis. Herein, we propose a strategy to synthesize (reduced graphene oxide, γ-Fe2O3)/C3N4 S-scheme heterojunctions by thermal treatment of MIL-101(Fe) and melamine. (rGO, γ-Fe2O3)/C3N4 presents a high oxygen evolution rate (OER) of 3.85 mmol·g−1·h−1 under visible irradiation, and overall water splitting activity with the hydrogen evolution (HER) and OER rates of 23.3 and 12 μmol·g−1·h−1, respectively. The band alignments by different Fermi levels of C3N4 and (rGO, γ-Fe2O3) result in internal electric field, which significantly enhances the separation efficiency of photogenerated electrons and holes. [Display omitted] •The (rGO, γ-Fe2O3)/C3N4 S-scheme junctions are synthetized by thermal treatment.•(rGO, γ-Fe2O3)/C3N4 presents O2 evolution rate of 3.85 mmol·g−1·h−1.•(rGO, γ-Fe2O3)/C3N4 is active for overall water splitting. |
ArticleNumber | 106327 |
Author | Liu, Yuxiang Si, Zhichun Xu, Xuejun Weng, Duan Li, Ang Wu, Xiaodong Ran, Rui |
Author_xml | – sequence: 1 givenname: Yuxiang surname: Liu fullname: Liu, Yuxiang organization: The Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing City 100084, China – sequence: 2 givenname: Xuejun surname: Xu fullname: Xu, Xuejun organization: School of Materials Science and Hydrogen Energy, Foshan University, Foshan City 528225, China – sequence: 3 givenname: Ang surname: Li fullname: Li, Ang organization: International Graduate School at Shenzhen, Tsinghua University, Shenzhen City 518055, China – sequence: 4 givenname: Zhichun surname: Si fullname: Si, Zhichun email: si.zhichun@sz.tsinghua.edu.cn organization: International Graduate School at Shenzhen, Tsinghua University, Shenzhen City 518055, China – sequence: 5 givenname: Xiaodong surname: Wu fullname: Wu, Xiaodong organization: The Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing City 100084, China – sequence: 6 givenname: Rui surname: Ran fullname: Ran, Rui organization: The Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing City 100084, China – sequence: 7 givenname: Duan surname: Weng fullname: Weng, Duan email: duanweng@mail.tsinghua.edu.cn organization: The Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing City 100084, China |
BookMark | eNqFkc1u1DAQxyPUSvSDN-DgI0hk66-NYw5I1YpCpYpeytma2JOsV9k4st2WFY_Fe_BMuA1cOMDJ4_H8_p6Z_2l1NIUJq-o1oytGWXOxW1nINuxXnHJWUo3g6kV1wlolaqHp-qjE66aplWjUy-o0pR0tmBb6pPp-SVKOkHE4kByIDVO53ttM3kR09xYdGSLMW5yQhG_e4Tvy80d9hfxWvL3YiC-y0DjXyW5xj2TehhxKKzAeUiZ9iOTBJ9-NWI9-2GbyWP6JJM2jz9lPw3l13MOY8NXv86z6evXxbvO5vrn9dL25vKmtZG2uwVGmuHJMNT0ILkQLjeSaO1fm5L1dl2elGNWlToKmziJ14KBrqYQeO3FWXS-6LsDOzNHvIR5MAG-eEyEOBmL2dkRTeK2x7Z2kIBnXHXNgJe-Ydg3vqC1a7xctG0NKEXtjfYbsw1S26EfDqHmyxOzMYol5ssQslhRY_gX_aeY_2IcFw7KkB4_RJOtxKub4iDaXKfy_BX4BrWyrUg |
CitedBy_id | crossref_primary_10_1016_j_jiec_2024_10_018 crossref_primary_10_1016_j_catcom_2022_106422 crossref_primary_10_1016_j_jallcom_2023_171457 crossref_primary_10_1007_s10311_022_01429_6 crossref_primary_10_1016_j_materresbull_2023_112177 crossref_primary_10_1016_j_apmt_2022_101609 crossref_primary_10_1039_D3NJ05421G crossref_primary_10_1116_6_0002979 crossref_primary_10_3390_ma18061259 |
Cites_doi | 10.1021/acs.accounts.8b00542 10.1021/acscatal.8b00026 10.1016/j.chempr.2020.06.010 10.1016/j.apcatb.2018.11.011 10.1039/C9NR03218E 10.1002/adma.201400288 10.1002/adma.201305299 10.1038/natrevmats.2017.30 10.1038/238037a0 10.1002/aenm.201700025 10.1016/j.apsusc.2020.148427 10.3389/fchem.2019.00713 10.1021/acs.chemrev.7b00286 10.1021/cs4002089 10.1038/s41467-020-18350-7 10.1002/smll.201803088 10.1016/j.jcis.2020.10.144 10.1002/anie.201902634 10.1039/C9CY01818B 10.1021/jacs.6b11878 10.1039/C4CS00213J 10.1021/acscatal.8b00070 10.1039/C4NR07224C 10.1002/advs.201903171 10.1016/j.jechem.2017.12.006 10.1038/nmat2317 10.1002/anie.201916012 10.1021/acssuschemeng.8b01799 10.1021/acs.chemrev.5b00267 10.1002/anie.201809984 10.1016/j.mattod.2018.04.009 10.1016/j.apcatb.2016.11.028 10.1002/solr.202000050 |
ContentType | Journal Article |
Copyright | 2021 |
Copyright_xml | – notice: 2021 |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.catcom.2021.106327 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1873-3905 |
ExternalDocumentID | oai_doaj_org_article_4a999e8fd40a4129b1dac42b19d62b0c 10_1016_j_catcom_2021_106327 S1566736721000509 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFPKN AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ HVGLF HZ~ IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SSG SSZ T5K UHS ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU BNPGV CITATION SSH EFKBS |
ID | FETCH-LOGICAL-c418t-ad01727d176fa32338a64292dd6322fc501777109d014a90dce0dadab804afeb3 |
IEDL.DBID | DOA |
ISSN | 1566-7367 |
IngestDate | Wed Aug 27 00:52:28 EDT 2025 Thu Apr 24 23:12:44 EDT 2025 Tue Jul 01 01:21:33 EDT 2025 Fri Feb 23 02:46:07 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | (rGO, γ-Fe2O3)/C3N4 Photocatalytic water splitting S-scheme heterojunction |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c418t-ad01727d176fa32338a64292dd6322fc501777109d014a90dce0dadab804afeb3 |
OpenAccessLink | https://doaj.org/article/4a999e8fd40a4129b1dac42b19d62b0c |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4a999e8fd40a4129b1dac42b19d62b0c crossref_citationtrail_10_1016_j_catcom_2021_106327 crossref_primary_10_1016_j_catcom_2021_106327 elsevier_sciencedirect_doi_10_1016_j_catcom_2021_106327 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2021 2021-09-00 2021-09-01 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: September 2021 |
PublicationDecade | 2020 |
PublicationTitle | Catalysis communications |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Maeda (bb0065) 2013; 3 Kong, Yan, Li, Liu (bb0105) 2018; 6 Wang, Suzuki, Xie, Tomita, Martin, Higashi, Kong, Abe, Tang (bb0060) 2018; 118 Fu, Xu, Low, Jiang, Yu (bb0095) 2019; 243 Wang, Li, Wang, Hou, Chen, Yang (bb0150) 2017; 206 Ng, Putri, Kong, Teh, Pasbakhsh, Chai (bb0030) 2020; 7 Deng, Ba, Huo, Li, Wang, Yu, Hou (bb0160) 2021; 541 Xia, Cao, Zhu, Liu, Shi, Yu, Zhang (bb0075) 2020; 59 Kong, Zheng, Kobielusz, Wang, Bai, Macyk, Wang, Tang (bb0090) 2018; 21 Buzzetti, Crisenza, Melchiorre (bb0035) 2019; 58 Deng, Li, Ba, Huo, Hou (bb0165) 2021; 586 Xu, Meng, Cheng, Wang, Xu, Yu (bb0080) 2020; 11 Xu, Zhang, Cheng, Fan, Yu (bb0070) 2020; 6 Yang, Zhang, Pagliaro, Xu (bb0115) 2014; 43 Syed, Huang, Feng, Wang, Cao (bb0020) 2019; 7 Xia, Wang, Huang, Yuan, Zhang, Zhang, Jiang, Xiong, Zeng (bb0100) 2019; 15 Ayyub, Singh, Rao (bb0015) 2020; 4 Wu, Ward-Bond, Li, Zhang, Shi, Jiang (bb0145) 2018; 8 Niu, Marcus, Zhou, Li, Shi, Liang, Yang (bb0110) 2018; 8 Zhang, Yang, Liu, Sun, Xu (bb0120) 2015; 115 Rahman, Mullins (bb0045) 2019; 52 Yeh, Teng, Chen, Teng (bb0130) 2014; 26 Kessler, Zheng, Schwarz, Merschjann, Schnick, Wang, Bojdys (bb0040) 2017; 2 Xu, Ma, Jin (bb0125) 2018; 27 Xia, Song, Wang, Zhang, Sui, Zhang, Colvin, Yu (bb0025) 2019; 11 Wang, Maeda, Thomas, Takanabe, Xin, Carlsson, Domen, Antonietti (bb0085) 2009; 8 Pan, Zhang, Wang (bb0140) 2019; 58 Fujishima, Honda (bb0005) 1972; 238 Reza Gholipour, Dinh, Beland, Do (bb0050) 2015; 7 Che, Cheng, Yao, Tang, Liu, Su, Huang, Liu, Liu, Hu, Pan, Sun, Wei (bb0135) 2017; 139 She, Wu, Xu, Zhong, Wang, Song, Nie, Liu, Yang, Rodrigues, Vajtai, Lou, Du, Li, Ajayan (bb0155) 2017; 7 Idriss (bb0010) 2020; 10 Zhou, Yu, Jaroniec (bb0055) 2014; 26 Buzzetti (10.1016/j.catcom.2021.106327_bb0035) 2019; 58 Niu (10.1016/j.catcom.2021.106327_bb0110) 2018; 8 Zhang (10.1016/j.catcom.2021.106327_bb0120) 2015; 115 Xia (10.1016/j.catcom.2021.106327_bb0025) 2019; 11 She (10.1016/j.catcom.2021.106327_bb0155) 2017; 7 Wang (10.1016/j.catcom.2021.106327_bb0150) 2017; 206 Fu (10.1016/j.catcom.2021.106327_bb0095) 2019; 243 Pan (10.1016/j.catcom.2021.106327_bb0140) 2019; 58 Yeh (10.1016/j.catcom.2021.106327_bb0130) 2014; 26 Wu (10.1016/j.catcom.2021.106327_bb0145) 2018; 8 Wang (10.1016/j.catcom.2021.106327_bb0060) 2018; 118 Xia (10.1016/j.catcom.2021.106327_bb0075) 2020; 59 Xu (10.1016/j.catcom.2021.106327_bb0125) 2018; 27 Ayyub (10.1016/j.catcom.2021.106327_bb0015) 2020; 4 Deng (10.1016/j.catcom.2021.106327_bb0160) 2021; 541 Xia (10.1016/j.catcom.2021.106327_bb0100) 2019; 15 Yang (10.1016/j.catcom.2021.106327_bb0115) 2014; 43 Reza Gholipour (10.1016/j.catcom.2021.106327_bb0050) 2015; 7 Maeda (10.1016/j.catcom.2021.106327_bb0065) 2013; 3 Syed (10.1016/j.catcom.2021.106327_bb0020) 2019; 7 Ng (10.1016/j.catcom.2021.106327_bb0030) 2020; 7 Kessler (10.1016/j.catcom.2021.106327_bb0040) 2017; 2 Deng (10.1016/j.catcom.2021.106327_bb0165) 2021; 586 Fujishima (10.1016/j.catcom.2021.106327_bb0005) 1972; 238 Kong (10.1016/j.catcom.2021.106327_bb0105) 2018; 6 Rahman (10.1016/j.catcom.2021.106327_bb0045) 2019; 52 Che (10.1016/j.catcom.2021.106327_bb0135) 2017; 139 Zhou (10.1016/j.catcom.2021.106327_bb0055) 2014; 26 Wang (10.1016/j.catcom.2021.106327_bb0085) 2009; 8 Xu (10.1016/j.catcom.2021.106327_bb0080) 2020; 11 Xu (10.1016/j.catcom.2021.106327_bb0070) 2020; 6 Idriss (10.1016/j.catcom.2021.106327_bb0010) 2020; 10 Kong (10.1016/j.catcom.2021.106327_bb0090) 2018; 21 |
References_xml | – volume: 52 start-page: 248 year: 2019 end-page: 257 ident: bb0045 article-title: Understanding charge transport in carbon nitride for enhanced photocatalytic solar fuel production publication-title: Acc. Chem. Res. – volume: 118 start-page: 5201 year: 2018 end-page: 5241 ident: bb0060 article-title: Mimicking natural photosynthesis: solar to renewable H publication-title: Chem. Rev. – volume: 15 start-page: 1803088 year: 2019 ident: bb0100 article-title: State-of-the-Art advances and challenges of iron-based metal organic frameworks from attractive features, synthesis to multifunctional applications publication-title: Small – volume: 3 start-page: 1486 year: 2013 end-page: 1503 ident: bb0065 article-title: Z-scheme water splitting using two different semiconductor photocatalysts publication-title: ACS Catal. – volume: 139 start-page: 3021 year: 2017 end-page: 3026 ident: bb0135 article-title: Fast photoelectron transfer in (C publication-title: J. Am. Chem. Soc. – volume: 43 start-page: 8240 year: 2014 end-page: 8254 ident: bb0115 article-title: Artificial photosynthesis over graphene-semiconductor composites. Are we getting better? publication-title: Chem. Soc. Rev. – volume: 58 start-page: 3730 year: 2019 end-page: 3747 ident: bb0035 article-title: Mechanistic studies in photocatalysis publication-title: Angew. Chem. Int. Ed. – volume: 8 start-page: 1926 year: 2018 end-page: 1931 ident: bb0110 article-title: Enhancing electron transfer and electrocatalytic activity on crystalline carbon-conjugated g-C publication-title: ACS Catal. – volume: 7 start-page: 1903171 year: 2020 ident: bb0030 article-title: Z-scheme photocatalytic systems for solar water splitting publication-title: Adv. Sci. – volume: 7 start-page: 713 year: 2019 ident: bb0020 article-title: Carbon-based nanomaterials via heterojunction serving as photocatalyst publication-title: Front. Chem. – volume: 243 start-page: 556 year: 2019 end-page: 565 ident: bb0095 article-title: Ultrathin 2D/2D WO publication-title: Appl. Catal. B Environ. – volume: 7 start-page: 8187 year: 2015 end-page: 8208 ident: bb0050 article-title: Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting publication-title: Nanoscale – volume: 59 start-page: 5218 year: 2020 end-page: 5225 ident: bb0075 article-title: Designing a 0D/2D S-scheme heterojunction over polymeric carbon nitride for visible-light photocatalytic inactivation of bacteria publication-title: Angew. Chem. Int. Ed. – volume: 27 start-page: 146 year: 2018 end-page: 160 ident: bb0125 article-title: Nitrogen-doped graphene: synthesis, characterizations and energy applications publication-title: J. Energy Chem. – volume: 541 start-page: 148427 year: 2021 ident: bb0160 article-title: Soft-template synthesis of sp publication-title: Appl. Surf. Sci. – volume: 21 start-page: 897 year: 2018 end-page: 924 ident: bb0090 article-title: Recent advances in visible light-driven water oxidation and reduction in suspension systems publication-title: Mater. Today – volume: 2 start-page: 17030 year: 2017 ident: bb0040 article-title: Functional carbon nitride materials - design strategies for electrochemical devices publication-title: Nat. Rev. Mater. – volume: 26 start-page: 4920 year: 2014 end-page: 4935 ident: bb0055 article-title: All-solid-state Z-scheme photocatalytic systems publication-title: Adv. Mater. – volume: 58 start-page: 7102 year: 2019 end-page: 7106 ident: bb0140 article-title: Polymeric carbon nitride/reduced graphene oxide/Fe publication-title: Angew. Chem. Int. Ed. – volume: 6 start-page: 1543 year: 2020 end-page: 1559 ident: bb0070 article-title: S-Scheme heterojunction photocatalyst publication-title: Chem – volume: 10 start-page: 304 year: 2020 end-page: 310 ident: bb0010 article-title: The elusive photocatalytic water splitting reaction using sunlight on suspended nanoparticles: is there a way forward? publication-title: Catal. Sci. Technol. – volume: 8 start-page: 5664 year: 2018 end-page: 5674 ident: bb0145 article-title: g-C publication-title: ACS Catal. – volume: 586 start-page: 748 year: 2021 end-page: 757 ident: bb0165 article-title: The pivotal role of defects in fabrication of polymeric carbon nitride homojunctions with enhanced photocatalytic hydrogen evolution publication-title: J. Colloid Interface Sci. – volume: 26 start-page: 3297 year: 2014 end-page: 3303 ident: bb0130 article-title: Nitrogen-doped graphene oxide quantum dots as photocatalysts for overall water-splitting under visible light illumination publication-title: Adv. Mater. – volume: 8 start-page: 76 year: 2009 end-page: 80 ident: bb0085 article-title: A metal-free polymeric photocatalyst for hydrogen production from water under visible light publication-title: Nat. Mater. – volume: 7 start-page: 1700025 year: 2017 ident: bb0155 article-title: High efficiency photocatalytic water splitting using 2D α-Fe publication-title: Adv. Energy Mater. – volume: 4 start-page: 2000050 year: 2020 ident: bb0015 article-title: Hydrogen generation by solar water splitting using 2D nanomaterials publication-title: Sol. RRL – volume: 6 start-page: 10436 year: 2018 end-page: 10444 ident: bb0105 article-title: Fe publication-title: ACS Sustain. Chem. Eng. – volume: 238 start-page: 37 year: 1972 end-page: 38 ident: bb0005 article-title: Electrochemical photolysis of water at a semiconductor electrode publication-title: Nature – volume: 11 start-page: 11071 year: 2019 end-page: 11082 ident: bb0025 article-title: Latest progress in constructing solid-state Z scheme photocatalysts for water splitting publication-title: Nanoscale – volume: 115 start-page: 10307 year: 2015 end-page: 10377 ident: bb0120 article-title: Waltzing with the versatile platform of graphene to synthesize composite photocatalysts publication-title: Chem. Rev. – volume: 11 start-page: 4613 year: 2020 ident: bb0080 article-title: Unique S-scheme heterojunctions in self-assembled TiO publication-title: Nat. Commun. – volume: 206 start-page: 216 year: 2017 end-page: 220 ident: bb0150 article-title: Effects of redox mediators on α-Fe publication-title: Appl. Catal. B Environ. – volume: 52 start-page: 248 year: 2019 ident: 10.1016/j.catcom.2021.106327_bb0045 article-title: Understanding charge transport in carbon nitride for enhanced photocatalytic solar fuel production publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00542 – volume: 8 start-page: 1926 year: 2018 ident: 10.1016/j.catcom.2021.106327_bb0110 article-title: Enhancing electron transfer and electrocatalytic activity on crystalline carbon-conjugated g-C3N4 publication-title: ACS Catal. doi: 10.1021/acscatal.8b00026 – volume: 6 start-page: 1543 year: 2020 ident: 10.1016/j.catcom.2021.106327_bb0070 article-title: S-Scheme heterojunction photocatalyst publication-title: Chem doi: 10.1016/j.chempr.2020.06.010 – volume: 243 start-page: 556 year: 2019 ident: 10.1016/j.catcom.2021.106327_bb0095 article-title: Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2018.11.011 – volume: 11 start-page: 11071 year: 2019 ident: 10.1016/j.catcom.2021.106327_bb0025 article-title: Latest progress in constructing solid-state Z scheme photocatalysts for water splitting publication-title: Nanoscale doi: 10.1039/C9NR03218E – volume: 26 start-page: 4920 year: 2014 ident: 10.1016/j.catcom.2021.106327_bb0055 article-title: All-solid-state Z-scheme photocatalytic systems publication-title: Adv. Mater. doi: 10.1002/adma.201400288 – volume: 26 start-page: 3297 year: 2014 ident: 10.1016/j.catcom.2021.106327_bb0130 article-title: Nitrogen-doped graphene oxide quantum dots as photocatalysts for overall water-splitting under visible light illumination publication-title: Adv. Mater. doi: 10.1002/adma.201305299 – volume: 2 start-page: 17030 year: 2017 ident: 10.1016/j.catcom.2021.106327_bb0040 article-title: Functional carbon nitride materials - design strategies for electrochemical devices publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2017.30 – volume: 238 start-page: 37 year: 1972 ident: 10.1016/j.catcom.2021.106327_bb0005 article-title: Electrochemical photolysis of water at a semiconductor electrode publication-title: Nature doi: 10.1038/238037a0 – volume: 7 start-page: 1700025 year: 2017 ident: 10.1016/j.catcom.2021.106327_bb0155 article-title: High efficiency photocatalytic water splitting using 2D α-Fe2O3/g-C3N4 Z-scheme catalysts publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700025 – volume: 541 start-page: 148427 year: 2021 ident: 10.1016/j.catcom.2021.106327_bb0160 article-title: Soft-template synthesis of sp2-carbon linked polymeric carbon nitride porous nanotubes with enhanced photocatalytic hydrogen evolution publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.148427 – volume: 7 start-page: 713 year: 2019 ident: 10.1016/j.catcom.2021.106327_bb0020 article-title: Carbon-based nanomaterials via heterojunction serving as photocatalyst publication-title: Front. Chem. doi: 10.3389/fchem.2019.00713 – volume: 118 start-page: 5201 year: 2018 ident: 10.1016/j.catcom.2021.106327_bb0060 article-title: Mimicking natural photosynthesis: solar to renewable H2 fuel synthesis by Z-scheme water splitting systems publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00286 – volume: 3 start-page: 1486 year: 2013 ident: 10.1016/j.catcom.2021.106327_bb0065 article-title: Z-scheme water splitting using two different semiconductor photocatalysts publication-title: ACS Catal. doi: 10.1021/cs4002089 – volume: 11 start-page: 4613 year: 2020 ident: 10.1016/j.catcom.2021.106327_bb0080 article-title: Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction publication-title: Nat. Commun. doi: 10.1038/s41467-020-18350-7 – volume: 15 start-page: 1803088 year: 2019 ident: 10.1016/j.catcom.2021.106327_bb0100 article-title: State-of-the-Art advances and challenges of iron-based metal organic frameworks from attractive features, synthesis to multifunctional applications publication-title: Small doi: 10.1002/smll.201803088 – volume: 586 start-page: 748 year: 2021 ident: 10.1016/j.catcom.2021.106327_bb0165 article-title: The pivotal role of defects in fabrication of polymeric carbon nitride homojunctions with enhanced photocatalytic hydrogen evolution publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.10.144 – volume: 58 start-page: 7102 year: 2019 ident: 10.1016/j.catcom.2021.106327_bb0140 article-title: Polymeric carbon nitride/reduced graphene oxide/Fe2O3 : all-solid-state Z-scheme system for photocatalytic overall water splitting publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201902634 – volume: 10 start-page: 304 year: 2020 ident: 10.1016/j.catcom.2021.106327_bb0010 article-title: The elusive photocatalytic water splitting reaction using sunlight on suspended nanoparticles: is there a way forward? publication-title: Catal. Sci. Technol. doi: 10.1039/C9CY01818B – volume: 139 start-page: 3021 year: 2017 ident: 10.1016/j.catcom.2021.106327_bb0135 article-title: Fast photoelectron transfer in (Cring)-C3N4 plane heterostructural nanosheets for overall water splitting publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b11878 – volume: 43 start-page: 8240 year: 2014 ident: 10.1016/j.catcom.2021.106327_bb0115 article-title: Artificial photosynthesis over graphene-semiconductor composites. Are we getting better? publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00213J – volume: 8 start-page: 5664 year: 2018 ident: 10.1016/j.catcom.2021.106327_bb0145 article-title: g-C3N4@α-Fe2O3/C photocatalysts: synergistically intensified charge generation and charge transfer for NADH regeneration publication-title: ACS Catal. doi: 10.1021/acscatal.8b00070 – volume: 7 start-page: 8187 year: 2015 ident: 10.1016/j.catcom.2021.106327_bb0050 article-title: Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting publication-title: Nanoscale doi: 10.1039/C4NR07224C – volume: 7 start-page: 1903171 year: 2020 ident: 10.1016/j.catcom.2021.106327_bb0030 article-title: Z-scheme photocatalytic systems for solar water splitting publication-title: Adv. Sci. doi: 10.1002/advs.201903171 – volume: 27 start-page: 146 year: 2018 ident: 10.1016/j.catcom.2021.106327_bb0125 article-title: Nitrogen-doped graphene: synthesis, characterizations and energy applications publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2017.12.006 – volume: 8 start-page: 76 year: 2009 ident: 10.1016/j.catcom.2021.106327_bb0085 article-title: A metal-free polymeric photocatalyst for hydrogen production from water under visible light publication-title: Nat. Mater. doi: 10.1038/nmat2317 – volume: 59 start-page: 5218 year: 2020 ident: 10.1016/j.catcom.2021.106327_bb0075 article-title: Designing a 0D/2D S-scheme heterojunction over polymeric carbon nitride for visible-light photocatalytic inactivation of bacteria publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201916012 – volume: 6 start-page: 10436 year: 2018 ident: 10.1016/j.catcom.2021.106327_bb0105 article-title: Fe2O3/C-C3N4-based tight heterojunction for boosting visible-light-driven photocatalytic water oxidation publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b01799 – volume: 115 start-page: 10307 year: 2015 ident: 10.1016/j.catcom.2021.106327_bb0120 article-title: Waltzing with the versatile platform of graphene to synthesize composite photocatalysts publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00267 – volume: 58 start-page: 3730 year: 2019 ident: 10.1016/j.catcom.2021.106327_bb0035 article-title: Mechanistic studies in photocatalysis publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201809984 – volume: 21 start-page: 897 year: 2018 ident: 10.1016/j.catcom.2021.106327_bb0090 article-title: Recent advances in visible light-driven water oxidation and reduction in suspension systems publication-title: Mater. Today doi: 10.1016/j.mattod.2018.04.009 – volume: 206 start-page: 216 year: 2017 ident: 10.1016/j.catcom.2021.106327_bb0150 article-title: Effects of redox mediators on α-Fe2O3 exposed by {012} and {104} facets for photocatalytic water oxidation publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2016.11.028 – volume: 4 start-page: 2000050 year: 2020 ident: 10.1016/j.catcom.2021.106327_bb0015 article-title: Hydrogen generation by solar water splitting using 2D nanomaterials publication-title: Sol. RRL doi: 10.1002/solr.202000050 |
SSID | ssj0016939 |
Score | 2.3842146 |
Snippet | The interface architecture plays important role in the charge transfer and separation of S-scheme photocatalysis. Herein, we propose a strategy to synthesize... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 106327 |
SubjectTerms | (rGO, γ-Fe2O3)/C3N4 Photocatalytic water splitting S-scheme heterojunction |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF5FXOBSlUfVtID2wAEktvE-_DrSiAghEQ6AxM3al9ugNI4SS4Aq9U_xP_qbmFnbUbhQqUevd73enfHsfNbMN4QcWekyz33KuOI5UwCYmXYqYxaZN4UsYx1oF6_GycWduryP73tk2OXCYFhla_sbmx6sddsyaHdzMJ9MBjeIPFKZAIRpWEwwg12lqOXf_qzCPJBrJA-cqUnCsHeXPhdivCyYuwrz0QWHpkRibZm14ymw-K-dUmsnz-gj-dC6jPSseatt0vOzHbI57Cq17ZLfZ3TZkMw-07qitmpZYenxAolZvaOBlhqsGq2eJs6f0r8vbOTFtTwZDOVYwWg_ZwBz_S9P5z-rugo_dZ6XNQWXlmL6uZl6NkUcTx9hngVdgu8aIqb3yN3o_HZ4wdqiCswqntUgCUR9qeNpUmopAKHqBEtWOQfLF6WN4XaKAZrQT-k8ctZHTjttskjpEqD3J7Ixq2b-M6EqK6X2Whn4kFWZCc1NbGMdG7CfPraiT2S3l4VtGcex8MW06ELLHopGAgVKoGgk0CdsNWreMG78o_93FNOqL_Jlh4Zq8aNoFaaAleS5z0qnIq3AxTHcaauE4blLhIlsn6SdkIs36gePmrw7_Zf_HvmVbOFVE7C2TzZAM_wBeDi1OQwq_ArfV_lU priority: 102 providerName: Elsevier |
Title | A strategy to construct (reduced graphene oxide, γ-Fe2O3)/C3N4 step-scheme photocatalyst for visible-light water splitting |
URI | https://dx.doi.org/10.1016/j.catcom.2021.106327 https://doaj.org/article/4a999e8fd40a4129b1dac42b19d62b0c |
Volume | 157 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV25TsNAEF1BKKBBnCIc0RYUILHgPXykDBFRABEakOisvSxAIY4SS4CQ-Cn-g29i1mujVKShXe9hz4znsGfeIHSouUkstTGhgraJgICZSCMSoh3yJuNZKEvYxZtB1L8XVw_hw0yrL5cT5uGBPeHOhAQXxiaZEYEUYJwUNVILpmjbREwF2mlfsHl1MFX9P4javF0XypXZXBoUW-4qzxmFoYi7LjIzhqjE65-xRzM2preGVivnEHf8Ta2jBTvaQMvduifbJvro4KmHk33HRY51XuG_4qOJg2C1BpcA1KC_cP72ZOwJ_v4iPctu-fFZlw8ErLZjAgGtfbF4_JgXefn55n1aYHBesSs0V0NLhi5ix69wzgRPwUstc6O30H3v4q7bJ1X7BKIFTQqguYvvYkPjKJOcQSwqI9ecyhh4fJbpEC7HLhUT5gGVA6NtYKSRKgmEzCDI3kaNUT6yOwiLJOPSSqHglRVZwiRVoQ5lqEBT2lCzJuI1LVNdYYu7FhfDtE4ie049B1LHgdRzoInI76qxx9aYM__csel3rkPGLgdAXtJKXtJ58tJEcc3ktHIyvPMAWz39efzufxy_h1bclj5LbR81QEjsAbg1hWqhxdNP2kJLncvr_qBVyvMPZCH5Yg |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6V9FAuFU8RymMPHEBiFe_Dr2OIiFLahgOt1Ju1L5egEEeJJaj4WfwPfhMz63UULiBx3Z2xvTvj2Rl75htCXlnpCs99zrjiJVMQMDPtVMEsIm8KWac6wC5ezLPZlfpwnV4fkElfC4NpldH2dzY9WOs4Moq7OVovFqNPGHnkMoMQpkMxuUMOEZ0qHZDD8enZbL77mZCVoaEY0jNk6CvoQpqXBYvXYEm64DCUSWwvs3dCBSD_vYNq7_CZ3iPH0Wuk4-7B7pMDv3pAjiZ9s7aH5MeYbjuc2VvaNtQ2ERiWvt4gNqt3NCBTg2GjzfeF82_pr59s6sVH-WY0kXMF3H7NINL1Xz1df27aJnzXud22FLxaihXoZunZEkN5-g3us6FbcF9D0vQjcjV9fzmZsdhXgVnFixaEgYFf7nie1VoKCFJ1hl2rnIPli9qmMJ1jjibQKV0mzvrEaadNkShdQ_T9mAxWzco_IVQVtdReKwPvsqoLoblJbapTAybUp1YMiez3srIRdBx7XyyrPrvsS9VJoEIJVJ0EhoTtuNYd6MY_6N-hmHa0CJkdBprNTRV1poKVlKUvaqcSrcDLMdxpq4ThpcuESeyQ5L2Qqz80EC61-Ovtn_4350tyNLu8OK_OT-dnJ-QuznT5a8_IALTEPweHpzUvokL_BkPk_ZM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+strategy+to+construct+%28reduced+graphene+oxide%2C+%CE%B3-Fe2O3%29%2FC3N4+step-scheme+photocatalyst+for+visible-light+water+splitting&rft.jtitle=Catalysis+communications&rft.au=Yuxiang+Liu&rft.au=Xuejun+Xu&rft.au=Ang+Li&rft.au=Zhichun+Si&rft.date=2021-09-01&rft.pub=Elsevier&rft.eissn=1873-3905&rft.volume=157&rft.spage=106327&rft_id=info:doi/10.1016%2Fj.catcom.2021.106327&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4a999e8fd40a4129b1dac42b19d62b0c |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1566-7367&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1566-7367&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1566-7367&client=summon |