Anti-Influenza Prodrug Oseltamivir Is Activated by Carboxylesterase Human Carboxylesterase 1, and the Activation Is Inhibited by Antiplatelet Agent Clopidogrel
Oseltamivir is the main medicine recommended by the World Health Organization in anticipation of next influenza pandemic. This anti-influenza viral agent is an ester prodrug, and the antiviral activity is achieved by its hydrolytic metabolite: oseltamivir carboxylate. In this study, we report that t...
Saved in:
Published in | The Journal of pharmacology and experimental therapeutics Vol. 319; no. 3; pp. 1477 - 1484 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.12.2006
American Society for Pharmacology and Experimental Therapeutics |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Oseltamivir is the main medicine recommended by the World Health Organization in anticipation of next influenza pandemic. This anti-influenza viral agent is an ester prodrug, and the antiviral activity is achieved by its hydrolytic metabolite: oseltamivir carboxylate. In this study, we report that the hydrolytic activation is catalyzed by carboxylesterase human carboxylesterase (HCE) 1. Liver microsomes rapidly hydrolyzed oseltamivir, but no hydrolysis was detected with intestinal microsomes or plasma. The overall rate of the hydrolysis varied among individual liver samples and was correlated well with the level of HCE1. Recombinant HCE1 but not HCE2 hydrolyzed this prodrug and produced similar kinetic parameters as the liver microsomes. Several HCE1 natural variants differed from the wild-type enzyme on the hydrolysis of oseltamivir. In the presence of antiplatelet agent clopidogrel, the hydrolysis of oseltamivir was inhibited by as much as 90% when the equal concentration was assayed. Given the fact that hydrolysis of oseltamivir is required for its therapeutic activity, concurrent use of both drugs would inhibit the activation of oseltamivir, thus making this antiviral agent therapeutically inactive. This is epidemiologically of significance because people who receive oseltamivir and clopidogrel simultaneously may maintain susceptibility to influenza infection or a source of spreading influenza virus if already infected. |
---|---|
AbstractList | Oseltamivir is the main medicine recommended by the World Health Organization in anticipation of next influenza pandemic. This anti-influenza viral agent is an ester prodrug, and the antiviral activity is achieved by its hydrolytic metabolite: oseltamivir carboxylate. In this study, we report that the hydrolytic activation is catalyzed by carboxylesterase human carboxylesterase (HCE) 1. Liver microsomes rapidly hydrolyzed oseltamivir, but no hydrolysis was detected with intestinal microsomes or plasma. The overall rate of the hydrolysis varied among individual liver samples and was correlated well with the level of HCE1. Recombinant HCE1 but not HCE2 hydrolyzed this prodrug and produced similar kinetic parameters as the liver microsomes. Several HCE1 natural variants differed from the wild-type enzyme on the hydrolysis of oseltamivir. In the presence of antiplatelet agent clopidogrel, the hydrolysis of oseltamivir was inhibited by as much as 90% when the equal concentration was assayed. Given the fact that hydrolysis of oseltamivir is required for its therapeutic activity, concurrent use of both drugs would inhibit the activation of oseltamivir, thus making this antiviral agent therapeutically inactive. This is epidemiologically of significance because people who receive oseltamivir and clopidogrel simultaneously may maintain susceptibility to influenza infection or a source of spreading influenza virus if already infected. Oseltamivir is the main medicine recommended by the World Health Organization in anticipation of next influenza pandemic. This anti-influenza viral agent is an ester prodrug, and the antiviral activity is achieved by its hydrolytic metabolite: oseltamivir carboxylate. In this study, we report that the hydrolytic activation is catalyzed by carboxylesterase human carboxylesterase (HCE) 1. Liver microsomes rapidly hydrolyzed oseltamivir, but no hydrolysis was detected with intestinal microsomes or plasma. The overall rate of the hydrolysis varied among individual liver samples and was correlated well with the level of HCE1. Recombinant HCE1 but not HCE2 hydrolyzed this prodrug and produced similar kinetic parameters as the liver microsomes. Several HCE1 natural variants differed from the wild-type enzyme on the hydrolysis of oseltamivir. In the presence of antiplatelet agent clopidogrel, the hydrolysis of oseltamivir was inhibited by as much as 90% when the equal concentration was assayed. Given the fact that hydrolysis of oseltamivir is required for its therapeutic activity, concurrent use of both drugs would inhibit the activation of oseltamivir, thus making this antiviral agent therapeutically inactive. This is epidemiologically of significance because people who receive oseltamivir and clopidogrel simultaneously may maintain susceptibility to influenza infection or a source of spreading influenza virus if already infected. Oseltamivir is the main medicine recommended by the World Health Organization in anticipation of next influenza pandemic. This anti-influenza viral agent is an ester prodrug, and the antiviral activity is achieved by its hydrolytic metabolite: oseltamivir carboxylate. In this study, we report that the hydrolytic activation is catalyzed by carboxylesterase human carboxylesterase (HCE) 1. Liver microsomes rapidly hydrolyzed oseltamivir, but no hydrolysis was detected with intestinal microsomes or plasma. The overall rate of the hydrolysis varied among individual liver samples and was correlated well with the level of HCE1. Recombinant HCE1 but not HCE2 hydrolyzed this prodrug and produced similar kinetic parameters as the liver microsomes. Several HCE1 natural variants differed from the wild-type enzyme on the hydrolysis of oseltamivir. In the presence of antiplatelet agent clopidogrel, the hydrolysis of oseltamivir was inhibited by as much as 90% when the equal concentration was assayed. Given the fact that hydrolysis of oseltamivir is required for its therapeutic activity, concurrent use of both drugs would inhibit the activation of oseltamivir, thus making this antiviral agent therapeutically inactive. This is epidemiologically of significance because people who receive oseltamivir and clopidogrel simultaneously may maintain susceptibility to influenza infection or a source of spreading influenza virus if already infected.Oseltamivir is the main medicine recommended by the World Health Organization in anticipation of next influenza pandemic. This anti-influenza viral agent is an ester prodrug, and the antiviral activity is achieved by its hydrolytic metabolite: oseltamivir carboxylate. In this study, we report that the hydrolytic activation is catalyzed by carboxylesterase human carboxylesterase (HCE) 1. Liver microsomes rapidly hydrolyzed oseltamivir, but no hydrolysis was detected with intestinal microsomes or plasma. The overall rate of the hydrolysis varied among individual liver samples and was correlated well with the level of HCE1. Recombinant HCE1 but not HCE2 hydrolyzed this prodrug and produced similar kinetic parameters as the liver microsomes. Several HCE1 natural variants differed from the wild-type enzyme on the hydrolysis of oseltamivir. In the presence of antiplatelet agent clopidogrel, the hydrolysis of oseltamivir was inhibited by as much as 90% when the equal concentration was assayed. Given the fact that hydrolysis of oseltamivir is required for its therapeutic activity, concurrent use of both drugs would inhibit the activation of oseltamivir, thus making this antiviral agent therapeutically inactive. This is epidemiologically of significance because people who receive oseltamivir and clopidogrel simultaneously may maintain susceptibility to influenza infection or a source of spreading influenza virus if already infected. |
Author | Akhlaghi, Fatemeh Yang, Jian Yan, Bingfang Yang, Dongfang Shi, Deshi You, Li Black, Chris LeCluyse, Edward L. |
Author_xml | – sequence: 1 givenname: Deshi surname: Shi fullname: Shi, Deshi – sequence: 2 givenname: Jian surname: Yang fullname: Yang, Jian – sequence: 3 givenname: Dongfang surname: Yang fullname: Yang, Dongfang – sequence: 4 givenname: Edward L. surname: LeCluyse fullname: LeCluyse, Edward L. – sequence: 5 givenname: Chris surname: Black fullname: Black, Chris – sequence: 6 givenname: Li surname: You fullname: You, Li – sequence: 7 givenname: Fatemeh surname: Akhlaghi fullname: Akhlaghi, Fatemeh – sequence: 8 givenname: Bingfang surname: Yan fullname: Yan, Bingfang email: byan@uri.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/16966469$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kcGP1CAYxYlZ486Onr0ZTnqxu9BS2h4nE3Un2WQ96JlQ-GaGDYUKdHT8Z_xXZexsTDR6go-83wPeu0IXzjtA6CUl15SW7OZhhHRNCc8TbUnzBC1oXdKCUFJdoAUhZVlUNa8v0VWMD4RQxnj1DF1S3nHOeLdAP1YumWLjtnYC913ij8HrMO3wfQSb5GAOJuBNxCuVzEEm0Lg_4rUMvf92tBATBBkB306DdH8f07dYOo3THh55493JbeP2pjdnt9MDRpu9LSS82oFLeG39aLTfBbDP0dOttBFenNcl-vz-3af1bXF3_2GzXt0VitE2FbIH1mneN1Xe9TUrm7LWoHUOhVOQtO-bbVsS1ZCmbrac9qytaVmysmtkyxWrluj17DsG_2XKXxCDiQqslQ78FAVvKWurnN4SvToLp34ALcZgBhmO4jHSLLiZBSr4GANsf0uIOJUmTqXlgYu5tEzUfxDKpF9hpSCN_Q_3Zub2Zrf_agKIcS_DIJW3fncUFe1EJShrTspuVkKO8GAgiKgMOAU6UyoJ7c0_b_kJ2JC_QQ |
CitedBy_id | crossref_primary_10_1021_mp100300k crossref_primary_10_1016_j_bios_2014_01_049 crossref_primary_10_1111_j_1742_1241_2009_02010_x crossref_primary_10_3109_00498254_2015_1020353 crossref_primary_10_1021_acs_molpharmaceut_5b00414 crossref_primary_10_1016_j_ejphar_2017_11_036 crossref_primary_10_1128_AAC_00602_21 crossref_primary_10_1016_j_ejphar_2015_06_004 crossref_primary_10_32527_2019_101435 crossref_primary_10_1124_dmd_115_068536 crossref_primary_10_3389_fphar_2021_655659 crossref_primary_10_1124_jpet_106_110577 crossref_primary_10_3389_fimmu_2021_670427 crossref_primary_10_1124_dmd_108_024018 crossref_primary_10_1124_jpet_112_201640 crossref_primary_10_1016_j_neulet_2015_05_014 crossref_primary_10_1080_03639045_2022_2102647 crossref_primary_10_1124_dmd_109_028209 crossref_primary_10_2165_11534730_000000000_00000 crossref_primary_10_1016_j_talanta_2024_126060 crossref_primary_10_1124_dmd_108_024943 crossref_primary_10_1002_jps_22627 crossref_primary_10_1007_s00228_016_2029_x crossref_primary_10_1002_jps_22628 crossref_primary_10_1016_j_envpol_2020_114463 crossref_primary_10_1124_dmd_109_029413 crossref_primary_10_1016_j_jchromb_2015_11_046 crossref_primary_10_1124_dmd_111_043208 crossref_primary_10_1021_acs_jmedchem_6b01849 crossref_primary_10_1111_bcp_13237 crossref_primary_10_1124_jpet_106_118992 crossref_primary_10_1016_j_bmc_2009_10_052 crossref_primary_10_1124_dmd_107_018556 crossref_primary_10_1016_j_bcp_2012_06_025 crossref_primary_10_1016_j_cbi_2021_109566 crossref_primary_10_1055_a_2398_9532 crossref_primary_10_1002_phar_1194 crossref_primary_10_1016_j_pep_2014_11_006 crossref_primary_10_1080_00498254_2019_1678078 crossref_primary_10_1016_j_toxlet_2011_01_002 crossref_primary_10_1111_bcpt_12290 crossref_primary_10_3390_molecules24112176 crossref_primary_10_1016_j_bmcl_2018_02_035 crossref_primary_10_1111_bcpt_12058 crossref_primary_10_1016_j_yrtph_2019_104569 crossref_primary_10_1007_s13318_020_00659_9 crossref_primary_10_1002_jps_22612 crossref_primary_10_1016_j_bmc_2008_11_008 crossref_primary_10_1007_s40262_014_0160_3 crossref_primary_10_1124_dmd_107_017699 crossref_primary_10_1124_dmd_116_072736 crossref_primary_10_1007_s10529_018_2528_1 crossref_primary_10_1038_clpt_2014_183 crossref_primary_10_1016_j_dmpk_2014_12_001 crossref_primary_10_1002_bdd_70003 crossref_primary_10_1208_s12248_020_00493_6 crossref_primary_10_1016_j_ajem_2017_03_040 crossref_primary_10_1542_peds_2014_2578 crossref_primary_10_1016_j_ejps_2024_106990 crossref_primary_10_1016_j_phytochem_2011_09_004 crossref_primary_10_1007_s00044_011_9633_1 crossref_primary_10_1002_jps_24467 crossref_primary_10_1080_17425255_2018_1420164 crossref_primary_10_1111_bcpt_12625 crossref_primary_10_1016_j_bioorg_2019_103388 crossref_primary_10_1124_dmd_113_053512 crossref_primary_10_1039_D0FO01732A crossref_primary_10_1124_dmd_113_054049 crossref_primary_10_1208_s12248_016_9992_0 crossref_primary_10_1007_s10719_009_9239_8 crossref_primary_10_1128_AAC_00344_08 crossref_primary_10_2174_1389200224666221212143904 crossref_primary_10_2217_pgs_2017_0052 crossref_primary_10_1016_j_tox_2008_09_019 crossref_primary_10_2217_pgs_15_7 crossref_primary_10_1038_s41401_021_00697_2 crossref_primary_10_1124_dmd_119_089680 crossref_primary_10_1136_jcp_2010_084657 crossref_primary_10_1124_dmd_123_001266 crossref_primary_10_1080_14756366_2022_2029855 crossref_primary_10_2131_jts_37_1217 crossref_primary_10_1142_S0219633613500375 crossref_primary_10_3390_molecules24152747 crossref_primary_10_1016_j_ejps_2019_03_009 crossref_primary_10_1038_s41598_018_34695_y crossref_primary_10_1016_j_dmpk_2021_100391 crossref_primary_10_1080_07391102_2021_1984310 crossref_primary_10_1002_jmv_20951 crossref_primary_10_1016_j_tox_2019_04_008 crossref_primary_10_1016_j_bmcl_2018_09_014 crossref_primary_10_1016_j_fitote_2019_104199 crossref_primary_10_1248_yakushi_127_611 crossref_primary_10_3762_bjoc_9_12 crossref_primary_10_1097_FPC_0b013e32835aa8a2 crossref_primary_10_3390_ph18030297 crossref_primary_10_1146_annurev_pharmtox_052220_105907 crossref_primary_10_1038_nrd_2018_46 crossref_primary_10_1002_pmic_200900105 crossref_primary_10_1124_dmd_119_086744 crossref_primary_10_1016_j_bcp_2024_116128 crossref_primary_10_3923_ijv_2009_119_130 crossref_primary_10_1038_s41598_019_51580_4 crossref_primary_10_2174_0113892002308233240801104910 crossref_primary_10_3389_fchem_2022_863118 crossref_primary_10_7555_JBR_37_20230047 crossref_primary_10_1007_s00228_012_1315_5 crossref_primary_10_1016_j_jep_2019_112097 crossref_primary_10_1007_s10719_010_9281_6 crossref_primary_10_1517_17425255_2010_519334 crossref_primary_10_1111_bph_13731 crossref_primary_10_1128_AAC_00588_08 crossref_primary_10_1248_yakushi_18_00228 crossref_primary_10_1016_j_bcp_2008_10_005 crossref_primary_10_1021_np300628a crossref_primary_10_1111_bcp_12682 crossref_primary_10_1080_02648725_2022_2108997 crossref_primary_10_1111_cts_70079 crossref_primary_10_1097_FJC_0000000000000037 crossref_primary_10_1016_j_taap_2009_02_012 crossref_primary_10_1093_infdis_jiq145 crossref_primary_10_1016_j_cellsig_2010_03_011 crossref_primary_10_2165_0002018_200831120_00006 crossref_primary_10_1124_dmd_122_000918 crossref_primary_10_1016_j_ejps_2020_105455 crossref_primary_10_1016_j_xphs_2024_09_012 crossref_primary_10_3109_00498250903431794 crossref_primary_10_1002_pmic_201800288 crossref_primary_10_1021_acs_jmedchem_2c00502 crossref_primary_10_1016_j_jprot_2014_04_008 crossref_primary_10_4062_biomolther_2009_17_4_335 crossref_primary_10_3389_fphar_2022_835136 crossref_primary_10_1016_j_cbi_2019_108914 crossref_primary_10_1016_j_cbi_2023_110612 crossref_primary_10_1016_j_bios_2014_10_002 crossref_primary_10_1039_D3LC00843F crossref_primary_10_1124_pr_110_003459 crossref_primary_10_1584_jpestics_R10_03 crossref_primary_10_1584_jpestics_R10_02 crossref_primary_10_1016_j_ejmech_2023_115513 crossref_primary_10_1111_j_1742_7843_2012_00889_x crossref_primary_10_1002_jps_21376 crossref_primary_10_1038_clpt_2012_13 crossref_primary_10_1124_dmd_117_077669 crossref_primary_10_1186_s13550_014_0024_8 crossref_primary_10_1039_D4CC03632H crossref_primary_10_1016_j_ejmech_2018_02_052 crossref_primary_10_1016_j_lfs_2021_119896 crossref_primary_10_1124_dmd_111_044263 crossref_primary_10_1016_j_bcp_2009_08_019 crossref_primary_10_1021_acs_analchem_8b05417 crossref_primary_10_1111_j_1530_0277_2010_01226_x crossref_primary_10_1080_00498254_2018_1548718 crossref_primary_10_1186_s12883_015_0393_2 crossref_primary_10_1124_jpet_107_120030 crossref_primary_10_3109_00498254_2015_1082209 crossref_primary_10_1007_s12325_012_0050_8 crossref_primary_10_1039_D1MD00073J crossref_primary_10_1016_j_bcp_2018_04_005 crossref_primary_10_1016_j_nucmedbio_2008_10_008 crossref_primary_10_1016_j_ajhg_2008_04_015 crossref_primary_10_1021_acs_jnatprod_8b00378 crossref_primary_10_1080_00498254_2023_2298270 crossref_primary_10_3389_fphar_2020_577998 crossref_primary_10_3390_molecules13020412 crossref_primary_10_1124_mol_107_036889 crossref_primary_10_1139_y11_060 crossref_primary_10_1186_s13020_019_0279_0 crossref_primary_10_1039_C5CC09874B crossref_primary_10_1039_C5RA23614B crossref_primary_10_3389_fphar_2017_00435 crossref_primary_10_1177_0091270012440280 crossref_primary_10_1517_17425255_4_9_1153 crossref_primary_10_1111_fcp_12889 crossref_primary_10_1080_07328303_2023_2189473 crossref_primary_10_1517_13543776_2011_586339 crossref_primary_10_1089_gtmb_2010_0037 crossref_primary_10_1016_j_bcab_2018_07_013 crossref_primary_10_1093_jac_dkr257 crossref_primary_10_1039_D4PM00330F crossref_primary_10_1007_s00228_012_1350_2 crossref_primary_10_3109_00498254_2011_648670 crossref_primary_10_3389_fphar_2022_1004010 crossref_primary_10_1097_FPC_0b013e32834f03eb crossref_primary_10_1016_j_cbi_2012_10_018 crossref_primary_10_1016_j_xphs_2023_03_018 crossref_primary_10_1128_AAC_01541_08 crossref_primary_10_1111_bph_13553 crossref_primary_10_1016_j_xphs_2018_09_022 crossref_primary_10_1097_FPC_0000000000000206 crossref_primary_10_1248_bpb_31_638 crossref_primary_10_1007_s00280_019_03837_y crossref_primary_10_1124_dmd_113_053017 crossref_primary_10_1016_j_ejps_2021_105807 crossref_primary_10_1124_dmd_116_072652 crossref_primary_10_1016_j_cclet_2018_12_013 crossref_primary_10_2217_pgs_2016_0145 crossref_primary_10_2133_dmpk_DMPK_12_RV_042 crossref_primary_10_1371_journal_pone_0259129 crossref_primary_10_1002_phar_1151 crossref_primary_10_1021_acsomega_1c01699 crossref_primary_10_1007_s40262_014_0226_2 crossref_primary_10_1194_jlr_M014688 crossref_primary_10_2165_11595860_000000000_00000 crossref_primary_10_1208_s12249_020_1638_y crossref_primary_10_1089_gtmb_2011_0010 crossref_primary_10_1002_jps_23182 crossref_primary_10_1038_nrd2468 crossref_primary_10_1016_j_bcp_2012_04_002 crossref_primary_10_1124_dmd_112_050252 crossref_primary_10_1248_yakushi_18_00191 crossref_primary_10_1016_j_ejps_2017_02_031 crossref_primary_10_1021_jm9001296 crossref_primary_10_1111_bph_12125 crossref_primary_10_1002_dta_1731 crossref_primary_10_1186_s44149_021_00017_5 crossref_primary_10_3390_v13030413 crossref_primary_10_1517_17425250903483215 crossref_primary_10_1016_j_ejps_2015_07_006 crossref_primary_10_2165_11536950_000000000_00000 |
Cites_doi | 10.1016/j.ygeno.2004.07.008 10.1007/s00228-003-0639-6 10.1248/bpb.28.399 10.1021/bi00094a018 10.1124/jpet.106.110577 10.2165/00003088-199937060-00003 10.1016/S0378-5173(03)00164-9 10.1177/00912700022009567 10.1136/emj.2005.033464 10.1093/jac/dki018 10.1128/jvi.71.4.3357-3362.1997 10.1016/j.antiviral.2003.11.008 10.1006/bbrc.1997.6413 10.1016/j.bcp.2005.09.002 10.1146/annurev.pharmtox.46.120604.141207 10.1016/S0005-2736(03)00160-3 10.1002/rmv.352 10.1586/14760584.3.1.35 10.1124/dmd.30.1.13 10.1016/j.virusres.2004.08.012 10.1016/j.micinf.2005.12.008 10.1126/science.1122438 10.1124/dmd.30.5.541 10.1016/j.yrtph.2005.01.004 10.1126/science.311.5759.315 10.1152/physiolgenomics.00187.2005 10.1016/S0090-9556(24)15341-X 10.1006/abbi.1994.1532 10.1016/j.bbrc.2004.05.090 10.1046/j.1523-1755.2000.00251.x 10.1074/jbc.272.23.14769 10.1042/bj20020514 10.1074/jbc.M300596200 10.1016/j.tips.2004.10.006 |
ContentType | Journal Article |
Copyright | 2006 American Society for Pharmacology and Experimental Therapeutics |
Copyright_xml | – notice: 2006 American Society for Pharmacology and Experimental Therapeutics |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1124/jpet.106.111807 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1521-0103 |
EndPage | 1484 |
ExternalDocumentID | 16966469 10_1124_jpet_106_111807 319_3_1477 S0022356524330927 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01GM61988 – fundername: NCCIH NIH HHS grantid: F05 AT003019 – fundername: NIEHS NIH HHS grantid: R01ES07965 |
GroupedDBID | --- -~X .55 .GJ 0R~ 18M 2WC 3O- 4.4 53G 5GY 5RE 5VS 8WZ A6W AAJMC AALRI AAXUO AAYOK ABCQX ABIVO ABJNI ABOCM ABSQV ACGFO ACGFS ACNCT ADBBV ADCOW ADIYS AENEX AERNN AETEA AFFNX AFHIN AFOSN AGFXO AI. ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW CS3 DIK DU5 E3Z EBS EJD F5P F9R FDB GX1 H13 HZ~ INIJC KQ8 L7B LSO M41 MJL MVM O9- OHT P2P R.V R0Z RHI ROL RPT TR2 UQL VH1 W8F WH7 WOQ X7M YBU YHG YQT ZGI ZXP - 08R 0R 55 8RP AALRV ABFLS ABSGY ABZEH ACDCL ADACO ADBIT ADKFC AIKQT DL FH7 GJ HZ O0- OK1 RHF W2D X AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c418t-abe49d6b73abeb542725dedd18061ea1bb7f820c70757f61b4851224297a86c43 |
ISSN | 0022-3565 |
IngestDate | Fri Jul 11 14:39:08 EDT 2025 Sat Mar 08 01:25:17 EST 2025 Thu Apr 24 22:55:15 EDT 2025 Tue Jul 01 05:40:20 EDT 2025 Tue Jan 05 21:16:51 EST 2021 Sat Mar 01 15:46:38 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c418t-abe49d6b73abeb542725dedd18061ea1bb7f820c70757f61b4851224297a86c43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://digitalcommons.uri.edu/bps_facpubs/463 |
PMID | 16966469 |
PQID | 68148346 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_68148346 pubmed_primary_16966469 crossref_primary_10_1124_jpet_106_111807 crossref_citationtrail_10_1124_jpet_106_111807 highwire_pharmacology_319_3_1477 elsevier_sciencedirect_doi_10_1124_jpet_106_111807 |
ProviderPackageCode | RHF RHI CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2006-12-01 |
PublicationDateYYYYMMDD | 2006-12-01 |
PublicationDate_xml | – month: 12 year: 2006 text: 2006-12-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of pharmacology and experimental therapeutics |
PublicationTitleAlternate | J Pharmacol Exp Ther |
PublicationYear | 2006 |
Publisher | Elsevier Inc American Society for Pharmacology and Experimental Therapeutics |
Publisher_xml | – name: Elsevier Inc – name: American Society for Pharmacology and Experimental Therapeutics |
References | Normile D (2006) Avian influenza: WHO proposes plan to stop pandemic in its tracks. 277–300. 315–316. 541–547. Li B, Sedlacek M, Manoharan I, Boopathy R, Duysen EG, Masson P, and Lockridge O (2005) Butyrylcholinesterase, paraoxonase, and albumin esterase, but not carboxylesterase, are present in human plasma. 304–310. Miyazaki H, Sekine T, and Endou H (2004) The multispecific organic anion transporter family: properties and pharmacological significance. Oo C, Hill G, Dorr A, Liu B, Boellner S, and Ward P (2003b) Pharmacokinetics of anti-influenza prodrug oseltamivir in children aged 1–5 years. 336. Kroetz DL, McBride OW, and Gonzalez FJ (1993) Glycosylation-dependent activity of baculovirus-expressed human liver carboxylesterases: cDNA cloning and characterization of two highly similar enzyme forms. 514–526. 5–21. He G, Massarella J, and Ward P (1999) Clinical pharmacokinetics of the prodrug oseltamivir and its active metabolite Ro 64-0802. 411–415. 384–388. 37–45. Wagner R, Matrosovich M, and Klenk HD (2002) Functional balance between haemagglutinin and neuraminidase in influenza virus infections. 24–35. 654–662. 159–166. Pindel EV, Kedishvili NY, Abraham TL, Brzezinski MR, Zhang J, Dean RA, and Bosron WF (1997) Purification and cloning of a broad substrate specificity human liver carboxylesterase that catalyzes the hydrolysis of cocaine and heroin. 117–120. Morgan EW, Yan B, Greenway D, and Parkinson A (1994) Regulation of two rat liver microsomal carboxylesterase isozymes: species differences, tissue distribution and the effects of age, sex and xenobiotic treatment of rats. 399–408. 471–484. 11606–11617. Humerickhouse R, Lohrbach K, Li L, Bosron WF, and Dolan ME (2000) Characterization of CPT-11 hydrolysis by human liver carboxylesterase isoforms hCE-1 and hCE-2. 1467–1476. 1287–1293. Zhao B, Natarajan R, and Ghosh S (2005) Human liver cholesteryl ester hydrolase: cloning, molecular characterization, and role in cellular cholesterol homeostasis. 1673–1684. Oxford JS, Mann A, and Lambkin R (2003) A designer drug against influenza: the NA inhibitor oseltamivir (Tamiflu). 13–19. 1189–1192. Tang M, Mukundan M, Yang J, Charpentier N, LeCluyse EL, Black C, Yang D, Shi D, and Yan B (2006) Antiplatelet agents aspirin and clopidogrel are hydrolyzed by distinct carboxylesterases and the hydrolyses are markedly altered with certain polymorphistic variants. 14769–14775. Hill G, Cihlar T, Oo C, Ho ES, Prior K, Wiltshire H, Barrett J, Liu B, and Ward P (2002) The anti-influenza drug oseltamivir exhibits low potential to induce pharmacokinetic drug interactions via renal secretion-correlation of in vivo and in vitro studies. 661–668. 1072–1080. 140–142. Massarella JW, He GZ, Dorr A, Nieforth K, Ward P, and Brown A (2000) The pharmacokinetics and tolerability of the oral neuraminidase inhibitor oseltamivir (Ro 64-0796/GS4104) in healthy adult and elderly volunteers. 4–10. Xie M, Yang D, Liu L, Xue B, and Yan B (2002) Rodent and human carboxylesterases: immuno-relatedness, overlapping substrate specificity, differential sensitivity to serine inhibitors, and tumor-related expression. Nayak DP, Hui EK, and Barman S (2004) Assembly and budding of influenza virus. Ohuchi M, Asaoka N, Sakai T, and Ohuchi R (2006) Roles of neuraminidase in the initial stage of influenza virus infection. Ito T, Suzuki Y, Takada A, Kawamoto A, Otsuki K, Masuda H, Yamada M, Suzuki T, Kida H, and Kawaoka Y (1997) Differences in sialic acid-galactose linkages in the chicken egg amnion and allantois influence human influenza virus receptor specificity and variant selection. 337–342. Liu JP (2006) Avian influenza: a pandemic waiting to happen? Oo C, Snell P, Barrett J, Dorr A, Liu B, and Wilding I (2003a) Pharmacokinetics and delivery of the anti-influenza prodrug oseltamivir to the small intestine and colon using site-specific delivery capsules. 147–165. 35–42. 3357–3362. 413–422. Wooltorton E (2004) Oseltamivir (Tamiflu) unsafe in infants under 1 year old. Hurt AC, Barr IG, Hartel G, and Hampson AW (2004) Susceptibility of human influenza viruses from Australasia and South East Asia to the neuraminidase inhibitors zanamivir and oseltamivir. Li Y, Xie M, Song X, Gragen S, Sachdeva K, Wan Y, and Yan B (2003) DEC1 negatively regulates the expression of DEC2 through binding to the E-box in the proximal promoter. Bentz J and Mittal A (2003) Architecture of the influenza hemagglutinin membrane fusion site. Olsen B, Munster VJ, Wallensten A, Waldenstrom J, Osterhaus AD, and Fouchier RA (2006) Global patterns of influenza a virus in wild birds. Marsh S, Xiao M, Yu J, Ahluwalia R, Minton M, Freimuth RR, Kwok PY, and McLeod HL (2004) Pharmacogenomic assessment of carboxylesterases 1 and 2. Pope CN, Karanth S, Liu J, and Yan B (2005) Comparative carboxylesterase activities in infant and adult liver and their in vitro sensitivity to chlorpyrifos oxon. Schwer H, Langmann T, Daig R, Becker A, Aslanidis C, and Schmitz G (1997) Molecular cloning and characterization of a novel putative carboxylesterase, present in human intestine and liver. Ward P, Small I, Smith J, Suter P, and Dutkowski R (2005) Oseltamivir (Tamiflu) and its potential for use in the event of an influenza pandemic. Suzuki Y (2005) Sialobiology of influenza: molecular mechanism of host range variation of influenza viruses. Gachet C (2006) Regulation of platelet functions by P2 receptors. 16899–16907. 62–69. Gidwani S and Body R (2006) Best evidence topic report: clopidogrel plus aspirin or aspirin alone in unstable angina. 836–843. 297–299. Inui KI, Masuda S, and Saito H (2000) Cellular and molecular aspects of drug transport in the kidney. 944–958. Song X, Gragen S, Li Y, Ma Y, Liu J, Yang D, Matoney L, and Yan B (2004) Intramolecular disulfide bridges are required for folding hydrolase B into a catalytically active conformation but not for maintaining it during catalysis. Li Y, Zhang H, Xie M, Hu M, Ge S, Yang D, Wan Y, and Yan B (2002) DEC1/STRA13/ShARP2 is abundantly expressed in colon carcinoma, antagonizes serum deprivation-induced apoptosis and selectively inhibits the activation of procaspases. 737–741. Sweeny DJ, Lynch G, Bidgood AM, Lew W, Wang KY, and Cundy KC (2000) Metabolism of the influenza neuraminidase inhibitor prodrug oseltamivir in the rat. Stiver HG (2004) The threat and prospects for control of an influenza pandemic. 10.1124/jpet.106.111807_bib17 10.1124/jpet.106.111807_bib18 10.1124/jpet.106.111807_bib15 10.1124/jpet.106.111807_bib37 10.1124/jpet.106.111807_bib16 10.1124/jpet.106.111807_bib38 10.1124/jpet.106.111807_bib19 10.1124/jpet.106.111807_bib20 10.1124/jpet.106.111807_bib21 10.1124/jpet.106.111807_bib24 10.1124/jpet.106.111807_bib25 10.1124/jpet.106.111807_bib22 10.1124/jpet.106.111807_bib23 10.1124/jpet.106.111807_bib28 10.1124/jpet.106.111807_bib29 10.1124/jpet.106.111807_bib26 10.1124/jpet.106.111807_bib27 10.1124/jpet.106.111807_bib5 10.1124/jpet.106.111807_bib4 10.1124/jpet.106.111807_bib7 10.1124/jpet.106.111807_bib6 10.1124/jpet.106.111807_bib9 10.1124/jpet.106.111807_bib8 10.1124/jpet.106.111807_bib31 10.1124/jpet.106.111807_bib10 10.1124/jpet.106.111807_bib32 10.1124/jpet.106.111807_bib30 10.1124/jpet.106.111807_bib1 10.1124/jpet.106.111807_bib13 10.1124/jpet.106.111807_bib35 10.1124/jpet.106.111807_bib14 10.1124/jpet.106.111807_bib36 10.1124/jpet.106.111807_bib3 10.1124/jpet.106.111807_bib11 10.1124/jpet.106.111807_bib33 10.1124/jpet.106.111807_bib2 10.1124/jpet.106.111807_bib12 10.1124/jpet.106.111807_bib34 17578904 - J Pharmacol Exp Ther. 2007 Jul;322(1):422-3; author reply 424-5. doi: 10.1124/jpet.106.118992. |
References_xml | – reference: Ito T, Suzuki Y, Takada A, Kawamoto A, Otsuki K, Masuda H, Yamada M, Suzuki T, Kida H, and Kawaoka Y (1997) Differences in sialic acid-galactose linkages in the chicken egg amnion and allantois influence human influenza virus receptor specificity and variant selection. – reference: Pope CN, Karanth S, Liu J, and Yan B (2005) Comparative carboxylesterase activities in infant and adult liver and their in vitro sensitivity to chlorpyrifos oxon. – reference: Humerickhouse R, Lohrbach K, Li L, Bosron WF, and Dolan ME (2000) Characterization of CPT-11 hydrolysis by human liver carboxylesterase isoforms hCE-1 and hCE-2. – reference: 1673–1684. – reference: Sweeny DJ, Lynch G, Bidgood AM, Lew W, Wang KY, and Cundy KC (2000) Metabolism of the influenza neuraminidase inhibitor prodrug oseltamivir in the rat. – reference: Wooltorton E (2004) Oseltamivir (Tamiflu) unsafe in infants under 1 year old. – reference: 654–662. – reference: Morgan EW, Yan B, Greenway D, and Parkinson A (1994) Regulation of two rat liver microsomal carboxylesterase isozymes: species differences, tissue distribution and the effects of age, sex and xenobiotic treatment of rats. – reference: 541–547. – reference: Song X, Gragen S, Li Y, Ma Y, Liu J, Yang D, Matoney L, and Yan B (2004) Intramolecular disulfide bridges are required for folding hydrolase B into a catalytically active conformation but not for maintaining it during catalysis. – reference: Olsen B, Munster VJ, Wallensten A, Waldenstrom J, Osterhaus AD, and Fouchier RA (2006) Global patterns of influenza a virus in wild birds. – reference: Tang M, Mukundan M, Yang J, Charpentier N, LeCluyse EL, Black C, Yang D, Shi D, and Yan B (2006) Antiplatelet agents aspirin and clopidogrel are hydrolyzed by distinct carboxylesterases and the hydrolyses are markedly altered with certain polymorphistic variants. – reference: Nayak DP, Hui EK, and Barman S (2004) Assembly and budding of influenza virus. – reference: 471–484. – reference: Bentz J and Mittal A (2003) Architecture of the influenza hemagglutinin membrane fusion site. – reference: Li Y, Xie M, Song X, Gragen S, Sachdeva K, Wan Y, and Yan B (2003) DEC1 negatively regulates the expression of DEC2 through binding to the E-box in the proximal promoter. – reference: Li Y, Zhang H, Xie M, Hu M, Ge S, Yang D, Wan Y, and Yan B (2002) DEC1/STRA13/ShARP2 is abundantly expressed in colon carcinoma, antagonizes serum deprivation-induced apoptosis and selectively inhibits the activation of procaspases. – reference: Liu JP (2006) Avian influenza: a pandemic waiting to happen? – reference: 147–165. – reference: Inui KI, Masuda S, and Saito H (2000) Cellular and molecular aspects of drug transport in the kidney. – reference: Oo C, Snell P, Barrett J, Dorr A, Liu B, and Wilding I (2003a) Pharmacokinetics and delivery of the anti-influenza prodrug oseltamivir to the small intestine and colon using site-specific delivery capsules. – reference: Marsh S, Xiao M, Yu J, Ahluwalia R, Minton M, Freimuth RR, Kwok PY, and McLeod HL (2004) Pharmacogenomic assessment of carboxylesterases 1 and 2. – reference: Hill G, Cihlar T, Oo C, Ho ES, Prior K, Wiltshire H, Barrett J, Liu B, and Ward P (2002) The anti-influenza drug oseltamivir exhibits low potential to induce pharmacokinetic drug interactions via renal secretion-correlation of in vivo and in vitro studies. – reference: 337–342. – reference: Schwer H, Langmann T, Daig R, Becker A, Aslanidis C, and Schmitz G (1997) Molecular cloning and characterization of a novel putative carboxylesterase, present in human intestine and liver. – reference: 4–10. – reference: 411–415. – reference: 3357–3362. – reference: Pindel EV, Kedishvili NY, Abraham TL, Brzezinski MR, Zhang J, Dean RA, and Bosron WF (1997) Purification and cloning of a broad substrate specificity human liver carboxylesterase that catalyzes the hydrolysis of cocaine and heroin. – reference: Miyazaki H, Sekine T, and Endou H (2004) The multispecific organic anion transporter family: properties and pharmacological significance. – reference: Oxford JS, Mann A, and Lambkin R (2003) A designer drug against influenza: the NA inhibitor oseltamivir (Tamiflu). – reference: 5–21. – reference: He G, Massarella J, and Ward P (1999) Clinical pharmacokinetics of the prodrug oseltamivir and its active metabolite Ro 64-0802. – reference: Li B, Sedlacek M, Manoharan I, Boopathy R, Duysen EG, Masson P, and Lockridge O (2005) Butyrylcholinesterase, paraoxonase, and albumin esterase, but not carboxylesterase, are present in human plasma. – reference: Wagner R, Matrosovich M, and Klenk HD (2002) Functional balance between haemagglutinin and neuraminidase in influenza virus infections. – reference: Hurt AC, Barr IG, Hartel G, and Hampson AW (2004) Susceptibility of human influenza viruses from Australasia and South East Asia to the neuraminidase inhibitors zanamivir and oseltamivir. – reference: 1287–1293. – reference: Zhao B, Natarajan R, and Ghosh S (2005) Human liver cholesteryl ester hydrolase: cloning, molecular characterization, and role in cellular cholesterol homeostasis. – reference: Normile D (2006) Avian influenza: WHO proposes plan to stop pandemic in its tracks. – reference: 944–958. – reference: 140–142. – reference: 737–741. – reference: Ward P, Small I, Smith J, Suter P, and Dutkowski R (2005) Oseltamivir (Tamiflu) and its potential for use in the event of an influenza pandemic. – reference: 336. – reference: 13–19. – reference: 661–668. – reference: 11606–11617. – reference: 14769–14775. – reference: Gidwani S and Body R (2006) Best evidence topic report: clopidogrel plus aspirin or aspirin alone in unstable angina. – reference: 304–310. – reference: 37–45. – reference: Stiver HG (2004) The threat and prospects for control of an influenza pandemic. – reference: 1467–1476. – reference: 62–69. – reference: 1072–1080. – reference: 117–120. – reference: 277–300. – reference: 1189–1192. – reference: 384–388. – reference: 514–526. – reference: Suzuki Y (2005) Sialobiology of influenza: molecular mechanism of host range variation of influenza viruses. – reference: 399–408. – reference: 413–422. – reference: Ohuchi M, Asaoka N, Sakai T, and Ohuchi R (2006) Roles of neuraminidase in the initial stage of influenza virus infection. – reference: Massarella JW, He GZ, Dorr A, Nieforth K, Ward P, and Brown A (2000) The pharmacokinetics and tolerability of the oral neuraminidase inhibitor oseltamivir (Ro 64-0796/GS4104) in healthy adult and elderly volunteers. – reference: 16899–16907. – reference: 159–166. – reference: 297–299. – reference: Xie M, Yang D, Liu L, Xue B, and Yan B (2002) Rodent and human carboxylesterases: immuno-relatedness, overlapping substrate specificity, differential sensitivity to serine inhibitors, and tumor-related expression. – reference: 315–316. – reference: Gachet C (2006) Regulation of platelet functions by P2 receptors. – reference: 24–35. – reference: 35–42. – reference: 836–843. – reference: Oo C, Hill G, Dorr A, Liu B, Boellner S, and Ward P (2003b) Pharmacokinetics of anti-influenza prodrug oseltamivir in children aged 1–5 years. – reference: Kroetz DL, McBride OW, and Gonzalez FJ (1993) Glycosylation-dependent activity of baculovirus-expressed human liver carboxylesterases: cDNA cloning and characterization of two highly similar enzyme forms. – ident: 10.1124/jpet.106.111807_bib15 doi: 10.1016/j.ygeno.2004.07.008 – ident: 10.1124/jpet.106.111807_bib23 doi: 10.1007/s00228-003-0639-6 – ident: 10.1124/jpet.106.111807_bib31 doi: 10.1248/bpb.28.399 – ident: 10.1124/jpet.106.111807_bib10 doi: 10.1021/bi00094a018 – ident: 10.1124/jpet.106.111807_bib33 doi: 10.1124/jpet.106.110577 – ident: 10.1124/jpet.106.111807_bib4 doi: 10.2165/00003088-199937060-00003 – ident: 10.1124/jpet.106.111807_bib14 – ident: 10.1124/jpet.106.111807_bib6 – ident: 10.1124/jpet.106.111807_bib22 doi: 10.1016/S0378-5173(03)00164-9 – ident: 10.1124/jpet.106.111807_bib16 doi: 10.1177/00912700022009567 – ident: 10.1124/jpet.106.111807_bib3 doi: 10.1136/emj.2005.033464 – ident: 10.1124/jpet.106.111807_bib35 doi: 10.1093/jac/dki018 – ident: 10.1124/jpet.106.111807_bib9 doi: 10.1128/jvi.71.4.3357-3362.1997 – ident: 10.1124/jpet.106.111807_bib7 doi: 10.1016/j.antiviral.2003.11.008 – ident: 10.1124/jpet.106.111807_bib25 – ident: 10.1124/jpet.106.111807_bib29 doi: 10.1006/bbrc.1997.6413 – ident: 10.1124/jpet.106.111807_bib11 doi: 10.1016/j.bcp.2005.09.002 – ident: 10.1124/jpet.106.111807_bib2 doi: 10.1146/annurev.pharmtox.46.120604.141207 – ident: 10.1124/jpet.106.111807_bib1 doi: 10.1016/S0005-2736(03)00160-3 – ident: 10.1124/jpet.106.111807_bib34 doi: 10.1002/rmv.352 – ident: 10.1124/jpet.106.111807_bib30 doi: 10.1586/14760584.3.1.35 – ident: 10.1124/jpet.106.111807_bib5 doi: 10.1124/dmd.30.1.13 – ident: 10.1124/jpet.106.111807_bib19 doi: 10.1016/j.virusres.2004.08.012 – ident: 10.1124/jpet.106.111807_bib21 doi: 10.1016/j.micinf.2005.12.008 – ident: 10.1124/jpet.106.111807_bib24 doi: 10.1126/science.1122438 – ident: 10.1124/jpet.106.111807_bib37 doi: 10.1124/dmd.30.5.541 – ident: 10.1124/jpet.106.111807_bib36 – ident: 10.1124/jpet.106.111807_bib27 doi: 10.1016/j.yrtph.2005.01.004 – ident: 10.1124/jpet.106.111807_bib20 doi: 10.1126/science.311.5759.315 – ident: 10.1124/jpet.106.111807_bib38 doi: 10.1152/physiolgenomics.00187.2005 – ident: 10.1124/jpet.106.111807_bib32 doi: 10.1016/S0090-9556(24)15341-X – ident: 10.1124/jpet.106.111807_bib18 doi: 10.1006/abbi.1994.1532 – ident: 10.1124/jpet.106.111807_bib28 doi: 10.1016/j.bbrc.2004.05.090 – ident: 10.1124/jpet.106.111807_bib8 doi: 10.1046/j.1523-1755.2000.00251.x – ident: 10.1124/jpet.106.111807_bib26 doi: 10.1074/jbc.272.23.14769 – ident: 10.1124/jpet.106.111807_bib13 doi: 10.1042/bj20020514 – ident: 10.1124/jpet.106.111807_bib12 doi: 10.1074/jbc.M300596200 – ident: 10.1124/jpet.106.111807_bib17 doi: 10.1016/j.tips.2004.10.006 – reference: 17578904 - J Pharmacol Exp Ther. 2007 Jul;322(1):422-3; author reply 424-5. doi: 10.1124/jpet.106.118992. |
SSID | ssj0014463 |
Score | 2.3538797 |
Snippet | Oseltamivir is the main medicine recommended by the World Health Organization in anticipation of next influenza pandemic. This anti-influenza viral agent is an... Oseltamivir is the main medicine recommended by the World Health Organization in anticipation of next influenza pandemic. This anti-influenza viral agent is an... |
SourceID | proquest pubmed crossref highwire elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1477 |
SubjectTerms | Antiviral Agents - metabolism Carboxylic Ester Hydrolases - antagonists & inhibitors Carboxylic Ester Hydrolases - metabolism Cell Line Cell Survival - drug effects Clopidogrel Drug Interactions Humans Hydrolysis Mass Spectrometry Microsomes - drug effects Microsomes - metabolism Mutagenesis, Site-Directed Oseltamivir - metabolism Platelet Aggregation Inhibitors - pharmacology Ticlopidine - analogs & derivatives Ticlopidine - pharmacology Transfection |
Title | Anti-Influenza Prodrug Oseltamivir Is Activated by Carboxylesterase Human Carboxylesterase 1, and the Activation Is Inhibited by Antiplatelet Agent Clopidogrel |
URI | https://dx.doi.org/10.1124/jpet.106.111807 http://jpet.aspetjournals.org/content/319/3/1477.abstract https://www.ncbi.nlm.nih.gov/pubmed/16966469 https://www.proquest.com/docview/68148346 |
Volume | 319 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeOEFcafj5gc0Ia0ZTeI66eM0QNMQaIhO2ptlJ84aKUuqNp3o_gy_hv_F8SWJ21IJeIlSJzlJ-n22z3HOBaG3UZiOQfHlHpVj4hFF4zjg0stGkgo6SrNAL7h9-UpPL8jZ5eiy1_vleC0ta3GU3P4xruR_UIU2wFVFyf4Dsq1QaIB9wBe2gDBs_wrj47LOvdyUGbnlytcqnS-vDquFLGp-nd_kc1WvXIUu3PDaqJoJn4vqx6rQCRK4SjisV_G3mv3GrVMpplaCdotU_lvTXORWHgCTzwqQXqjFYxWndZioIKy0AkO-cFXfLghNq7-zLme2SQG1VmvACQtrlf7vUxMULxfTvB2s7HL3mcPypu1DVV5l3M7M2ufopFiuTCFJU6vahlx0ix6dA4kbhGDKTDQDeWgH39w19PWw7BNTK2Z7vgiImi_AQDkC21jNH_Fw7UwAfHat6eNTsAyJqSuzkaK7OXQH3Q3AWlGFND5_6z5mgcUdtknr4Zlthim49_uNO6sUtlbWLj2pTWO92yTSqtHkAbpvQcXHhqAPUU-Wj9DBuQF4NcATB8wBPsDnDvSP0c91FmPLYuywGOcL3LIYixXepCvWLN5u9gcYqIWBTbjjsJLWclhJczmMNYexw-En6OLTx8nJqWfLhngJ8ePa40KScUpFFMKeGJEgCkapTFP4g6kvuS9ElIHem0SgLUcZ9QUBqwM02WAc8ZgmJHyK9sqqlM8RHnJCJOFZoHbGBEbdIAuHMRcx4QnA2kdHDUgssTn1VWmXgmnbOiBMAQw_KDMA99G79oKZSSez-9SgQZ1ZbdhouQzIu_si3PCDuf2YQd9gIVP9oI_eNLxhMJWo74O8lNVywWjsq08L8FbPDJ26R7Sk3N955AW61_XTl2ivni_lK1DXa_Fad4bf82jzPw |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anti-influenza+prodrug+oseltamivir+is+activated+by+carboxylesterase+human+carboxylesterase+1%2C+and+the+activation+is+inhibited+by+antiplatelet+agent+clopidogrel&rft.jtitle=The+Journal+of+pharmacology+and+experimental+therapeutics&rft.au=Shi%2C+Deshi&rft.au=Yang%2C+Jian&rft.au=Yang%2C+Dongfang&rft.au=LeCluyse%2C+Edward+L&rft.date=2006-12-01&rft.issn=0022-3565&rft.volume=319&rft.issue=3&rft.spage=1477&rft_id=info:doi/10.1124%2Fjpet.106.111807&rft_id=info%3Apmid%2F16966469&rft.externalDocID=16966469 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3565&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3565&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3565&client=summon |