Privacy-Preserving Patient Similarity Learning in a Federated Environment: Development and Analysis
There is an urgent need for the development of global analytic frameworks that can perform analyses in a privacy-preserving federated environment across multiple institutions without privacy leakage. A few studies on the topic of federated medical analysis have been conducted recently with the focus...
Saved in:
Published in | JMIR medical informatics Vol. 6; no. 2; p. e20 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Canada
JMIR Publications
13.04.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | There is an urgent need for the development of global analytic frameworks that can perform analyses in a privacy-preserving federated environment across multiple institutions without privacy leakage. A few studies on the topic of federated medical analysis have been conducted recently with the focus on several algorithms. However, none of them have solved similar patient matching, which is useful for applications such as cohort construction for cross-institution observational studies, disease surveillance, and clinical trials recruitment.
The aim of this study was to present a privacy-preserving platform in a federated setting for patient similarity learning across institutions. Without sharing patient-level information, our model can find similar patients from one hospital to another.
We proposed a federated patient hashing framework and developed a novel algorithm to learn context-specific hash codes to represent patients across institutions. The similarities between patients can be efficiently computed using the resulting hash codes of corresponding patients. To avoid security attack from reverse engineering on the model, we applied homomorphic encryption to patient similarity search in a federated setting.
We used sequential medical events extracted from the Multiparameter Intelligent Monitoring in Intensive Care-III database to evaluate the proposed algorithm in predicting the incidence of five diseases independently. Our algorithm achieved averaged area under the curves of 0.9154 and 0.8012 with balanced and imbalanced data, respectively, in κ-nearest neighbor with κ=3. We also confirmed privacy preservation in similarity search by using homomorphic encryption.
The proposed algorithm can help search similar patients across institutions effectively to support federated data analysis in a privacy-preserving manner. |
---|---|
AbstractList | Background: There is an urgent need for the development of global analytic frameworks that can perform analyses in a privacy-preserving federated environment across multiple institutions without privacy leakage. A few studies on the topic of federated medical analysis have been conducted recently with the focus on several algorithms. However, none of them have solved similar patient matching, which is useful for applications such as cohort construction for cross-institution observational studies, disease surveillance, and clinical trials recruitment. Objective: The aim of this study was to present a privacy-preserving platform in a federated setting for patient similarity learning across institutions. Without sharing patient-level information, our model can find similar patients from one hospital to another. Methods: We proposed a federated patient hashing framework and developed a novel algorithm to learn context-specific hash codes to represent patients across institutions. The similarities between patients can be efficiently computed using the resulting hash codes of corresponding patients. To avoid security attack from reverse engineering on the model, we applied homomorphic encryption to patient similarity search in a federated setting. Results: We used sequential medical events extracted from the Multiparameter Intelligent Monitoring in Intensive Care-III database to evaluate the proposed algorithm in predicting the incidence of five diseases independently. Our algorithm achieved averaged area under the curves of 0.9154 and 0.8012 with balanced and imbalanced data, respectively, in κ-nearest neighbor with κ=3. We also confirmed privacy preservation in similarity search by using homomorphic encryption. Conclusions: The proposed algorithm can help search similar patients across institutions effectively to support federated data analysis in a privacy-preserving manner. There is an urgent need for the development of global analytic frameworks that can perform analyses in a privacy-preserving federated environment across multiple institutions without privacy leakage. A few studies on the topic of federated medical analysis have been conducted recently with the focus on several algorithms. However, none of them have solved similar patient matching, which is useful for applications such as cohort construction for cross-institution observational studies, disease surveillance, and clinical trials recruitment. The aim of this study was to present a privacy-preserving platform in a federated setting for patient similarity learning across institutions. Without sharing patient-level information, our model can find similar patients from one hospital to another. We proposed a federated patient hashing framework and developed a novel algorithm to learn context-specific hash codes to represent patients across institutions. The similarities between patients can be efficiently computed using the resulting hash codes of corresponding patients. To avoid security attack from reverse engineering on the model, we applied homomorphic encryption to patient similarity search in a federated setting. We used sequential medical events extracted from the Multiparameter Intelligent Monitoring in Intensive Care-III database to evaluate the proposed algorithm in predicting the incidence of five diseases independently. Our algorithm achieved averaged area under the curves of 0.9154 and 0.8012 with balanced and imbalanced data, respectively, in κ-nearest neighbor with κ=3. We also confirmed privacy preservation in similarity search by using homomorphic encryption. The proposed algorithm can help search similar patients across institutions effectively to support federated data analysis in a privacy-preserving manner. There is an urgent need for the development of global analytic frameworks that can perform analyses in a privacy-preserving federated environment across multiple institutions without privacy leakage. A few studies on the topic of federated medical analysis have been conducted recently with the focus on several algorithms. However, none of them have solved similar patient matching, which is useful for applications such as cohort construction for cross-institution observational studies, disease surveillance, and clinical trials recruitment.BACKGROUNDThere is an urgent need for the development of global analytic frameworks that can perform analyses in a privacy-preserving federated environment across multiple institutions without privacy leakage. A few studies on the topic of federated medical analysis have been conducted recently with the focus on several algorithms. However, none of them have solved similar patient matching, which is useful for applications such as cohort construction for cross-institution observational studies, disease surveillance, and clinical trials recruitment.The aim of this study was to present a privacy-preserving platform in a federated setting for patient similarity learning across institutions. Without sharing patient-level information, our model can find similar patients from one hospital to another.OBJECTIVEThe aim of this study was to present a privacy-preserving platform in a federated setting for patient similarity learning across institutions. Without sharing patient-level information, our model can find similar patients from one hospital to another.We proposed a federated patient hashing framework and developed a novel algorithm to learn context-specific hash codes to represent patients across institutions. The similarities between patients can be efficiently computed using the resulting hash codes of corresponding patients. To avoid security attack from reverse engineering on the model, we applied homomorphic encryption to patient similarity search in a federated setting.METHODSWe proposed a federated patient hashing framework and developed a novel algorithm to learn context-specific hash codes to represent patients across institutions. The similarities between patients can be efficiently computed using the resulting hash codes of corresponding patients. To avoid security attack from reverse engineering on the model, we applied homomorphic encryption to patient similarity search in a federated setting.We used sequential medical events extracted from the Multiparameter Intelligent Monitoring in Intensive Care-III database to evaluate the proposed algorithm in predicting the incidence of five diseases independently. Our algorithm achieved averaged area under the curves of 0.9154 and 0.8012 with balanced and imbalanced data, respectively, in κ-nearest neighbor with κ=3. We also confirmed privacy preservation in similarity search by using homomorphic encryption.RESULTSWe used sequential medical events extracted from the Multiparameter Intelligent Monitoring in Intensive Care-III database to evaluate the proposed algorithm in predicting the incidence of five diseases independently. Our algorithm achieved averaged area under the curves of 0.9154 and 0.8012 with balanced and imbalanced data, respectively, in κ-nearest neighbor with κ=3. We also confirmed privacy preservation in similarity search by using homomorphic encryption.The proposed algorithm can help search similar patients across institutions effectively to support federated data analysis in a privacy-preserving manner.CONCLUSIONSThe proposed algorithm can help search similar patients across institutions effectively to support federated data analysis in a privacy-preserving manner. |
Author | Sun, Jimeng Wang, Shuang Wang, Fei Lee, Junghye Jiang, Xiaoqian Jun, Chi-Hyuck |
AuthorAffiliation | 5 Division of Health Informatics, Department of Healthcare Policy and Research Weill Cornell Medical College Cornell University New York City, NY United States 3 Department of Industrial and Management Engineering Pohang University of Science and Technology Pohang Republic Of Korea 4 College of Computing Georgia Institute of Technology Atlanta, GA United States 2 Department of Biomedical Informatics University of California San Diego San Diego, CA United States 1 School of Management Engineering Ulsan National Institute of Science and Technology Ulsan Republic Of Korea |
AuthorAffiliation_xml | – name: 4 College of Computing Georgia Institute of Technology Atlanta, GA United States – name: 5 Division of Health Informatics, Department of Healthcare Policy and Research Weill Cornell Medical College Cornell University New York City, NY United States – name: 3 Department of Industrial and Management Engineering Pohang University of Science and Technology Pohang Republic Of Korea – name: 2 Department of Biomedical Informatics University of California San Diego San Diego, CA United States – name: 1 School of Management Engineering Ulsan National Institute of Science and Technology Ulsan Republic Of Korea |
Author_xml | – sequence: 1 givenname: Junghye orcidid: 0000-0002-9736-4796 surname: Lee fullname: Lee, Junghye – sequence: 2 givenname: Jimeng orcidid: 0000-0003-1512-6426 surname: Sun fullname: Sun, Jimeng – sequence: 3 givenname: Fei orcidid: 0000-0002-7594-663X surname: Wang fullname: Wang, Fei – sequence: 4 givenname: Shuang orcidid: 0000-0001-6420-983X surname: Wang fullname: Wang, Shuang – sequence: 5 givenname: Chi-Hyuck orcidid: 0000-0003-0911-7347 surname: Jun fullname: Jun, Chi-Hyuck – sequence: 6 givenname: Xiaoqian orcidid: 0000-0001-9933-2205 surname: Jiang fullname: Jiang, Xiaoqian |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29653917$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUtrGzEUhUVJqNMk2y6DIJtuxpU00sjqIhBcJykYYki7FrLmjqswI7nSeMD_vhqSmCSQjR7c7577OF_QkQ8eEPpKyZRRVX3voHa-CbGbSsn5J3TCmKKFqhQ_evWeoPOUHgkhlNOqquRnNGGqEqWi8gTZVXSDsftiFSFBHJzf4JXpHfgeP7jOtSa6fo-XYKIfY85jg2-ghmh6qPHCDy4G32X8B_4JA7RhO36w8TW-9qbdJ5fO0HFj2gTnz_cp-nOz-D2_K5b3t7_m18vCcjrrC6NqPrONsqxhJScEKgtUMQKESmptKaUwllkBSlqVz0aU61I0FV9zuxZMlKfo6kl3u1vn1djcRzSt3kbXmbjXwTj9NuLdX70JgxaK8VKqLPDtWSCGfztIve5cstC2xkPYJc1IrkKVmMmMXr5DH8Mu5oEzJShVpSCUZeridUeHVl72n4HpE2BjSClCc0Ao0aPH-uCxHj3OCfxdgnV99iuME7n2o7T_NE2vgw |
CitedBy_id | crossref_primary_10_3390_jpm12050768 crossref_primary_10_1016_j_jbi_2020_103664 crossref_primary_10_2196_23728 crossref_primary_10_1109_JBHI_2023_3282955 crossref_primary_10_1109_TNSE_2022_3185327 crossref_primary_10_1007_s41870_024_01801_5 crossref_primary_10_1038_s41598_024_51344_9 crossref_primary_10_3390_electronics13132620 crossref_primary_10_1145_3514500 crossref_primary_10_1016_j_jbi_2024_104623 crossref_primary_10_1093_bib_bbad269 crossref_primary_10_1016_j_artmed_2024_102900 crossref_primary_10_1016_j_jbi_2019_103138 crossref_primary_10_1016_j_patter_2022_100603 crossref_primary_10_1016_j_compeleceng_2024_109900 crossref_primary_10_3389_fpubh_2022_814163 crossref_primary_10_1109_TIFS_2019_2925496 crossref_primary_10_1002_widm_1486 crossref_primary_10_1109_OJSP_2020_3036276 crossref_primary_10_1016_j_comnet_2025_111063 crossref_primary_10_1016_j_amjsurg_2023_10_045 crossref_primary_10_1016_j_ijmedinf_2019_104073 crossref_primary_10_1002_wsbm_1623 crossref_primary_10_2196_29812 crossref_primary_10_1007_s10586_022_03658_4 crossref_primary_10_1109_TMI_2024_3450855 crossref_primary_10_1016_j_neucom_2021_08_141 crossref_primary_10_1055_s_0041_1740630 crossref_primary_10_1016_j_heliyon_2023_e18615 crossref_primary_10_1109_ACCESS_2023_3241488 crossref_primary_10_1038_s41551_022_00898_y crossref_primary_10_1109_TII_2021_3113708 crossref_primary_10_1007_s11042_024_19467_3 crossref_primary_10_1016_j_csbj_2024_08_024 crossref_primary_10_1038_s41746_020_00323_1 crossref_primary_10_1016_j_compbiomed_2024_108734 crossref_primary_10_1038_s41591_022_02155_w crossref_primary_10_1002_cpe_8280 crossref_primary_10_32604_cmc_2024_058926 crossref_primary_10_1016_j_patter_2024_101006 crossref_primary_10_1109_JBHI_2022_3185673 crossref_primary_10_1177_20552076241282242 crossref_primary_10_3390_electronics12030730 crossref_primary_10_2174_1381612827999210112204732 crossref_primary_10_1002_int_22777 crossref_primary_10_1016_j_mayocp_2020_04_031 crossref_primary_10_61186_jsdp_21_3_23 crossref_primary_10_1109_TCE_2023_3342100 crossref_primary_10_1177_1729881420921653 crossref_primary_10_1016_j_ins_2023_119728 crossref_primary_10_3390_info13050263 crossref_primary_10_1007_s41666_020_00082_4 crossref_primary_10_1016_j_techfore_2022_121718 crossref_primary_10_1109_JIOT_2024_3382875 crossref_primary_10_1145_3524885 crossref_primary_10_1016_j_compbiomed_2023_106848 crossref_primary_10_1109_TSG_2023_3318418 crossref_primary_10_1109_TVCG_2021_3074010 crossref_primary_10_1016_j_im_2023_103908 crossref_primary_10_1002_widm_1443 crossref_primary_10_1109_TIFS_2021_3114026 crossref_primary_10_1016_j_jacr_2022_03_015 crossref_primary_10_1109_JBHI_2023_3306425 crossref_primary_10_1016_j_ins_2021_03_064 crossref_primary_10_3390_e26100871 crossref_primary_10_1053_j_semvascsurg_2023_05_001 crossref_primary_10_1016_j_comcom_2023_04_012 crossref_primary_10_1089_cmb_2023_0115 crossref_primary_10_3389_fgene_2022_822173 crossref_primary_10_1007_s00259_021_05339_7 crossref_primary_10_1109_JIOT_2024_3445964 crossref_primary_10_1093_jamiaopen_ooz016 crossref_primary_10_1145_3501813 crossref_primary_10_1038_s41598_024_54323_2 crossref_primary_10_1145_3501816 crossref_primary_10_1016_j_ins_2024_120265 crossref_primary_10_1016_j_asoc_2021_107330 crossref_primary_10_1016_j_patter_2024_101031 crossref_primary_10_1109_JBHI_2022_3171402 crossref_primary_10_1016_j_heliyon_2024_e31873 crossref_primary_10_1016_j_jbi_2020_103671 crossref_primary_10_2147_JMDH_S483247 crossref_primary_10_51483_IJDSBDA_1_2_2021_1_13 crossref_primary_10_1109_ACCESS_2024_3440998 crossref_primary_10_3389_frai_2021_652669 crossref_primary_10_3233_HIS_220006 crossref_primary_10_1007_s00607_024_01317_7 crossref_primary_10_1587_transinf_2023MUI0001 crossref_primary_10_1007_s10586_024_04266_0 crossref_primary_10_1109_ACCESS_2021_3111118 crossref_primary_10_1016_j_cie_2020_106854 crossref_primary_10_1088_2632_2153_aca87c crossref_primary_10_3389_fpubh_2021_712569 crossref_primary_10_1155_2023_8393990 crossref_primary_10_1080_24725579_2023_2231011 crossref_primary_10_1038_s41746_021_00489_2 crossref_primary_10_3346_jkms_2020_35_e379 crossref_primary_10_1093_plphys_kiab301 crossref_primary_10_1016_j_cell_2020_03_022 crossref_primary_10_3389_frai_2021_746497 |
Cites_doi | 10.1145/362686.362692 10.1109/mc.2010.292 10.1136/amiajnl-2012-000862 10.1186/s12911-016-0316-1 10.1145/2339530.2339678 10.1145/1143844.1143978 10.1137/1.9781611972818.6 10.1109/CVPR.2010.5539994 10.1109/CVPR.2011.5995432 10.1016/j.hlpt.2012.03.001 10.1136/amiajnl-2014-002747 10.1161/01.CIR.101.23.e215 10.1145/2063176.2063182 10.1002/pds.2343 10.1145/2072298.2072354 10.1126/scitranslmed.3001304 10.1093/jamia/ocv083 10.1145/1536414.1536440 10.1136/amiajnl-2012-000896 10.1145/2463676.2465274 10.1145/2502081.2502107 10.1002/sam.11135 10.1001/archinternmed.2010.527 10.1038/nrg3208 10.1145/2408776.2408783 10.1016/S0933-3657(01)00077-X 10.1145/2408736.2408740 10.1197/jamia.M3191 10.1109/CVPR.2010.5539928 10.1145/276698.276876 10.1109/ICDM.2010.102 10.1109/TPAMI.2012.48 10.1016/j.jbi.2010.04.009 10.1371/journal.pcbi.1002141 10.1038/nbt.2749 10.2217/cer.15.12 10.1006/jcss.1999.1690 10.1097/MLR.0b013e3181de9e17 10.1016/j.jbi.2013.12.012 10.1145/1141277.1141415 |
ContentType | Journal Article |
Copyright | Junghye Lee, Jimeng Sun, Fei Wang, Shuang Wang, Chi-Hyuck Jun, Xiaoqian Jiang. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 13.04.2018. 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Junghye Lee, Jimeng Sun, Fei Wang, Shuang Wang, Chi-Hyuck Jun, Xiaoqian Jiang. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 13.04.2018. 2018 |
Copyright_xml | – notice: Junghye Lee, Jimeng Sun, Fei Wang, Shuang Wang, Chi-Hyuck Jun, Xiaoqian Jiang. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 13.04.2018. – notice: 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Junghye Lee, Jimeng Sun, Fei Wang, Shuang Wang, Chi-Hyuck Jun, Xiaoqian Jiang. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 13.04.2018. 2018 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88C 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M0T PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.2196/medinform.7744 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Healthcare Administration Database (Alumni) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Healthcare Administration Database (ProQuest) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest One Academic Eastern Edition ProQuest Health Management ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Health Management (Alumni Edition) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2291-9694 |
ExternalDocumentID | PMC5924379 29653917 10_2196_medinform_7744 |
Genre | Journal Article |
GroupedDBID | 53G 5VS 7X7 8FI 8FJ AAFWJ AAYXX ABUWG ADBBV ADRAZ AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV BENPR CCPQU CITATION DIK FYUFA GROUPED_DOAJ HMCUK HYE KQ8 M0T M48 M~E OK1 PGMZT PHGZM PHGZT PIMPY RPM UKHRP NPM 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c418t-a9d48cf9c2f23400e6ce1920e0171cc3775ac2c5e97c95e9f53b35f64b4cb5253 |
IEDL.DBID | 7X7 |
ISSN | 2291-9694 |
IngestDate | Thu Aug 21 18:22:21 EDT 2025 Fri Jul 11 15:02:58 EDT 2025 Fri Jul 25 05:50:24 EDT 2025 Wed Feb 19 02:44:21 EST 2025 Tue Jul 01 04:31:16 EDT 2025 Thu Apr 24 23:09:04 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | privacy similarity learning homomorphic encryption federated environment hashing |
Language | English |
License | Junghye Lee, Jimeng Sun, Fei Wang, Shuang Wang, Chi-Hyuck Jun, Xiaoqian Jiang. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 13.04.2018. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Medical Informatics, is properly cited. The complete bibliographic information, a link to the original publication on http://medinform.jmir.org/, as well as this copyright and license information must be included. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c418t-a9d48cf9c2f23400e6ce1920e0171cc3775ac2c5e97c95e9f53b35f64b4cb5253 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9736-4796 0000-0003-1512-6426 0000-0001-9933-2205 0000-0001-6420-983X 0000-0003-0911-7347 0000-0002-7594-663X |
OpenAccessLink | https://www.proquest.com/docview/2511935012?pq-origsite=%requestingapplication% |
PMID | 29653917 |
PQID | 2511935012 |
PQPubID | 4997117 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5924379 proquest_miscellaneous_2025319587 proquest_journals_2511935012 pubmed_primary_29653917 crossref_primary_10_2196_medinform_7744 crossref_citationtrail_10_2196_medinform_7744 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180413 |
PublicationDateYYYYMMDD | 2018-04-13 |
PublicationDate_xml | – month: 4 year: 2018 text: 20180413 day: 13 |
PublicationDecade | 2010 |
PublicationPlace | Canada |
PublicationPlace_xml | – name: Canada – name: Toronto – name: Toronto, Canada |
PublicationTitle | JMIR medical informatics |
PublicationTitleAlternate | JMIR Med Inform |
PublicationYear | 2018 |
Publisher | JMIR Publications |
Publisher_xml | – name: JMIR Publications |
References | ref13 ref57 ref12 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref10 Horn, RA (ref54) 1990 ref17 ref16 ref19 Kononenko, I (ref1) 2001; 23 Zehfuss, G (ref56) 1858; 3 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 Ortega, JM (ref55) 1970 ref49 ref8 ref9 ref3 ref6 ref5 Yu, H (ref25) 2006 ref40 ref35 ref34 ref37 ref36 ref31 ref30 Ebadollahi, S (ref7) 2010; 2010 ref33 ref32 ref2 Sun, J (ref4) 2012; 2012 ref38 ref24 ref23 ref26 ref20 Hripcsak, G (ref18) 2015; 216 ref22 ref21 ref28 ref27 ref29 Kong, W (ref39) 2012 22549152 - Nat Rev Genet. 2012 May 02;13(6):395-405 10851218 - Circulation. 2000 Jun 13;101(23):E215-20 24270849 - Nat Biotechnol. 2013 Dec;31(12):1102-10 21901084 - PLoS Comput Biol. 2011 Aug;7(8):e1002141 26159465 - J Am Med Inform Assoc. 2015 Nov;22(6):1212-9 24370496 - J Biomed Inform. 2014 Apr;48:160-70 23304365 - AMIA Annu Symp Proc. 2012;2012:901-10 20473190 - Med Care. 2010 Jun;48(6 Suppl):S106-13 22262586 - Pharmacoepidemiol Drug Saf. 2012 Jan;21 Suppl 1:1-8 27454168 - BMC Med Inform Decis Mak. 2016 Jul 25;16 Suppl 3:89 26262116 - Stud Health Technol Inform. 2015 ;216:574-8 21346967 - AMIA Annu Symp Proc. 2010 Nov 13;2010:192-6 22511014 - J Am Med Inform Assoc. 2012 Sep-Oct;19(5):758-64 19567788 - J Am Med Inform Assoc. 2009 Sep-Oct;16(5):624-30 22331853 - IEEE Trans Pattern Anal Mach Intell. 2012 Dec;34(12):2393-406 21263077 - Arch Intern Med. 2011 May 23;171(10):897-903 24821743 - J Am Med Inform Assoc. 2014 Jul-Aug;21(4):578-82 11470218 - Artif Intell Med. 2001 Aug;23(1):89-109 20450985 - J Biomed Inform. 2010 Oct;43(5):669-85 23531748 - J Am Med Inform Assoc. 2013 Jun;20(e1):e147-54 20826840 - Sci Transl Med. 2010 Sep 8;2(48):48ra65 25959863 - J Comp Eff Res. 2015 May 11;:1-7 |
References_xml | – ident: ref32 doi: 10.1145/362686.362692 – ident: ref37 – ident: ref13 doi: 10.1109/mc.2010.292 – ident: ref23 doi: 10.1136/amiajnl-2012-000862 – ident: ref59 doi: 10.1186/s12911-016-0316-1 – ident: ref49 doi: 10.1145/2339530.2339678 – ident: ref43 doi: 10.1145/1143844.1143978 – volume: 2012 start-page: 901 year: 2012 ident: ref4 publication-title: AMIA Annu Symp Proc – ident: ref27 doi: 10.1137/1.9781611972818.6 – year: 1970 ident: ref55 publication-title: Iterative Solution of Nonlinear Equations in Several Variables – volume: 216 start-page: 574 year: 2015 ident: ref18 publication-title: Stud Health Technol Inform – ident: ref41 doi: 10.1109/CVPR.2010.5539994 – ident: ref38 doi: 10.1109/CVPR.2011.5995432 – ident: ref11 doi: 10.1016/j.hlpt.2012.03.001 – ident: ref53 – ident: ref34 – ident: ref19 doi: 10.1136/amiajnl-2014-002747 – ident: ref57 doi: 10.1161/01.CIR.101.23.e215 – ident: ref44 – ident: ref3 doi: 10.1145/2063176.2063182 – ident: ref17 doi: 10.1002/pds.2343 – ident: ref48 doi: 10.1145/2072298.2072354 – ident: ref40 – ident: ref50 – ident: ref47 – ident: ref9 doi: 10.1126/scitranslmed.3001304 – ident: ref26 doi: 10.1093/jamia/ocv083 – ident: ref31 doi: 10.1145/1536414.1536440 – ident: ref33 – ident: ref15 doi: 10.1136/amiajnl-2012-000896 – ident: ref51 doi: 10.1145/2463676.2465274 – ident: ref52 doi: 10.1145/2502081.2502107 – ident: ref58 – year: 2012 ident: ref39 publication-title: Advances in Neural Information Processing Systems 25 – start-page: 647 year: 2006 ident: ref25 publication-title: Advances in Knowledge Discovery and Data Mining. PAKDD 2006. Lecture Notes in Computer Science, vol 3918 – ident: ref30 doi: 10.1002/sam.11135 – ident: ref14 doi: 10.1001/archinternmed.2010.527 – start-page: 313 year: 1990 ident: ref54 publication-title: Matrix Analysis – ident: ref45 – ident: ref8 doi: 10.1038/nrg3208 – ident: ref12 doi: 10.1145/2408776.2408783 – volume: 23 start-page: 89 issue: 1 year: 2001 ident: ref1 publication-title: Artif Intell Med doi: 10.1016/S0933-3657(01)00077-X – ident: ref29 doi: 10.1145/2408736.2408740 – ident: ref20 doi: 10.1197/jamia.M3191 – ident: ref46 doi: 10.1109/CVPR.2010.5539928 – ident: ref35 doi: 10.1145/276698.276876 – ident: ref10 doi: 10.1109/ICDM.2010.102 – ident: ref42 doi: 10.1109/TPAMI.2012.48 – ident: ref5 doi: 10.1016/j.jbi.2010.04.009 – ident: ref2 doi: 10.1371/journal.pcbi.1002141 – ident: ref28 – ident: ref16 doi: 10.1038/nbt.2749 – volume: 3 start-page: 298 year: 1858 ident: ref56 publication-title: J Appl Math Phys – ident: ref22 doi: 10.2217/cer.15.12 – ident: ref36 doi: 10.1006/jcss.1999.1690 – ident: ref6 doi: 10.1097/MLR.0b013e3181de9e17 – ident: ref21 doi: 10.1016/j.jbi.2013.12.012 – ident: ref24 doi: 10.1145/1141277.1141415 – volume: 2010 start-page: 192 year: 2010 ident: ref7 publication-title: AMIA Annu Symp Proc – reference: 23304365 - AMIA Annu Symp Proc. 2012;2012:901-10 – reference: 27454168 - BMC Med Inform Decis Mak. 2016 Jul 25;16 Suppl 3:89 – reference: 25959863 - J Comp Eff Res. 2015 May 11;:1-7 – reference: 21346967 - AMIA Annu Symp Proc. 2010 Nov 13;2010:192-6 – reference: 24821743 - J Am Med Inform Assoc. 2014 Jul-Aug;21(4):578-82 – reference: 23531748 - J Am Med Inform Assoc. 2013 Jun;20(e1):e147-54 – reference: 21263077 - Arch Intern Med. 2011 May 23;171(10):897-903 – reference: 20473190 - Med Care. 2010 Jun;48(6 Suppl):S106-13 – reference: 24370496 - J Biomed Inform. 2014 Apr;48:160-70 – reference: 11470218 - Artif Intell Med. 2001 Aug;23(1):89-109 – reference: 10851218 - Circulation. 2000 Jun 13;101(23):E215-20 – reference: 22262586 - Pharmacoepidemiol Drug Saf. 2012 Jan;21 Suppl 1:1-8 – reference: 26262116 - Stud Health Technol Inform. 2015 ;216:574-8 – reference: 20826840 - Sci Transl Med. 2010 Sep 8;2(48):48ra65 – reference: 24270849 - Nat Biotechnol. 2013 Dec;31(12):1102-10 – reference: 26159465 - J Am Med Inform Assoc. 2015 Nov;22(6):1212-9 – reference: 19567788 - J Am Med Inform Assoc. 2009 Sep-Oct;16(5):624-30 – reference: 20450985 - J Biomed Inform. 2010 Oct;43(5):669-85 – reference: 22511014 - J Am Med Inform Assoc. 2012 Sep-Oct;19(5):758-64 – reference: 22549152 - Nat Rev Genet. 2012 May 02;13(6):395-405 – reference: 21901084 - PLoS Comput Biol. 2011 Aug;7(8):e1002141 – reference: 22331853 - IEEE Trans Pattern Anal Mach Intell. 2012 Dec;34(12):2393-406 |
SSID | ssj0001416667 |
Score | 2.4752169 |
Snippet | There is an urgent need for the development of global analytic frameworks that can perform analyses in a privacy-preserving federated environment across... Background: There is an urgent need for the development of global analytic frameworks that can perform analyses in a privacy-preserving federated environment... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e20 |
SubjectTerms | Algorithms Cardiovascular disease Dictionaries Disease management Electronic health records Informatics Original Paper Patients Privacy |
SummonAdditionalLinks | – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFA46QXwR706nRBB86uwl6UUQEdkYwmSgg72VJG1mYXY6N3H_3nParm46felLTml6Ls13ek6-EHIuIxONKw3AQr7BXNM3pG1jqsK1KaUGFJ2xfT64rS677_Hed_9TocD3pakdnifVHQ3qn2_TGwj4a2xjBge6xCp0tnenDliGrZI1WJU8DNJ2AfWz_y0MC2Reztu45LbFdekX2PzZMzm3CDW3yGaBHultbu5tshKnO2S9XdTHd4nqjJIPoaYGdlbgVyDt007OnEofk5cE3hVQNy1IVfs0SamgTeSTAMgZ0cb3rrcrOtdOREUa0Rl9yR7pNhtPdy2jOEbBUMzyx4YIIuYrHShb2w6EbOyqGHCdGSNVjlKO53GhbMXjwFMBXDV3pMO1yyRTktvc2SeVdJjGh4R6nFnaynjCBNNcS1ewwGHCjCBzY9qrEmOmxFAVHON41MUghFwDlR6WSg9R6VVyUcq_5uwaf0rWZjYJZ04SYnoUYGXUrpKzchjiA4seIo2HE5ABUOcgow5M7iA3YfkoO0BiXgtGvAXjlgLIvb04kibPGQc3DzImx6P_p3VMNgBg-Vh9spwaqYxHk_gEQMxYnmbe-QWPm_ZD priority: 102 providerName: Scholars Portal |
Title | Privacy-Preserving Patient Similarity Learning in a Federated Environment: Development and Analysis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29653917 https://www.proquest.com/docview/2511935012 https://www.proquest.com/docview/2025319587 https://pubmed.ncbi.nlm.nih.gov/PMC5924379 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ZS8QwEA4eIL6It-uxRBB8ivZImtYXUdlFBGXxgH0rSdpoQbseq-C_d6bNdl1FX_qSgYaZTPJNZvINIXs689C4mgEWihmPvJjpIMBQRVhPawsoumL7vIrO7_hFX_TdhdubK6sc7YnVRp0NDN6RHyIUTjALFhw_vzDsGoXZVddCY5rMInUZlnTJvhzfsXBMismaqxFcMzrEhHX1zOcAYA-fPIt-AcyfdZLfDp7uIllwiJGe1CZeIlN5uUzmLl1OfIWY3mvxocwnw2oK9PzynvZqtlR6UzwVELoC0qaOSPWeFiVVtIscEgAzM9oZv3Q7ot9KiKgqMzqiLFkld93O7dk5c60TmOF-PGQqyXhsbGICG4TgpnlkcsByXo70OMaEUgplAiPyRJoEvlaEOhQ24pobLQIRrpGZclDmG4RKwX3rV9xgilthdaR4EnLlZRCtcStbhI2UmBrHK47tLR5TiC9Q6Wmj9BSV3iL7jfxzzajxp-T2yCap86y3dLwOWmS3GQafwESHKvPBO8gAkAtxPcDk1msTNr8KEiTj9WFEThi3EUC-7cmRsnioeLdFUrE3bv4_rS0yD6AqxoyTH26TmeHre74DwGWo29XqbJPZ085V77pdhf_wveTxF1tG9Xw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VWwm4IN4sFDASiJNp4th5ICHEY1db2q5W0Eq9pbZjl0iQLe0W1D_Fb2Qmr-2C4NZLLrYUa2Y8_sYz_gbgmSkCUq7hiIVSLuMg5UYIClWUD4zxiKJrts9pPNmXHw_UwRr86t7CUFll5xNrR13MLd2RbxIUzigLJt4cf-fUNYqyq10LjcYstt35TwzZTl9vfUD9PhdiPNp7P-FtVwFuZZguuM4KmVqfWeFFhBbsYusQ5gSOmGOsjZJEaSusclliM_x6FZlI-VgaaY0S1CUCXf66jDCUGcD6u9F09ml5qyMpDZc07JDoDOJNSpHXD4teItCSq6ffX5D2z8rMC0fd-AZcbzEqe9sY1U1Yc9UtuLLbZuFvg52dlD-0PedUv0G-pjpis4aflX0uv5UYLCO2Zy116xErK6bZmFgrENgWbLR8W_eKXShaYroqWEeScgf2L0Wsd2FQzSt3H1iiZOjDmo1MS6-8ibXMIqmDAuND6ZMh8E6IuW2ZzKmhxtccIxoSet4LPSehD-FFP_-44fD458yNTid5u5dP86XlDeFpP4y7kFIrunLzM5yD0DEi3h5c3L1Ghf2vREb0vyGOJCvK7ScQw_fqSFV-qZm-VVbzRT74_7KewNXJ3u5OvrM13X4I1xDSpZTvCqMNGCxOztwjhE0L87i1VQaHl709fgN1BDAz |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRaq4IN4sLWAkECeziWPHCRJCiHbVUqhWgkp7C7Zjl0g0W9otqH-NX8dMXtsFwa2XXGwp0bz8TWb8DcAzW0akXMsRC2VcplHGrRCUqqgQWRsQRTdsnwfp7qF8P1OzNfjV34Whtso-JjaBupw7-kc-JiicUxVMjEPXFjHdnrw5-c5pghRVWvtxGq2J7PuLn5i-nb3e20ZdPxdisvP53S7vJgxwJ-NswU1eysyF3IkgErRmnzqPkCfyxCLjXKK1Mk445XPtcnwGldhEhVRa6awSNDECw_81naiYfEzP9PL_jqSCnG55IjEspGMqljdXjF4i5JKr5-Bf4PbPHs1Lh97kJtzo0Cp725rXLVjz9W3Y-NjV4--Am55WP4y74NTJQVGnPmLTlqmVfaqOK0ybEeWzjsT1iFU1M2xC_BUIcUu2s7xl94pdal9ipi5ZT5dyFw6vRKj3YL2e1_4BMK1kHOKGl8zIoIJNjcwTaaISM0UZ9Ah4L8TCdZzmNFrjW4G5DQm9GIRekNBH8GLYf9Kyefxz51avk6Lz6rNiaYMjeDosoz9SkcXUfn6OexBEJsTggx93v1Xh8CqRExFwjCt6RbnDBuL6Xl2pq68N57fKG-bIh___rCewgU5RfNg72N-E64jtMip8xckWrC9Oz_0jxE8L-7gxVAZfrtozfgMDGjMD |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Privacy-Preserving+Patient+Similarity+Learning+in+a+Federated+Environment%3A+Development+and+Analysis&rft.jtitle=JMIR+medical+informatics&rft.au=Lee%2C+Junghye&rft.au=Sun%2C+Jimeng&rft.au=Wang%2C+Fei&rft.au=Wang%2C+Shuang&rft.date=2018-04-13&rft.pub=JMIR+Publications&rft.eissn=2291-9694&rft.volume=6&rft.issue=2&rft_id=info:doi/10.2196%2Fmedinform.7744&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2291-9694&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2291-9694&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2291-9694&client=summon |