Privacy-Preserving Patient Similarity Learning in a Federated Environment: Development and Analysis

There is an urgent need for the development of global analytic frameworks that can perform analyses in a privacy-preserving federated environment across multiple institutions without privacy leakage. A few studies on the topic of federated medical analysis have been conducted recently with the focus...

Full description

Saved in:
Bibliographic Details
Published inJMIR medical informatics Vol. 6; no. 2; p. e20
Main Authors Lee, Junghye, Sun, Jimeng, Wang, Fei, Wang, Shuang, Jun, Chi-Hyuck, Jiang, Xiaoqian
Format Journal Article
LanguageEnglish
Published Canada JMIR Publications 13.04.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract There is an urgent need for the development of global analytic frameworks that can perform analyses in a privacy-preserving federated environment across multiple institutions without privacy leakage. A few studies on the topic of federated medical analysis have been conducted recently with the focus on several algorithms. However, none of them have solved similar patient matching, which is useful for applications such as cohort construction for cross-institution observational studies, disease surveillance, and clinical trials recruitment. The aim of this study was to present a privacy-preserving platform in a federated setting for patient similarity learning across institutions. Without sharing patient-level information, our model can find similar patients from one hospital to another. We proposed a federated patient hashing framework and developed a novel algorithm to learn context-specific hash codes to represent patients across institutions. The similarities between patients can be efficiently computed using the resulting hash codes of corresponding patients. To avoid security attack from reverse engineering on the model, we applied homomorphic encryption to patient similarity search in a federated setting. We used sequential medical events extracted from the Multiparameter Intelligent Monitoring in Intensive Care-III database to evaluate the proposed algorithm in predicting the incidence of five diseases independently. Our algorithm achieved averaged area under the curves of 0.9154 and 0.8012 with balanced and imbalanced data, respectively, in κ-nearest neighbor with κ=3. We also confirmed privacy preservation in similarity search by using homomorphic encryption. The proposed algorithm can help search similar patients across institutions effectively to support federated data analysis in a privacy-preserving manner.
AbstractList Background: There is an urgent need for the development of global analytic frameworks that can perform analyses in a privacy-preserving federated environment across multiple institutions without privacy leakage. A few studies on the topic of federated medical analysis have been conducted recently with the focus on several algorithms. However, none of them have solved similar patient matching, which is useful for applications such as cohort construction for cross-institution observational studies, disease surveillance, and clinical trials recruitment. Objective: The aim of this study was to present a privacy-preserving platform in a federated setting for patient similarity learning across institutions. Without sharing patient-level information, our model can find similar patients from one hospital to another. Methods: We proposed a federated patient hashing framework and developed a novel algorithm to learn context-specific hash codes to represent patients across institutions. The similarities between patients can be efficiently computed using the resulting hash codes of corresponding patients. To avoid security attack from reverse engineering on the model, we applied homomorphic encryption to patient similarity search in a federated setting. Results: We used sequential medical events extracted from the Multiparameter Intelligent Monitoring in Intensive Care-III database to evaluate the proposed algorithm in predicting the incidence of five diseases independently. Our algorithm achieved averaged area under the curves of 0.9154 and 0.8012 with balanced and imbalanced data, respectively, in κ-nearest neighbor with κ=3. We also confirmed privacy preservation in similarity search by using homomorphic encryption. Conclusions: The proposed algorithm can help search similar patients across institutions effectively to support federated data analysis in a privacy-preserving manner.
There is an urgent need for the development of global analytic frameworks that can perform analyses in a privacy-preserving federated environment across multiple institutions without privacy leakage. A few studies on the topic of federated medical analysis have been conducted recently with the focus on several algorithms. However, none of them have solved similar patient matching, which is useful for applications such as cohort construction for cross-institution observational studies, disease surveillance, and clinical trials recruitment. The aim of this study was to present a privacy-preserving platform in a federated setting for patient similarity learning across institutions. Without sharing patient-level information, our model can find similar patients from one hospital to another. We proposed a federated patient hashing framework and developed a novel algorithm to learn context-specific hash codes to represent patients across institutions. The similarities between patients can be efficiently computed using the resulting hash codes of corresponding patients. To avoid security attack from reverse engineering on the model, we applied homomorphic encryption to patient similarity search in a federated setting. We used sequential medical events extracted from the Multiparameter Intelligent Monitoring in Intensive Care-III database to evaluate the proposed algorithm in predicting the incidence of five diseases independently. Our algorithm achieved averaged area under the curves of 0.9154 and 0.8012 with balanced and imbalanced data, respectively, in κ-nearest neighbor with κ=3. We also confirmed privacy preservation in similarity search by using homomorphic encryption. The proposed algorithm can help search similar patients across institutions effectively to support federated data analysis in a privacy-preserving manner.
There is an urgent need for the development of global analytic frameworks that can perform analyses in a privacy-preserving federated environment across multiple institutions without privacy leakage. A few studies on the topic of federated medical analysis have been conducted recently with the focus on several algorithms. However, none of them have solved similar patient matching, which is useful for applications such as cohort construction for cross-institution observational studies, disease surveillance, and clinical trials recruitment.BACKGROUNDThere is an urgent need for the development of global analytic frameworks that can perform analyses in a privacy-preserving federated environment across multiple institutions without privacy leakage. A few studies on the topic of federated medical analysis have been conducted recently with the focus on several algorithms. However, none of them have solved similar patient matching, which is useful for applications such as cohort construction for cross-institution observational studies, disease surveillance, and clinical trials recruitment.The aim of this study was to present a privacy-preserving platform in a federated setting for patient similarity learning across institutions. Without sharing patient-level information, our model can find similar patients from one hospital to another.OBJECTIVEThe aim of this study was to present a privacy-preserving platform in a federated setting for patient similarity learning across institutions. Without sharing patient-level information, our model can find similar patients from one hospital to another.We proposed a federated patient hashing framework and developed a novel algorithm to learn context-specific hash codes to represent patients across institutions. The similarities between patients can be efficiently computed using the resulting hash codes of corresponding patients. To avoid security attack from reverse engineering on the model, we applied homomorphic encryption to patient similarity search in a federated setting.METHODSWe proposed a federated patient hashing framework and developed a novel algorithm to learn context-specific hash codes to represent patients across institutions. The similarities between patients can be efficiently computed using the resulting hash codes of corresponding patients. To avoid security attack from reverse engineering on the model, we applied homomorphic encryption to patient similarity search in a federated setting.We used sequential medical events extracted from the Multiparameter Intelligent Monitoring in Intensive Care-III database to evaluate the proposed algorithm in predicting the incidence of five diseases independently. Our algorithm achieved averaged area under the curves of 0.9154 and 0.8012 with balanced and imbalanced data, respectively, in κ-nearest neighbor with κ=3. We also confirmed privacy preservation in similarity search by using homomorphic encryption.RESULTSWe used sequential medical events extracted from the Multiparameter Intelligent Monitoring in Intensive Care-III database to evaluate the proposed algorithm in predicting the incidence of five diseases independently. Our algorithm achieved averaged area under the curves of 0.9154 and 0.8012 with balanced and imbalanced data, respectively, in κ-nearest neighbor with κ=3. We also confirmed privacy preservation in similarity search by using homomorphic encryption.The proposed algorithm can help search similar patients across institutions effectively to support federated data analysis in a privacy-preserving manner.CONCLUSIONSThe proposed algorithm can help search similar patients across institutions effectively to support federated data analysis in a privacy-preserving manner.
Author Sun, Jimeng
Wang, Shuang
Wang, Fei
Lee, Junghye
Jiang, Xiaoqian
Jun, Chi-Hyuck
AuthorAffiliation 5 Division of Health Informatics, Department of Healthcare Policy and Research Weill Cornell Medical College Cornell University New York City, NY United States
3 Department of Industrial and Management Engineering Pohang University of Science and Technology Pohang Republic Of Korea
4 College of Computing Georgia Institute of Technology Atlanta, GA United States
2 Department of Biomedical Informatics University of California San Diego San Diego, CA United States
1 School of Management Engineering Ulsan National Institute of Science and Technology Ulsan Republic Of Korea
AuthorAffiliation_xml – name: 4 College of Computing Georgia Institute of Technology Atlanta, GA United States
– name: 5 Division of Health Informatics, Department of Healthcare Policy and Research Weill Cornell Medical College Cornell University New York City, NY United States
– name: 3 Department of Industrial and Management Engineering Pohang University of Science and Technology Pohang Republic Of Korea
– name: 2 Department of Biomedical Informatics University of California San Diego San Diego, CA United States
– name: 1 School of Management Engineering Ulsan National Institute of Science and Technology Ulsan Republic Of Korea
Author_xml – sequence: 1
  givenname: Junghye
  orcidid: 0000-0002-9736-4796
  surname: Lee
  fullname: Lee, Junghye
– sequence: 2
  givenname: Jimeng
  orcidid: 0000-0003-1512-6426
  surname: Sun
  fullname: Sun, Jimeng
– sequence: 3
  givenname: Fei
  orcidid: 0000-0002-7594-663X
  surname: Wang
  fullname: Wang, Fei
– sequence: 4
  givenname: Shuang
  orcidid: 0000-0001-6420-983X
  surname: Wang
  fullname: Wang, Shuang
– sequence: 5
  givenname: Chi-Hyuck
  orcidid: 0000-0003-0911-7347
  surname: Jun
  fullname: Jun, Chi-Hyuck
– sequence: 6
  givenname: Xiaoqian
  orcidid: 0000-0001-9933-2205
  surname: Jiang
  fullname: Jiang, Xiaoqian
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29653917$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtrGzEUhUVJqNMk2y6DIJtuxpU00sjqIhBcJykYYki7FrLmjqswI7nSeMD_vhqSmCSQjR7c7577OF_QkQ8eEPpKyZRRVX3voHa-CbGbSsn5J3TCmKKFqhQ_evWeoPOUHgkhlNOqquRnNGGqEqWi8gTZVXSDsftiFSFBHJzf4JXpHfgeP7jOtSa6fo-XYKIfY85jg2-ghmh6qPHCDy4G32X8B_4JA7RhO36w8TW-9qbdJ5fO0HFj2gTnz_cp-nOz-D2_K5b3t7_m18vCcjrrC6NqPrONsqxhJScEKgtUMQKESmptKaUwllkBSlqVz0aU61I0FV9zuxZMlKfo6kl3u1vn1djcRzSt3kbXmbjXwTj9NuLdX70JgxaK8VKqLPDtWSCGfztIve5cstC2xkPYJc1IrkKVmMmMXr5DH8Mu5oEzJShVpSCUZeridUeHVl72n4HpE2BjSClCc0Ao0aPH-uCxHj3OCfxdgnV99iuME7n2o7T_NE2vgw
CitedBy_id crossref_primary_10_3390_jpm12050768
crossref_primary_10_1016_j_jbi_2020_103664
crossref_primary_10_2196_23728
crossref_primary_10_1109_JBHI_2023_3282955
crossref_primary_10_1109_TNSE_2022_3185327
crossref_primary_10_1007_s41870_024_01801_5
crossref_primary_10_1038_s41598_024_51344_9
crossref_primary_10_3390_electronics13132620
crossref_primary_10_1145_3514500
crossref_primary_10_1016_j_jbi_2024_104623
crossref_primary_10_1093_bib_bbad269
crossref_primary_10_1016_j_artmed_2024_102900
crossref_primary_10_1016_j_jbi_2019_103138
crossref_primary_10_1016_j_patter_2022_100603
crossref_primary_10_1016_j_compeleceng_2024_109900
crossref_primary_10_3389_fpubh_2022_814163
crossref_primary_10_1109_TIFS_2019_2925496
crossref_primary_10_1002_widm_1486
crossref_primary_10_1109_OJSP_2020_3036276
crossref_primary_10_1016_j_comnet_2025_111063
crossref_primary_10_1016_j_amjsurg_2023_10_045
crossref_primary_10_1016_j_ijmedinf_2019_104073
crossref_primary_10_1002_wsbm_1623
crossref_primary_10_2196_29812
crossref_primary_10_1007_s10586_022_03658_4
crossref_primary_10_1109_TMI_2024_3450855
crossref_primary_10_1016_j_neucom_2021_08_141
crossref_primary_10_1055_s_0041_1740630
crossref_primary_10_1016_j_heliyon_2023_e18615
crossref_primary_10_1109_ACCESS_2023_3241488
crossref_primary_10_1038_s41551_022_00898_y
crossref_primary_10_1109_TII_2021_3113708
crossref_primary_10_1007_s11042_024_19467_3
crossref_primary_10_1016_j_csbj_2024_08_024
crossref_primary_10_1038_s41746_020_00323_1
crossref_primary_10_1016_j_compbiomed_2024_108734
crossref_primary_10_1038_s41591_022_02155_w
crossref_primary_10_1002_cpe_8280
crossref_primary_10_32604_cmc_2024_058926
crossref_primary_10_1016_j_patter_2024_101006
crossref_primary_10_1109_JBHI_2022_3185673
crossref_primary_10_1177_20552076241282242
crossref_primary_10_3390_electronics12030730
crossref_primary_10_2174_1381612827999210112204732
crossref_primary_10_1002_int_22777
crossref_primary_10_1016_j_mayocp_2020_04_031
crossref_primary_10_61186_jsdp_21_3_23
crossref_primary_10_1109_TCE_2023_3342100
crossref_primary_10_1177_1729881420921653
crossref_primary_10_1016_j_ins_2023_119728
crossref_primary_10_3390_info13050263
crossref_primary_10_1007_s41666_020_00082_4
crossref_primary_10_1016_j_techfore_2022_121718
crossref_primary_10_1109_JIOT_2024_3382875
crossref_primary_10_1145_3524885
crossref_primary_10_1016_j_compbiomed_2023_106848
crossref_primary_10_1109_TSG_2023_3318418
crossref_primary_10_1109_TVCG_2021_3074010
crossref_primary_10_1016_j_im_2023_103908
crossref_primary_10_1002_widm_1443
crossref_primary_10_1109_TIFS_2021_3114026
crossref_primary_10_1016_j_jacr_2022_03_015
crossref_primary_10_1109_JBHI_2023_3306425
crossref_primary_10_1016_j_ins_2021_03_064
crossref_primary_10_3390_e26100871
crossref_primary_10_1053_j_semvascsurg_2023_05_001
crossref_primary_10_1016_j_comcom_2023_04_012
crossref_primary_10_1089_cmb_2023_0115
crossref_primary_10_3389_fgene_2022_822173
crossref_primary_10_1007_s00259_021_05339_7
crossref_primary_10_1109_JIOT_2024_3445964
crossref_primary_10_1093_jamiaopen_ooz016
crossref_primary_10_1145_3501813
crossref_primary_10_1038_s41598_024_54323_2
crossref_primary_10_1145_3501816
crossref_primary_10_1016_j_ins_2024_120265
crossref_primary_10_1016_j_asoc_2021_107330
crossref_primary_10_1016_j_patter_2024_101031
crossref_primary_10_1109_JBHI_2022_3171402
crossref_primary_10_1016_j_heliyon_2024_e31873
crossref_primary_10_1016_j_jbi_2020_103671
crossref_primary_10_2147_JMDH_S483247
crossref_primary_10_51483_IJDSBDA_1_2_2021_1_13
crossref_primary_10_1109_ACCESS_2024_3440998
crossref_primary_10_3389_frai_2021_652669
crossref_primary_10_3233_HIS_220006
crossref_primary_10_1007_s00607_024_01317_7
crossref_primary_10_1587_transinf_2023MUI0001
crossref_primary_10_1007_s10586_024_04266_0
crossref_primary_10_1109_ACCESS_2021_3111118
crossref_primary_10_1016_j_cie_2020_106854
crossref_primary_10_1088_2632_2153_aca87c
crossref_primary_10_3389_fpubh_2021_712569
crossref_primary_10_1155_2023_8393990
crossref_primary_10_1080_24725579_2023_2231011
crossref_primary_10_1038_s41746_021_00489_2
crossref_primary_10_3346_jkms_2020_35_e379
crossref_primary_10_1093_plphys_kiab301
crossref_primary_10_1016_j_cell_2020_03_022
crossref_primary_10_3389_frai_2021_746497
Cites_doi 10.1145/362686.362692
10.1109/mc.2010.292
10.1136/amiajnl-2012-000862
10.1186/s12911-016-0316-1
10.1145/2339530.2339678
10.1145/1143844.1143978
10.1137/1.9781611972818.6
10.1109/CVPR.2010.5539994
10.1109/CVPR.2011.5995432
10.1016/j.hlpt.2012.03.001
10.1136/amiajnl-2014-002747
10.1161/01.CIR.101.23.e215
10.1145/2063176.2063182
10.1002/pds.2343
10.1145/2072298.2072354
10.1126/scitranslmed.3001304
10.1093/jamia/ocv083
10.1145/1536414.1536440
10.1136/amiajnl-2012-000896
10.1145/2463676.2465274
10.1145/2502081.2502107
10.1002/sam.11135
10.1001/archinternmed.2010.527
10.1038/nrg3208
10.1145/2408776.2408783
10.1016/S0933-3657(01)00077-X
10.1145/2408736.2408740
10.1197/jamia.M3191
10.1109/CVPR.2010.5539928
10.1145/276698.276876
10.1109/ICDM.2010.102
10.1109/TPAMI.2012.48
10.1016/j.jbi.2010.04.009
10.1371/journal.pcbi.1002141
10.1038/nbt.2749
10.2217/cer.15.12
10.1006/jcss.1999.1690
10.1097/MLR.0b013e3181de9e17
10.1016/j.jbi.2013.12.012
10.1145/1141277.1141415
ContentType Journal Article
Copyright Junghye Lee, Jimeng Sun, Fei Wang, Shuang Wang, Chi-Hyuck Jun, Xiaoqian Jiang. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 13.04.2018.
2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Junghye Lee, Jimeng Sun, Fei Wang, Shuang Wang, Chi-Hyuck Jun, Xiaoqian Jiang. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 13.04.2018. 2018
Copyright_xml – notice: Junghye Lee, Jimeng Sun, Fei Wang, Shuang Wang, Chi-Hyuck Jun, Xiaoqian Jiang. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 13.04.2018.
– notice: 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Junghye Lee, Jimeng Sun, Fei Wang, Shuang Wang, Chi-Hyuck Jun, Xiaoqian Jiang. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 13.04.2018. 2018
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88C
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M0T
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.2196/medinform.7744
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Healthcare Administration Database (ProQuest)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest One Academic Eastern Edition
ProQuest Health Management
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2291-9694
ExternalDocumentID PMC5924379
29653917
10_2196_medinform_7744
Genre Journal Article
GroupedDBID 53G
5VS
7X7
8FI
8FJ
AAFWJ
AAYXX
ABUWG
ADBBV
ADRAZ
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BENPR
CCPQU
CITATION
DIK
FYUFA
GROUPED_DOAJ
HMCUK
HYE
KQ8
M0T
M48
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
RPM
UKHRP
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c418t-a9d48cf9c2f23400e6ce1920e0171cc3775ac2c5e97c95e9f53b35f64b4cb5253
IEDL.DBID 7X7
ISSN 2291-9694
IngestDate Thu Aug 21 18:22:21 EDT 2025
Fri Jul 11 15:02:58 EDT 2025
Fri Jul 25 05:50:24 EDT 2025
Wed Feb 19 02:44:21 EST 2025
Tue Jul 01 04:31:16 EDT 2025
Thu Apr 24 23:09:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords privacy
similarity learning
homomorphic encryption
federated environment
hashing
Language English
License Junghye Lee, Jimeng Sun, Fei Wang, Shuang Wang, Chi-Hyuck Jun, Xiaoqian Jiang. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 13.04.2018.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Medical Informatics, is properly cited. The complete bibliographic information, a link to the original publication on http://medinform.jmir.org/, as well as this copyright and license information must be included.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-a9d48cf9c2f23400e6ce1920e0171cc3775ac2c5e97c95e9f53b35f64b4cb5253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9736-4796
0000-0003-1512-6426
0000-0001-9933-2205
0000-0001-6420-983X
0000-0003-0911-7347
0000-0002-7594-663X
OpenAccessLink https://www.proquest.com/docview/2511935012?pq-origsite=%requestingapplication%
PMID 29653917
PQID 2511935012
PQPubID 4997117
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5924379
proquest_miscellaneous_2025319587
proquest_journals_2511935012
pubmed_primary_29653917
crossref_primary_10_2196_medinform_7744
crossref_citationtrail_10_2196_medinform_7744
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180413
PublicationDateYYYYMMDD 2018-04-13
PublicationDate_xml – month: 4
  year: 2018
  text: 20180413
  day: 13
PublicationDecade 2010
PublicationPlace Canada
PublicationPlace_xml – name: Canada
– name: Toronto
– name: Toronto, Canada
PublicationTitle JMIR medical informatics
PublicationTitleAlternate JMIR Med Inform
PublicationYear 2018
Publisher JMIR Publications
Publisher_xml – name: JMIR Publications
References ref13
ref57
ref12
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref10
Horn, RA (ref54) 1990
ref17
ref16
ref19
Kononenko, I (ref1) 2001; 23
Zehfuss, G (ref56) 1858; 3
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
Ortega, JM (ref55) 1970
ref49
ref8
ref9
ref3
ref6
ref5
Yu, H (ref25) 2006
ref40
ref35
ref34
ref37
ref36
ref31
ref30
Ebadollahi, S (ref7) 2010; 2010
ref33
ref32
ref2
Sun, J (ref4) 2012; 2012
ref38
ref24
ref23
ref26
ref20
Hripcsak, G (ref18) 2015; 216
ref22
ref21
ref28
ref27
ref29
Kong, W (ref39) 2012
22549152 - Nat Rev Genet. 2012 May 02;13(6):395-405
10851218 - Circulation. 2000 Jun 13;101(23):E215-20
24270849 - Nat Biotechnol. 2013 Dec;31(12):1102-10
21901084 - PLoS Comput Biol. 2011 Aug;7(8):e1002141
26159465 - J Am Med Inform Assoc. 2015 Nov;22(6):1212-9
24370496 - J Biomed Inform. 2014 Apr;48:160-70
23304365 - AMIA Annu Symp Proc. 2012;2012:901-10
20473190 - Med Care. 2010 Jun;48(6 Suppl):S106-13
22262586 - Pharmacoepidemiol Drug Saf. 2012 Jan;21 Suppl 1:1-8
27454168 - BMC Med Inform Decis Mak. 2016 Jul 25;16 Suppl 3:89
26262116 - Stud Health Technol Inform. 2015 ;216:574-8
21346967 - AMIA Annu Symp Proc. 2010 Nov 13;2010:192-6
22511014 - J Am Med Inform Assoc. 2012 Sep-Oct;19(5):758-64
19567788 - J Am Med Inform Assoc. 2009 Sep-Oct;16(5):624-30
22331853 - IEEE Trans Pattern Anal Mach Intell. 2012 Dec;34(12):2393-406
21263077 - Arch Intern Med. 2011 May 23;171(10):897-903
24821743 - J Am Med Inform Assoc. 2014 Jul-Aug;21(4):578-82
11470218 - Artif Intell Med. 2001 Aug;23(1):89-109
20450985 - J Biomed Inform. 2010 Oct;43(5):669-85
23531748 - J Am Med Inform Assoc. 2013 Jun;20(e1):e147-54
20826840 - Sci Transl Med. 2010 Sep 8;2(48):48ra65
25959863 - J Comp Eff Res. 2015 May 11;:1-7
References_xml – ident: ref32
  doi: 10.1145/362686.362692
– ident: ref37
– ident: ref13
  doi: 10.1109/mc.2010.292
– ident: ref23
  doi: 10.1136/amiajnl-2012-000862
– ident: ref59
  doi: 10.1186/s12911-016-0316-1
– ident: ref49
  doi: 10.1145/2339530.2339678
– ident: ref43
  doi: 10.1145/1143844.1143978
– volume: 2012
  start-page: 901
  year: 2012
  ident: ref4
  publication-title: AMIA Annu Symp Proc
– ident: ref27
  doi: 10.1137/1.9781611972818.6
– year: 1970
  ident: ref55
  publication-title: Iterative Solution of Nonlinear Equations in Several Variables
– volume: 216
  start-page: 574
  year: 2015
  ident: ref18
  publication-title: Stud Health Technol Inform
– ident: ref41
  doi: 10.1109/CVPR.2010.5539994
– ident: ref38
  doi: 10.1109/CVPR.2011.5995432
– ident: ref11
  doi: 10.1016/j.hlpt.2012.03.001
– ident: ref53
– ident: ref34
– ident: ref19
  doi: 10.1136/amiajnl-2014-002747
– ident: ref57
  doi: 10.1161/01.CIR.101.23.e215
– ident: ref44
– ident: ref3
  doi: 10.1145/2063176.2063182
– ident: ref17
  doi: 10.1002/pds.2343
– ident: ref48
  doi: 10.1145/2072298.2072354
– ident: ref40
– ident: ref50
– ident: ref47
– ident: ref9
  doi: 10.1126/scitranslmed.3001304
– ident: ref26
  doi: 10.1093/jamia/ocv083
– ident: ref31
  doi: 10.1145/1536414.1536440
– ident: ref33
– ident: ref15
  doi: 10.1136/amiajnl-2012-000896
– ident: ref51
  doi: 10.1145/2463676.2465274
– ident: ref52
  doi: 10.1145/2502081.2502107
– ident: ref58
– year: 2012
  ident: ref39
  publication-title: Advances in Neural Information Processing Systems 25
– start-page: 647
  year: 2006
  ident: ref25
  publication-title: Advances in Knowledge Discovery and Data Mining. PAKDD 2006. Lecture Notes in Computer Science, vol 3918
– ident: ref30
  doi: 10.1002/sam.11135
– ident: ref14
  doi: 10.1001/archinternmed.2010.527
– start-page: 313
  year: 1990
  ident: ref54
  publication-title: Matrix Analysis
– ident: ref45
– ident: ref8
  doi: 10.1038/nrg3208
– ident: ref12
  doi: 10.1145/2408776.2408783
– volume: 23
  start-page: 89
  issue: 1
  year: 2001
  ident: ref1
  publication-title: Artif Intell Med
  doi: 10.1016/S0933-3657(01)00077-X
– ident: ref29
  doi: 10.1145/2408736.2408740
– ident: ref20
  doi: 10.1197/jamia.M3191
– ident: ref46
  doi: 10.1109/CVPR.2010.5539928
– ident: ref35
  doi: 10.1145/276698.276876
– ident: ref10
  doi: 10.1109/ICDM.2010.102
– ident: ref42
  doi: 10.1109/TPAMI.2012.48
– ident: ref5
  doi: 10.1016/j.jbi.2010.04.009
– ident: ref2
  doi: 10.1371/journal.pcbi.1002141
– ident: ref28
– ident: ref16
  doi: 10.1038/nbt.2749
– volume: 3
  start-page: 298
  year: 1858
  ident: ref56
  publication-title: J Appl Math Phys
– ident: ref22
  doi: 10.2217/cer.15.12
– ident: ref36
  doi: 10.1006/jcss.1999.1690
– ident: ref6
  doi: 10.1097/MLR.0b013e3181de9e17
– ident: ref21
  doi: 10.1016/j.jbi.2013.12.012
– ident: ref24
  doi: 10.1145/1141277.1141415
– volume: 2010
  start-page: 192
  year: 2010
  ident: ref7
  publication-title: AMIA Annu Symp Proc
– reference: 23304365 - AMIA Annu Symp Proc. 2012;2012:901-10
– reference: 27454168 - BMC Med Inform Decis Mak. 2016 Jul 25;16 Suppl 3:89
– reference: 25959863 - J Comp Eff Res. 2015 May 11;:1-7
– reference: 21346967 - AMIA Annu Symp Proc. 2010 Nov 13;2010:192-6
– reference: 24821743 - J Am Med Inform Assoc. 2014 Jul-Aug;21(4):578-82
– reference: 23531748 - J Am Med Inform Assoc. 2013 Jun;20(e1):e147-54
– reference: 21263077 - Arch Intern Med. 2011 May 23;171(10):897-903
– reference: 20473190 - Med Care. 2010 Jun;48(6 Suppl):S106-13
– reference: 24370496 - J Biomed Inform. 2014 Apr;48:160-70
– reference: 11470218 - Artif Intell Med. 2001 Aug;23(1):89-109
– reference: 10851218 - Circulation. 2000 Jun 13;101(23):E215-20
– reference: 22262586 - Pharmacoepidemiol Drug Saf. 2012 Jan;21 Suppl 1:1-8
– reference: 26262116 - Stud Health Technol Inform. 2015 ;216:574-8
– reference: 20826840 - Sci Transl Med. 2010 Sep 8;2(48):48ra65
– reference: 24270849 - Nat Biotechnol. 2013 Dec;31(12):1102-10
– reference: 26159465 - J Am Med Inform Assoc. 2015 Nov;22(6):1212-9
– reference: 19567788 - J Am Med Inform Assoc. 2009 Sep-Oct;16(5):624-30
– reference: 20450985 - J Biomed Inform. 2010 Oct;43(5):669-85
– reference: 22511014 - J Am Med Inform Assoc. 2012 Sep-Oct;19(5):758-64
– reference: 22549152 - Nat Rev Genet. 2012 May 02;13(6):395-405
– reference: 21901084 - PLoS Comput Biol. 2011 Aug;7(8):e1002141
– reference: 22331853 - IEEE Trans Pattern Anal Mach Intell. 2012 Dec;34(12):2393-406
SSID ssj0001416667
Score 2.4752169
Snippet There is an urgent need for the development of global analytic frameworks that can perform analyses in a privacy-preserving federated environment across...
Background: There is an urgent need for the development of global analytic frameworks that can perform analyses in a privacy-preserving federated environment...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e20
SubjectTerms Algorithms
Cardiovascular disease
Dictionaries
Disease management
Electronic health records
Informatics
Original Paper
Patients
Privacy
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFA46QXwR706nRBB86uwl6UUQEdkYwmSgg72VJG1mYXY6N3H_3nParm46felLTml6Ls13ek6-EHIuIxONKw3AQr7BXNM3pG1jqsK1KaUGFJ2xfT64rS677_Hed_9TocD3pakdnifVHQ3qn2_TGwj4a2xjBge6xCp0tnenDliGrZI1WJU8DNJ2AfWz_y0MC2Reztu45LbFdekX2PzZMzm3CDW3yGaBHultbu5tshKnO2S9XdTHd4nqjJIPoaYGdlbgVyDt007OnEofk5cE3hVQNy1IVfs0SamgTeSTAMgZ0cb3rrcrOtdOREUa0Rl9yR7pNhtPdy2jOEbBUMzyx4YIIuYrHShb2w6EbOyqGHCdGSNVjlKO53GhbMXjwFMBXDV3pMO1yyRTktvc2SeVdJjGh4R6nFnaynjCBNNcS1ewwGHCjCBzY9qrEmOmxFAVHON41MUghFwDlR6WSg9R6VVyUcq_5uwaf0rWZjYJZ04SYnoUYGXUrpKzchjiA4seIo2HE5ABUOcgow5M7iA3YfkoO0BiXgtGvAXjlgLIvb04kibPGQc3DzImx6P_p3VMNgBg-Vh9spwaqYxHk_gEQMxYnmbe-QWPm_ZD
  priority: 102
  providerName: Scholars Portal
Title Privacy-Preserving Patient Similarity Learning in a Federated Environment: Development and Analysis
URI https://www.ncbi.nlm.nih.gov/pubmed/29653917
https://www.proquest.com/docview/2511935012
https://www.proquest.com/docview/2025319587
https://pubmed.ncbi.nlm.nih.gov/PMC5924379
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ZS8QwEA4eIL6It-uxRBB8ivZImtYXUdlFBGXxgH0rSdpoQbseq-C_d6bNdl1FX_qSgYaZTPJNZvINIXs689C4mgEWihmPvJjpIMBQRVhPawsoumL7vIrO7_hFX_TdhdubK6sc7YnVRp0NDN6RHyIUTjALFhw_vzDsGoXZVddCY5rMInUZlnTJvhzfsXBMismaqxFcMzrEhHX1zOcAYA-fPIt-AcyfdZLfDp7uIllwiJGe1CZeIlN5uUzmLl1OfIWY3mvxocwnw2oK9PzynvZqtlR6UzwVELoC0qaOSPWeFiVVtIscEgAzM9oZv3Q7ot9KiKgqMzqiLFkld93O7dk5c60TmOF-PGQqyXhsbGICG4TgpnlkcsByXo70OMaEUgplAiPyRJoEvlaEOhQ24pobLQIRrpGZclDmG4RKwX3rV9xgilthdaR4EnLlZRCtcStbhI2UmBrHK47tLR5TiC9Q6Wmj9BSV3iL7jfxzzajxp-T2yCap86y3dLwOWmS3GQafwESHKvPBO8gAkAtxPcDk1msTNr8KEiTj9WFEThi3EUC-7cmRsnioeLdFUrE3bv4_rS0yD6AqxoyTH26TmeHre74DwGWo29XqbJPZ085V77pdhf_wveTxF1tG9Xw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VWwm4IN4sFDASiJNp4th5ICHEY1db2q5W0Eq9pbZjl0iQLe0W1D_Fb2Qmr-2C4NZLLrYUa2Y8_sYz_gbgmSkCUq7hiIVSLuMg5UYIClWUD4zxiKJrts9pPNmXHw_UwRr86t7CUFll5xNrR13MLd2RbxIUzigLJt4cf-fUNYqyq10LjcYstt35TwzZTl9vfUD9PhdiPNp7P-FtVwFuZZguuM4KmVqfWeFFhBbsYusQ5gSOmGOsjZJEaSusclliM_x6FZlI-VgaaY0S1CUCXf66jDCUGcD6u9F09ml5qyMpDZc07JDoDOJNSpHXD4teItCSq6ffX5D2z8rMC0fd-AZcbzEqe9sY1U1Yc9UtuLLbZuFvg52dlD-0PedUv0G-pjpis4aflX0uv5UYLCO2Zy116xErK6bZmFgrENgWbLR8W_eKXShaYroqWEeScgf2L0Wsd2FQzSt3H1iiZOjDmo1MS6-8ibXMIqmDAuND6ZMh8E6IuW2ZzKmhxtccIxoSet4LPSehD-FFP_-44fD458yNTid5u5dP86XlDeFpP4y7kFIrunLzM5yD0DEi3h5c3L1Ghf2vREb0vyGOJCvK7ScQw_fqSFV-qZm-VVbzRT74_7KewNXJ3u5OvrM13X4I1xDSpZTvCqMNGCxOztwjhE0L87i1VQaHl709fgN1BDAz
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRaq4IN4sLWAkECeziWPHCRJCiHbVUqhWgkp7C7Zjl0g0W9otqH-NX8dMXtsFwa2XXGwp0bz8TWb8DcAzW0akXMsRC2VcplHGrRCUqqgQWRsQRTdsnwfp7qF8P1OzNfjV34Whtso-JjaBupw7-kc-JiicUxVMjEPXFjHdnrw5-c5pghRVWvtxGq2J7PuLn5i-nb3e20ZdPxdisvP53S7vJgxwJ-NswU1eysyF3IkgErRmnzqPkCfyxCLjXKK1Mk445XPtcnwGldhEhVRa6awSNDECw_81naiYfEzP9PL_jqSCnG55IjEspGMqljdXjF4i5JKr5-Bf4PbPHs1Lh97kJtzo0Cp725rXLVjz9W3Y-NjV4--Am55WP4y74NTJQVGnPmLTlqmVfaqOK0ybEeWzjsT1iFU1M2xC_BUIcUu2s7xl94pdal9ipi5ZT5dyFw6vRKj3YL2e1_4BMK1kHOKGl8zIoIJNjcwTaaISM0UZ9Ah4L8TCdZzmNFrjW4G5DQm9GIRekNBH8GLYf9Kyefxz51avk6Lz6rNiaYMjeDosoz9SkcXUfn6OexBEJsTggx93v1Xh8CqRExFwjCt6RbnDBuL6Xl2pq68N57fKG-bIh___rCewgU5RfNg72N-E64jtMip8xckWrC9Oz_0jxE8L-7gxVAZfrtozfgMDGjMD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Privacy-Preserving+Patient+Similarity+Learning+in+a+Federated+Environment%3A+Development+and+Analysis&rft.jtitle=JMIR+medical+informatics&rft.au=Lee%2C+Junghye&rft.au=Sun%2C+Jimeng&rft.au=Wang%2C+Fei&rft.au=Wang%2C+Shuang&rft.date=2018-04-13&rft.pub=JMIR+Publications&rft.eissn=2291-9694&rft.volume=6&rft.issue=2&rft_id=info:doi/10.2196%2Fmedinform.7744&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2291-9694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2291-9694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2291-9694&client=summon