Semiparametric Multinomial Logistic Regression for Multivariate Point Pattern Data
We propose a new method for analysis of multivariate point pattern data observed in a heterogeneous environment and with complex intensity functions. We suggest semiparametric models for the intensity functions that depend on an unspecified factor common to all types of points. This is for example w...
Saved in:
Published in | Journal of the American Statistical Association Vol. 117; no. 539; pp. 1500 - 1515 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Alexandria
Taylor & Francis
14.09.2022
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We propose a new method for analysis of multivariate point pattern data observed in a heterogeneous environment and with complex intensity functions. We suggest semiparametric models for the intensity functions that depend on an unspecified factor common to all types of points. This is for example well suited for analyzing spatial covariate effects on events such as street crime activities that occur in a complex urban environment. A multinomial conditional composite likelihood function is introduced for estimation of intensity function regression parameters and the asymptotic joint distribution of the resulting estimators is derived under mild conditions. Crucially, the asymptotic covariance matrix depends on ratios of cross pair correlation functions of the multivariate point process. To make valid statistical inference without restrictive assumptions, we construct consistent nonparametric estimators for these ratios. Finally, we construct standardized residual plots, predictive probability plots, and semiparametric intensity plots to validate and to visualize the findings of the model. The effectiveness of the proposed methodology is demonstrated through extensive simulation studies and an application to analyzing the effects of socio-economic and demographical variables on occurrences of street crimes in Washington DC.
Supplementary materials
for this article are available online. |
---|---|
AbstractList | We propose a new method for analysis of multivariate point pattern data observed in a heterogeneous environment and with complex intensity functions. We suggest semiparametric models for the intensity functions that depend on an unspecified factor common to all types of points. This is for example well suited for analyzing spatial covariate effects on events such as street crime activities that occur in a complex urban environment. A multinomial conditional composite likelihood function is introduced for estimation of intensity function regression parameters and the asymptotic joint distribution of the resulting estimators is derived under mild conditions. Crucially, the asymptotic covariance matrix depends on ratios of cross pair correlation functions of the multivariate point process. To make valid statistical inference without restrictive assumptions, we construct consistent nonparametric estimators for these ratios. Finally, we construct standardized residual plots, predictive probability plots, and semiparametric intensity plots to validate and to visualize the findings of the model. The effectiveness of the proposed methodology is demonstrated through extensive simulation studies and an application to analyzing the effects of socio-economic and demographical variables on occurrences of street crimes in Washington DC.
Supplementary materials
for this article are available online. We propose a new method for analysis of multivariate point pattern data observed in a heterogeneous environment and with complex intensity functions. We suggest semiparametric models for the intensity functions that depend on an unspecified factor common to all types of points. This is for example well suited for analyzing spatial covariate effects on events such as street crime activities that occur in a complex urban environment. A multinomial conditional composite likelihood function is introduced for estimation of intensity function regression parameters and the asymptotic joint distribution of the resulting estimators is derived under mild conditions. Crucially, the asymptotic covariance matrix depends on ratios of cross pair correlation functions of the multivariate point process. To make valid statistical inference without restrictive assumptions, we construct consistent nonparametric estimators for these ratios. Finally, we construct standardized residual plots, predictive probability plots, and semiparametric intensity plots to validate and to visualize the findings of the model. The effectiveness of the proposed methodology is demonstrated through extensive simulation studies and an application to analyzing the effects of socio-economic and demographical variables on occurrences of street crimes in Washington DC. Supplementary materials for this article are available online. |
Author | Hessellund, Kristian Bjørn Xu, Ganggang Waagepetersen, Rasmus Guan, Yongtao |
Author_xml | – sequence: 1 givenname: Kristian Bjørn surname: Hessellund fullname: Hessellund, Kristian Bjørn organization: Department of Mathematical Sciences, Aalborg University – sequence: 2 givenname: Ganggang surname: Xu fullname: Xu, Ganggang organization: Department of Management Science, University of Miami – sequence: 3 givenname: Yongtao surname: Guan fullname: Guan, Yongtao organization: Department of Management Science, University of Miami – sequence: 4 givenname: Rasmus surname: Waagepetersen fullname: Waagepetersen, Rasmus organization: Department of Mathematical Sciences, Aalborg University |
BookMark | eNp9UE1LAzEUDFLBtvoThAXPW_Oxm6Q3pX5CxVIVvIXsJltSdpOapEr_vVm2Xn2H92CYmcfMBIyssxqASwRnCHJ4DRHFqCjnMwxxgjglHOETMEYlYTlmxecIjHtO3pPOwCSELUzDOB-D9ZvuzE562enoTZ297NtorOuMbLOl25gQE7jWG69DMM5mjfMD51t6I6POVs7YmK1kjNrb7E5GeQ5OG9kGfXG8U_DxcP--eMqXr4_Pi9tlXheIx1xySBqFlOJKKS0VY7DGRVMxWtUFJClYPS90pWqJKMWwbDSsCJ3ruVKM65KSKbgafHfefe11iGLr9t6mlwIzRBChLK0pKAdW7V0IXjdi500n_UEgKPr6xF99oq9PHOtLuptBZ2zK3Mkf51slojy0zjde2toEQf63-AWNmHnA |
CitedBy_id | crossref_primary_10_1080_00949655_2022_2066672 |
Cites_doi | 10.1007/s10940-014-9223-8 10.1080/01621459.2017.1421543 10.1111/1745-9133.12303 10.4310/SII.2012.v5.n2.a6 10.1111/rssc.12277 10.1111/biom.12339 10.1111/rssc.12054 10.1080/03610926.2019.1651860 10.1111/j.1538-4632.2006.00697.x 10.1111/j.2517-6161.1972.tb00899.x 10.1111/j.1467-9876.2005.05373.x 10.1111/rssc.12281 10.1023/B:CRIM.0000037550.40559.1c 10.1080/07418825.2012.673632 10.1111/sjos.12389 10.1007/s11222-019-09911-y 10.1198/016214508000000391 10.1093/biomet/asy001 10.1017/S0266466600011646 10.2307/2983529 10.1016/j.jspi.2018.11.004 |
ContentType | Journal Article |
Copyright | 2021 American Statistical Association 2021 2021 American Statistical Association |
Copyright_xml | – notice: 2021 American Statistical Association 2021 – notice: 2021 American Statistical Association |
DBID | AAYXX CITATION 8BJ FQK JBE K9. |
DOI | 10.1080/01621459.2020.1863812 |
DatabaseName | CrossRef International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences ProQuest Health & Medical Complete (Alumni) |
DatabaseTitle | CrossRef International Bibliography of the Social Sciences (IBSS) ProQuest Health & Medical Complete (Alumni) |
DatabaseTitleList | International Bibliography of the Social Sciences (IBSS) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics |
EISSN | 1537-274X |
EndPage | 1515 |
ExternalDocumentID | 10_1080_01621459_2020_1863812 1863812 |
Genre | Theory and Methods |
GroupedDBID | -DZ -~X ..I .7F .QJ 0BK 0R~ 29L 30N 4.4 5GY 5RE 692 7WY 85S 8FL AAAVI AAAVZ AABCJ AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABBKH ABCCY ABEHJ ABFAN ABFIM ABJVF ABLIJ ABLJU ABPEM ABPFR ABPPZ ABQHQ ABTAI ABXUL ABYWD ACGFO ACGFS ACGOD ACIWK ACMTB ACNCT ACTIO ACTMH ADCVX ADGTB ADLSF AEGYZ AEISY AENEX AEOZL AEPSL AEYOC AFFNX AFOLD AFSUE AFVYC AFWLO AFXHP AGDLA AGMYJ AHDLD AIJEM AIRXU AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW BLEHA CCCUG CJ0 CS3 D0L DGEBU DKSSO DU5 EBS E~A E~B F5P FJW FUNRP FVPDL GROUPED_ABI_INFORM_COMPLETE GTTXZ H13 HF~ HZ~ H~9 H~P IAO IEA IGG IOF IPNFZ IPO J.P JAS JMS K60 K6~ KYCEM M4Z MS~ MW2 N95 NA5 NY~ O9- OFU OK1 P2P RIG RNANH ROSJB RTWRZ RWL RXW S-T SNACF TAE TEJ TFL TFT TFW TN5 TTHFI U5U UPT UT5 UU3 V1K WH7 WZA XFK YQT YYM ZGOLN ~S~ AAHBH AAYXX ABJNI ABPAQ ABRLO ABXYU AHDZW ALIPV AWYRJ CITATION TBQAZ TDBHL TUROJ 8BJ ADMHG FQK JBE K9. |
ID | FETCH-LOGICAL-c418t-a803fd1dd8dddead770c24fb76bc403080c94ebdca166205fe0b369e9dd78e563 |
ISSN | 0162-1459 |
IngestDate | Thu Oct 10 18:57:35 EDT 2024 Fri Aug 23 02:37:28 EDT 2024 Tue Jul 04 18:16:15 EDT 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 539 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c418t-a803fd1dd8dddead770c24fb76bc403080c94ebdca166205fe0b369e9dd78e563 |
OpenAccessLink | https://figshare.com/articles/journal_contribution/Semi-parametric_multinomial_logistic_regression_for_multivariate_point_pattern_data/13395532/2/files/25801837.pdf |
PQID | 2713136731 |
PQPubID | 41715 |
PageCount | 16 |
ParticipantIDs | crossref_primary_10_1080_01621459_2020_1863812 proquest_journals_2713136731 informaworld_taylorfrancis_310_1080_01621459_2020_1863812 |
PublicationCentury | 2000 |
PublicationDate | 2022-09-14 |
PublicationDateYYYYMMDD | 2022-09-14 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | Alexandria |
PublicationPlace_xml | – name: Alexandria |
PublicationTitle | Journal of the American Statistical Association |
PublicationYear | 2022 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | CIT0010 CIT0012 CIT0011 Waagepetersen R. P. (CIT0022) 2016; 65 CIT0014 CIT0013 CIT0016 CIT0015 CIT0018 CIT0017 CIT0019 CIT0021 CIT0020 CIT0001 Buerger P. J. (CIT0004) 1995; 4 CIT0003 CIT0025 CIT0002 CIT0005 CIT0026 CIT0007 CIT0006 Wilson J. Q. (CIT0024) 1982; 249 CIT0009 CIT0008 Weisburd D. (CIT0023) 1993; 4 |
References_xml | – ident: CIT0014 doi: 10.1007/s10940-014-9223-8 – ident: CIT0025 doi: 10.1080/01621459.2017.1421543 – ident: CIT0016 doi: 10.1111/1745-9133.12303 – ident: CIT0026 doi: 10.4310/SII.2012.v5.n2.a6 – ident: CIT0021 doi: 10.1111/rssc.12277 – ident: CIT0017 doi: 10.1111/biom.12339 – ident: CIT0001 doi: 10.1111/rssc.12054 – ident: CIT0013 doi: 10.1080/03610926.2019.1651860 – volume: 65 start-page: 77 year: 2016 ident: CIT0022 publication-title: Journal of the Royal Statistical Society contributor: fullname: Waagepetersen R. P. – ident: CIT0006 doi: 10.1111/j.1538-4632.2006.00697.x – ident: CIT0007 doi: 10.1111/j.2517-6161.1972.tb00899.x – ident: CIT0011 doi: 10.1111/j.1467-9876.2005.05373.x – volume: 4 start-page: 237 year: 1995 ident: CIT0004 publication-title: Crime and Place contributor: fullname: Buerger P. J. – ident: CIT0018 doi: 10.1111/rssc.12281 – ident: CIT0020 doi: 10.1023/B:CRIM.0000037550.40559.1c – ident: CIT0003 doi: 10.1080/07418825.2012.673632 – ident: CIT0002 doi: 10.1111/sjos.12389 – volume: 4 start-page: 45 year: 1993 ident: CIT0023 publication-title: Advances in Criminological Theory contributor: fullname: Weisburd D. – volume: 249 start-page: 29 year: 1982 ident: CIT0024 publication-title: Atlantic Monthly contributor: fullname: Wilson J. Q. – ident: CIT0005 doi: 10.1007/s11222-019-09911-y – ident: CIT0015 doi: 10.1198/016214508000000391 – ident: CIT0008 doi: 10.1093/biomet/asy001 – ident: CIT0019 – ident: CIT0009 doi: 10.1017/S0266466600011646 – ident: CIT0010 doi: 10.2307/2983529 – ident: CIT0012 doi: 10.1016/j.jspi.2018.11.004 |
SSID | ssj0000788 |
Score | 2.4658723 |
Snippet | We propose a new method for analysis of multivariate point pattern data observed in a heterogeneous environment and with complex intensity functions. We... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Publisher |
StartPage | 1500 |
SubjectTerms | Asymptotic properties Conditional likelihood Covariance matrix Crime Cross pair correlation functions Demographic variables Economic analysis Estimators Multivariate analysis Multivariate point process Regression analysis Simulation Socioeconomic factors Statistical analysis Statistical inference Statistical methods Statistics Street crime Urban areas Urban environments |
Title | Semiparametric Multinomial Logistic Regression for Multivariate Point Pattern Data |
URI | https://www.tandfonline.com/doi/abs/10.1080/01621459.2020.1863812 https://www.proquest.com/docview/2713136731 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxsxEBZuesmlpC-aJg069BbW7PtxbEpLCDSU1AH3tOi1JiVeF682h_ym_sjOSNoXcenrspi1LAnNp5nReOYTIW-rhCvGQ9B-yDMUJ5EpVuZeIMA4CrAYzPAUfLpMz6_ji2WynM1-jLKWWs3n4n5nXcm_SBXegVyxSvYvJNt3Ci_gM8gXniBheP6RjL-o9Q1yd6_xWixxaoppscwYg9Omssdkya9sqqvNKDRt7uCADD7m6efNTa2RpR-jggAAzX7hq47qT8yNv9r0vUO6JqraNOr2trUR616JnH3D_-TP8m3fcNmaoDyrVyvm7CcmArU2JPt1U6802wwBf1B86OFvXcjoijXradACzrt46cIQtFw8uD9kHOJMQ2jreMJVp5YzD87Py4netkWfDqCJ5URyehjcXH9k09Fr22kvXIIlDIkjzmGq8DIHneRyu6dU3O6bR-RxmBUJJpBG_uVg9zNzy2k__65eDJncdw0w8YQmPLkP_ALj7CwOyBMnefrOQu4pman6GdnvBd88J1dT7NER9miHPTpgj8KwdIw9arBHHfYoYu8Fuf74YfH-3HP3c3iwiXPtsdyPKhlImUswkkxmmS_CuOJZykWMPEi-KGLFpWBBmoZ-UimfR2mhCimzXCVp9JLs1ZtavSJUVbkfpqEAbxqZ8xOWJTxF81AJDh3KQzLv1qr8bmlYyqBjt3WLW-Lilm5xD0kxXtFSG8RVFmxl9JvfHnfLX7rd3pQwsQjpDaPg9X90fUT2h-1wTPb0tlVvwKvV_MSA6Sffn57C |
link.rule.ids | 315,786,790,27955,27956,60239,61028 |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEG4MHuTi24ii7sHr4j67u0ejElQgBCHh1vS1hhgWo4sHf70z3d0IGuOBa9Np2k47M23m-4aQyzQUmgsPrB_yDAWhb8DKwnYlOEcJHoMbnoJen3bGwcMknCxhYTCtEt_QaUEUYWw1Xm78jK5S4q4gTEGCbcSZeNAUwxnCQsObFJGaCONw-t_WODK1J1HERpkKxfPXMCv-aYW99Je1Ni6ovUNkNfki8-SltchFS37-4HVcb3W7ZLuMUK3r4kjtkQ2d7ZM6BqUFp_MBGT7p2RQ5w2dYjktaBsSL8GYQ6xpEETQO9XORYptZsLiizwc8zCG2tQbzaZZbA0PtmVm3POeHZNy-G9107LI2gw0KjHObx46fKlepWIGB5CqKHOkFqYiokAFy4DgyCbRQkruUek6Yakf4NNGJUlGsQ-ofkVo2z_QxsXQaw0PQkxBJIWt6yKNQUDQNqRQwoGqQVqUR9lpQcDC3YjYt94rhXrFyrxokWdYby83fR1oUKmH-P7LNSsmsvM3vDCbmI7Wd756sMfQF2eqMel3Wve8_npK6hzgKrEURNEktf1voM4hucnFuju8X5T_sfg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6iIL34FqtV9-B16z6z26NYS9VaSrXgLWxeUqTbYrce_PXOJLtoFfHQa9gJSWYyM1nm-4aQCx1zlfEAvB_yDEVxaMDK3PUFBEcBESMzPAUPfdodRXfPcVVNOC_LKvENrS1RhPHVeLlnUlcVcZeQpSC_NsJMAhhKwYSwz_AGxWCJKA6v_-WME9N6EkVclKlAPH9NsxSelshLfzlrE4E624RXa7eFJ6_NRcGb4uMHreNKm9shW2V-6lxZg9olayrfIzVMSS2j8z4ZPqrJGBnDJ9iMSzgGwovgZhDrGTwRDA7Viy2wzR3Ym_3mHZ7lkNk6g-k4L5yBIfbMnXZWZAdk1Ll5uu66ZWcGF9SXFm6WeqGWvpSpBPeYySTxRBBpnlAuImTA8UQrUlyKzKc08GKtPB7SlmpJmaQqpuEhWc-nuToijtIpPAMDAXkUcqbHWRJzio5BCw4TyjppVgphM0vAwfyK17Q8K4ZnxcqzqpPWd7Wxwvz50LZNCQv_kW1UOmblXZ4zWFiIxHahf7zC1Odkc9DusN5t__6E1AIEUWAjiqhB1ou3hTqF1KbgZ8Z4PwEgHesr |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semiparametric+Multinomial+Logistic+Regression+for+Multivariate+Point+Pattern+Data&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Hessellund%2C+Kristian+Bj%C3%B8rn&rft.au=Xu%2C+Ganggang&rft.au=Guan%2C+Yongtao&rft.au=Waagepetersen%2C+Rasmus&rft.date=2022-09-14&rft.pub=Taylor+%26+Francis&rft.issn=0162-1459&rft.eissn=1537-274X&rft.volume=117&rft.issue=539&rft.spage=1500&rft.epage=1515&rft_id=info:doi/10.1080%2F01621459.2020.1863812&rft.externalDocID=1863812 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon |