Electrodeposited Co-Doped Fe3O4 Thin Films as Efficient Catalysts for the Oxygen Evolution Reaction
The development of highly active electrocatalysts at a low cost is essential to the process of generating hydrogen fuel through electrochemical and photoelectrochemical water splitting. Here, we report a comprehensive investigation of the one-step electrodeposited cobalt-doped magnetite (CoxFe3-xO4,...
Saved in:
Published in | Electrochimica acta Vol. 210; pp. 942 - 949 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
20.08.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The development of highly active electrocatalysts at a low cost is essential to the process of generating hydrogen fuel through electrochemical and photoelectrochemical water splitting. Here, we report a comprehensive investigation of the one-step electrodeposited cobalt-doped magnetite (CoxFe3-xO4, 0<x<1) thin films as active and stable OER catalysts in alkaline solutions. The CoxFe3-xO4 thin film electrode can be fabricated in minutes or even tens of seconds. The Co-doping concentration, thickness, and orientation of the CoxFe3-xO4 films can be simply controlled by varying the deposition potential, deposition time, and the substrate, respectively. The dependences of the catalytic activity of the CoxFe3-xO4 films on the composition, thickness, and orientation of growth are explored. The CoxFe3-xO4 films exhibit greatly enhanced catalytic activities toward the OER compared to the Fe3O4 thin film. The polycrystalline CoxFe3-xO4 film deposited at −0.88VAg/AgCl for 150seconds exhibits the highest catalytic activity with an overpotential of ∼0.42V at a current density of 10mAcm−2, a Tafel slope of 53mVdec−1, and an exchange current density of about 2.39×10−10Acm−2, which are comparable to those of Co3O4. Besides, the CoxFe3-xO4 films possess good stability during the long-term electrolysis at a current density of 10mAcm−2 in 1M NaOH. The satisfactory catalytic activity and stability combined with the simplicity of fabrication make the electrodeposited CoxFe3-xO4 films economically and environmentally preferable compared to Co3O4 as catalysts for the oxygen evolution reaction. |
---|---|
AbstractList | The development of highly active electrocatalysts at a low cost is essential to the process of generating hydrogen fuel through electrochemical and photoelectrochemical water splitting. Here, we report a comprehensive investigation of the one-step electrodeposited cobalt-doped magnetite (CoxFe3-xO4, 0<x<1) thin films as active and stable OER catalysts in alkaline solutions. The CoxFe3-xO4 thin film electrode can be fabricated in minutes or even tens of seconds. The Co-doping concentration, thickness, and orientation of the CoxFe3-xO4 films can be simply controlled by varying the deposition potential, deposition time, and the substrate, respectively. The dependences of the catalytic activity of the CoxFe3-xO4 films on the composition, thickness, and orientation of growth are explored. The CoxFe3-xO4 films exhibit greatly enhanced catalytic activities toward the OER compared to the Fe3O4 thin film. The polycrystalline CoxFe3-xO4 film deposited at −0.88VAg/AgCl for 150seconds exhibits the highest catalytic activity with an overpotential of ∼0.42V at a current density of 10mAcm−2, a Tafel slope of 53mVdec−1, and an exchange current density of about 2.39×10−10Acm−2, which are comparable to those of Co3O4. Besides, the CoxFe3-xO4 films possess good stability during the long-term electrolysis at a current density of 10mAcm−2 in 1M NaOH. The satisfactory catalytic activity and stability combined with the simplicity of fabrication make the electrodeposited CoxFe3-xO4 films economically and environmentally preferable compared to Co3O4 as catalysts for the oxygen evolution reaction. |
Author | Yin, Shengjie He, Zhen Han, Shan Liu, Suqin Chen, Lei |
Author_xml | – sequence: 1 givenname: Shan surname: Han fullname: Han, Shan organization: College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China – sequence: 2 givenname: Suqin surname: Liu fullname: Liu, Suqin organization: College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China – sequence: 3 givenname: Shengjie surname: Yin fullname: Yin, Shengjie organization: College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China – sequence: 4 givenname: Lei surname: Chen fullname: Chen, Lei organization: College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China – sequence: 5 givenname: Zhen surname: He fullname: He, Zhen email: zhenhe@csu.edu.cn organization: College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China |
BookMark | eNqNkM1KAzEQgINUsFafwbzArskm2Z-Dh7JuVSgUpJ5Dmp21KdtNSWKxb2-WigcvCgMzDPMNM981mgx2AITuKEkpofn9LoUedFAx0iw2UiJSWvELNKVlwRJWimqCpoRQlvC8zK_Qtfc7QkiRF2SKdDPCzrZwsN4EaHFtk0d7iMUC2Irj9dYMeGH6vcfK46brjDYwBFyroPqTDx531uGwBbz6PL3DgJuj7T-CsQN-hXhULG7QZad6D7ffeYbeFs26fk6Wq6eXer5MNKdlSFSWU6qU4FWmNxoEZaTKeckZrZhquW6zlgpCdEGJKDd5W6qCl7SqoFMbwUXBZqg479XOeu-gkwdn9sqdJCVydCV38seVHF1JImR0FcmHX6Q2QY23B6dM_w9-fuYhvnc04KQfLWlojYvzsrXmzx1fWEmNaQ |
CitedBy_id | crossref_primary_10_1007_s10854_022_08674_z crossref_primary_10_1016_j_ceramint_2023_08_235 crossref_primary_10_1021_acsami_7b04841 crossref_primary_10_1007_s11581_018_2554_y crossref_primary_10_1016_j_jechem_2020_08_040 crossref_primary_10_1021_acsomega_8b01206 crossref_primary_10_1016_j_ijhydene_2018_11_168 crossref_primary_10_1039_D0GC00168F crossref_primary_10_1038_s41467_023_40461_0 crossref_primary_10_1149_1945_7111_abe9ca crossref_primary_10_1016_j_solidstatesciences_2024_107441 crossref_primary_10_3389_fmats_2021_718869 crossref_primary_10_1016_j_apsusc_2017_11_042 crossref_primary_10_1016_j_solidstatesciences_2020_106314 crossref_primary_10_1021_acsami_7b07000 crossref_primary_10_1002_cctc_201801597 crossref_primary_10_5006_3289 crossref_primary_10_1002_cctc_202401749 crossref_primary_10_1016_j_jallcom_2019_03_313 crossref_primary_10_1002_cssc_202401157 crossref_primary_10_1002_smll_202002089 crossref_primary_10_1007_s11664_018_6146_4 crossref_primary_10_1039_C9TA02017A crossref_primary_10_1016_j_electacta_2022_141790 crossref_primary_10_1088_1755_1315_267_2_022034 crossref_primary_10_1016_j_ijhydene_2018_10_198 crossref_primary_10_20964_2021_04_58 crossref_primary_10_1039_D1TA06568H crossref_primary_10_1016_j_inoche_2018_06_008 crossref_primary_10_1016_j_matchemphys_2023_127540 crossref_primary_10_1021_acs_chemrev_7b00051 crossref_primary_10_1016_j_jechem_2017_10_004 crossref_primary_10_3390_molecules26216326 crossref_primary_10_1016_j_electacta_2018_03_186 crossref_primary_10_1016_j_matchemphys_2024_129948 crossref_primary_10_1016_j_ccr_2021_214103 crossref_primary_10_1016_j_apcatb_2023_123567 crossref_primary_10_1021_acscatal_0c04789 crossref_primary_10_1021_jacs_3c13595 crossref_primary_10_1016_j_electacta_2016_10_089 crossref_primary_10_1021_acsaem_9b00197 crossref_primary_10_1016_j_mtcomm_2023_106045 crossref_primary_10_1016_j_ceramint_2019_12_091 crossref_primary_10_1016_j_jechem_2019_03_030 crossref_primary_10_1016_j_jscs_2022_101595 crossref_primary_10_1002_celc_202300235 crossref_primary_10_1016_j_ijhydene_2025_03_129 |
Cites_doi | 10.1039/b304061e 10.1038/nature07877 10.1039/C5TA02625C 10.1021/jp511561k 10.1021/acs.chemmater.5b03404 10.1557/jmr.2006.0030 10.1021/jz501077u 10.1021/cm303289t 10.1021/cm3012205 10.1021/cm1020614 10.1016/j.jpowsour.2015.01.192 10.1016/j.cattod.2011.02.052 10.1021/ja908730h 10.1126/science.1187721 10.1021/acs.jpclett.5b01650 10.1038/nchem.1301 10.1021/cm4040903 10.1021/ja203975z 10.1021/ja413147e 10.1021/ja906274t 10.1002/anie.201306588 10.1021/ja310286h 10.1021/cs500713d 10.1039/c3ta12960h 10.1021/ja411835a 10.1557/S0883769400051253 10.1039/C5CC01558H 10.1021/acs.chemmater.5b03148 10.1021/ja307507a 10.1021/ja909295y 10.1021/ja205647m 10.1038/srep05767 10.1016/j.susc.2008.12.022 10.1021/jz2016507 10.1126/science.1162018 10.1021/ja806400e 10.1021/cr1002326 10.1021/am508136k 10.1021/jz500610u 10.1021/nl500359e 10.1021/ja4027715 10.1016/0013-4686(84)85004-5 10.1021/jacs.5b00281 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ltd |
Copyright_xml | – notice: 2016 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.electacta.2016.05.194 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-3859 |
EndPage | 949 |
ExternalDocumentID | 10_1016_j_electacta_2016_05_194 S0013468616312853 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNUV ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSK SSZ T5K TWZ UPT WH7 XPP YK3 ZMT ~02 ~G- 29G 41~ 53G AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIDUJ AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB HMU HVGLF HZ~ H~9 LPU R2- SC5 SCB SCH SEW SSH T9H VH1 WUQ XOL ZY4 |
ID | FETCH-LOGICAL-c418t-a2611aa5492cbce5130964843193ad4cd2d1500c71058b6d8a748199efab54573 |
IEDL.DBID | .~1 |
ISSN | 0013-4686 |
IngestDate | Tue Jul 01 01:53:25 EDT 2025 Thu Apr 24 23:07:40 EDT 2025 Fri Feb 23 02:28:52 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | oxygen evolution reaction thin film electrodeposition CoxFe3-xO4 catalytic activity |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c418t-a2611aa5492cbce5130964843193ad4cd2d1500c71058b6d8a748199efab54573 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1016_j_electacta_2016_05_194 crossref_citationtrail_10_1016_j_electacta_2016_05_194 elsevier_sciencedirect_doi_10_1016_j_electacta_2016_05_194 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-08-20 |
PublicationDateYYYYMMDD | 2016-08-20 |
PublicationDate_xml | – month: 08 year: 2016 text: 2016-08-20 day: 20 |
PublicationDecade | 2010 |
PublicationTitle | Electrochimica acta |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Zhu, Wen, Leubner, Oschatz, Liu, Holzschuh, Simon, Kaskel, Eychmuller (bib0110) 2015; 51 Kothari, Kulp, Limmer, Poizot, Bohannan, Switzer (bib0155) 2006; 21 Trasatti (bib0025) 1984; 29 Switzer, Gudavarthy, Kulp, Mu, He, Wessel (bib0145) 2010; 132 Duan, Bozoglian, Mandal, Stewart, Privalov, Llobet, Sun (bib0035) 2012; 4 Ma, Mu, Li, Jin, Cheng, Lu, Hao, Qiao (bib0210) 2010; 132 Gong, Li, Wang, Liang, Wu, Zhou, Wang, Regier, Wei, Dai (bib0065) 2013; 135 Zhong, Gamelin (bib0010) 2010; 132 Bikkarolla, Papakonstantinou (bib0105) 2015; 281 Wang, Ding, Zhao, Xu, Meng, Qiu (bib0215) 2011; 175 Hurst (bib0015) 2010; 328 McDonald, Choi (bib0075) 2011; 23 Deng, Tuysuz (bib0080) 2014; 4 Liu, Chang, Luo, Xu, Lei, Liu, Sun (bib0100) 2014; 26 Zou, Burke, Kast, Fan, Danilovic, Boettcher (bib0170) 2015; 27 Burke, Kast, Trotochaud, Smith, Boettcher (bib0130) 2015; 137 Kim, Woo, Regis, Choi (bib0095) 2014; 5 Koza, He, Miller, Switzer (bib0085) 2012; 24 Gerken, McAlpin, Chen, Rigsby, Casey, Britt, Stahl (bib0175) 2011; 133 Hu, Peng, Li (bib0205) 2008; 130 Addadi, Geva (bib0180) 2003; 5 Trotochaud, Ranney, Williams, Boettcher (bib0135) 2012; 134 Lee, Suntivich, May, Perry, Shao-Horn (bib0030) 2012; 3 Huynh, Bediako, Nocera (bib0045) 2014; 136 Su, Dou, Wang (bib0190) 2014; 4 Sun, Ang, Tade, Wang (bib0195) 2013; 1 Chemelewski, Lee, Lin, Bard, Mullins (bib0055) 2014; 136 Garcia, Romero, Gonzalez, Goldberg (bib0185) 2009; 603 Walter, Warren, McKone, Boettcher, Mi, Santori, Lewis (bib0005) 2010; 110 Robinson, Go, Mui, Gardner, Zhang, Mastrogiovanni, Garfunkel, Li, Greenblatt, Dismukes (bib0070) 2013; 135 Katsounaros, Cherevko, Zeradjanin, Mayrhofer (bib0020) 2014; 53 Switzer, Hodes (bib0165) 2010; 35 Burke, Zou, Enman, Kellon, Gabor, Pledger, Boettcher (bib0140) 2015; 6 He, Gudavarthy, Koza, Switzer (bib0160) 2011; 133 Jang, Kwak, Kwon, Jung, Im, Park, Park (bib0115) 2015; 119 Kanan, Nocera (bib0060) 2008; 321 Li, Ma, Zhou, Chen, Zhou, Liu, Liu, Peng, Liang, Wang (bib0120) 2015; 3 He, Koza, Mu, Miller, Bohannan, Switzer (bib0150) 2013; 25 Qiu, Leung, Zhang, Hua, Lin, Wei, Tsui, Zhang, Yang, Fan (bib0050) 2014; 14 Burke, Enman, Batchellor, Zou, Boettcher (bib0125) 2015; 27 Xie, Li, Liu, Haruta, Shen (bib0200) 2009; 458 Stoerzinger, Qiao, Biegalski, Shao-Horn (bib0040) 2014; 5 Chen, Zhao, Sun, Ao, Xie, Wei, Wang (bib0090) 2015; 7 Koza (10.1016/j.electacta.2016.05.194_bib0085) 2012; 24 Kothari (10.1016/j.electacta.2016.05.194_bib0155) 2006; 21 McDonald (10.1016/j.electacta.2016.05.194_bib0075) 2011; 23 Huynh (10.1016/j.electacta.2016.05.194_bib0045) 2014; 136 Ma (10.1016/j.electacta.2016.05.194_bib0210) 2010; 132 Duan (10.1016/j.electacta.2016.05.194_bib0035) 2012; 4 Bikkarolla (10.1016/j.electacta.2016.05.194_bib0105) 2015; 281 Walter (10.1016/j.electacta.2016.05.194_bib0005) 2010; 110 Trotochaud (10.1016/j.electacta.2016.05.194_bib0135) 2012; 134 Burke (10.1016/j.electacta.2016.05.194_bib0130) 2015; 137 Jang (10.1016/j.electacta.2016.05.194_bib0115) 2015; 119 Wang (10.1016/j.electacta.2016.05.194_bib0215) 2011; 175 Chen (10.1016/j.electacta.2016.05.194_bib0090) 2015; 7 Qiu (10.1016/j.electacta.2016.05.194_bib0050) 2014; 14 Burke (10.1016/j.electacta.2016.05.194_bib0140) 2015; 6 Xie (10.1016/j.electacta.2016.05.194_bib0200) 2009; 458 Zou (10.1016/j.electacta.2016.05.194_bib0170) 2015; 27 Stoerzinger (10.1016/j.electacta.2016.05.194_bib0040) 2014; 5 Kanan (10.1016/j.electacta.2016.05.194_bib0060) 2008; 321 Lee (10.1016/j.electacta.2016.05.194_bib0030) 2012; 3 He (10.1016/j.electacta.2016.05.194_bib0160) 2011; 133 Burke (10.1016/j.electacta.2016.05.194_bib0125) 2015; 27 Switzer (10.1016/j.electacta.2016.05.194_bib0145) 2010; 132 He (10.1016/j.electacta.2016.05.194_bib0150) 2013; 25 Sun (10.1016/j.electacta.2016.05.194_bib0195) 2013; 1 Trasatti (10.1016/j.electacta.2016.05.194_bib0025) 1984; 29 Chemelewski (10.1016/j.electacta.2016.05.194_bib0055) 2014; 136 Switzer (10.1016/j.electacta.2016.05.194_bib0165) 2010; 35 Katsounaros (10.1016/j.electacta.2016.05.194_bib0020) 2014; 53 Su (10.1016/j.electacta.2016.05.194_bib0190) 2014; 4 Gong (10.1016/j.electacta.2016.05.194_bib0065) 2013; 135 Kim (10.1016/j.electacta.2016.05.194_bib0095) 2014; 5 Zhong (10.1016/j.electacta.2016.05.194_bib0010) 2010; 132 Li (10.1016/j.electacta.2016.05.194_bib0120) 2015; 3 Hurst (10.1016/j.electacta.2016.05.194_bib0015) 2010; 328 Robinson (10.1016/j.electacta.2016.05.194_bib0070) 2013; 135 Hu (10.1016/j.electacta.2016.05.194_bib0205) 2008; 130 Zhu (10.1016/j.electacta.2016.05.194_bib0110) 2015; 51 Liu (10.1016/j.electacta.2016.05.194_bib0100) 2014; 26 Addadi (10.1016/j.electacta.2016.05.194_bib0180) 2003; 5 Garcia (10.1016/j.electacta.2016.05.194_bib0185) 2009; 603 Deng (10.1016/j.electacta.2016.05.194_bib0080) 2014; 4 Gerken (10.1016/j.electacta.2016.05.194_bib0175) 2011; 133 |
References_xml | – volume: 27 start-page: 8011 year: 2015 ident: bib0170 article-title: Fe (Oxy)hydroxide Oxygen Evolution Reaction Electrocatalysis: Intrinsic Activity and the Roles of Electrical Conductivity Substrate, and Dissolution publication-title: Chem. Mater. – volume: 4 start-page: 418 year: 2012 ident: bib0035 article-title: A Molecular Ruthenium Catalyst with Water-Oxidation Activity Comparable to That of Photosystem II publication-title: Nat. Chem. – volume: 133 start-page: 12358 year: 2011 ident: bib0160 article-title: Room-Temperature Electrochemical Reduction of Epitaxial Magnetite Films to Epitaxial Iron Films publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 2370 year: 2014 ident: bib0095 article-title: Electrochemical Synthesis of Spinel Type ZnCo publication-title: J. Phys. Chem. Lett. – volume: 26 start-page: 1889 year: 2014 ident: bib0100 article-title: Hierarchical Zn publication-title: Chem. Mater. – volume: 21 start-page: 293 year: 2006 ident: bib0155 article-title: Electrochemical Deposition and Characterization of Fe publication-title: J. Mater. Res. – volume: 4 start-page: 3701 year: 2014 ident: bib0080 article-title: Cobalt-Oxide-Based Materials as Water Oxidation Catalyst: Recent Progress and Challenges publication-title: ACS Cataly. – volume: 6 start-page: 3737 year: 2015 ident: bib0140 article-title: Revised Oxygen Evolution Reaction Activity Trends for First-Row Transition Metal (Oxy)hydroxides in Alkaline Media publication-title: J. Phys. Chem. Lett. – volume: 281 start-page: 243 year: 2015 ident: bib0105 article-title: CuCo publication-title: J. Power Sources – volume: 132 start-page: 1258 year: 2010 ident: bib0145 article-title: Resistance Switching in Electrodeposited Magnetite Superlattices publication-title: J. Am. Chem. Soc. – volume: 132 start-page: 4202 year: 2010 ident: bib0010 article-title: Photoelectrochemical Water Oxidation by Cobalt Catalyst (Co-Pi)/α-Fe publication-title: J. Am. Chem. Soc. – volume: 137 start-page: 3638 year: 2015 ident: bib0130 article-title: Cobalt-Iron (Oxy)hydroxide Oxygen Evolution Electrocatalysts: The Role of Structure and Composition on Activity Stability, and Mechanism publication-title: J. Am. Chem. Soc. – volume: 321 start-page: 1072 year: 2008 ident: bib0060 article-title: In Situ Formation of An Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co publication-title: Science – volume: 7 start-page: 3306 year: 2015 ident: bib0090 article-title: Microwave-Assisted Synthesis of Mesoporous Co publication-title: ACS Appl. Mater. Interfaces – volume: 134 start-page: 17253 year: 2012 ident: bib0135 article-title: Solution-Cast Metal Oxide Thin Film Electrocatalysts for Oxygen Evolution Reaction publication-title: J. Am. Chem. Soc. – volume: 110 start-page: 6446 year: 2010 ident: bib0005 article-title: Solar Water Splitting Cells publication-title: Chem. Rev. – volume: 27 start-page: 7549 year: 2015 ident: bib0125 article-title: Oxygen Evolution Reaction Electrocatalysis on Transition Metal Oxides and (Oxy)hydroxides: Activity Trends and Design Principles publication-title: Chem. Mater. – volume: 133 start-page: 14431 year: 2011 ident: bib0175 article-title: Electrochemical Water Oxidation with Cobalt-Based Electrocatalysts from pH 0-14: The Thermodynamic Basis for Catalyst Structure Stability, and Activity publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 140 year: 2003 ident: bib0180 article-title: Molecular Recognition at the Interface Between Crystals and Biology: Generation Manifestation and Detection of Chirality at Crystal Surfaces publication-title: CrystEngComm – volume: 1 start-page: 14427 year: 2013 ident: bib0195 article-title: Co publication-title: J. Mater. Chem. A – volume: 136 start-page: 6002 year: 2014 ident: bib0045 article-title: A Functionally Stable Manganese Oxide Oxygen Evolution Catalyst in Acid publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 5767 year: 2014 ident: bib0190 article-title: Single Crystalline Co publication-title: Sci. Rep. – volume: 53 start-page: 102 year: 2014 ident: bib0020 article-title: Oxygen Electrochemistry as A Cornerstone for Sustainable Energy Conversion publication-title: Angew. Chem. Int. Ed. – volume: 5 start-page: 1636 year: 2014 ident: bib0040 article-title: Orientation-Dependent Oxygen Evolution Activities of Rutile IrO publication-title: J. Phys. Chem. Lett. – volume: 130 start-page: 16136 year: 2008 ident: bib0205 article-title: Selective Synthesis of Co publication-title: J. Am. Chem. Soc. – volume: 328 start-page: 315 year: 2010 ident: bib0015 article-title: In Pursuit of Water Oxidation Catalysts for Solar Fuel Production publication-title: Science – volume: 14 start-page: 2123 year: 2014 ident: bib0050 article-title: Efficient Photoelectrochemical Water Splitting with Ultrathin Films of Hematite on Three-Dimensional Nanophotonic Structures publication-title: Nano Lett. – volume: 132 start-page: 2608 year: 2010 ident: bib0210 article-title: Mesoporous Co publication-title: J. Am. Chem. Soc. – volume: 458 start-page: 746 year: 2009 ident: bib0200 article-title: Low-Temperature Oxidation of CO Catalysed by Co publication-title: Nature – volume: 3 start-page: 399 year: 2012 ident: bib0030 article-title: Synthesis and Activities of Rutile IrO publication-title: J. Phys. Chem. Lett. – volume: 3 start-page: 15598 year: 2015 ident: bib0120 article-title: In Situ Growth of Spinel CoFe publication-title: J. Mater. Chem. A – volume: 24 start-page: 3567 year: 2012 ident: bib0085 article-title: Electrodeposition of Crystalline Co publication-title: Chem. Mater. – volume: 23 start-page: 1686 year: 2011 ident: bib0075 article-title: Photodeposition of Co-Based Oxygen Evolution Catalysts on Alpha-Fe publication-title: Chem. Mater. – volume: 603 start-page: 597 year: 2009 ident: bib0185 article-title: Neutralization of Li publication-title: Surf. Sci. – volume: 35 start-page: 743 year: 2010 ident: bib0165 article-title: Electrodeposition and Chemical Bath Deposition of Functional Nanomaterials publication-title: MRS Bull. – volume: 29 start-page: 1503 year: 1984 ident: bib0025 article-title: Electrocatalysis in the Anodic Evolution of Oxygen and Chlorine publication-title: Electrochim. Acta – volume: 135 start-page: 8452 year: 2013 ident: bib0065 article-title: An Advanced Ni-Fe Layered Double Hydroxide Electrocatalyst for Water Oxidation publication-title: J. Am. Chem. Soc. – volume: 51 start-page: 7851 year: 2015 ident: bib0110 article-title: A. Nickel Cobalt Oxide Hollow Nanosponges as Advanced Electrocatalysts for the Oxygen Evolution Reaction publication-title: Chem. Commun. – volume: 25 start-page: 223 year: 2013 ident: bib0150 article-title: Electrodeposition of Co publication-title: Chem. Mater. – volume: 136 start-page: 2843 year: 2014 ident: bib0055 article-title: Amorphous FeOOH Oxygen Evolution Reaction Catalyst for Photoelectrochemical Water Splitting publication-title: J. Am. Chem. Soc. – volume: 119 start-page: 1921 year: 2015 ident: bib0115 article-title: Transition-Metal Doping of Oxide Nanocrystals for Enhanced Catalytic Oxygen Evolution publication-title: J. Phys. Chem. C – volume: 175 start-page: 509 year: 2011 ident: bib0215 article-title: Novel Hydrodesulfurization Nano-Catalysts Derived from Co publication-title: Cataly. Today – volume: 135 start-page: 3494 year: 2013 ident: bib0070 article-title: Photochemical Water Oxidation by Crystalline Polymorphs of Manganese Oxides: Structural Requirements for Catalysis publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 140 year: 2003 ident: 10.1016/j.electacta.2016.05.194_bib0180 article-title: Molecular Recognition at the Interface Between Crystals and Biology: Generation Manifestation and Detection of Chirality at Crystal Surfaces publication-title: CrystEngComm doi: 10.1039/b304061e – volume: 458 start-page: 746 year: 2009 ident: 10.1016/j.electacta.2016.05.194_bib0200 article-title: Low-Temperature Oxidation of CO Catalysed by Co3O4 Nanorods publication-title: Nature doi: 10.1038/nature07877 – volume: 3 start-page: 15598 year: 2015 ident: 10.1016/j.electacta.2016.05.194_bib0120 article-title: In Situ Growth of Spinel CoFe2O4 Nanoparticles on Rod-Like Ordered Mesoporous Carbon for Bifunctional Electrocatalysis of Both Oxygen Reduction and Oxygen Evolution publication-title: J. Mater. Chem. A doi: 10.1039/C5TA02625C – volume: 119 start-page: 1921 year: 2015 ident: 10.1016/j.electacta.2016.05.194_bib0115 article-title: Transition-Metal Doping of Oxide Nanocrystals for Enhanced Catalytic Oxygen Evolution publication-title: J. Phys. Chem. C doi: 10.1021/jp511561k – volume: 27 start-page: 8011 year: 2015 ident: 10.1016/j.electacta.2016.05.194_bib0170 article-title: Fe (Oxy)hydroxide Oxygen Evolution Reaction Electrocatalysis: Intrinsic Activity and the Roles of Electrical Conductivity Substrate, and Dissolution publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b03404 – volume: 21 start-page: 293 year: 2006 ident: 10.1016/j.electacta.2016.05.194_bib0155 article-title: Electrochemical Deposition and Characterization of Fe3O4 Films Produced by the Reduction of Fe(III)-Triethanolamine publication-title: J. Mater. Res. doi: 10.1557/jmr.2006.0030 – volume: 5 start-page: 2370 year: 2014 ident: 10.1016/j.electacta.2016.05.194_bib0095 article-title: Electrochemical Synthesis of Spinel Type ZnCo2O4 Electrodes for Use as Oxygen Evolution Reaction Catalysts publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz501077u – volume: 25 start-page: 223 year: 2013 ident: 10.1016/j.electacta.2016.05.194_bib0150 article-title: Electrodeposition of CoxFe3-xO4 Epitaxial Films and Superlattices publication-title: Chem. Mater. doi: 10.1021/cm303289t – volume: 24 start-page: 3567 year: 2012 ident: 10.1016/j.electacta.2016.05.194_bib0085 article-title: Electrodeposition of Crystalline Co3O4-A Catalyst for the Oxygen Evolution Reaction publication-title: Chem. Mater. doi: 10.1021/cm3012205 – volume: 23 start-page: 1686 year: 2011 ident: 10.1016/j.electacta.2016.05.194_bib0075 article-title: Photodeposition of Co-Based Oxygen Evolution Catalysts on Alpha-Fe2O3 Photoanodes publication-title: Chem. Mater. doi: 10.1021/cm1020614 – volume: 281 start-page: 243 year: 2015 ident: 10.1016/j.electacta.2016.05.194_bib0105 article-title: CuCo2O4 Nanoparticles on Nitrogenated Graphene as Highly Efficient Oxygen Evolution Catalyst publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.01.192 – volume: 175 start-page: 509 year: 2011 ident: 10.1016/j.electacta.2016.05.194_bib0215 article-title: Novel Hydrodesulfurization Nano-Catalysts Derived from Co3O4 Nanocrystals with Different Shapes publication-title: Cataly. Today doi: 10.1016/j.cattod.2011.02.052 – volume: 132 start-page: 4202 year: 2010 ident: 10.1016/j.electacta.2016.05.194_bib0010 article-title: Photoelectrochemical Water Oxidation by Cobalt Catalyst (Co-Pi)/α-Fe2O3 Composite Photoanodes: Oxygen Evolution and Resolution of a Kinetic Bottleneck publication-title: J. Am. Chem. Soc. doi: 10.1021/ja908730h – volume: 328 start-page: 315 year: 2010 ident: 10.1016/j.electacta.2016.05.194_bib0015 article-title: In Pursuit of Water Oxidation Catalysts for Solar Fuel Production publication-title: Science doi: 10.1126/science.1187721 – volume: 6 start-page: 3737 year: 2015 ident: 10.1016/j.electacta.2016.05.194_bib0140 article-title: Revised Oxygen Evolution Reaction Activity Trends for First-Row Transition Metal (Oxy)hydroxides in Alkaline Media publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b01650 – volume: 4 start-page: 418 year: 2012 ident: 10.1016/j.electacta.2016.05.194_bib0035 article-title: A Molecular Ruthenium Catalyst with Water-Oxidation Activity Comparable to That of Photosystem II publication-title: Nat. Chem. doi: 10.1038/nchem.1301 – volume: 26 start-page: 1889 year: 2014 ident: 10.1016/j.electacta.2016.05.194_bib0100 article-title: Hierarchical ZnxCo3-xO4 Nanoarrays with High Activity for Electrocatalytic Oxygen Evolution publication-title: Chem. Mater. doi: 10.1021/cm4040903 – volume: 133 start-page: 12358 year: 2011 ident: 10.1016/j.electacta.2016.05.194_bib0160 article-title: Room-Temperature Electrochemical Reduction of Epitaxial Magnetite Films to Epitaxial Iron Films publication-title: J. Am. Chem. Soc. doi: 10.1021/ja203975z – volume: 136 start-page: 6002 year: 2014 ident: 10.1016/j.electacta.2016.05.194_bib0045 article-title: A Functionally Stable Manganese Oxide Oxygen Evolution Catalyst in Acid publication-title: J. Am. Chem. Soc. doi: 10.1021/ja413147e – volume: 132 start-page: 2608 year: 2010 ident: 10.1016/j.electacta.2016.05.194_bib0210 article-title: Mesoporous Co3O4 and Au/Co3O4 Catalysts for Low-Temperature Oxidation of Trace Ethylene publication-title: J. Am. Chem. Soc. doi: 10.1021/ja906274t – volume: 53 start-page: 102 year: 2014 ident: 10.1016/j.electacta.2016.05.194_bib0020 article-title: Oxygen Electrochemistry as A Cornerstone for Sustainable Energy Conversion publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201306588 – volume: 135 start-page: 3494 year: 2013 ident: 10.1016/j.electacta.2016.05.194_bib0070 article-title: Photochemical Water Oxidation by Crystalline Polymorphs of Manganese Oxides: Structural Requirements for Catalysis publication-title: J. Am. Chem. Soc. doi: 10.1021/ja310286h – volume: 4 start-page: 3701 year: 2014 ident: 10.1016/j.electacta.2016.05.194_bib0080 article-title: Cobalt-Oxide-Based Materials as Water Oxidation Catalyst: Recent Progress and Challenges publication-title: ACS Cataly. doi: 10.1021/cs500713d – volume: 1 start-page: 14427 year: 2013 ident: 10.1016/j.electacta.2016.05.194_bib0195 article-title: Co3O4 Nanocrystals with Predominantly Exposed Facets: Synthesis Environmental and Energy Applications publication-title: J. Mater. Chem. A doi: 10.1039/c3ta12960h – volume: 136 start-page: 2843 year: 2014 ident: 10.1016/j.electacta.2016.05.194_bib0055 article-title: Amorphous FeOOH Oxygen Evolution Reaction Catalyst for Photoelectrochemical Water Splitting publication-title: J. Am. Chem. Soc. doi: 10.1021/ja411835a – volume: 35 start-page: 743 year: 2010 ident: 10.1016/j.electacta.2016.05.194_bib0165 article-title: Electrodeposition and Chemical Bath Deposition of Functional Nanomaterials publication-title: MRS Bull. doi: 10.1557/S0883769400051253 – volume: 51 start-page: 7851 year: 2015 ident: 10.1016/j.electacta.2016.05.194_bib0110 article-title: A. Nickel Cobalt Oxide Hollow Nanosponges as Advanced Electrocatalysts for the Oxygen Evolution Reaction publication-title: Chem. Commun. doi: 10.1039/C5CC01558H – volume: 27 start-page: 7549 year: 2015 ident: 10.1016/j.electacta.2016.05.194_bib0125 article-title: Oxygen Evolution Reaction Electrocatalysis on Transition Metal Oxides and (Oxy)hydroxides: Activity Trends and Design Principles publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b03148 – volume: 134 start-page: 17253 year: 2012 ident: 10.1016/j.electacta.2016.05.194_bib0135 article-title: Solution-Cast Metal Oxide Thin Film Electrocatalysts for Oxygen Evolution Reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/ja307507a – volume: 132 start-page: 1258 year: 2010 ident: 10.1016/j.electacta.2016.05.194_bib0145 article-title: Resistance Switching in Electrodeposited Magnetite Superlattices publication-title: J. Am. Chem. Soc. doi: 10.1021/ja909295y – volume: 133 start-page: 14431 year: 2011 ident: 10.1016/j.electacta.2016.05.194_bib0175 article-title: Electrochemical Water Oxidation with Cobalt-Based Electrocatalysts from pH 0-14: The Thermodynamic Basis for Catalyst Structure Stability, and Activity publication-title: J. Am. Chem. Soc. doi: 10.1021/ja205647m – volume: 4 start-page: 5767 year: 2014 ident: 10.1016/j.electacta.2016.05.194_bib0190 article-title: Single Crystalline Co3O4 Nanocrystals Exposed with Different Crystal Planes for Li-O2 Batteries publication-title: Sci. Rep. doi: 10.1038/srep05767 – volume: 603 start-page: 597 year: 2009 ident: 10.1016/j.electacta.2016.05.194_bib0185 article-title: Neutralization of Li+ Ions Scattered by the Cu (100) and (111) Surfaces: A Localized Picture of the Atom-Surface Interaction publication-title: Surf. Sci. doi: 10.1016/j.susc.2008.12.022 – volume: 3 start-page: 399 year: 2012 ident: 10.1016/j.electacta.2016.05.194_bib0030 article-title: Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz2016507 – volume: 321 start-page: 1072 year: 2008 ident: 10.1016/j.electacta.2016.05.194_bib0060 article-title: In Situ Formation of An Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2+ publication-title: Science doi: 10.1126/science.1162018 – volume: 130 start-page: 16136 year: 2008 ident: 10.1016/j.electacta.2016.05.194_bib0205 article-title: Selective Synthesis of Co3O4 Nanocrystal with Different Shape and Crystal Plane Effect on Catalytic Property for Methane Combustion publication-title: J. Am. Chem. Soc. doi: 10.1021/ja806400e – volume: 110 start-page: 6446 year: 2010 ident: 10.1016/j.electacta.2016.05.194_bib0005 article-title: Solar Water Splitting Cells publication-title: Chem. Rev. doi: 10.1021/cr1002326 – volume: 7 start-page: 3306 year: 2015 ident: 10.1016/j.electacta.2016.05.194_bib0090 article-title: Microwave-Assisted Synthesis of Mesoporous Co3O4 Nanoflakes for Applications in Lithium Ion Batteries and Oxygen Evolution Reactions publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am508136k – volume: 5 start-page: 1636 year: 2014 ident: 10.1016/j.electacta.2016.05.194_bib0040 article-title: Orientation-Dependent Oxygen Evolution Activities of Rutile IrO2 and RuO2 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz500610u – volume: 14 start-page: 2123 year: 2014 ident: 10.1016/j.electacta.2016.05.194_bib0050 article-title: Efficient Photoelectrochemical Water Splitting with Ultrathin Films of Hematite on Three-Dimensional Nanophotonic Structures publication-title: Nano Lett. doi: 10.1021/nl500359e – volume: 135 start-page: 8452 year: 2013 ident: 10.1016/j.electacta.2016.05.194_bib0065 article-title: An Advanced Ni-Fe Layered Double Hydroxide Electrocatalyst for Water Oxidation publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4027715 – volume: 29 start-page: 1503 year: 1984 ident: 10.1016/j.electacta.2016.05.194_bib0025 article-title: Electrocatalysis in the Anodic Evolution of Oxygen and Chlorine publication-title: Electrochim. Acta doi: 10.1016/0013-4686(84)85004-5 – volume: 137 start-page: 3638 year: 2015 ident: 10.1016/j.electacta.2016.05.194_bib0130 article-title: Cobalt-Iron (Oxy)hydroxide Oxygen Evolution Electrocatalysts: The Role of Structure and Composition on Activity Stability, and Mechanism publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b00281 |
SSID | ssj0007670 |
Score | 2.422372 |
Snippet | The development of highly active electrocatalysts at a low cost is essential to the process of generating hydrogen fuel through electrochemical and... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 942 |
SubjectTerms | catalytic activity CoxFe3-xO4 electrodeposition oxygen evolution reaction thin film |
Title | Electrodeposited Co-Doped Fe3O4 Thin Films as Efficient Catalysts for the Oxygen Evolution Reaction |
URI | https://dx.doi.org/10.1016/j.electacta.2016.05.194 |
Volume | 210 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KPagH0apYH2UPXmOTZrPJeisxoSq2IBZ6C_sqVGpbTBR78bc7m0dtQehByCEJmRBmh5kvy8z3IXQdBEwwRwhLms0N0uHKYoALrMBjxKe2UNI1A85PfdobkoeRN6qhsJqFMW2VZe4vcnqercs77dKb7cVkYmZ8HZfQgAKigCTrGcZPAu-HmL75_m3z8KlvVyoG5umNHq9caobDYXq8qKHwdBj5u0KtVZ34EB2UcBF3iy86QjU9a6DdsFJpa6D9NULBYySjQtVG6bwZSysczq27-QJOYu0OCDYynTieTN9SzFMc5fwRUHZwaHZxlmmWYgCxGEAhHnwtIbZw9FnGJn7WxQzECRrG0UvYs0oZBUsSJ8gsDqvgcG6o2KSQ2oOqxSgJADkwlysiVUcBKrQlYA0vEFQF3CeAE5gecwH4yndPUX02n-kzhDWRPgGrsQBYIBzBOmOtOBfUFYLDv2YT0cp1iSw5xo3UxTSpmslek5XPE-PzxPYS8HkT2SvDRUGzsd3ktlqbZCNiEigG24zP_2N8gfbMldlZ7tiXqJ69f-grgCaZaOWx10I73fvHXv8H9ATjzQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La8JAEB5aPdgeSp_03T30GkzMZpPtTVJF-7BQFLwt-xIsrUq1pf77zppEFAoeCjmEhIEwO8x8GWa-D-A2SbjigVKeds0NWpPG44gLvCTiNGa-Mjp0C87PHdbq0Yd-1N-CtNiFcWOVee7PcvoiW-dPqrk3q5Ph0O34BiFlCUNEgUk2Creh7NipohKU6-3HVmeZkGMW-4WQgTNYG_NaqM1IvNyYF3MsngGnfxeplcLT3Ie9HDGSevZRB7BlR4dQSQuhtkPYXeEUPALdyIRtjF3MY1lD0rF3P57gTdOGL5Q4pU7SHL5_TImcksaCQgIrD0ldI2c-nU0J4liCuJC8_MwxvEjjOw9P8mqzNYhj6DUb3bTl5UoKnqZBMvMkHkQgpWNj00rbCAsXZzRB8MBDaag2NYPA0NcIN6JEMZPImCJU4HYgFUKsODyB0mg8sqdALNUxRauBQmSgAsVrA2ukVCxUSuLv5hmwwnVC5zTjTu3iXRTzZG9i6XPhfC78SKDPz8BfGk4ypo3NJnfF2Yi1oBFYDzYZn__H-AYqre7zk3hqdx4vYMe9cY3mmn8Jpdnnl71CpDJT13kk_gLHkeZ- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrodeposited+Co-Doped+Fe3O4+Thin+Films+as+Efficient+Catalysts+for+the+Oxygen+Evolution+Reaction&rft.jtitle=Electrochimica+acta&rft.au=Han%2C+Shan&rft.au=Liu%2C+Suqin&rft.au=Yin%2C+Shengjie&rft.au=Chen%2C+Lei&rft.date=2016-08-20&rft.issn=0013-4686&rft.volume=210&rft.spage=942&rft.epage=949&rft_id=info:doi/10.1016%2Fj.electacta.2016.05.194&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_electacta_2016_05_194 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4686&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4686&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4686&client=summon |