Tailored pore size and microporosity of covalent organic framework (COF) membranes for improved molecular separation
•COF membranes with tailored pore size are designed through a de novo approach.•Ultrathin and crystalline COF membranes are prepared.•The transport mechanism through COF membrane is studied systematically. Three crystalline truxene-based β-ketoenamine COF membranes (TFP-HETTA, TFP-HBTTA and TFP-HHTT...
Saved in:
Published in | Journal of Membrane Science Letters Vol. 1; no. 2; p. 100008 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2021
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •COF membranes with tailored pore size are designed through a de novo approach.•Ultrathin and crystalline COF membranes are prepared.•The transport mechanism through COF membrane is studied systematically.
Three crystalline truxene-based β-ketoenamine COF membranes (TFP-HETTA, TFP-HBTTA and TFP-HHTTA) are fabricated via a de novo monomer design approach to understand the fundamental correlations between pore structure and molecular separation performance. By introducing bulky alkyl groups into the truxene framework, the pore size of TFP-HETTA, TFP-HBTTA, and TFP-HHTTA are systematically tuned from 1.08 to 0.72 nm. Accordingly, the TFP-HETTA showed good water permeance of 47 L m−2h−1 bar−1 along with a prominent rejection rate of Reactive Blue (RB, 800 Da) but less than 10% rejection rate of inorganic salts. In contrast, the TFP-HHTTA membrane with pore size of 0.72 nm can reject small dye molecules such as Safranin O (SO, 350 Da) and trivalent salts but with a moderate water permeance of 19 L m−2h−1 bar−1. The pore-flow model rooted from the viscous flow could well fit the observed organic solvent nanofiltration results of all three COF membranes.
[Display omitted] |
---|---|
AbstractList | Three crystalline truxene-based β-ketoenamine COF membranes (TFP-HETTA, TFP-HBTTA and TFP-HHTTA) are fabricated via a de novo monomer design approach to understand the fundamental correlations between pore structure and molecular separation performance. By introducing bulky alkyl groups into the truxene framework, the pore size of TFP-HETTA, TFP-HBTTA, and TFP-HHTTA are systematically tuned from 1.08 to 0.72 nm. Accordingly, the TFP-HETTA showed good water permeance of 47 L m−2 h−1 bar−1 along with a prominent rejection rate of Reactive Blue (RB, 800 Da) but less than 10% rejection rate of inorganic salts. In contrast, the TFP-HHTTA membrane with pore size of 0.72 nm can reject small dye molecules such as Safranin O (SO, 350 Da) and trivalent salts but with a moderate water permeance of 19 L m−2 h−1 bar−1. The pore-flow model rooted from the viscous flow could well fit the observed organic solvent nanofiltration results of all three COF membranes. •COF membranes with tailored pore size are designed through a de novo approach.•Ultrathin and crystalline COF membranes are prepared.•The transport mechanism through COF membrane is studied systematically. Three crystalline truxene-based β-ketoenamine COF membranes (TFP-HETTA, TFP-HBTTA and TFP-HHTTA) are fabricated via a de novo monomer design approach to understand the fundamental correlations between pore structure and molecular separation performance. By introducing bulky alkyl groups into the truxene framework, the pore size of TFP-HETTA, TFP-HBTTA, and TFP-HHTTA are systematically tuned from 1.08 to 0.72 nm. Accordingly, the TFP-HETTA showed good water permeance of 47 L m−2h−1 bar−1 along with a prominent rejection rate of Reactive Blue (RB, 800 Da) but less than 10% rejection rate of inorganic salts. In contrast, the TFP-HHTTA membrane with pore size of 0.72 nm can reject small dye molecules such as Safranin O (SO, 350 Da) and trivalent salts but with a moderate water permeance of 19 L m−2h−1 bar−1. The pore-flow model rooted from the viscous flow could well fit the observed organic solvent nanofiltration results of all three COF membranes. [Display omitted] |
ArticleNumber | 100008 |
Author | Liu, Xiaowei Hedhili, Mohamed N. Lai, Zhiping Wonanke, Dinga A.D. Zhou, Zongyao Shinde, Digambar B. Cao, Li Addicoat, Matthew Huang, Kuo-Wei |
Author_xml | – sequence: 1 givenname: Digambar B. surname: Shinde fullname: Shinde, Digambar B. organization: Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia – sequence: 2 givenname: Li surname: Cao fullname: Cao, Li organization: Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia – sequence: 3 givenname: Xiaowei surname: Liu fullname: Liu, Xiaowei organization: Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia – sequence: 4 givenname: Dinga A.D. surname: Wonanke fullname: Wonanke, Dinga A.D. organization: School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom – sequence: 5 givenname: Zongyao surname: Zhou fullname: Zhou, Zongyao organization: Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia – sequence: 6 givenname: Mohamed N. surname: Hedhili fullname: Hedhili, Mohamed N. organization: Core labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia – sequence: 7 givenname: Matthew surname: Addicoat fullname: Addicoat, Matthew organization: School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom – sequence: 8 givenname: Kuo-Wei surname: Huang fullname: Huang, Kuo-Wei organization: Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia – sequence: 9 givenname: Zhiping surname: Lai fullname: Lai, Zhiping email: zhiping.lai@kaust.edu.sa organization: Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia |
BookMark | eNqFkUFrGzEQhUVJoUmaf9CDju3Bzkpa78o9FIJpmkAgl_QsxtKoyN1dmZHikP76TrIllBxaHaRh0PuYee9EHE15QiE-qGapGtWd75YjjgPWpW604hYf-0Yc677Xi1YrffRX_U6clbLjH9oqZdT6WNQ7SEMmDHLPtyzpF0qYghyTp8ytXFJ9lDlKnw8w4FRlph8wJS8jwYgPmX7Kj5vby0-Sp9gSTFhkzCTTuKd8YOyYB_T3A5AsuAeCmvL0XryNMBQ8-_Oeiu-XX-82V4ub22_Xm4ubhW-VrQtoYgw8KzRdF6PGLmitgunMtl0H3mm78iYgGGW2QceVsb6F3sKqb_3axqDMqbieuSHDzu0pjUCPLkNyzw3exAHV5Ad0vQLrLdgIyrSm0xY1rCJgDMzqQsOsdmaxL6UQxheeatxTEG7n5iDcUxBuDoJln1_JfKrPJlRi5_8n_jKLkU06JCRXfMLJY0iEvvIW6d-A34Xsqrc |
CitedBy_id | crossref_primary_10_1039_D3TA04108E crossref_primary_10_1016_j_mtsust_2024_100672 crossref_primary_10_3390_electronicmat4020005 crossref_primary_10_1016_j_advmem_2024_100112 crossref_primary_10_1002_adma_202300525 crossref_primary_10_1016_j_memlet_2022_100034 crossref_primary_10_1016_j_memsci_2024_122853 crossref_primary_10_1039_D3CC06057H |
Cites_doi | 10.1039/C8CS00376A 10.1021/acs.chemmater.5b04947 10.1002/adma.200800030 10.1016/j.memsci.2021.119635 10.1038/s41570-017-0056 10.1021/jacs.9b13825 10.1039/D0SC01679A 10.1039/D0TA07352K 10.1126/science.1212101 10.1021/acs.nanolett.1c02919 10.1038/s41467-019-14056-7 10.1039/C8CS00978C 10.1021/acsmaterialslett.9b00272 10.1021/acs.chemrev.9b00550 10.1002/adma.201603945 10.1016/j.memsci.2021.119122 10.1039/C9CS00827F 10.1038/nmat5025 10.1039/D0CS01347A 10.1021/jacs.7b06640 10.1016/j.cej.2021.133024 10.1016/j.memsci.2019.01.034 10.1039/C8CS00919H 10.1021/jacs.8b05136 10.1021/jacs.5b04300 10.1126/science.aaa5058 10.1039/C9SC05082E 10.1039/D1TA06439H 10.1021/acsami.6b15752 10.1038/s41557-018-0093-9 10.1002/adma.202001284 10.1021/acsami.7b19450 10.1039/C9TA06325K 10.1021/acsami.0c03246 10.1039/C9CS00322C 10.1038/ncomms1542 10.1021/jacs.8b08788 10.1038/s41563-021-01052-w |
ContentType | Journal Article |
Copyright | 2021 |
Copyright_xml | – notice: 2021 |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.memlet.2021.100008 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2772-4212 |
ExternalDocumentID | oai_doaj_org_article_71a8c8a8fa1343628e2a5faefdc986d0 10_1016_j_memlet_2021_100008 S2772421221000088 |
GroupedDBID | 6I. AAFTH AAFWJ AAXUO AFPKN ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS FDB GROUPED_DOAJ M41 M~E OK1 ROL AALRI AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AITUG AKBMS AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c418t-a0ffd002a066ff2e6d221d363b49d277b5c3dea313bd2f538c4a78a574c98fd13 |
IEDL.DBID | DOA |
ISSN | 2772-4212 |
IngestDate | Wed Aug 27 01:29:29 EDT 2025 Tue Jul 01 01:35:58 EDT 2025 Thu Apr 24 23:05:14 EDT 2025 Tue Jul 25 20:59:04 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | de novo design Membranes COF Pore-flow model Organic solvent nanofiltration |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c418t-a0ffd002a066ff2e6d221d363b49d277b5c3dea313bd2f538c4a78a574c98fd13 |
OpenAccessLink | https://doaj.org/article/71a8c8a8fa1343628e2a5faefdc986d0 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_71a8c8a8fa1343628e2a5faefdc986d0 crossref_primary_10_1016_j_memlet_2021_100008 crossref_citationtrail_10_1016_j_memlet_2021_100008 elsevier_sciencedirect_doi_10_1016_j_memlet_2021_100008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Journal of Membrane Science Letters |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Shi, Xiao, Zhang, Wang (bib0023) 2019; 576 Shi, Zhang, Fang, Wang, Zhang, Wang (bib0024) 2021; 21 Ying, Tong, Ning, Ravi, Peh, Tan, Pennycook, Zhao (bib0036) 2020; 142 Chen, Gai, Gai, Qin, Wang, Cui, Guo, Jiang, Zou, Zhou, Gai (bib0002) 2022; 430 Karan, Samitsu, Peng, Kurashima, Ichinose (bib0014) 2012; 335 Ying, Peh, Yang, Yang, Zhao (bib0035) 2021 Dey, Pal, Rout, Kunjattu H, Das, Mukherjee, Kharul, Banerjee (bib0004) 2017; 139 Yang, Wu, Zhao, Wang, Song, Cheng, Wang, Cao, Pan, Jiang (bib0032) 2020; 8 Li, Zhang, Tsuru (bib0015) 2017; 9 Liang, Wang, Shi, Shen, He, Ghazi, Khan, Sin, Khattak, Li, Tang (bib0017) 2018; 10 Liu, Jiang, Nalaparaju, Jiang, Huang (bib0018) 2019; 7 Wang, Wang, Liang, Yuan, Yang, Wang, Ren, Wu, Pan, Jiang (bib0028) 2021; 50 Yang, Su, Chi, Cherian, Huang, Kravets, Wang, Zhang, Pratt, Grigorenko, Guinea, Geim, Nair (bib0033) 2017; 16 Corcos, Levato, Jiang, Evans, Livingston, Mariñas, Dichtel (bib0003) 2019; 1 Karan, Jiang, Livingston (bib0013) 2015; 348 Wang, Zhang, Chen, Zhang, Ma (bib0030) 2020; 49 Fan, Mundstock, Feldhoff, Knebel, Gu, Meng, Caro (bib0005) 2018; 140 He, Yang, Wu, He, Xu, Kong, Cao, Shi, Zhang, Tongsh, Jiao, Zhu, Jiang (bib0009) 2020; 32 Chandra, Kundu, Dey, Addicoat, Heine, Banerjee (bib0001) 2016; 28 Shinde, Cao, Wonanke, Li, Kumar, Liu, Hedhili, Emwas, Addicoat, Huang, Lai (bib0025) 2020; 11 Huang, Krishna, Jiang (bib0010) 2015; 137 Fang, Shi, Wang, Zhang, Yin, Zhang, Ju, Xiong, Wang (bib0006) 2021; 637 Jin, Hu, Zhang (bib0011) 2017; 1 Kandambeth, Biswal, Chaudhari, Rout, Kunjattu, Mitra, Karak, Das, Mukherjee, Kharul, Banerjee (bib0012) 2017; 29 Zhao, Jiang, Fan, Hong, Mei, Yao, Liu, Zhang, Li, Zhang, Sun, Guo, Shao, Zhu, Zhang, Guo, Ma, Zhang, Feng, Wang, Wu, Wang (bib0039) 2021; 20 Xiao, Shi, Zhang, Yin, Xiong, Wang (bib0031) 2021; 624 Yin, Zhang, Zhou, Wang (bib0034) 2020; 12 Nagai, Guo, Feng, Jin, Chen, Ding, Jiang (bib0019) 2011; 2 Shen, Yuan, Shi, You, Ding, Zhang, Zhang, Deng, Guan, Long, Zheng, Zhang, Wu, Jiang (bib0021) 2021; 9 Zhang, Wu, Ma, Wang, Xu (bib0038) 2019; 48 Segura, Royuela, Ramos (bib0020) 2019; 48 Shinde, Sheng, Li, Ostwal, Emwas, Huang, Lai (bib0026) 2018; 140 Yuan, Li, Zhu, Zhang, Van Puyvelde, Van der Bruggen (bib0037) 2019; 48 Gadwal, Sheng, Thankamony, Liu, Li, Lai (bib0007) 2018; 10 Geng, He, Liu, Dalapati, Tan, Li, Tao, Gong, Jiang, Jiang (bib0008) 2020; 120 Li, Wu, Guo, Zhang, Chen, Wei, Li, Li, Li, Ma (bib0016) 2020; 11 Wang, Zeng, Xu, Li, Zeng, Xiao, Tang, Huang, Tang, Lai, Jiang, Liu, Yi, Qin, Ye, Ren, Tang (bib0029) 2019; 48 Shi, Ma, Xu, Zhang, Wang (bib0022) 2020; 11 Tilford, Mugavero, Pellechia, Lavigne (bib0027) 2008; 20 Xiao (10.1016/j.memlet.2021.100008_bib0031) 2021; 624 Fan (10.1016/j.memlet.2021.100008_bib0005) 2018; 140 Karan (10.1016/j.memlet.2021.100008_bib0014) 2012; 335 Li (10.1016/j.memlet.2021.100008_bib0016) 2020; 11 Yin (10.1016/j.memlet.2021.100008_bib0034) 2020; 12 Zhang (10.1016/j.memlet.2021.100008_bib0038) 2019; 48 Ying (10.1016/j.memlet.2021.100008_bib0036) 2020; 142 He (10.1016/j.memlet.2021.100008_bib0009) 2020; 32 Shen (10.1016/j.memlet.2021.100008_bib0021) 2021; 9 Jin (10.1016/j.memlet.2021.100008_bib0011) 2017; 1 Yang (10.1016/j.memlet.2021.100008_bib0032) 2020; 8 Fang (10.1016/j.memlet.2021.100008_bib0006) 2021; 637 Shi (10.1016/j.memlet.2021.100008_bib0023) 2019; 576 Tilford (10.1016/j.memlet.2021.100008_bib0027) 2008; 20 Shinde (10.1016/j.memlet.2021.100008_bib0025) 2020; 11 Huang (10.1016/j.memlet.2021.100008_bib0010) 2015; 137 Chen (10.1016/j.memlet.2021.100008_bib0002) 2022; 430 Gadwal (10.1016/j.memlet.2021.100008_bib0007) 2018; 10 Ying (10.1016/j.memlet.2021.100008_bib0035) 2021 Yang (10.1016/j.memlet.2021.100008_bib0033) 2017; 16 Liu (10.1016/j.memlet.2021.100008_bib0018) 2019; 7 Kandambeth (10.1016/j.memlet.2021.100008_bib0012) 2017; 29 Geng (10.1016/j.memlet.2021.100008_bib0008) 2020; 120 Dey (10.1016/j.memlet.2021.100008_bib0004) 2017; 139 Wang (10.1016/j.memlet.2021.100008_bib0030) 2020; 49 Wang (10.1016/j.memlet.2021.100008_bib0028) 2021; 50 Shi (10.1016/j.memlet.2021.100008_bib0024) 2021; 21 Liang (10.1016/j.memlet.2021.100008_bib0017) 2018; 10 Shinde (10.1016/j.memlet.2021.100008_bib0026) 2018; 140 Karan (10.1016/j.memlet.2021.100008_bib0013) 2015; 348 Shi (10.1016/j.memlet.2021.100008_bib0022) 2020; 11 Nagai (10.1016/j.memlet.2021.100008_bib0019) 2011; 2 Zhao (10.1016/j.memlet.2021.100008_bib0039) 2021; 20 Li (10.1016/j.memlet.2021.100008_bib0015) 2017; 9 Chandra (10.1016/j.memlet.2021.100008_bib0001) 2016; 28 Corcos (10.1016/j.memlet.2021.100008_bib0003) 2019; 1 Yuan (10.1016/j.memlet.2021.100008_bib0037) 2019; 48 Segura (10.1016/j.memlet.2021.100008_bib0020) 2019; 48 Wang (10.1016/j.memlet.2021.100008_bib0029) 2019; 48 |
References_xml | – volume: 21 start-page: 8355 year: 2021 end-page: 8362 ident: bib0024 article-title: Flexible and Robust Three-Dimensional Covalent Organic Framework Membranes for Precise Separations under Extreme Conditions publication-title: Nano Lett. – volume: 142 start-page: 4472 year: 2020 end-page: 4480 ident: bib0036 article-title: Ultrathin Two-Dimensional Membranes Assembled by Ionic Covalent Organic Nanosheets with Reduced Apertures for Gas Separation publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 440 year: 2019 end-page: 446 ident: bib0003 article-title: Reducing the Pore Size of Covalent Organic Frameworks in Thin-Film Composite Membranes Enhances Solute Rejection publication-title: ACS Materials Letters – volume: 10 start-page: 12295 year: 2018 end-page: 12299 ident: bib0007 article-title: Synthesis of Sub-10 nm Two-Dimensional Covalent Organic Thin Film with Sharp Molecular Sieving Nanofiltration publication-title: ACS Appl. Mater. Interfaces – volume: 430 year: 2022 ident: bib0002 article-title: Interfacial Synthesized Covalent Organic Framework Nanofiltration Membranes for Precisely Ultrafast Sieving publication-title: Chem. Eng. J. – volume: 137 start-page: 7079 year: 2015 end-page: 7082 ident: bib0010 article-title: Tailor-Made Pore Surface Engineering in Covalent Organic Frameworks: Systematic Functionalization for Performance Screening publication-title: J. Am. Chem. Soc. – volume: 335 start-page: 444 year: 2012 end-page: 447 ident: bib0014 article-title: Ultrafast Viscous Permeation of Organic Solvents Through Diamond-Like Carbon Nanosheets publication-title: Science – volume: 50 start-page: 5468 year: 2021 end-page: 5516 ident: bib0028 article-title: Organic Molecular Sieve Membranes for Chemical Separations publication-title: Chem. Soc. Rev. – volume: 1 start-page: 0056 year: 2017 ident: bib0011 article-title: Tessellated Multiporous Two-Dimensional Covalent Organic Frameworks publication-title: Nature Reviews Chemistry – volume: 49 start-page: 708 year: 2020 end-page: 735 ident: bib0030 article-title: Covalent Organic Frameworks for Separation Applications publication-title: Chem. Soc. Rev. – volume: 9 start-page: 23178 year: 2021 end-page: 23187 ident: bib0021 article-title: Homointerface Covalent Organic Framework Membranes for Efficient Desalination publication-title: J. Mater. Chem. A – volume: 11 start-page: 989 year: 2020 end-page: 996 ident: bib0022 article-title: Table-Salt Enabled Interface-Confined Synthesis of Covalent Organic Framework (COF) Nanosheets publication-title: Chem. Sci. – volume: 11 start-page: 599 year: 2020 ident: bib0016 article-title: Laminated Self-Standing Covalent Organic Framework Membrane with Uniformly Distributed Subnanopores for Ionic and Molecular Sieving publication-title: Nat. Commun. – volume: 7 start-page: 24205 year: 2019 end-page: 24210 ident: bib0018 article-title: Post-Synthesis of A Covalent Organic Framework Nanofiltration Membrane for Highly Efficient Water Treatment publication-title: J. Mater. Chem. A – year: 2021 ident: bib0035 article-title: Ultrathin Covalent Organic Framework Membranes via a Multi-Interfacial Engineering Strategy for Gas Separation publication-title: Adv. Mater. – volume: 576 start-page: 116 year: 2019 end-page: 122 ident: bib0023 article-title: Growing Covalent Organic Frameworks on Porous Substrates for Molecule-Sieving Membranes with Pores Tunable from Ultra- to Nanofiltration publication-title: J. Membr. Sci. – volume: 32 year: 2020 ident: bib0009 article-title: De Novo Design of Covalent Organic Framework Membranes Toward Ultrafast Anion Transport publication-title: Adv. Mater. – volume: 10 start-page: 961 year: 2018 end-page: 967 ident: bib0017 article-title: Microporous Membranes Comprising Conjugated Polymers with Rigid Backbones Enable Ultrafast Organic-Solvent Nanofiltration publication-title: Nat. Chem. – volume: 624 year: 2021 ident: bib0031 article-title: Secondary Growth of Bi-Layered Covalent Organic Framework Nanofilms with Offset Channels for Desalination publication-title: J. Membr. Sci. – volume: 637 year: 2021 ident: bib0006 article-title: Large-Pore Covalent Organic Frameworks for Ultra-Fast Tight Ultrafiltration (TUF) publication-title: J. Membr. Sci. – volume: 2 start-page: 536 year: 2011 ident: bib0019 article-title: Pore Surface Engineering in Covalent Organic Frameworks publication-title: Nat. Commun. – volume: 48 start-page: 3903 year: 2019 end-page: 3945 ident: bib0020 article-title: Post-Synthetic Modification of Covalent Organic Frameworks publication-title: Chem. Soc. Rev. – volume: 48 start-page: 3811 year: 2019 end-page: 3841 ident: bib0038 article-title: Ultrathin Metal/Covalent–Organic Framework Membranes Towards Ultimate Separation publication-title: Chem. Soc. Rev. – volume: 20 start-page: 1551 year: 2021 end-page: 1558 ident: bib0039 article-title: Hydrophilicity Gradient in Covalent Organic Frameworks for Membrane Distillation publication-title: Nat. Mater. – volume: 48 start-page: 488 year: 2019 end-page: 516 ident: bib0029 article-title: Recent Progress in Covalent Organic Framework Thin Films: Fabrications, Applications and Perspectives publication-title: Chem. Soc. Rev. – volume: 8 start-page: 19328 year: 2020 end-page: 19336 ident: bib0032 article-title: Ultrathin Heterostructured Covalent Organic Framework Membranes With Interfacial Molecular Sieving Capacity for Fast Water-Selective Permeation publication-title: J. Mater. Chem. A – volume: 48 start-page: 2665 year: 2019 end-page: 2681 ident: bib0037 article-title: Covalent Organic Frameworks for Membrane Separation publication-title: Chem. Soc. Rev. – volume: 140 start-page: 14342 year: 2018 end-page: 14349 ident: bib0026 article-title: Crystalline 2D Covalent Organic Framework Membranes for High-Flux Organic Solvent Nanofiltration publication-title: J. Am. Chem. Soc. – volume: 16 start-page: 1198 year: 2017 end-page: 1202 ident: bib0033 article-title: Ultrathin Graphene-Based Membrane With Precise Molecular Sieving and Ultrafast Solvent Permeation publication-title: Nat. Mater. – volume: 20 start-page: 2741 year: 2008 end-page: 2746 ident: bib0027 article-title: Tailoring Microporosity in Covalent Organic Frameworks publication-title: Adv. Mater. – volume: 348 start-page: 1347 year: 2015 end-page: 1351 ident: bib0013 article-title: Sub–10 nm Polyamide Nanofilms with Ultrafast Solvent Transport for Molecular Separation publication-title: Science – volume: 28 start-page: 1489 year: 2016 end-page: 1494 ident: bib0001 article-title: Interplaying Intrinsic and Extrinsic Proton Conductivities in Covalent Organic Frameworks publication-title: Chem. Mater. – volume: 29 year: 2017 ident: bib0012 article-title: Selective Molecular Sieving in Self-Standing Porous Covalent-Organic-Framework Membranes publication-title: Adv. Mater. – volume: 12 start-page: 18944 year: 2020 end-page: 18951 ident: bib0034 article-title: Single-Layered Nanosheets of Covalent Triazine Frameworks (CTFs) by Mild Oxidation for Molecular-Sieving Membranes publication-title: ACS Appl. Mater. Interfaces – volume: 139 start-page: 13083 year: 2017 end-page: 13091 ident: bib0004 article-title: Selective Molecular Separation by Interfacially Crystallized Covalent Organic Framework Thin Films publication-title: J. Am. Chem. Soc. – volume: 120 start-page: 8814 year: 2020 end-page: 8933 ident: bib0008 article-title: Covalent Organic Frameworks: Design, Synthesis, and Functions publication-title: Chem. Rev. – volume: 11 start-page: 5434 year: 2020 end-page: 5440 ident: bib0025 article-title: Pore Engineering of Ultrathin Covalent Organic Framework Membranes for Organic Solvent Nanofiltration and Molecular Sieving publication-title: Chem. Sci. – volume: 9 start-page: 8433 year: 2017 end-page: 8436 ident: bib0015 article-title: Two-Dimensional Covalent Organic Framework (COF) Membranes Fabricated via the Assembly of Exfoliated COF Nanosheets publication-title: ACS Appl. Mater. Interfaces – volume: 140 start-page: 10094 year: 2018 end-page: 10098 ident: bib0005 article-title: Covalent Organic Framework–Covalent Organic Framework Bilayer Membranes for Highly Selective Gas Separation publication-title: J. Am. Chem. Soc. – volume: 48 start-page: 488 year: 2019 ident: 10.1016/j.memlet.2021.100008_bib0029 article-title: Recent Progress in Covalent Organic Framework Thin Films: Fabrications, Applications and Perspectives publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00376A – volume: 28 start-page: 1489 year: 2016 ident: 10.1016/j.memlet.2021.100008_bib0001 article-title: Interplaying Intrinsic and Extrinsic Proton Conductivities in Covalent Organic Frameworks publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b04947 – volume: 20 start-page: 2741 year: 2008 ident: 10.1016/j.memlet.2021.100008_bib0027 article-title: Tailoring Microporosity in Covalent Organic Frameworks publication-title: Adv. Mater. doi: 10.1002/adma.200800030 – volume: 637 year: 2021 ident: 10.1016/j.memlet.2021.100008_bib0006 article-title: Large-Pore Covalent Organic Frameworks for Ultra-Fast Tight Ultrafiltration (TUF) publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2021.119635 – volume: 1 start-page: 0056 year: 2017 ident: 10.1016/j.memlet.2021.100008_bib0011 article-title: Tessellated Multiporous Two-Dimensional Covalent Organic Frameworks publication-title: Nature Reviews Chemistry doi: 10.1038/s41570-017-0056 – volume: 142 start-page: 4472 year: 2020 ident: 10.1016/j.memlet.2021.100008_bib0036 article-title: Ultrathin Two-Dimensional Membranes Assembled by Ionic Covalent Organic Nanosheets with Reduced Apertures for Gas Separation publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b13825 – volume: 11 start-page: 5434 year: 2020 ident: 10.1016/j.memlet.2021.100008_bib0025 article-title: Pore Engineering of Ultrathin Covalent Organic Framework Membranes for Organic Solvent Nanofiltration and Molecular Sieving publication-title: Chem. Sci. doi: 10.1039/D0SC01679A – volume: 8 start-page: 19328 year: 2020 ident: 10.1016/j.memlet.2021.100008_bib0032 article-title: Ultrathin Heterostructured Covalent Organic Framework Membranes With Interfacial Molecular Sieving Capacity for Fast Water-Selective Permeation publication-title: J. Mater. Chem. A doi: 10.1039/D0TA07352K – volume: 335 start-page: 444 year: 2012 ident: 10.1016/j.memlet.2021.100008_bib0014 article-title: Ultrafast Viscous Permeation of Organic Solvents Through Diamond-Like Carbon Nanosheets publication-title: Science doi: 10.1126/science.1212101 – volume: 21 start-page: 8355 year: 2021 ident: 10.1016/j.memlet.2021.100008_bib0024 article-title: Flexible and Robust Three-Dimensional Covalent Organic Framework Membranes for Precise Separations under Extreme Conditions publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c02919 – volume: 11 start-page: 599 year: 2020 ident: 10.1016/j.memlet.2021.100008_bib0016 article-title: Laminated Self-Standing Covalent Organic Framework Membrane with Uniformly Distributed Subnanopores for Ionic and Molecular Sieving publication-title: Nat. Commun. doi: 10.1038/s41467-019-14056-7 – volume: 48 start-page: 3903 year: 2019 ident: 10.1016/j.memlet.2021.100008_bib0020 article-title: Post-Synthetic Modification of Covalent Organic Frameworks publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00978C – volume: 1 start-page: 440 year: 2019 ident: 10.1016/j.memlet.2021.100008_bib0003 article-title: Reducing the Pore Size of Covalent Organic Frameworks in Thin-Film Composite Membranes Enhances Solute Rejection publication-title: ACS Materials Letters doi: 10.1021/acsmaterialslett.9b00272 – volume: 120 start-page: 8814 year: 2020 ident: 10.1016/j.memlet.2021.100008_bib0008 article-title: Covalent Organic Frameworks: Design, Synthesis, and Functions publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00550 – volume: 29 year: 2017 ident: 10.1016/j.memlet.2021.100008_bib0012 article-title: Selective Molecular Sieving in Self-Standing Porous Covalent-Organic-Framework Membranes publication-title: Adv. Mater. doi: 10.1002/adma.201603945 – volume: 624 year: 2021 ident: 10.1016/j.memlet.2021.100008_bib0031 article-title: Secondary Growth of Bi-Layered Covalent Organic Framework Nanofilms with Offset Channels for Desalination publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2021.119122 – volume: 49 start-page: 708 year: 2020 ident: 10.1016/j.memlet.2021.100008_bib0030 article-title: Covalent Organic Frameworks for Separation Applications publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00827F – volume: 16 start-page: 1198 year: 2017 ident: 10.1016/j.memlet.2021.100008_bib0033 article-title: Ultrathin Graphene-Based Membrane With Precise Molecular Sieving and Ultrafast Solvent Permeation publication-title: Nat. Mater. doi: 10.1038/nmat5025 – volume: 50 start-page: 5468 year: 2021 ident: 10.1016/j.memlet.2021.100008_bib0028 article-title: Organic Molecular Sieve Membranes for Chemical Separations publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS01347A – volume: 139 start-page: 13083 year: 2017 ident: 10.1016/j.memlet.2021.100008_bib0004 article-title: Selective Molecular Separation by Interfacially Crystallized Covalent Organic Framework Thin Films publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b06640 – volume: 430 year: 2022 ident: 10.1016/j.memlet.2021.100008_bib0002 article-title: Interfacial Synthesized Covalent Organic Framework Nanofiltration Membranes for Precisely Ultrafast Sieving publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.133024 – volume: 576 start-page: 116 year: 2019 ident: 10.1016/j.memlet.2021.100008_bib0023 article-title: Growing Covalent Organic Frameworks on Porous Substrates for Molecule-Sieving Membranes with Pores Tunable from Ultra- to Nanofiltration publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2019.01.034 – volume: 48 start-page: 2665 year: 2019 ident: 10.1016/j.memlet.2021.100008_bib0037 article-title: Covalent Organic Frameworks for Membrane Separation publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00919H – volume: 140 start-page: 10094 year: 2018 ident: 10.1016/j.memlet.2021.100008_bib0005 article-title: Covalent Organic Framework–Covalent Organic Framework Bilayer Membranes for Highly Selective Gas Separation publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b05136 – volume: 137 start-page: 7079 year: 2015 ident: 10.1016/j.memlet.2021.100008_bib0010 article-title: Tailor-Made Pore Surface Engineering in Covalent Organic Frameworks: Systematic Functionalization for Performance Screening publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b04300 – volume: 348 start-page: 1347 year: 2015 ident: 10.1016/j.memlet.2021.100008_bib0013 article-title: Sub–10 nm Polyamide Nanofilms with Ultrafast Solvent Transport for Molecular Separation publication-title: Science doi: 10.1126/science.aaa5058 – volume: 11 start-page: 989 year: 2020 ident: 10.1016/j.memlet.2021.100008_bib0022 article-title: Table-Salt Enabled Interface-Confined Synthesis of Covalent Organic Framework (COF) Nanosheets publication-title: Chem. Sci. doi: 10.1039/C9SC05082E – volume: 9 start-page: 23178 year: 2021 ident: 10.1016/j.memlet.2021.100008_bib0021 article-title: Homointerface Covalent Organic Framework Membranes for Efficient Desalination publication-title: J. Mater. Chem. A doi: 10.1039/D1TA06439H – year: 2021 ident: 10.1016/j.memlet.2021.100008_bib0035 article-title: Ultrathin Covalent Organic Framework Membranes via a Multi-Interfacial Engineering Strategy for Gas Separation publication-title: Adv. Mater. – volume: 9 start-page: 8433 year: 2017 ident: 10.1016/j.memlet.2021.100008_bib0015 article-title: Two-Dimensional Covalent Organic Framework (COF) Membranes Fabricated via the Assembly of Exfoliated COF Nanosheets publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b15752 – volume: 10 start-page: 961 year: 2018 ident: 10.1016/j.memlet.2021.100008_bib0017 article-title: Microporous Membranes Comprising Conjugated Polymers with Rigid Backbones Enable Ultrafast Organic-Solvent Nanofiltration publication-title: Nat. Chem. doi: 10.1038/s41557-018-0093-9 – volume: 32 year: 2020 ident: 10.1016/j.memlet.2021.100008_bib0009 article-title: De Novo Design of Covalent Organic Framework Membranes Toward Ultrafast Anion Transport publication-title: Adv. Mater. doi: 10.1002/adma.202001284 – volume: 10 start-page: 12295 year: 2018 ident: 10.1016/j.memlet.2021.100008_bib0007 article-title: Synthesis of Sub-10 nm Two-Dimensional Covalent Organic Thin Film with Sharp Molecular Sieving Nanofiltration publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b19450 – volume: 7 start-page: 24205 year: 2019 ident: 10.1016/j.memlet.2021.100008_bib0018 article-title: Post-Synthesis of A Covalent Organic Framework Nanofiltration Membrane for Highly Efficient Water Treatment publication-title: J. Mater. Chem. A doi: 10.1039/C9TA06325K – volume: 12 start-page: 18944 year: 2020 ident: 10.1016/j.memlet.2021.100008_bib0034 article-title: Single-Layered Nanosheets of Covalent Triazine Frameworks (CTFs) by Mild Oxidation for Molecular-Sieving Membranes publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c03246 – volume: 48 start-page: 3811 year: 2019 ident: 10.1016/j.memlet.2021.100008_bib0038 article-title: Ultrathin Metal/Covalent–Organic Framework Membranes Towards Ultimate Separation publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00322C – volume: 2 start-page: 536 year: 2011 ident: 10.1016/j.memlet.2021.100008_bib0019 article-title: Pore Surface Engineering in Covalent Organic Frameworks publication-title: Nat. Commun. doi: 10.1038/ncomms1542 – volume: 140 start-page: 14342 year: 2018 ident: 10.1016/j.memlet.2021.100008_bib0026 article-title: Crystalline 2D Covalent Organic Framework Membranes for High-Flux Organic Solvent Nanofiltration publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b08788 – volume: 20 start-page: 1551 year: 2021 ident: 10.1016/j.memlet.2021.100008_bib0039 article-title: Hydrophilicity Gradient in Covalent Organic Frameworks for Membrane Distillation publication-title: Nat. Mater. doi: 10.1038/s41563-021-01052-w |
SSID | ssj0002811319 |
Score | 2.2618918 |
Snippet | •COF membranes with tailored pore size are designed through a de novo approach.•Ultrathin and crystalline COF membranes are prepared.•The transport mechanism... Three crystalline truxene-based β-ketoenamine COF membranes (TFP-HETTA, TFP-HBTTA and TFP-HHTTA) are fabricated via a de novo monomer design approach to... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 100008 |
SubjectTerms | COF de novo design Membranes Organic solvent nanofiltration Pore-flow model |
Title | Tailored pore size and microporosity of covalent organic framework (COF) membranes for improved molecular separation |
URI | https://dx.doi.org/10.1016/j.memlet.2021.100008 https://doaj.org/article/71a8c8a8fa1343628e2a5faefdc986d0 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8QwDI4QEwyIpzheysAAQ4A82uZGQJwQErCAxFY5L-kQ10NwDDDw23GSFpUFFpYOUZpEXyz7s-vahOxbNCEnCoYMpAGmIBimJS8ZGAARCURhYhzy-qa8vFdXD8VDr9VXzAnL5YEzcMcVB2016ABcKtS22gsoAvjg7FCXLnnraPN6ztRjChlxLlNXD4H0kcXPnt1_cym5a-InCAu6h4IfpQi3_mGXUvn-nnnqmZzRMllquSI9zWdcIXO-WSWLvQqCa2R2B2P0uL2jyKM9fR1_eAqNo5OYZ4dDMSXrnU4DtVMUKTQwNLdxsjR0WVn04Px2dEjxrOg4o-KjSGPpOMUacNlJ1z6XvvpcJnzarJP70cXd-SVrGykwq7ieMTgJwSEogPwiBOFLJwR3spRGDR0CZAornQfJpXEioAq0CioNRaUQ4-C43CDzzbTxm4RCZaWvSut44RUaNhOcGYLQha-Qm4lqQGQHY23bKuOx2cVT3aWTPdYZ_DqCX2fwB4R9v_Wcq2z8Mf8s3tD33FgjOw0ghnUrOfVfkjMgVXe_dUs3Mo3Apca_br_1H9tvk4W4ZE6N2SHzs5c3v4sEZ2b2kizj8_rz4gtITvse |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tailored+pore+size+and+microporosity+of+covalent+organic+framework+%28COF%29+membranes+for+improved+molecular+separation&rft.jtitle=Journal+of+Membrane+Science+Letters&rft.au=Shinde%2C+Digambar+B.&rft.au=Cao%2C+Li&rft.au=Liu%2C+Xiaowei&rft.au=Wonanke%2C+Dinga+A.D.&rft.date=2021-12-01&rft.pub=Elsevier+B.V&rft.issn=2772-4212&rft.eissn=2772-4212&rft.volume=1&rft.issue=2&rft_id=info:doi/10.1016%2Fj.memlet.2021.100008&rft.externalDocID=S2772421221000088 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2772-4212&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2772-4212&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2772-4212&client=summon |