Tailored pore size and microporosity of covalent organic framework (COF) membranes for improved molecular separation

•COF membranes with tailored pore size are designed through a de novo approach.•Ultrathin and crystalline COF membranes are prepared.•The transport mechanism through COF membrane is studied systematically. Three crystalline truxene-based β-ketoenamine COF membranes (TFP-HETTA, TFP-HBTTA and TFP-HHTT...

Full description

Saved in:
Bibliographic Details
Published inJournal of Membrane Science Letters Vol. 1; no. 2; p. 100008
Main Authors Shinde, Digambar B., Cao, Li, Liu, Xiaowei, Wonanke, Dinga A.D., Zhou, Zongyao, Hedhili, Mohamed N., Addicoat, Matthew, Huang, Kuo-Wei, Lai, Zhiping
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2021
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •COF membranes with tailored pore size are designed through a de novo approach.•Ultrathin and crystalline COF membranes are prepared.•The transport mechanism through COF membrane is studied systematically. Three crystalline truxene-based β-ketoenamine COF membranes (TFP-HETTA, TFP-HBTTA and TFP-HHTTA) are fabricated via a de novo monomer design approach to understand the fundamental correlations between pore structure and molecular separation performance. By introducing bulky alkyl groups into the truxene framework, the pore size of TFP-HETTA, TFP-HBTTA, and TFP-HHTTA are systematically tuned from 1.08 to 0.72 nm. Accordingly, the TFP-HETTA showed good water permeance of 47 L m−2h−1 bar−1 along with a prominent rejection rate of Reactive Blue (RB, 800 Da) but less than 10% rejection rate of inorganic salts. In contrast, the TFP-HHTTA membrane with pore size of 0.72 nm can reject small dye molecules such as Safranin O (SO, 350 Da) and trivalent salts but with a moderate water permeance of 19 L m−2h−1 bar−1. The pore-flow model rooted from the viscous flow could well fit the observed organic solvent nanofiltration results of all three COF membranes. [Display omitted]
AbstractList Three crystalline truxene-based β-ketoenamine COF membranes (TFP-HETTA, TFP-HBTTA and TFP-HHTTA) are fabricated via a de novo monomer design approach to understand the fundamental correlations between pore structure and molecular separation performance. By introducing bulky alkyl groups into the truxene framework, the pore size of TFP-HETTA, TFP-HBTTA, and TFP-HHTTA are systematically tuned from 1.08 to 0.72 nm. Accordingly, the TFP-HETTA showed good water permeance of 47 L m−2 h−1 bar−1 along with a prominent rejection rate of Reactive Blue (RB, 800 Da) but less than 10% rejection rate of inorganic salts. In contrast, the TFP-HHTTA membrane with pore size of 0.72 nm can reject small dye molecules such as Safranin O (SO, 350 Da) and trivalent salts but with a moderate water permeance of 19 L m−2 h−1 bar−1. The pore-flow model rooted from the viscous flow could well fit the observed organic solvent nanofiltration results of all three COF membranes.
•COF membranes with tailored pore size are designed through a de novo approach.•Ultrathin and crystalline COF membranes are prepared.•The transport mechanism through COF membrane is studied systematically. Three crystalline truxene-based β-ketoenamine COF membranes (TFP-HETTA, TFP-HBTTA and TFP-HHTTA) are fabricated via a de novo monomer design approach to understand the fundamental correlations between pore structure and molecular separation performance. By introducing bulky alkyl groups into the truxene framework, the pore size of TFP-HETTA, TFP-HBTTA, and TFP-HHTTA are systematically tuned from 1.08 to 0.72 nm. Accordingly, the TFP-HETTA showed good water permeance of 47 L m−2h−1 bar−1 along with a prominent rejection rate of Reactive Blue (RB, 800 Da) but less than 10% rejection rate of inorganic salts. In contrast, the TFP-HHTTA membrane with pore size of 0.72 nm can reject small dye molecules such as Safranin O (SO, 350 Da) and trivalent salts but with a moderate water permeance of 19 L m−2h−1 bar−1. The pore-flow model rooted from the viscous flow could well fit the observed organic solvent nanofiltration results of all three COF membranes. [Display omitted]
ArticleNumber 100008
Author Liu, Xiaowei
Hedhili, Mohamed N.
Lai, Zhiping
Wonanke, Dinga A.D.
Zhou, Zongyao
Shinde, Digambar B.
Cao, Li
Addicoat, Matthew
Huang, Kuo-Wei
Author_xml – sequence: 1
  givenname: Digambar B.
  surname: Shinde
  fullname: Shinde, Digambar B.
  organization: Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
– sequence: 2
  givenname: Li
  surname: Cao
  fullname: Cao, Li
  organization: Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
– sequence: 3
  givenname: Xiaowei
  surname: Liu
  fullname: Liu, Xiaowei
  organization: Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
– sequence: 4
  givenname: Dinga A.D.
  surname: Wonanke
  fullname: Wonanke, Dinga A.D.
  organization: School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom
– sequence: 5
  givenname: Zongyao
  surname: Zhou
  fullname: Zhou, Zongyao
  organization: Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
– sequence: 6
  givenname: Mohamed N.
  surname: Hedhili
  fullname: Hedhili, Mohamed N.
  organization: Core labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
– sequence: 7
  givenname: Matthew
  surname: Addicoat
  fullname: Addicoat, Matthew
  organization: School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom
– sequence: 8
  givenname: Kuo-Wei
  surname: Huang
  fullname: Huang, Kuo-Wei
  organization: Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
– sequence: 9
  givenname: Zhiping
  surname: Lai
  fullname: Lai, Zhiping
  email: zhiping.lai@kaust.edu.sa
  organization: Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
BookMark eNqFkUFrGzEQhUVJoUmaf9CDju3Bzkpa78o9FIJpmkAgl_QsxtKoyN1dmZHikP76TrIllBxaHaRh0PuYee9EHE15QiE-qGapGtWd75YjjgPWpW604hYf-0Yc677Xi1YrffRX_U6clbLjH9oqZdT6WNQ7SEMmDHLPtyzpF0qYghyTp8ytXFJ9lDlKnw8w4FRlph8wJS8jwYgPmX7Kj5vby0-Sp9gSTFhkzCTTuKd8YOyYB_T3A5AsuAeCmvL0XryNMBQ8-_Oeiu-XX-82V4ub22_Xm4ubhW-VrQtoYgw8KzRdF6PGLmitgunMtl0H3mm78iYgGGW2QceVsb6F3sKqb_3axqDMqbieuSHDzu0pjUCPLkNyzw3exAHV5Ad0vQLrLdgIyrSm0xY1rCJgDMzqQsOsdmaxL6UQxheeatxTEG7n5iDcUxBuDoJln1_JfKrPJlRi5_8n_jKLkU06JCRXfMLJY0iEvvIW6d-A34Xsqrc
CitedBy_id crossref_primary_10_1039_D3TA04108E
crossref_primary_10_1016_j_mtsust_2024_100672
crossref_primary_10_3390_electronicmat4020005
crossref_primary_10_1016_j_advmem_2024_100112
crossref_primary_10_1002_adma_202300525
crossref_primary_10_1016_j_memlet_2022_100034
crossref_primary_10_1016_j_memsci_2024_122853
crossref_primary_10_1039_D3CC06057H
Cites_doi 10.1039/C8CS00376A
10.1021/acs.chemmater.5b04947
10.1002/adma.200800030
10.1016/j.memsci.2021.119635
10.1038/s41570-017-0056
10.1021/jacs.9b13825
10.1039/D0SC01679A
10.1039/D0TA07352K
10.1126/science.1212101
10.1021/acs.nanolett.1c02919
10.1038/s41467-019-14056-7
10.1039/C8CS00978C
10.1021/acsmaterialslett.9b00272
10.1021/acs.chemrev.9b00550
10.1002/adma.201603945
10.1016/j.memsci.2021.119122
10.1039/C9CS00827F
10.1038/nmat5025
10.1039/D0CS01347A
10.1021/jacs.7b06640
10.1016/j.cej.2021.133024
10.1016/j.memsci.2019.01.034
10.1039/C8CS00919H
10.1021/jacs.8b05136
10.1021/jacs.5b04300
10.1126/science.aaa5058
10.1039/C9SC05082E
10.1039/D1TA06439H
10.1021/acsami.6b15752
10.1038/s41557-018-0093-9
10.1002/adma.202001284
10.1021/acsami.7b19450
10.1039/C9TA06325K
10.1021/acsami.0c03246
10.1039/C9CS00322C
10.1038/ncomms1542
10.1021/jacs.8b08788
10.1038/s41563-021-01052-w
ContentType Journal Article
Copyright 2021
Copyright_xml – notice: 2021
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.memlet.2021.100008
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2772-4212
ExternalDocumentID oai_doaj_org_article_71a8c8a8fa1343628e2a5faefdc986d0
10_1016_j_memlet_2021_100008
S2772421221000088
GroupedDBID 6I.
AAFTH
AAFWJ
AAXUO
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
GROUPED_DOAJ
M41
M~E
OK1
ROL
AALRI
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AITUG
AKBMS
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c418t-a0ffd002a066ff2e6d221d363b49d277b5c3dea313bd2f538c4a78a574c98fd13
IEDL.DBID DOA
ISSN 2772-4212
IngestDate Wed Aug 27 01:29:29 EDT 2025
Tue Jul 01 01:35:58 EDT 2025
Thu Apr 24 23:05:14 EDT 2025
Tue Jul 25 20:59:04 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords de novo design
Membranes
COF
Pore-flow model
Organic solvent nanofiltration
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-a0ffd002a066ff2e6d221d363b49d277b5c3dea313bd2f538c4a78a574c98fd13
OpenAccessLink https://doaj.org/article/71a8c8a8fa1343628e2a5faefdc986d0
ParticipantIDs doaj_primary_oai_doaj_org_article_71a8c8a8fa1343628e2a5faefdc986d0
crossref_primary_10_1016_j_memlet_2021_100008
crossref_citationtrail_10_1016_j_memlet_2021_100008
elsevier_sciencedirect_doi_10_1016_j_memlet_2021_100008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of Membrane Science Letters
PublicationYear 2021
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Shi, Xiao, Zhang, Wang (bib0023) 2019; 576
Shi, Zhang, Fang, Wang, Zhang, Wang (bib0024) 2021; 21
Ying, Tong, Ning, Ravi, Peh, Tan, Pennycook, Zhao (bib0036) 2020; 142
Chen, Gai, Gai, Qin, Wang, Cui, Guo, Jiang, Zou, Zhou, Gai (bib0002) 2022; 430
Karan, Samitsu, Peng, Kurashima, Ichinose (bib0014) 2012; 335
Ying, Peh, Yang, Yang, Zhao (bib0035) 2021
Dey, Pal, Rout, Kunjattu H, Das, Mukherjee, Kharul, Banerjee (bib0004) 2017; 139
Yang, Wu, Zhao, Wang, Song, Cheng, Wang, Cao, Pan, Jiang (bib0032) 2020; 8
Li, Zhang, Tsuru (bib0015) 2017; 9
Liang, Wang, Shi, Shen, He, Ghazi, Khan, Sin, Khattak, Li, Tang (bib0017) 2018; 10
Liu, Jiang, Nalaparaju, Jiang, Huang (bib0018) 2019; 7
Wang, Wang, Liang, Yuan, Yang, Wang, Ren, Wu, Pan, Jiang (bib0028) 2021; 50
Yang, Su, Chi, Cherian, Huang, Kravets, Wang, Zhang, Pratt, Grigorenko, Guinea, Geim, Nair (bib0033) 2017; 16
Corcos, Levato, Jiang, Evans, Livingston, Mariñas, Dichtel (bib0003) 2019; 1
Karan, Jiang, Livingston (bib0013) 2015; 348
Wang, Zhang, Chen, Zhang, Ma (bib0030) 2020; 49
Fan, Mundstock, Feldhoff, Knebel, Gu, Meng, Caro (bib0005) 2018; 140
He, Yang, Wu, He, Xu, Kong, Cao, Shi, Zhang, Tongsh, Jiao, Zhu, Jiang (bib0009) 2020; 32
Chandra, Kundu, Dey, Addicoat, Heine, Banerjee (bib0001) 2016; 28
Shinde, Cao, Wonanke, Li, Kumar, Liu, Hedhili, Emwas, Addicoat, Huang, Lai (bib0025) 2020; 11
Huang, Krishna, Jiang (bib0010) 2015; 137
Fang, Shi, Wang, Zhang, Yin, Zhang, Ju, Xiong, Wang (bib0006) 2021; 637
Jin, Hu, Zhang (bib0011) 2017; 1
Kandambeth, Biswal, Chaudhari, Rout, Kunjattu, Mitra, Karak, Das, Mukherjee, Kharul, Banerjee (bib0012) 2017; 29
Zhao, Jiang, Fan, Hong, Mei, Yao, Liu, Zhang, Li, Zhang, Sun, Guo, Shao, Zhu, Zhang, Guo, Ma, Zhang, Feng, Wang, Wu, Wang (bib0039) 2021; 20
Xiao, Shi, Zhang, Yin, Xiong, Wang (bib0031) 2021; 624
Yin, Zhang, Zhou, Wang (bib0034) 2020; 12
Nagai, Guo, Feng, Jin, Chen, Ding, Jiang (bib0019) 2011; 2
Shen, Yuan, Shi, You, Ding, Zhang, Zhang, Deng, Guan, Long, Zheng, Zhang, Wu, Jiang (bib0021) 2021; 9
Zhang, Wu, Ma, Wang, Xu (bib0038) 2019; 48
Segura, Royuela, Ramos (bib0020) 2019; 48
Shinde, Sheng, Li, Ostwal, Emwas, Huang, Lai (bib0026) 2018; 140
Yuan, Li, Zhu, Zhang, Van Puyvelde, Van der Bruggen (bib0037) 2019; 48
Gadwal, Sheng, Thankamony, Liu, Li, Lai (bib0007) 2018; 10
Geng, He, Liu, Dalapati, Tan, Li, Tao, Gong, Jiang, Jiang (bib0008) 2020; 120
Li, Wu, Guo, Zhang, Chen, Wei, Li, Li, Li, Ma (bib0016) 2020; 11
Wang, Zeng, Xu, Li, Zeng, Xiao, Tang, Huang, Tang, Lai, Jiang, Liu, Yi, Qin, Ye, Ren, Tang (bib0029) 2019; 48
Shi, Ma, Xu, Zhang, Wang (bib0022) 2020; 11
Tilford, Mugavero, Pellechia, Lavigne (bib0027) 2008; 20
Xiao (10.1016/j.memlet.2021.100008_bib0031) 2021; 624
Fan (10.1016/j.memlet.2021.100008_bib0005) 2018; 140
Karan (10.1016/j.memlet.2021.100008_bib0014) 2012; 335
Li (10.1016/j.memlet.2021.100008_bib0016) 2020; 11
Yin (10.1016/j.memlet.2021.100008_bib0034) 2020; 12
Zhang (10.1016/j.memlet.2021.100008_bib0038) 2019; 48
Ying (10.1016/j.memlet.2021.100008_bib0036) 2020; 142
He (10.1016/j.memlet.2021.100008_bib0009) 2020; 32
Shen (10.1016/j.memlet.2021.100008_bib0021) 2021; 9
Jin (10.1016/j.memlet.2021.100008_bib0011) 2017; 1
Yang (10.1016/j.memlet.2021.100008_bib0032) 2020; 8
Fang (10.1016/j.memlet.2021.100008_bib0006) 2021; 637
Shi (10.1016/j.memlet.2021.100008_bib0023) 2019; 576
Tilford (10.1016/j.memlet.2021.100008_bib0027) 2008; 20
Shinde (10.1016/j.memlet.2021.100008_bib0025) 2020; 11
Huang (10.1016/j.memlet.2021.100008_bib0010) 2015; 137
Chen (10.1016/j.memlet.2021.100008_bib0002) 2022; 430
Gadwal (10.1016/j.memlet.2021.100008_bib0007) 2018; 10
Ying (10.1016/j.memlet.2021.100008_bib0035) 2021
Yang (10.1016/j.memlet.2021.100008_bib0033) 2017; 16
Liu (10.1016/j.memlet.2021.100008_bib0018) 2019; 7
Kandambeth (10.1016/j.memlet.2021.100008_bib0012) 2017; 29
Geng (10.1016/j.memlet.2021.100008_bib0008) 2020; 120
Dey (10.1016/j.memlet.2021.100008_bib0004) 2017; 139
Wang (10.1016/j.memlet.2021.100008_bib0030) 2020; 49
Wang (10.1016/j.memlet.2021.100008_bib0028) 2021; 50
Shi (10.1016/j.memlet.2021.100008_bib0024) 2021; 21
Liang (10.1016/j.memlet.2021.100008_bib0017) 2018; 10
Shinde (10.1016/j.memlet.2021.100008_bib0026) 2018; 140
Karan (10.1016/j.memlet.2021.100008_bib0013) 2015; 348
Shi (10.1016/j.memlet.2021.100008_bib0022) 2020; 11
Nagai (10.1016/j.memlet.2021.100008_bib0019) 2011; 2
Zhao (10.1016/j.memlet.2021.100008_bib0039) 2021; 20
Li (10.1016/j.memlet.2021.100008_bib0015) 2017; 9
Chandra (10.1016/j.memlet.2021.100008_bib0001) 2016; 28
Corcos (10.1016/j.memlet.2021.100008_bib0003) 2019; 1
Yuan (10.1016/j.memlet.2021.100008_bib0037) 2019; 48
Segura (10.1016/j.memlet.2021.100008_bib0020) 2019; 48
Wang (10.1016/j.memlet.2021.100008_bib0029) 2019; 48
References_xml – volume: 21
  start-page: 8355
  year: 2021
  end-page: 8362
  ident: bib0024
  article-title: Flexible and Robust Three-Dimensional Covalent Organic Framework Membranes for Precise Separations under Extreme Conditions
  publication-title: Nano Lett.
– volume: 142
  start-page: 4472
  year: 2020
  end-page: 4480
  ident: bib0036
  article-title: Ultrathin Two-Dimensional Membranes Assembled by Ionic Covalent Organic Nanosheets with Reduced Apertures for Gas Separation
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 440
  year: 2019
  end-page: 446
  ident: bib0003
  article-title: Reducing the Pore Size of Covalent Organic Frameworks in Thin-Film Composite Membranes Enhances Solute Rejection
  publication-title: ACS Materials Letters
– volume: 10
  start-page: 12295
  year: 2018
  end-page: 12299
  ident: bib0007
  article-title: Synthesis of Sub-10 nm Two-Dimensional Covalent Organic Thin Film with Sharp Molecular Sieving Nanofiltration
  publication-title: ACS Appl. Mater. Interfaces
– volume: 430
  year: 2022
  ident: bib0002
  article-title: Interfacial Synthesized Covalent Organic Framework Nanofiltration Membranes for Precisely Ultrafast Sieving
  publication-title: Chem. Eng. J.
– volume: 137
  start-page: 7079
  year: 2015
  end-page: 7082
  ident: bib0010
  article-title: Tailor-Made Pore Surface Engineering in Covalent Organic Frameworks: Systematic Functionalization for Performance Screening
  publication-title: J. Am. Chem. Soc.
– volume: 335
  start-page: 444
  year: 2012
  end-page: 447
  ident: bib0014
  article-title: Ultrafast Viscous Permeation of Organic Solvents Through Diamond-Like Carbon Nanosheets
  publication-title: Science
– volume: 50
  start-page: 5468
  year: 2021
  end-page: 5516
  ident: bib0028
  article-title: Organic Molecular Sieve Membranes for Chemical Separations
  publication-title: Chem. Soc. Rev.
– volume: 1
  start-page: 0056
  year: 2017
  ident: bib0011
  article-title: Tessellated Multiporous Two-Dimensional Covalent Organic Frameworks
  publication-title: Nature Reviews Chemistry
– volume: 49
  start-page: 708
  year: 2020
  end-page: 735
  ident: bib0030
  article-title: Covalent Organic Frameworks for Separation Applications
  publication-title: Chem. Soc. Rev.
– volume: 9
  start-page: 23178
  year: 2021
  end-page: 23187
  ident: bib0021
  article-title: Homointerface Covalent Organic Framework Membranes for Efficient Desalination
  publication-title: J. Mater. Chem. A
– volume: 11
  start-page: 989
  year: 2020
  end-page: 996
  ident: bib0022
  article-title: Table-Salt Enabled Interface-Confined Synthesis of Covalent Organic Framework (COF) Nanosheets
  publication-title: Chem. Sci.
– volume: 11
  start-page: 599
  year: 2020
  ident: bib0016
  article-title: Laminated Self-Standing Covalent Organic Framework Membrane with Uniformly Distributed Subnanopores for Ionic and Molecular Sieving
  publication-title: Nat. Commun.
– volume: 7
  start-page: 24205
  year: 2019
  end-page: 24210
  ident: bib0018
  article-title: Post-Synthesis of A Covalent Organic Framework Nanofiltration Membrane for Highly Efficient Water Treatment
  publication-title: J. Mater. Chem. A
– year: 2021
  ident: bib0035
  article-title: Ultrathin Covalent Organic Framework Membranes via a Multi-Interfacial Engineering Strategy for Gas Separation
  publication-title: Adv. Mater.
– volume: 576
  start-page: 116
  year: 2019
  end-page: 122
  ident: bib0023
  article-title: Growing Covalent Organic Frameworks on Porous Substrates for Molecule-Sieving Membranes with Pores Tunable from Ultra- to Nanofiltration
  publication-title: J. Membr. Sci.
– volume: 32
  year: 2020
  ident: bib0009
  article-title: De Novo Design of Covalent Organic Framework Membranes Toward Ultrafast Anion Transport
  publication-title: Adv. Mater.
– volume: 10
  start-page: 961
  year: 2018
  end-page: 967
  ident: bib0017
  article-title: Microporous Membranes Comprising Conjugated Polymers with Rigid Backbones Enable Ultrafast Organic-Solvent Nanofiltration
  publication-title: Nat. Chem.
– volume: 624
  year: 2021
  ident: bib0031
  article-title: Secondary Growth of Bi-Layered Covalent Organic Framework Nanofilms with Offset Channels for Desalination
  publication-title: J. Membr. Sci.
– volume: 637
  year: 2021
  ident: bib0006
  article-title: Large-Pore Covalent Organic Frameworks for Ultra-Fast Tight Ultrafiltration (TUF)
  publication-title: J. Membr. Sci.
– volume: 2
  start-page: 536
  year: 2011
  ident: bib0019
  article-title: Pore Surface Engineering in Covalent Organic Frameworks
  publication-title: Nat. Commun.
– volume: 48
  start-page: 3903
  year: 2019
  end-page: 3945
  ident: bib0020
  article-title: Post-Synthetic Modification of Covalent Organic Frameworks
  publication-title: Chem. Soc. Rev.
– volume: 48
  start-page: 3811
  year: 2019
  end-page: 3841
  ident: bib0038
  article-title: Ultrathin Metal/Covalent–Organic Framework Membranes Towards Ultimate Separation
  publication-title: Chem. Soc. Rev.
– volume: 20
  start-page: 1551
  year: 2021
  end-page: 1558
  ident: bib0039
  article-title: Hydrophilicity Gradient in Covalent Organic Frameworks for Membrane Distillation
  publication-title: Nat. Mater.
– volume: 48
  start-page: 488
  year: 2019
  end-page: 516
  ident: bib0029
  article-title: Recent Progress in Covalent Organic Framework Thin Films: Fabrications, Applications and Perspectives
  publication-title: Chem. Soc. Rev.
– volume: 8
  start-page: 19328
  year: 2020
  end-page: 19336
  ident: bib0032
  article-title: Ultrathin Heterostructured Covalent Organic Framework Membranes With Interfacial Molecular Sieving Capacity for Fast Water-Selective Permeation
  publication-title: J. Mater. Chem. A
– volume: 48
  start-page: 2665
  year: 2019
  end-page: 2681
  ident: bib0037
  article-title: Covalent Organic Frameworks for Membrane Separation
  publication-title: Chem. Soc. Rev.
– volume: 140
  start-page: 14342
  year: 2018
  end-page: 14349
  ident: bib0026
  article-title: Crystalline 2D Covalent Organic Framework Membranes for High-Flux Organic Solvent Nanofiltration
  publication-title: J. Am. Chem. Soc.
– volume: 16
  start-page: 1198
  year: 2017
  end-page: 1202
  ident: bib0033
  article-title: Ultrathin Graphene-Based Membrane With Precise Molecular Sieving and Ultrafast Solvent Permeation
  publication-title: Nat. Mater.
– volume: 20
  start-page: 2741
  year: 2008
  end-page: 2746
  ident: bib0027
  article-title: Tailoring Microporosity in Covalent Organic Frameworks
  publication-title: Adv. Mater.
– volume: 348
  start-page: 1347
  year: 2015
  end-page: 1351
  ident: bib0013
  article-title: Sub–10 nm Polyamide Nanofilms with Ultrafast Solvent Transport for Molecular Separation
  publication-title: Science
– volume: 28
  start-page: 1489
  year: 2016
  end-page: 1494
  ident: bib0001
  article-title: Interplaying Intrinsic and Extrinsic Proton Conductivities in Covalent Organic Frameworks
  publication-title: Chem. Mater.
– volume: 29
  year: 2017
  ident: bib0012
  article-title: Selective Molecular Sieving in Self-Standing Porous Covalent-Organic-Framework Membranes
  publication-title: Adv. Mater.
– volume: 12
  start-page: 18944
  year: 2020
  end-page: 18951
  ident: bib0034
  article-title: Single-Layered Nanosheets of Covalent Triazine Frameworks (CTFs) by Mild Oxidation for Molecular-Sieving Membranes
  publication-title: ACS Appl. Mater. Interfaces
– volume: 139
  start-page: 13083
  year: 2017
  end-page: 13091
  ident: bib0004
  article-title: Selective Molecular Separation by Interfacially Crystallized Covalent Organic Framework Thin Films
  publication-title: J. Am. Chem. Soc.
– volume: 120
  start-page: 8814
  year: 2020
  end-page: 8933
  ident: bib0008
  article-title: Covalent Organic Frameworks: Design, Synthesis, and Functions
  publication-title: Chem. Rev.
– volume: 11
  start-page: 5434
  year: 2020
  end-page: 5440
  ident: bib0025
  article-title: Pore Engineering of Ultrathin Covalent Organic Framework Membranes for Organic Solvent Nanofiltration and Molecular Sieving
  publication-title: Chem. Sci.
– volume: 9
  start-page: 8433
  year: 2017
  end-page: 8436
  ident: bib0015
  article-title: Two-Dimensional Covalent Organic Framework (COF) Membranes Fabricated via the Assembly of Exfoliated COF Nanosheets
  publication-title: ACS Appl. Mater. Interfaces
– volume: 140
  start-page: 10094
  year: 2018
  end-page: 10098
  ident: bib0005
  article-title: Covalent Organic Framework–Covalent Organic Framework Bilayer Membranes for Highly Selective Gas Separation
  publication-title: J. Am. Chem. Soc.
– volume: 48
  start-page: 488
  year: 2019
  ident: 10.1016/j.memlet.2021.100008_bib0029
  article-title: Recent Progress in Covalent Organic Framework Thin Films: Fabrications, Applications and Perspectives
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00376A
– volume: 28
  start-page: 1489
  year: 2016
  ident: 10.1016/j.memlet.2021.100008_bib0001
  article-title: Interplaying Intrinsic and Extrinsic Proton Conductivities in Covalent Organic Frameworks
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b04947
– volume: 20
  start-page: 2741
  year: 2008
  ident: 10.1016/j.memlet.2021.100008_bib0027
  article-title: Tailoring Microporosity in Covalent Organic Frameworks
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200800030
– volume: 637
  year: 2021
  ident: 10.1016/j.memlet.2021.100008_bib0006
  article-title: Large-Pore Covalent Organic Frameworks for Ultra-Fast Tight Ultrafiltration (TUF)
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2021.119635
– volume: 1
  start-page: 0056
  year: 2017
  ident: 10.1016/j.memlet.2021.100008_bib0011
  article-title: Tessellated Multiporous Two-Dimensional Covalent Organic Frameworks
  publication-title: Nature Reviews Chemistry
  doi: 10.1038/s41570-017-0056
– volume: 142
  start-page: 4472
  year: 2020
  ident: 10.1016/j.memlet.2021.100008_bib0036
  article-title: Ultrathin Two-Dimensional Membranes Assembled by Ionic Covalent Organic Nanosheets with Reduced Apertures for Gas Separation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b13825
– volume: 11
  start-page: 5434
  year: 2020
  ident: 10.1016/j.memlet.2021.100008_bib0025
  article-title: Pore Engineering of Ultrathin Covalent Organic Framework Membranes for Organic Solvent Nanofiltration and Molecular Sieving
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC01679A
– volume: 8
  start-page: 19328
  year: 2020
  ident: 10.1016/j.memlet.2021.100008_bib0032
  article-title: Ultrathin Heterostructured Covalent Organic Framework Membranes With Interfacial Molecular Sieving Capacity for Fast Water-Selective Permeation
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA07352K
– volume: 335
  start-page: 444
  year: 2012
  ident: 10.1016/j.memlet.2021.100008_bib0014
  article-title: Ultrafast Viscous Permeation of Organic Solvents Through Diamond-Like Carbon Nanosheets
  publication-title: Science
  doi: 10.1126/science.1212101
– volume: 21
  start-page: 8355
  year: 2021
  ident: 10.1016/j.memlet.2021.100008_bib0024
  article-title: Flexible and Robust Three-Dimensional Covalent Organic Framework Membranes for Precise Separations under Extreme Conditions
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.1c02919
– volume: 11
  start-page: 599
  year: 2020
  ident: 10.1016/j.memlet.2021.100008_bib0016
  article-title: Laminated Self-Standing Covalent Organic Framework Membrane with Uniformly Distributed Subnanopores for Ionic and Molecular Sieving
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-14056-7
– volume: 48
  start-page: 3903
  year: 2019
  ident: 10.1016/j.memlet.2021.100008_bib0020
  article-title: Post-Synthetic Modification of Covalent Organic Frameworks
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00978C
– volume: 1
  start-page: 440
  year: 2019
  ident: 10.1016/j.memlet.2021.100008_bib0003
  article-title: Reducing the Pore Size of Covalent Organic Frameworks in Thin-Film Composite Membranes Enhances Solute Rejection
  publication-title: ACS Materials Letters
  doi: 10.1021/acsmaterialslett.9b00272
– volume: 120
  start-page: 8814
  year: 2020
  ident: 10.1016/j.memlet.2021.100008_bib0008
  article-title: Covalent Organic Frameworks: Design, Synthesis, and Functions
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00550
– volume: 29
  year: 2017
  ident: 10.1016/j.memlet.2021.100008_bib0012
  article-title: Selective Molecular Sieving in Self-Standing Porous Covalent-Organic-Framework Membranes
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201603945
– volume: 624
  year: 2021
  ident: 10.1016/j.memlet.2021.100008_bib0031
  article-title: Secondary Growth of Bi-Layered Covalent Organic Framework Nanofilms with Offset Channels for Desalination
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2021.119122
– volume: 49
  start-page: 708
  year: 2020
  ident: 10.1016/j.memlet.2021.100008_bib0030
  article-title: Covalent Organic Frameworks for Separation Applications
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00827F
– volume: 16
  start-page: 1198
  year: 2017
  ident: 10.1016/j.memlet.2021.100008_bib0033
  article-title: Ultrathin Graphene-Based Membrane With Precise Molecular Sieving and Ultrafast Solvent Permeation
  publication-title: Nat. Mater.
  doi: 10.1038/nmat5025
– volume: 50
  start-page: 5468
  year: 2021
  ident: 10.1016/j.memlet.2021.100008_bib0028
  article-title: Organic Molecular Sieve Membranes for Chemical Separations
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS01347A
– volume: 139
  start-page: 13083
  year: 2017
  ident: 10.1016/j.memlet.2021.100008_bib0004
  article-title: Selective Molecular Separation by Interfacially Crystallized Covalent Organic Framework Thin Films
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b06640
– volume: 430
  year: 2022
  ident: 10.1016/j.memlet.2021.100008_bib0002
  article-title: Interfacial Synthesized Covalent Organic Framework Nanofiltration Membranes for Precisely Ultrafast Sieving
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.133024
– volume: 576
  start-page: 116
  year: 2019
  ident: 10.1016/j.memlet.2021.100008_bib0023
  article-title: Growing Covalent Organic Frameworks on Porous Substrates for Molecule-Sieving Membranes with Pores Tunable from Ultra- to Nanofiltration
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2019.01.034
– volume: 48
  start-page: 2665
  year: 2019
  ident: 10.1016/j.memlet.2021.100008_bib0037
  article-title: Covalent Organic Frameworks for Membrane Separation
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00919H
– volume: 140
  start-page: 10094
  year: 2018
  ident: 10.1016/j.memlet.2021.100008_bib0005
  article-title: Covalent Organic Framework–Covalent Organic Framework Bilayer Membranes for Highly Selective Gas Separation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b05136
– volume: 137
  start-page: 7079
  year: 2015
  ident: 10.1016/j.memlet.2021.100008_bib0010
  article-title: Tailor-Made Pore Surface Engineering in Covalent Organic Frameworks: Systematic Functionalization for Performance Screening
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b04300
– volume: 348
  start-page: 1347
  year: 2015
  ident: 10.1016/j.memlet.2021.100008_bib0013
  article-title: Sub–10 nm Polyamide Nanofilms with Ultrafast Solvent Transport for Molecular Separation
  publication-title: Science
  doi: 10.1126/science.aaa5058
– volume: 11
  start-page: 989
  year: 2020
  ident: 10.1016/j.memlet.2021.100008_bib0022
  article-title: Table-Salt Enabled Interface-Confined Synthesis of Covalent Organic Framework (COF) Nanosheets
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC05082E
– volume: 9
  start-page: 23178
  year: 2021
  ident: 10.1016/j.memlet.2021.100008_bib0021
  article-title: Homointerface Covalent Organic Framework Membranes for Efficient Desalination
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA06439H
– year: 2021
  ident: 10.1016/j.memlet.2021.100008_bib0035
  article-title: Ultrathin Covalent Organic Framework Membranes via a Multi-Interfacial Engineering Strategy for Gas Separation
  publication-title: Adv. Mater.
– volume: 9
  start-page: 8433
  year: 2017
  ident: 10.1016/j.memlet.2021.100008_bib0015
  article-title: Two-Dimensional Covalent Organic Framework (COF) Membranes Fabricated via the Assembly of Exfoliated COF Nanosheets
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b15752
– volume: 10
  start-page: 961
  year: 2018
  ident: 10.1016/j.memlet.2021.100008_bib0017
  article-title: Microporous Membranes Comprising Conjugated Polymers with Rigid Backbones Enable Ultrafast Organic-Solvent Nanofiltration
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-018-0093-9
– volume: 32
  year: 2020
  ident: 10.1016/j.memlet.2021.100008_bib0009
  article-title: De Novo Design of Covalent Organic Framework Membranes Toward Ultrafast Anion Transport
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202001284
– volume: 10
  start-page: 12295
  year: 2018
  ident: 10.1016/j.memlet.2021.100008_bib0007
  article-title: Synthesis of Sub-10 nm Two-Dimensional Covalent Organic Thin Film with Sharp Molecular Sieving Nanofiltration
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b19450
– volume: 7
  start-page: 24205
  year: 2019
  ident: 10.1016/j.memlet.2021.100008_bib0018
  article-title: Post-Synthesis of A Covalent Organic Framework Nanofiltration Membrane for Highly Efficient Water Treatment
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA06325K
– volume: 12
  start-page: 18944
  year: 2020
  ident: 10.1016/j.memlet.2021.100008_bib0034
  article-title: Single-Layered Nanosheets of Covalent Triazine Frameworks (CTFs) by Mild Oxidation for Molecular-Sieving Membranes
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c03246
– volume: 48
  start-page: 3811
  year: 2019
  ident: 10.1016/j.memlet.2021.100008_bib0038
  article-title: Ultrathin Metal/Covalent–Organic Framework Membranes Towards Ultimate Separation
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00322C
– volume: 2
  start-page: 536
  year: 2011
  ident: 10.1016/j.memlet.2021.100008_bib0019
  article-title: Pore Surface Engineering in Covalent Organic Frameworks
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1542
– volume: 140
  start-page: 14342
  year: 2018
  ident: 10.1016/j.memlet.2021.100008_bib0026
  article-title: Crystalline 2D Covalent Organic Framework Membranes for High-Flux Organic Solvent Nanofiltration
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b08788
– volume: 20
  start-page: 1551
  year: 2021
  ident: 10.1016/j.memlet.2021.100008_bib0039
  article-title: Hydrophilicity Gradient in Covalent Organic Frameworks for Membrane Distillation
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-021-01052-w
SSID ssj0002811319
Score 2.2618918
Snippet •COF membranes with tailored pore size are designed through a de novo approach.•Ultrathin and crystalline COF membranes are prepared.•The transport mechanism...
Three crystalline truxene-based β-ketoenamine COF membranes (TFP-HETTA, TFP-HBTTA and TFP-HHTTA) are fabricated via a de novo monomer design approach to...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 100008
SubjectTerms COF
de novo design
Membranes
Organic solvent nanofiltration
Pore-flow model
Title Tailored pore size and microporosity of covalent organic framework (COF) membranes for improved molecular separation
URI https://dx.doi.org/10.1016/j.memlet.2021.100008
https://doaj.org/article/71a8c8a8fa1343628e2a5faefdc986d0
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8QwDI4QEwyIpzheysAAQ4A82uZGQJwQErCAxFY5L-kQ10NwDDDw23GSFpUFFpYOUZpEXyz7s-vahOxbNCEnCoYMpAGmIBimJS8ZGAARCURhYhzy-qa8vFdXD8VDr9VXzAnL5YEzcMcVB2016ABcKtS22gsoAvjg7FCXLnnraPN6ztRjChlxLlNXD4H0kcXPnt1_cym5a-InCAu6h4IfpQi3_mGXUvn-nnnqmZzRMllquSI9zWdcIXO-WSWLvQqCa2R2B2P0uL2jyKM9fR1_eAqNo5OYZ4dDMSXrnU4DtVMUKTQwNLdxsjR0WVn04Px2dEjxrOg4o-KjSGPpOMUacNlJ1z6XvvpcJnzarJP70cXd-SVrGykwq7ieMTgJwSEogPwiBOFLJwR3spRGDR0CZAornQfJpXEioAq0CioNRaUQ4-C43CDzzbTxm4RCZaWvSut44RUaNhOcGYLQha-Qm4lqQGQHY23bKuOx2cVT3aWTPdYZ_DqCX2fwB4R9v_Wcq2z8Mf8s3tD33FgjOw0ghnUrOfVfkjMgVXe_dUs3Mo3Apca_br_1H9tvk4W4ZE6N2SHzs5c3v4sEZ2b2kizj8_rz4gtITvse
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tailored+pore+size+and+microporosity+of+covalent+organic+framework+%28COF%29+membranes+for+improved+molecular+separation&rft.jtitle=Journal+of+Membrane+Science+Letters&rft.au=Shinde%2C+Digambar+B.&rft.au=Cao%2C+Li&rft.au=Liu%2C+Xiaowei&rft.au=Wonanke%2C+Dinga+A.D.&rft.date=2021-12-01&rft.pub=Elsevier+B.V&rft.issn=2772-4212&rft.eissn=2772-4212&rft.volume=1&rft.issue=2&rft_id=info:doi/10.1016%2Fj.memlet.2021.100008&rft.externalDocID=S2772421221000088
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2772-4212&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2772-4212&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2772-4212&client=summon