Ordered micropillar array gold electrode increases electrochemical signature of early biofilm attachment
Extracellular electron transfer (EET) from microorganisms to insoluble metals and electrodes is relevant to energy recovery from wastewater, green production of high-added value chemicals, and biosensors for food, environmental, and clinical applications. Microstructured electrode surfaces increase...
Saved in:
Published in | Materials & design Vol. 185; p. 108256 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
05.01.2020
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Extracellular electron transfer (EET) from microorganisms to insoluble metals and electrodes is relevant to energy recovery from wastewater, green production of high-added value chemicals, and biosensors for food, environmental, and clinical applications. Microstructured electrode surfaces increase EET rate in bioelectrochemical systems, thus enabling higher sensibility and power output as well as the detection of bacteria and biofilms in bioelectrochemical sensors. However, many aspects of the EET process, particularly in early biofilm stages, are still poorly understood. We report a microstructured gold electrode maintained at oxidative potential to support the growth of Escherichia coli, measure the electrochemical output, and analyze the EET rate during early biofilm formation. The charge outputs of the modified electrodes are up to 22% higher than the control electrodes, enabling the electrochemical detection of early E. coli biofilms. The electrode microstructures promote biofilm attachment, as confirmed by field emission scanning electron microscope (FESEM) and confocal laser scanning microscope (CLSM) imaging. Following biofilm formation, the resistance to charge transfer at the biofilm-electrode interface decreases and the capacitance increases as shown by EIS analysis. Overall, these results contribute to the understanding of EET in early biofilms, towards developing sensitive bioelectrochemical sensors for biofilm detection.
[Display omitted]
•Electrochemical signature of E. coli early biofilm was measured on microstructured electrodes.•Microstructured electrodes enhanced early biofilm attachment.•Microstructured electrodes increased EET rate and detection of early biofilms by 22%.•Biofilm formation decreased interfacial resistance via impedance spectroscopy.•Electronic and confocal microscopy confirm that biofilm forms near electrode microstructures. |
---|---|
AbstractList | Extracellular electron transfer (EET) from microorganisms to insoluble metals and electrodes is relevant to energy recovery from wastewater, green production of high-added value chemicals, and biosensors for food, environmental, and clinical applications. Microstructured electrode surfaces increase EET rate in bioelectrochemical systems, thus enabling higher sensibility and power output as well as the detection of bacteria and biofilms in bioelectrochemical sensors. However, many aspects of the EET process, particularly in early biofilm stages, are still poorly understood. We report a microstructured gold electrode maintained at oxidative potential to support the growth of Escherichia coli, measure the electrochemical output, and analyze the EET rate during early biofilm formation. The charge outputs of the modified electrodes are up to 22% higher than the control electrodes, enabling the electrochemical detection of early E. coli biofilms. The electrode microstructures promote biofilm attachment, as confirmed by field emission scanning electron microscope (FESEM) and confocal laser scanning microscope (CLSM) imaging. Following biofilm formation, the resistance to charge transfer at the biofilm-electrode interface decreases and the capacitance increases as shown by EIS analysis. Overall, these results contribute to the understanding of EET in early biofilms, towards developing sensitive bioelectrochemical sensors for biofilm detection. Keywords: Bioelectrochemistry, Extracellular electron transfer (EET), Electroactive biofilm, Biofilm-surface interaction, Micropillared electrode, Surface modification Extracellular electron transfer (EET) from microorganisms to insoluble metals and electrodes is relevant to energy recovery from wastewater, green production of high-added value chemicals, and biosensors for food, environmental, and clinical applications. Microstructured electrode surfaces increase EET rate in bioelectrochemical systems, thus enabling higher sensibility and power output as well as the detection of bacteria and biofilms in bioelectrochemical sensors. However, many aspects of the EET process, particularly in early biofilm stages, are still poorly understood. We report a microstructured gold electrode maintained at oxidative potential to support the growth of Escherichia coli, measure the electrochemical output, and analyze the EET rate during early biofilm formation. The charge outputs of the modified electrodes are up to 22% higher than the control electrodes, enabling the electrochemical detection of early E. coli biofilms. The electrode microstructures promote biofilm attachment, as confirmed by field emission scanning electron microscope (FESEM) and confocal laser scanning microscope (CLSM) imaging. Following biofilm formation, the resistance to charge transfer at the biofilm-electrode interface decreases and the capacitance increases as shown by EIS analysis. Overall, these results contribute to the understanding of EET in early biofilms, towards developing sensitive bioelectrochemical sensors for biofilm detection. [Display omitted] •Electrochemical signature of E. coli early biofilm was measured on microstructured electrodes.•Microstructured electrodes enhanced early biofilm attachment.•Microstructured electrodes increased EET rate and detection of early biofilms by 22%.•Biofilm formation decreased interfacial resistance via impedance spectroscopy.•Electronic and confocal microscopy confirm that biofilm forms near electrode microstructures. |
ArticleNumber | 108256 |
Author | Hu, Liang Xing Huang, Yizhong Astorga, Solange E. Marsili, Enrico |
Author_xml | – sequence: 1 givenname: Solange E. surname: Astorga fullname: Astorga, Solange E. organization: School of Material Science and Engineering, Nanyang Technological University, 639977, Singapore – sequence: 2 givenname: Liang Xing surname: Hu fullname: Hu, Liang Xing organization: School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798, Singapore – sequence: 3 givenname: Enrico surname: Marsili fullname: Marsili, Enrico email: enrico.marsili1@gmail.com, enrico.marsili@nu.edu.kz organization: Department of Chemical and Materials Engineering, Nazarbayev University, 010000, Nur-Sultan, Kazakhstan – sequence: 4 givenname: Yizhong surname: Huang fullname: Huang, Yizhong email: yzhuang@ntu.edu.sg organization: School of Material Science and Engineering, Nanyang Technological University, 639977, Singapore |
BookMark | eNqFkL1qHDEURqdwIP57gxR6gd3oZ0YapQgEk8QGgxv34q50Z1eLZmSuZMO-veVMnCJFUgk-OOeic9GdLXnBrvsk-FZwoT8ftzPUgGUrubBtGuWgz7pzLnW_EdIMH7uLUo6cS2lUf94dHiggYWBz9JSfYkpADIjgxPY5BYYJfaUckMXFE0LB8r75AzYIEitxv0B9JmR5YgiUTmwX8xTTzKBW8IcZl3rVfZggFbz-_V52jz--P97cbu4fft7dfLvf-F6MdWMh-KEHLowYhLaTVVaAGdBK1FYbP3IhNJfCjEEG8OOgUErQ_agUVzulLru7VRsyHN0TxRno5DJE92vItHdANfqEzuy0gTBqYxX0HhDsNLXLajcJD4Zjc_Wrq5UphXD64xPcvcV2R7fGdm-x3Rq7YV_-wnysUGNeKkFM_4O_rjC2Ri8RyRUfcfEYIrXq7Rfx34JXQuqjDg |
CitedBy_id | crossref_primary_10_1016_j_chemolab_2023_105048 crossref_primary_10_1016_j_bioelechem_2021_108038 crossref_primary_10_3390_s20113256 crossref_primary_10_1149_1945_7111_adbdf2 crossref_primary_10_1016_j_chemosphere_2021_133206 crossref_primary_10_1016_j_trechm_2024_01_005 crossref_primary_10_1016_j_mseb_2020_114817 crossref_primary_10_1002_nano_202000024 crossref_primary_10_1016_j_bios_2020_112767 crossref_primary_10_1002_cplu_202400072 crossref_primary_10_1038_s41598_025_86702_8 crossref_primary_10_1016_j_electacta_2021_138757 crossref_primary_10_1007_s41315_020_00146_z |
Cites_doi | 10.1039/c2cs35026b 10.1016/j.tim.2006.10.003 10.1073/pnas.0604517103 10.1016/j.bios.2006.10.028 10.1016/j.enzmictec.2005.03.006 10.1038/nature11477 10.1002/celc.201402128 10.1080/08927014.2012.710324 10.1016/j.bios.2011.02.019 10.1080/08927010109378490 10.1016/j.jpowsour.2017.02.032 10.1016/j.jpowsour.2017.03.021 10.1039/c1ee02511b 10.1002/celc.201901063 10.1109/JMEMS.2008.2006816 10.1038/nrmicro2415 10.1021/acsabm.8b00176 10.1128/jb.174.11.3429-3438.1992 10.1016/j.matdes.2018.05.021 10.1111/1751-7915.12373 10.1016/j.sna.2011.09.023 10.1016/j.ref.2017.11.001 10.1021/es048563o 10.1111/j.1574-6941.1997.tb00419.x 10.1016/j.bioelechem.2018.02.005 10.1016/j.biortech.2013.01.036 10.1038/nature03661 10.1016/j.bios.2018.06.059 10.1038/ismej.2007.4 10.1016/j.matdes.2019.108152 10.1063/1.4880596 10.1039/C4CC08590F 10.1093/ps/79.12.1839 10.1016/j.matdes.2017.11.074 10.1046/j.1365-2958.2003.03490.x 10.1007/s10008-011-1493-6 10.1016/j.jpowsour.2017.03.109 10.1111/j.1462-2920.2006.00989.x 10.1128/AEM.00177-08 10.1007/s00253-005-0263-8 10.1073/pnas.0710525105 10.1128/jb.119.3.736-747.1974 10.1007/s10832-009-9565-z 10.1038/nrmicro2113 10.1128/AEM.66.4.1292-1297.2000 10.1016/j.mimet.2014.02.022 10.1002/adma.201707072 10.1016/j.colsurfb.2010.10.013 10.1128/mBio.00626-17 10.1128/mBio.01341-14 10.1111/j.1365-2958.2007.05778.x 10.1016/j.matdes.2018.09.037 |
ContentType | Journal Article |
Copyright | 2019 |
Copyright_xml | – notice: 2019 |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.matdes.2019.108256 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | oai_doaj_org_article_7b67ad86793a4caea9ff4a03bf1ca70e 10_1016_j_matdes_2019_108256 S026412751930694X |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 4.4 457 4G. 5GY 5VS 6I. 7-5 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAFTH AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABMAC ACDAQ ACGFS ACRLP ADBBV ADEZE ADVLN AEBSH AEKER AEZYN AFJKZ AFKWA AFRZQ AFTJW AGHFR AGUBO AHJVU AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BCNDV BJAXD BKOJK BLXMC EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ IHE J1W KOM M41 MO0 NCXOZ OAUVE OK1 P2P PC. Q38 ROL SDF SDG SDP SPC SSM SST SSZ T5K ~G- 29M AAQXK AATTM AAYWO AAYXX ABJNI ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ JJJVA MAGPM O9- P-8 P-9 R2- RIG RNS RPZ SEW SMS SSH WUQ EFKBS |
ID | FETCH-LOGICAL-c418t-9adc54a01715169f9391a75e92e6967c8011602178d2dac853e22a6483303b33 |
IEDL.DBID | AIKHN |
ISSN | 0264-1275 |
IngestDate | Wed Aug 27 01:19:22 EDT 2025 Tue Jul 01 02:23:54 EDT 2025 Thu Apr 24 22:58:53 EDT 2025 Tue Dec 03 03:45:08 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Extracellular electron transfer (EET) Surface modification Biofilm-surface interaction Micropillared electrode Bioelectrochemistry Electroactive biofilm |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c418t-9adc54a01715169f9391a75e92e6967c8011602178d2dac853e22a6483303b33 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S026412751930694X |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7b67ad86793a4caea9ff4a03bf1ca70e crossref_primary_10_1016_j_matdes_2019_108256 crossref_citationtrail_10_1016_j_matdes_2019_108256 elsevier_sciencedirect_doi_10_1016_j_matdes_2019_108256 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-05 |
PublicationDateYYYYMMDD | 2020-01-05 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-05 day: 05 |
PublicationDecade | 2020 |
PublicationTitle | Materials & design |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Baltianski, Tsur (bib54) 2006 Dominguez-Benetton, Sevda, Vanbroekhoven, Pant (bib57) 2012; 41 Babauta, Renslow, Lewandowski, Beyenal (bib17) 2012; 28 Gralnick, Newman (bib7) 2007; 65 Parra, Lin (bib29) 2009 Esmeryan, Avramova, Castano, Ivanova, Mohammadi, Radeva, Stoyanova, Vladkova (bib20) 2018; 160 Paredes, Becerro, Arana (bib35) 2014; 100 Mandler, Kraus-Ophir (bib28) 2011; 15 Hinks, Han, Wang, Seviour, Marsili, Loo, Wuertz (bib36) 2016; 9 Champigneux, Delia, Bergel (bib33) 2018 Kim, Hwan Ko, Lee, Jun Kim, Byun (bib34) 2014; 104 Li, Shi, Li, Chen, Zhang, Guo, Zhang (bib23) 2019; 183 Seviour, Doyle, Lauw, Hinks, Rice, Nesatyy, Webster, Kjelleberg, Marsili (bib46) 2015; 51 Neidhardt, Bloch, Smith (bib42) 1974; 119 Park, Zeikus (bib45) 2000; 66 Marsili, Baron, Shikhare, Coursolle, Gralnick, Bond (bib53) 2008; 105 Logan, Elimelech (bib4) 2012; 488 Reisner, Haagensen, Schembri, Zechner, Molin (bib49) 2003; 48 Inoue, Parra, Higa, Jiang, Wang, Buie, Coates, Lin (bib32) 2012; 177 Sreekumari, Nandakumar, Kikuchi (bib60) 2001; 17 Neu, Lawrence (bib41) 1997; 24 Zhang, Xia, Luo, Sun, Call, Logan (bib50) 2013; 133 Jiao, Wu, Qiu (bib25) 2018; 154 Carminati, Mezzera, Ferrari, Sampietro, Turolla, Di Mauro, Antonelli (bib39) 2018 Borole, Reguera, Ringeisen, Wang, Feng, Kim (bib43) 2011; 4 Ieropoulos, Greenman, Melhuish, Hart (bib44) 2005; 37 Flemming, Wingender (bib16) 2010; 8 Arnold, Bailey (bib19) 2000; 79 Hasan, Jain, Padmarajan, Purighalla, Sambandamurthy, Chatterjee (bib22) 2018; 140 Champigneux, Renault-Sentenac, Bourrier, Rossi, Delia, Bergel (bib30) 2018; 121 Laczka, Maesa, Godino, del Campo, Fougt-Hansen, Kutter, Snakenborg, Muñoz-Pascual, Baldrich (bib40) 2011; 26 Logan (bib6) 2009; 7 Tesler, Lewin, Baltianski, Tsur (bib55) 2010; 24 Susarrey-Arce, Hernández-Sánchez, Marcello, Diaz-Fernandez, Oknianska, Sorzabal-Bellido, Tiggelaar, Lohse, Gardeniers, Snoeijer (bib21) 2018; 1 Santoro, Arbizzani, Erable, Ieropoulos (bib1) 2017; 356 Beyenal, Babauta (bib26) 2015 Keogh, Lam, Doyle, Matysik, Pavagadhi, Umashankar, Low, Dale, Song, Ng (bib52) 2018; 9 Siu, Chiao (bib58) 2008; 17 Rabaey, Rodriguez, Blackall, Keller, Gross, Batstone, Verstraete, Nealson (bib2) 2007; 1 Babauta, Beyenal (bib15) 2017; 356 Alipour, Karagoz, Taner, Gaeini, Alipour, Zeytin, Yildiz, Durmaz (bib38) 2017; 2 Astorga, Hu, Marsili, Huang (bib24) 2019 TerAvest, Angenent (bib47) 2014; 1 Rutala, Weber (bib37) 2008; vol. 2008 Marsili, Rollefson, Baron, Hozalski, Bond (bib18) 2008; 74 Ye, Ellis, Nain, Behkam (bib31) 2017; 347 Katuri, Kalathil, Ragab, Bian, Alqahtani, Pant, Saikaly (bib3) 2018; 30 Logan, Regan (bib13) 2006; 14 Gorby, Yanina, McLean, Rosso, Moyles, Dohnalkova, Beveridge, Chang, Kim, Kim (bib11) 2006; 103 Rabaey, Boon, Höfte, Verstraete (bib14) 2005; 39 Wood, Barrios, Herzberg, Lee (bib48) 2006; 72 Stams, De Bok, Plugge, Eekert, Miriam, Dolfing, Schraa (bib8) 2006; 8 Gooding, Yang (bib27) 2008; 320 Reguera, McCarthy, Mehta, Nicoll, Tuominen, Lovley (bib12) 2005; 435 Beyene, Werkneh, Ambaye (bib5) 2018; 24 Prasad, Arun, Murugesan, Padmanaban, Satyanarayanan, Berchmans, Yegnaraman (bib10) 2007; 22 Myers, Myers (bib9) 1992; 174 Moormeier, Bose, Horswill, Bayles (bib51) 2014; 5 Diard, Le Gorrec, Montella (bib56) 2013 Díaz, Schilardi, Salvarezza, De Mele (bib59) 2011; 82 Jiao (10.1016/j.matdes.2019.108256_bib25) 2018; 154 Carminati (10.1016/j.matdes.2019.108256_bib39) 2018 Champigneux (10.1016/j.matdes.2019.108256_bib30) 2018; 121 Keogh (10.1016/j.matdes.2019.108256_bib52) 2018; 9 Marsili (10.1016/j.matdes.2019.108256_bib53) 2008; 105 Prasad (10.1016/j.matdes.2019.108256_bib10) 2007; 22 Alipour (10.1016/j.matdes.2019.108256_bib38) 2017; 2 Babauta (10.1016/j.matdes.2019.108256_bib17) 2012; 28 Li (10.1016/j.matdes.2019.108256_bib23) 2019; 183 Parra (10.1016/j.matdes.2019.108256_bib29) 2009 Seviour (10.1016/j.matdes.2019.108256_bib46) 2015; 51 Gorby (10.1016/j.matdes.2019.108256_bib11) 2006; 103 Hinks (10.1016/j.matdes.2019.108256_bib36) 2016; 9 Reisner (10.1016/j.matdes.2019.108256_bib49) 2003; 48 Moormeier (10.1016/j.matdes.2019.108256_bib51) 2014; 5 Susarrey-Arce (10.1016/j.matdes.2019.108256_bib21) 2018; 1 Reguera (10.1016/j.matdes.2019.108256_bib12) 2005; 435 Siu (10.1016/j.matdes.2019.108256_bib58) 2008; 17 Logan (10.1016/j.matdes.2019.108256_bib13) 2006; 14 Mandler (10.1016/j.matdes.2019.108256_bib28) 2011; 15 Santoro (10.1016/j.matdes.2019.108256_bib1) 2017; 356 Zhang (10.1016/j.matdes.2019.108256_bib50) 2013; 133 Stams (10.1016/j.matdes.2019.108256_bib8) 2006; 8 Ieropoulos (10.1016/j.matdes.2019.108256_bib44) 2005; 37 Wood (10.1016/j.matdes.2019.108256_bib48) 2006; 72 Díaz (10.1016/j.matdes.2019.108256_bib59) 2011; 82 Hasan (10.1016/j.matdes.2019.108256_bib22) 2018; 140 Gooding (10.1016/j.matdes.2019.108256_bib27) 2008; 320 Park (10.1016/j.matdes.2019.108256_bib45) 2000; 66 Rabaey (10.1016/j.matdes.2019.108256_bib2) 2007; 1 Esmeryan (10.1016/j.matdes.2019.108256_bib20) 2018; 160 Myers (10.1016/j.matdes.2019.108256_bib9) 1992; 174 Rutala (10.1016/j.matdes.2019.108256_bib37) 2008; vol. 2008 Baltianski (10.1016/j.matdes.2019.108256_bib54) 2006 Kim (10.1016/j.matdes.2019.108256_bib34) 2014; 104 Babauta (10.1016/j.matdes.2019.108256_bib15) 2017; 356 Tesler (10.1016/j.matdes.2019.108256_bib55) 2010; 24 Arnold (10.1016/j.matdes.2019.108256_bib19) 2000; 79 Laczka (10.1016/j.matdes.2019.108256_bib40) 2011; 26 Logan (10.1016/j.matdes.2019.108256_bib4) 2012; 488 Rabaey (10.1016/j.matdes.2019.108256_bib14) 2005; 39 Champigneux (10.1016/j.matdes.2019.108256_bib33) 2018 Gralnick (10.1016/j.matdes.2019.108256_bib7) 2007; 65 Beyenal (10.1016/j.matdes.2019.108256_bib26) 2015 Flemming (10.1016/j.matdes.2019.108256_bib16) 2010; 8 Borole (10.1016/j.matdes.2019.108256_bib43) 2011; 4 Paredes (10.1016/j.matdes.2019.108256_bib35) 2014; 100 Diard (10.1016/j.matdes.2019.108256_bib56) 2013 Neu (10.1016/j.matdes.2019.108256_bib41) 1997; 24 Sreekumari (10.1016/j.matdes.2019.108256_bib60) 2001; 17 TerAvest (10.1016/j.matdes.2019.108256_bib47) 2014; 1 Logan (10.1016/j.matdes.2019.108256_bib6) 2009; 7 Katuri (10.1016/j.matdes.2019.108256_bib3) 2018; 30 Marsili (10.1016/j.matdes.2019.108256_bib18) 2008; 74 Neidhardt (10.1016/j.matdes.2019.108256_bib42) 1974; 119 Beyene (10.1016/j.matdes.2019.108256_bib5) 2018; 24 Astorga (10.1016/j.matdes.2019.108256_bib24) 2019 Inoue (10.1016/j.matdes.2019.108256_bib32) 2012; 177 Ye (10.1016/j.matdes.2019.108256_bib31) 2017; 347 Dominguez-Benetton (10.1016/j.matdes.2019.108256_bib57) 2012; 41 |
References_xml | – volume: 22 start-page: 2604 year: 2007 end-page: 2610 ident: bib10 article-title: Direct electron transfer with yeast cells and construction of a mediatorless microbial fuel cell publication-title: Biosens. Bioelectron. – volume: 26 start-page: 3633 year: 2011 end-page: 3640 ident: bib40 article-title: Improved bacteria detection by coupling magneto-immunocapture and amperometry at flow-channel microband electrodes publication-title: Biosens. Bioelectron. – volume: 133 start-page: 74 year: 2013 end-page: 81 ident: bib50 article-title: Improving startup performance with carbon mesh anodes in separator electrode assembly microbial fuel cells publication-title: Bioresour. Technol. – start-page: 31 year: 2009 end-page: 34 ident: bib29 article-title: Microbial fuel cell based on electrode-exoelectrogenic bacteria interface, Micro Electro Mechanical Systems publication-title: 2009. MEMS 2009. IEEE 22nd International Conference on – volume: 183 start-page: 108152 year: 2019 ident: bib23 article-title: Subtractive manufacturing of stable hierarchical micro-nano structures on AA5052 sheet with enhanced water repellence and durable corrosion resistance publication-title: Mater. Des. – volume: 39 start-page: 3401 year: 2005 end-page: 3408 ident: bib14 article-title: Microbial phenazine production enhances electron transfer in biofuel cells publication-title: Environ. Sci. Technol. – volume: 4 start-page: 4813 year: 2011 end-page: 4834 ident: bib43 article-title: Electroactive biofilms: current status and future research needs publication-title: Energy Environ. Sci. – volume: 82 start-page: 536 year: 2011 end-page: 542 ident: bib59 article-title: Have flagella a preferred orientation during early stages of biofilm formation?: AFM study using patterned substrates publication-title: Colloids Surfaces B Biointerfaces – volume: 8 start-page: 623 year: 2010 ident: bib16 article-title: The biofilm matrix publication-title: Nat. Rev. Microbiol. – volume: 356 start-page: 225 year: 2017 end-page: 244 ident: bib1 article-title: Microbial fuel cells: from fundamentals to applications. A review publication-title: J. Power Sources – year: 2018 ident: bib33 article-title: Impact of electrode micro-and nano-scale topography on the formation and performance of microbial electrodes publication-title: Biosens. Bioelectron. – volume: 435 start-page: 1098 year: 2005 ident: bib12 article-title: Extracellular electron transfer via microbial nanowires publication-title: Nature – volume: 2 year: 2017 ident: bib38 article-title: Outbreak of hospital infection from biofilm-embedded pan drug-resistant Pseudomonas aeroginosa, due to a contaminated bronchoscope publication-title: J. Prevent. Med. – volume: 7 start-page: 375 year: 2009 end-page: 381 ident: bib6 article-title: Exoelectrogenic bacteria that power microbial fuel cells publication-title: Nat. Rev. Microbiol. – volume: 65 start-page: 1 year: 2007 end-page: 11 ident: bib7 article-title: Extracellular respiration publication-title: Mol. Microbiol. – volume: 160 start-page: 395 year: 2018 end-page: 404 ident: bib20 article-title: Early stage anti-bioadhesion behavior of superhydrophobic soot based coatings towards Pseudomonas putida publication-title: Mater. Des. – volume: 100 start-page: 77 year: 2014 end-page: 83 ident: bib35 article-title: Label-free interdigitated microelectrode based biosensors for bacterial biofilm growth monitoring using Petri dishes publication-title: J. Microbiol. Methods – start-page: S3 year: 2006 ident: bib54 article-title: Analyzing Impedance Spectroscopy Results – volume: 1 start-page: 1294 year: 2018 end-page: 1300 ident: bib21 article-title: Bacterial footprints in elastic pillared microstructures publication-title: ACS Appl. Bio Mater. – volume: 79 start-page: 1839 year: 2000 end-page: 1845 ident: bib19 article-title: Surface finishes on stainless steel reduce bacterial attachment and early biofilm formation: scanning electron and atomic force microscopy study publication-title: Poult. Sci. – volume: 51 start-page: 3789 year: 2015 end-page: 3792 ident: bib46 article-title: Voltammetric profiling of redox-active metabolites expressed by Pseudomonas aeruginosa for diagnostic purposes publication-title: Chem. Commun. – volume: 9 start-page: 746 year: 2016 end-page: 757 ident: bib36 article-title: Naphthoquinone glycosides for bioelectroanalytical enumeration of the faecal indicator Escherichia coli publication-title: Microbial Biotechnol. – start-page: 1 year: 2018 end-page: 5 ident: bib39 article-title: A Smart Sensing Node for Pervasive Water Quality Monitoring with Anti-fouling self-diagnostics publication-title: 2018 IEEE Internatisonal Symposium on Circuits and Systems (ISCAS) – volume: 121 start-page: 191 year: 2018 end-page: 200 ident: bib30 article-title: Effect of surface nano/micro-structuring on the early formation of microbial anodes with Geobacter sulfurreducens: experimental and theoretical approaches publication-title: Bioelectrochemistry – volume: 119 start-page: 736 year: 1974 end-page: 747 ident: bib42 article-title: Culture medium for enterobacteria publication-title: J. Bacteriol. – volume: 105 start-page: 3968 year: 2008 end-page: 3973 ident: bib53 article-title: Shewanella secretes flavins that mediate extracellular electron transfer publication-title: Proc. Natl. Acad. Sci. – volume: 103 start-page: 11358 year: 2006 end-page: 11363 ident: bib11 article-title: Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms publication-title: Proc. Natl. Acad. Sci. – volume: 74 start-page: 7329 year: 2008 end-page: 7337 ident: bib18 article-title: Microbial biofilm voltammetry: direct electrochemical characterization of catalytic electrode-attached biofilms publication-title: Appl. Environ. Microbiol. – volume: 14 start-page: 512 year: 2006 end-page: 518 ident: bib13 article-title: Electricity-producing bacterial communities in microbial fuel cells publication-title: Trends Microbiol. – volume: 140 start-page: 332 year: 2018 end-page: 344 ident: bib22 article-title: Multi-scale surface topography to minimize adherence and viability of nosocomial drug-resistant bacteria publication-title: Mater. Des. – volume: 41 start-page: 7228 year: 2012 end-page: 7246 ident: bib57 article-title: The accurate use of impedance analysis for the study of microbial electrochemical systems publication-title: Chem. Soc. Rev. – volume: 5 year: 2014 ident: bib51 article-title: Temporal and stochastic control of Staphylococcus aureus biofilm development publication-title: mBio – year: 2015 ident: bib26 article-title: Biofilms in Bioelectrochemical Systems: from Laboratory Practice to Data Interpretation – volume: 17 start-page: 303 year: 2001 end-page: 316 ident: bib60 article-title: Bacterial attachment to stainless steel welds: significance of substratum microstructure publication-title: Biofouling – volume: 72 start-page: 361 year: 2006 end-page: 367 ident: bib48 article-title: Motility influences biofilm architecture in Escherichia coli publication-title: Appl. Microbiol. Biotechnol. – volume: 48 start-page: 933 year: 2003 end-page: 946 ident: bib49 article-title: Development and maturation of Escherichia coli K-12 biofilms publication-title: Mol. Microbiol. – volume: 24 start-page: 1 year: 2018 end-page: 11 ident: bib5 article-title: Current updates on waste to energy (WtE) technologies: a review publication-title: Renew. Energy Focus – volume: 28 start-page: 789 year: 2012 end-page: 812 ident: bib17 article-title: Electrochemically active biofilms: facts and fiction. A review publication-title: Biofouling – volume: 66 start-page: 1292 year: 2000 end-page: 1297 ident: bib45 article-title: Electricity generation in microbial fuel cells using neutral red as an electronophore publication-title: Appl. Environ. Microbiol. – volume: 174 start-page: 3429 year: 1992 end-page: 3438 ident: bib9 article-title: Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR-1 publication-title: J. Bacteriol. – volume: 9 year: 2018 ident: bib52 article-title: Extracellular electron transfer powers Enterococcus faecalis biofilm metabolism publication-title: mBio – volume: 24 start-page: 11 year: 1997 end-page: 25 ident: bib41 article-title: Development and structure of microbial biofilms in river water studied by confocal laser scanning microscopy publication-title: FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Ecol. – volume: 347 start-page: 270 year: 2017 end-page: 276 ident: bib31 article-title: Effect of electrode sub-micron surface feature size on current generation of Shewanella oneidensis in microbial fuel cells publication-title: J. Power Sources – volume: 24 start-page: 245 year: 2010 end-page: 260 ident: bib55 article-title: Analyzing results of impedance spectroscopy using novel evolutionary programming techniques publication-title: J. Electroceram. – volume: 17 start-page: 1329 year: 2008 end-page: 1341 ident: bib58 article-title: A microfabricated PDMS microbial fuel cell publication-title: J. Microelectromech. Syst. – year: 2013 ident: bib56 article-title: Handbook of Electrochemical Impedance Spectroscopy – volume: 1 start-page: 9 year: 2007 end-page: 18 ident: bib2 article-title: Microbial ecology meets electrochemistry: electricity-driven and driving communities publication-title: ISME J. – volume: 104 start-page: 223702 year: 2014 ident: bib34 article-title: Power enhancement of a μ l-scale microbial fuel cells by surface roughness publication-title: Appl. Phys. Lett. – volume: 177 start-page: 30 year: 2012 end-page: 36 ident: bib32 article-title: Structural optimization of contact electrodes in microbial fuel cells for current density enhancements publication-title: Sens. Actuators A Phys. – volume: 30 start-page: 1707072 year: 2018 ident: bib3 article-title: Dual-function electrocatalytic and macroporous hollow-fiber cathode for converting waste streams to valuable resources using microbial electrochemical systems publication-title: Adv. Mater. – volume: 356 start-page: 549 year: 2017 end-page: 555 ident: bib15 article-title: Use of a small overpotential approximation to analyze Geobacter sulfurreducens biofilm impedance publication-title: J. Power Sources – start-page: 4674 year: 2019 end-page: 4680 ident: bib24 article-title: Electrochemical signature of Escherichia coli on Ni micropillar array electrode for early biofilm characterization publication-title: ChemElectroChem – volume: 154 start-page: 239 year: 2018 end-page: 245 ident: bib25 article-title: Preparation and electrochemical performance of hollow activated carbon fiber-carbon nanotubes three-dimensional self-supported electrode for supercapacitor publication-title: Mater. Des. – volume: 8 start-page: 371 year: 2006 end-page: 382 ident: bib8 article-title: Exocellular electron transfer in anaerobic microbial communities publication-title: Environ. Microbiol. – volume: 15 start-page: 1535 year: 2011 ident: bib28 article-title: Self-assembled monolayers (SAMs) for electrochemical sensing publication-title: J. Solid State Electrochem. – volume: 320 start-page: 85 year: 2008 end-page: 89 ident: bib27 article-title: The self-assembled monolayer modification of electrodes-some recent advances in biological application publication-title: L'Act. Chim. – volume: 488 start-page: 313 year: 2012 ident: bib4 article-title: Membrane-based processes for sustainable power generation using water publication-title: Nature – volume: 37 start-page: 238 year: 2005 end-page: 245 ident: bib44 article-title: Comparative study of three types of microbial fuel cell publication-title: Enzym. Microb. Technol. – volume: vol. 2008 year: 2008 ident: bib37 publication-title: Guideline for Disinfection and Sterilization in Healthcare Facilities – volume: 1 start-page: 2000 year: 2014 end-page: 2006 ident: bib47 article-title: Oxidizing electrode potentials decrease current production and coulombic efficiency through cytochrome c inactivation in shewanella oneidensis MR-1 publication-title: ChemElectroChem – volume: 41 start-page: 7228 issue: 21 year: 2012 ident: 10.1016/j.matdes.2019.108256_bib57 article-title: The accurate use of impedance analysis for the study of microbial electrochemical systems publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs35026b – start-page: S3 year: 2006 ident: 10.1016/j.matdes.2019.108256_bib54 – volume: 14 start-page: 512 issue: 12 year: 2006 ident: 10.1016/j.matdes.2019.108256_bib13 article-title: Electricity-producing bacterial communities in microbial fuel cells publication-title: Trends Microbiol. doi: 10.1016/j.tim.2006.10.003 – volume: 103 start-page: 11358 issue: 30 year: 2006 ident: 10.1016/j.matdes.2019.108256_bib11 article-title: Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0604517103 – volume: 22 start-page: 2604 issue: 11 year: 2007 ident: 10.1016/j.matdes.2019.108256_bib10 article-title: Direct electron transfer with yeast cells and construction of a mediatorless microbial fuel cell publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2006.10.028 – volume: 37 start-page: 238 issue: 2 year: 2005 ident: 10.1016/j.matdes.2019.108256_bib44 article-title: Comparative study of three types of microbial fuel cell publication-title: Enzym. Microb. Technol. doi: 10.1016/j.enzmictec.2005.03.006 – volume: 488 start-page: 313 issue: 7411 year: 2012 ident: 10.1016/j.matdes.2019.108256_bib4 article-title: Membrane-based processes for sustainable power generation using water publication-title: Nature doi: 10.1038/nature11477 – volume: 1 start-page: 2000 issue: 11 year: 2014 ident: 10.1016/j.matdes.2019.108256_bib47 article-title: Oxidizing electrode potentials decrease current production and coulombic efficiency through cytochrome c inactivation in shewanella oneidensis MR-1 publication-title: ChemElectroChem doi: 10.1002/celc.201402128 – volume: 320 start-page: 85 issue: 321 year: 2008 ident: 10.1016/j.matdes.2019.108256_bib27 article-title: The self-assembled monolayer modification of electrodes-some recent advances in biological application publication-title: L'Act. Chim. – volume: 28 start-page: 789 issue: 8 year: 2012 ident: 10.1016/j.matdes.2019.108256_bib17 article-title: Electrochemically active biofilms: facts and fiction. A review publication-title: Biofouling doi: 10.1080/08927014.2012.710324 – volume: 26 start-page: 3633 issue: 8 year: 2011 ident: 10.1016/j.matdes.2019.108256_bib40 article-title: Improved bacteria detection by coupling magneto-immunocapture and amperometry at flow-channel microband electrodes publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2011.02.019 – volume: 17 start-page: 303 issue: 4 year: 2001 ident: 10.1016/j.matdes.2019.108256_bib60 article-title: Bacterial attachment to stainless steel welds: significance of substratum microstructure publication-title: Biofouling doi: 10.1080/08927010109378490 – volume: 347 start-page: 270 year: 2017 ident: 10.1016/j.matdes.2019.108256_bib31 article-title: Effect of electrode sub-micron surface feature size on current generation of Shewanella oneidensis in microbial fuel cells publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.02.032 – volume: 356 start-page: 549 year: 2017 ident: 10.1016/j.matdes.2019.108256_bib15 article-title: Use of a small overpotential approximation to analyze Geobacter sulfurreducens biofilm impedance publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.03.021 – volume: 4 start-page: 4813 issue: 12 year: 2011 ident: 10.1016/j.matdes.2019.108256_bib43 article-title: Electroactive biofilms: current status and future research needs publication-title: Energy Environ. Sci. doi: 10.1039/c1ee02511b – start-page: 4674 issue: 6 year: 2019 ident: 10.1016/j.matdes.2019.108256_bib24 article-title: Electrochemical signature of Escherichia coli on Ni micropillar array electrode for early biofilm characterization publication-title: ChemElectroChem doi: 10.1002/celc.201901063 – volume: 17 start-page: 1329 issue: 6 year: 2008 ident: 10.1016/j.matdes.2019.108256_bib58 article-title: A microfabricated PDMS microbial fuel cell publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2008.2006816 – volume: 8 start-page: 623 issue: 9 year: 2010 ident: 10.1016/j.matdes.2019.108256_bib16 article-title: The biofilm matrix publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2415 – volume: 1 start-page: 1294 issue: 5 year: 2018 ident: 10.1016/j.matdes.2019.108256_bib21 article-title: Bacterial footprints in elastic pillared microstructures publication-title: ACS Appl. Bio Mater. doi: 10.1021/acsabm.8b00176 – volume: 174 start-page: 3429 issue: 11 year: 1992 ident: 10.1016/j.matdes.2019.108256_bib9 article-title: Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR-1 publication-title: J. Bacteriol. doi: 10.1128/jb.174.11.3429-3438.1992 – volume: 154 start-page: 239 year: 2018 ident: 10.1016/j.matdes.2019.108256_bib25 article-title: Preparation and electrochemical performance of hollow activated carbon fiber-carbon nanotubes three-dimensional self-supported electrode for supercapacitor publication-title: Mater. Des. doi: 10.1016/j.matdes.2018.05.021 – year: 2013 ident: 10.1016/j.matdes.2019.108256_bib56 – volume: 9 start-page: 746 issue: 6 year: 2016 ident: 10.1016/j.matdes.2019.108256_bib36 article-title: Naphthoquinone glycosides for bioelectroanalytical enumeration of the faecal indicator Escherichia coli publication-title: Microbial Biotechnol. doi: 10.1111/1751-7915.12373 – year: 2015 ident: 10.1016/j.matdes.2019.108256_bib26 – start-page: 31 year: 2009 ident: 10.1016/j.matdes.2019.108256_bib29 article-title: Microbial fuel cell based on electrode-exoelectrogenic bacteria interface, Micro Electro Mechanical Systems – volume: 2 issue: 2 year: 2017 ident: 10.1016/j.matdes.2019.108256_bib38 article-title: Outbreak of hospital infection from biofilm-embedded pan drug-resistant Pseudomonas aeroginosa, due to a contaminated bronchoscope publication-title: J. Prevent. Med. – volume: 177 start-page: 30 year: 2012 ident: 10.1016/j.matdes.2019.108256_bib32 article-title: Structural optimization of contact electrodes in microbial fuel cells for current density enhancements publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2011.09.023 – volume: 24 start-page: 1 year: 2018 ident: 10.1016/j.matdes.2019.108256_bib5 article-title: Current updates on waste to energy (WtE) technologies: a review publication-title: Renew. Energy Focus doi: 10.1016/j.ref.2017.11.001 – volume: vol. 2008 year: 2008 ident: 10.1016/j.matdes.2019.108256_bib37 – volume: 39 start-page: 3401 issue: 9 year: 2005 ident: 10.1016/j.matdes.2019.108256_bib14 article-title: Microbial phenazine production enhances electron transfer in biofuel cells publication-title: Environ. Sci. Technol. doi: 10.1021/es048563o – volume: 24 start-page: 11 issue: 1 year: 1997 ident: 10.1016/j.matdes.2019.108256_bib41 article-title: Development and structure of microbial biofilms in river water studied by confocal laser scanning microscopy publication-title: FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Ecol. doi: 10.1111/j.1574-6941.1997.tb00419.x – volume: 121 start-page: 191 year: 2018 ident: 10.1016/j.matdes.2019.108256_bib30 article-title: Effect of surface nano/micro-structuring on the early formation of microbial anodes with Geobacter sulfurreducens: experimental and theoretical approaches publication-title: Bioelectrochemistry doi: 10.1016/j.bioelechem.2018.02.005 – volume: 133 start-page: 74 year: 2013 ident: 10.1016/j.matdes.2019.108256_bib50 article-title: Improving startup performance with carbon mesh anodes in separator electrode assembly microbial fuel cells publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.01.036 – volume: 435 start-page: 1098 issue: 7045 year: 2005 ident: 10.1016/j.matdes.2019.108256_bib12 article-title: Extracellular electron transfer via microbial nanowires publication-title: Nature doi: 10.1038/nature03661 – year: 2018 ident: 10.1016/j.matdes.2019.108256_bib33 article-title: Impact of electrode micro-and nano-scale topography on the formation and performance of microbial electrodes publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2018.06.059 – volume: 1 start-page: 9 issue: 1 year: 2007 ident: 10.1016/j.matdes.2019.108256_bib2 article-title: Microbial ecology meets electrochemistry: electricity-driven and driving communities publication-title: ISME J. doi: 10.1038/ismej.2007.4 – volume: 183 start-page: 108152 year: 2019 ident: 10.1016/j.matdes.2019.108256_bib23 article-title: Subtractive manufacturing of stable hierarchical micro-nano structures on AA5052 sheet with enhanced water repellence and durable corrosion resistance publication-title: Mater. Des. doi: 10.1016/j.matdes.2019.108152 – volume: 104 start-page: 223702 issue: 22 year: 2014 ident: 10.1016/j.matdes.2019.108256_bib34 article-title: Power enhancement of a μ l-scale microbial fuel cells by surface roughness publication-title: Appl. Phys. Lett. doi: 10.1063/1.4880596 – volume: 51 start-page: 3789 issue: 18 year: 2015 ident: 10.1016/j.matdes.2019.108256_bib46 article-title: Voltammetric profiling of redox-active metabolites expressed by Pseudomonas aeruginosa for diagnostic purposes publication-title: Chem. Commun. doi: 10.1039/C4CC08590F – volume: 79 start-page: 1839 issue: 12 year: 2000 ident: 10.1016/j.matdes.2019.108256_bib19 article-title: Surface finishes on stainless steel reduce bacterial attachment and early biofilm formation: scanning electron and atomic force microscopy study publication-title: Poult. Sci. doi: 10.1093/ps/79.12.1839 – volume: 140 start-page: 332 year: 2018 ident: 10.1016/j.matdes.2019.108256_bib22 article-title: Multi-scale surface topography to minimize adherence and viability of nosocomial drug-resistant bacteria publication-title: Mater. Des. doi: 10.1016/j.matdes.2017.11.074 – volume: 48 start-page: 933 issue: 4 year: 2003 ident: 10.1016/j.matdes.2019.108256_bib49 article-title: Development and maturation of Escherichia coli K-12 biofilms publication-title: Mol. Microbiol. doi: 10.1046/j.1365-2958.2003.03490.x – volume: 15 start-page: 1535 issue: 7–8 year: 2011 ident: 10.1016/j.matdes.2019.108256_bib28 article-title: Self-assembled monolayers (SAMs) for electrochemical sensing publication-title: J. Solid State Electrochem. doi: 10.1007/s10008-011-1493-6 – volume: 356 start-page: 225 year: 2017 ident: 10.1016/j.matdes.2019.108256_bib1 article-title: Microbial fuel cells: from fundamentals to applications. A review publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.03.109 – volume: 8 start-page: 371 issue: 3 year: 2006 ident: 10.1016/j.matdes.2019.108256_bib8 article-title: Exocellular electron transfer in anaerobic microbial communities publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2006.00989.x – volume: 74 start-page: 7329 issue: 23 year: 2008 ident: 10.1016/j.matdes.2019.108256_bib18 article-title: Microbial biofilm voltammetry: direct electrochemical characterization of catalytic electrode-attached biofilms publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00177-08 – volume: 72 start-page: 361 issue: 2 year: 2006 ident: 10.1016/j.matdes.2019.108256_bib48 article-title: Motility influences biofilm architecture in Escherichia coli publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-005-0263-8 – volume: 105 start-page: 3968 issue: 10 year: 2008 ident: 10.1016/j.matdes.2019.108256_bib53 article-title: Shewanella secretes flavins that mediate extracellular electron transfer publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0710525105 – volume: 119 start-page: 736 issue: 3 year: 1974 ident: 10.1016/j.matdes.2019.108256_bib42 article-title: Culture medium for enterobacteria publication-title: J. Bacteriol. doi: 10.1128/jb.119.3.736-747.1974 – volume: 24 start-page: 245 issue: 4 year: 2010 ident: 10.1016/j.matdes.2019.108256_bib55 article-title: Analyzing results of impedance spectroscopy using novel evolutionary programming techniques publication-title: J. Electroceram. doi: 10.1007/s10832-009-9565-z – volume: 7 start-page: 375 issue: 5 year: 2009 ident: 10.1016/j.matdes.2019.108256_bib6 article-title: Exoelectrogenic bacteria that power microbial fuel cells publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2113 – start-page: 1 year: 2018 ident: 10.1016/j.matdes.2019.108256_bib39 article-title: A Smart Sensing Node for Pervasive Water Quality Monitoring with Anti-fouling self-diagnostics – volume: 66 start-page: 1292 issue: 4 year: 2000 ident: 10.1016/j.matdes.2019.108256_bib45 article-title: Electricity generation in microbial fuel cells using neutral red as an electronophore publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.66.4.1292-1297.2000 – volume: 100 start-page: 77 year: 2014 ident: 10.1016/j.matdes.2019.108256_bib35 article-title: Label-free interdigitated microelectrode based biosensors for bacterial biofilm growth monitoring using Petri dishes publication-title: J. Microbiol. Methods doi: 10.1016/j.mimet.2014.02.022 – volume: 30 start-page: 1707072 issue: 26 year: 2018 ident: 10.1016/j.matdes.2019.108256_bib3 article-title: Dual-function electrocatalytic and macroporous hollow-fiber cathode for converting waste streams to valuable resources using microbial electrochemical systems publication-title: Adv. Mater. doi: 10.1002/adma.201707072 – volume: 82 start-page: 536 issue: 2 year: 2011 ident: 10.1016/j.matdes.2019.108256_bib59 article-title: Have flagella a preferred orientation during early stages of biofilm formation?: AFM study using patterned substrates publication-title: Colloids Surfaces B Biointerfaces doi: 10.1016/j.colsurfb.2010.10.013 – volume: 9 issue: 2 year: 2018 ident: 10.1016/j.matdes.2019.108256_bib52 article-title: Extracellular electron transfer powers Enterococcus faecalis biofilm metabolism publication-title: mBio doi: 10.1128/mBio.00626-17 – volume: 5 issue: 5 year: 2014 ident: 10.1016/j.matdes.2019.108256_bib51 article-title: Temporal and stochastic control of Staphylococcus aureus biofilm development publication-title: mBio doi: 10.1128/mBio.01341-14 – volume: 65 start-page: 1 issue: 1 year: 2007 ident: 10.1016/j.matdes.2019.108256_bib7 article-title: Extracellular respiration publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2007.05778.x – volume: 160 start-page: 395 year: 2018 ident: 10.1016/j.matdes.2019.108256_bib20 article-title: Early stage anti-bioadhesion behavior of superhydrophobic soot based coatings towards Pseudomonas putida publication-title: Mater. Des. doi: 10.1016/j.matdes.2018.09.037 |
SSID | ssj0022734 |
Score | 2.3640702 |
Snippet | Extracellular electron transfer (EET) from microorganisms to insoluble metals and electrodes is relevant to energy recovery from wastewater, green production... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 108256 |
SubjectTerms | Bioelectrochemistry Biofilm-surface interaction Electroactive biofilm Extracellular electron transfer (EET) Micropillared electrode Surface modification |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8sBqEcdxHI-AqBADLEXqFvlJi_pSGgb-Pb44qTLRhdWy4-h8yn13vnwfQnemUCl3KSXCe0syqR1RVGeEa2NkxgXVrmH7fMtfPrLXCZ_0pL6gJyzSA0fD3QudC2WBFo6pzCinpPeZSpj21CiROPj6hpjXJVNtqgWkLbG6Aqx8gnc_zTWdXQEKWgdU3VRCi10K4tW9oNRw9_diUy_ejI7QYQsU8UN8wWO055Yn6KBHH3iKpu9VI7WJF9BVtwb9oAqrqlI_-HM1t7iVuLEOz5YADjdu042ZlicAQ_9Gw-2JVx47YDvGegYy3gus6lqZKVQPz9B49Dx-eiGtcgIxGS1qIpU1PFiJCgr3YF4ySZXgTqYul7kwBVy_QDZS2NQqE0K2S1OVZwULEU0zdo4Gy9XSXSAsE8-pppSFNC5kKklhWVjiC-tzrQN2GiLWWa40Las4iFvMy6597KuM9i7B3mW09xCR7ap1ZNXYMf8RDmU7Fzixm4HgKWXrKeUuTxki0R1p2cKLCBvCo2Z_bn_5H9tfof0UcnUo3_BrNKirb3cTAE2tbxvf_QV2KvTc priority: 102 providerName: Directory of Open Access Journals |
Title | Ordered micropillar array gold electrode increases electrochemical signature of early biofilm attachment |
URI | https://dx.doi.org/10.1016/j.matdes.2019.108256 https://doaj.org/article/7b67ad86793a4caea9ff4a03bf1ca70e |
Volume | 185 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ05T-wwEIAtjoZXIOA99JZLLmijXV9xXAICLSBBAUjbRT4hCHZXIRT8ezyJs1oakGgtO4nGI8-R8TcIHdtCU-EpyWQILuPK-EwTwzNhrFVcSGJ8S_u8yccP_GoiJivorL8LA2WV6ezvzvT2tE4jwyTN4byqhncxeuCAJ48uCNzenKyidcpUHlV7_eTyenyziLuA4NKlWgDRJ0V_g64t84p-ofPA7SYK6u0odLJeslAtyH_JUC0Zn4sttJm8RnzSfdg2WvHTHfRniSX4Fz3d1m3fTfwKJXZzaCZUY13X-gM_zl4cTv1unMfVFDzFN__Wj9kEDcBQzNGCPvEsYA_oY2wq6On9inXTaPsEqcR_6P7i_P5snKU2CpnlpGgypZ0VXAMYB36KBcUU0VJ4RX2ucmkL-BcDoUnhqNM22m9Pqc55waJ5M4ztorXpbOr_I6xGQRBDCIsxXQxbRoVjcUkoXMiNiY7UALFecqVNiHHodPFS9rVkz2Un7xLkXXbyHqBssWreITZ-mH8Km7KYC4DsdmBWP5ZJQ0ppcqkd0ASZ5lZ7rUKIMmAmEKvlyA-Q7Le0_KJv8VHVt6_f-_XKfbRBIVqHBI44QGtN_e4Po0vTmKOkskdtSuATmNX2zw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3Lb9QwEIdHZXsADoinWJ4-cI12HdtxfCwV1ZaW5cAi7c3ysw1qd1dpOPDf40mc1XIBiatlJ9HY8sw44-8H8MHVphShpIWM0Rdc2VAYankhrHOKC0lt6Gmfy2rxnX9ei_URnI53YbCsMu_9w57e79a5ZZatOds1zexbyh444slTCIK3N9f34BjpVGICxyfnF4vlPu9Cgstw1IKIPinGG3R9mVeKC31AbjdVWG9XopL1gYfqQf4HjurA-Zw9hkc5aiQnw4c9gaOweQoPD1iCz-D6a9vrbpJbLLHboZhQS0zbml_kanvjSda78YE0G4wU78Ld2OYyNIBgMUcP-iTbSAKij4ltUNP7lpiuM-4ajxKfw-rs0-p0UWQZhcJxWneFMt4JbhCMgz_FomKKGimCKkOlKulq_BeDqUntS29c8t-hLE3Fa5bcm2XsBUw22014CUTNo6CWUpZyupS2zGvP0pBY-1hZmwKpKbDRctplxDgqXdzosZbshx7srdHeerD3FIr9qN2A2PhH_484Kfu-CMjuG7btlc4rREtbSeORJsgMdyYYFWOyAbOROiPnYQpynFL9x3pLj2r--vpX_z3yPdxfrL5c6svz5cVreFBi5o6HOeINTLr2Z3ibwpvOvsvL9zdu5_jA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ordered+micropillar+array+gold+electrode+increases+electrochemical+signature+of+early+biofilm+attachment&rft.jtitle=Materials+%26+design&rft.au=Astorga%2C+Solange+E.&rft.au=Hu%2C+Liang+Xing&rft.au=Marsili%2C+Enrico&rft.au=Huang%2C+Yizhong&rft.date=2020-01-05&rft.issn=0264-1275&rft.volume=185&rft.spage=108256&rft_id=info:doi/10.1016%2Fj.matdes.2019.108256&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matdes_2019_108256 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-1275&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-1275&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-1275&client=summon |