Ordered micropillar array gold electrode increases electrochemical signature of early biofilm attachment

Extracellular electron transfer (EET) from microorganisms to insoluble metals and electrodes is relevant to energy recovery from wastewater, green production of high-added value chemicals, and biosensors for food, environmental, and clinical applications. Microstructured electrode surfaces increase...

Full description

Saved in:
Bibliographic Details
Published inMaterials & design Vol. 185; p. 108256
Main Authors Astorga, Solange E., Hu, Liang Xing, Marsili, Enrico, Huang, Yizhong
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 05.01.2020
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Extracellular electron transfer (EET) from microorganisms to insoluble metals and electrodes is relevant to energy recovery from wastewater, green production of high-added value chemicals, and biosensors for food, environmental, and clinical applications. Microstructured electrode surfaces increase EET rate in bioelectrochemical systems, thus enabling higher sensibility and power output as well as the detection of bacteria and biofilms in bioelectrochemical sensors. However, many aspects of the EET process, particularly in early biofilm stages, are still poorly understood. We report a microstructured gold electrode maintained at oxidative potential to support the growth of Escherichia coli, measure the electrochemical output, and analyze the EET rate during early biofilm formation. The charge outputs of the modified electrodes are up to 22% higher than the control electrodes, enabling the electrochemical detection of early E. coli biofilms. The electrode microstructures promote biofilm attachment, as confirmed by field emission scanning electron microscope (FESEM) and confocal laser scanning microscope (CLSM) imaging. Following biofilm formation, the resistance to charge transfer at the biofilm-electrode interface decreases and the capacitance increases as shown by EIS analysis. Overall, these results contribute to the understanding of EET in early biofilms, towards developing sensitive bioelectrochemical sensors for biofilm detection. [Display omitted] •Electrochemical signature of E. coli early biofilm was measured on microstructured electrodes.•Microstructured electrodes enhanced early biofilm attachment.•Microstructured electrodes increased EET rate and detection of early biofilms by 22%.•Biofilm formation decreased interfacial resistance via impedance spectroscopy.•Electronic and confocal microscopy confirm that biofilm forms near electrode microstructures.
AbstractList Extracellular electron transfer (EET) from microorganisms to insoluble metals and electrodes is relevant to energy recovery from wastewater, green production of high-added value chemicals, and biosensors for food, environmental, and clinical applications. Microstructured electrode surfaces increase EET rate in bioelectrochemical systems, thus enabling higher sensibility and power output as well as the detection of bacteria and biofilms in bioelectrochemical sensors. However, many aspects of the EET process, particularly in early biofilm stages, are still poorly understood. We report a microstructured gold electrode maintained at oxidative potential to support the growth of Escherichia coli, measure the electrochemical output, and analyze the EET rate during early biofilm formation. The charge outputs of the modified electrodes are up to 22% higher than the control electrodes, enabling the electrochemical detection of early E. coli biofilms. The electrode microstructures promote biofilm attachment, as confirmed by field emission scanning electron microscope (FESEM) and confocal laser scanning microscope (CLSM) imaging. Following biofilm formation, the resistance to charge transfer at the biofilm-electrode interface decreases and the capacitance increases as shown by EIS analysis. Overall, these results contribute to the understanding of EET in early biofilms, towards developing sensitive bioelectrochemical sensors for biofilm detection. Keywords: Bioelectrochemistry, Extracellular electron transfer (EET), Electroactive biofilm, Biofilm-surface interaction, Micropillared electrode, Surface modification
Extracellular electron transfer (EET) from microorganisms to insoluble metals and electrodes is relevant to energy recovery from wastewater, green production of high-added value chemicals, and biosensors for food, environmental, and clinical applications. Microstructured electrode surfaces increase EET rate in bioelectrochemical systems, thus enabling higher sensibility and power output as well as the detection of bacteria and biofilms in bioelectrochemical sensors. However, many aspects of the EET process, particularly in early biofilm stages, are still poorly understood. We report a microstructured gold electrode maintained at oxidative potential to support the growth of Escherichia coli, measure the electrochemical output, and analyze the EET rate during early biofilm formation. The charge outputs of the modified electrodes are up to 22% higher than the control electrodes, enabling the electrochemical detection of early E. coli biofilms. The electrode microstructures promote biofilm attachment, as confirmed by field emission scanning electron microscope (FESEM) and confocal laser scanning microscope (CLSM) imaging. Following biofilm formation, the resistance to charge transfer at the biofilm-electrode interface decreases and the capacitance increases as shown by EIS analysis. Overall, these results contribute to the understanding of EET in early biofilms, towards developing sensitive bioelectrochemical sensors for biofilm detection. [Display omitted] •Electrochemical signature of E. coli early biofilm was measured on microstructured electrodes.•Microstructured electrodes enhanced early biofilm attachment.•Microstructured electrodes increased EET rate and detection of early biofilms by 22%.•Biofilm formation decreased interfacial resistance via impedance spectroscopy.•Electronic and confocal microscopy confirm that biofilm forms near electrode microstructures.
ArticleNumber 108256
Author Hu, Liang Xing
Huang, Yizhong
Astorga, Solange E.
Marsili, Enrico
Author_xml – sequence: 1
  givenname: Solange E.
  surname: Astorga
  fullname: Astorga, Solange E.
  organization: School of Material Science and Engineering, Nanyang Technological University, 639977, Singapore
– sequence: 2
  givenname: Liang Xing
  surname: Hu
  fullname: Hu, Liang Xing
  organization: School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798, Singapore
– sequence: 3
  givenname: Enrico
  surname: Marsili
  fullname: Marsili, Enrico
  email: enrico.marsili1@gmail.com, enrico.marsili@nu.edu.kz
  organization: Department of Chemical and Materials Engineering, Nazarbayev University, 010000, Nur-Sultan, Kazakhstan
– sequence: 4
  givenname: Yizhong
  surname: Huang
  fullname: Huang, Yizhong
  email: yzhuang@ntu.edu.sg
  organization: School of Material Science and Engineering, Nanyang Technological University, 639977, Singapore
BookMark eNqFkL1qHDEURqdwIP57gxR6gd3oZ0YapQgEk8QGgxv34q50Z1eLZmSuZMO-veVMnCJFUgk-OOeic9GdLXnBrvsk-FZwoT8ftzPUgGUrubBtGuWgz7pzLnW_EdIMH7uLUo6cS2lUf94dHiggYWBz9JSfYkpADIjgxPY5BYYJfaUckMXFE0LB8r75AzYIEitxv0B9JmR5YgiUTmwX8xTTzKBW8IcZl3rVfZggFbz-_V52jz--P97cbu4fft7dfLvf-F6MdWMh-KEHLowYhLaTVVaAGdBK1FYbP3IhNJfCjEEG8OOgUErQ_agUVzulLru7VRsyHN0TxRno5DJE92vItHdANfqEzuy0gTBqYxX0HhDsNLXLajcJD4Zjc_Wrq5UphXD64xPcvcV2R7fGdm-x3Rq7YV_-wnysUGNeKkFM_4O_rjC2Ri8RyRUfcfEYIrXq7Rfx34JXQuqjDg
CitedBy_id crossref_primary_10_1016_j_chemolab_2023_105048
crossref_primary_10_1016_j_bioelechem_2021_108038
crossref_primary_10_3390_s20113256
crossref_primary_10_1149_1945_7111_adbdf2
crossref_primary_10_1016_j_chemosphere_2021_133206
crossref_primary_10_1016_j_trechm_2024_01_005
crossref_primary_10_1016_j_mseb_2020_114817
crossref_primary_10_1002_nano_202000024
crossref_primary_10_1016_j_bios_2020_112767
crossref_primary_10_1002_cplu_202400072
crossref_primary_10_1038_s41598_025_86702_8
crossref_primary_10_1016_j_electacta_2021_138757
crossref_primary_10_1007_s41315_020_00146_z
Cites_doi 10.1039/c2cs35026b
10.1016/j.tim.2006.10.003
10.1073/pnas.0604517103
10.1016/j.bios.2006.10.028
10.1016/j.enzmictec.2005.03.006
10.1038/nature11477
10.1002/celc.201402128
10.1080/08927014.2012.710324
10.1016/j.bios.2011.02.019
10.1080/08927010109378490
10.1016/j.jpowsour.2017.02.032
10.1016/j.jpowsour.2017.03.021
10.1039/c1ee02511b
10.1002/celc.201901063
10.1109/JMEMS.2008.2006816
10.1038/nrmicro2415
10.1021/acsabm.8b00176
10.1128/jb.174.11.3429-3438.1992
10.1016/j.matdes.2018.05.021
10.1111/1751-7915.12373
10.1016/j.sna.2011.09.023
10.1016/j.ref.2017.11.001
10.1021/es048563o
10.1111/j.1574-6941.1997.tb00419.x
10.1016/j.bioelechem.2018.02.005
10.1016/j.biortech.2013.01.036
10.1038/nature03661
10.1016/j.bios.2018.06.059
10.1038/ismej.2007.4
10.1016/j.matdes.2019.108152
10.1063/1.4880596
10.1039/C4CC08590F
10.1093/ps/79.12.1839
10.1016/j.matdes.2017.11.074
10.1046/j.1365-2958.2003.03490.x
10.1007/s10008-011-1493-6
10.1016/j.jpowsour.2017.03.109
10.1111/j.1462-2920.2006.00989.x
10.1128/AEM.00177-08
10.1007/s00253-005-0263-8
10.1073/pnas.0710525105
10.1128/jb.119.3.736-747.1974
10.1007/s10832-009-9565-z
10.1038/nrmicro2113
10.1128/AEM.66.4.1292-1297.2000
10.1016/j.mimet.2014.02.022
10.1002/adma.201707072
10.1016/j.colsurfb.2010.10.013
10.1128/mBio.00626-17
10.1128/mBio.01341-14
10.1111/j.1365-2958.2007.05778.x
10.1016/j.matdes.2018.09.037
ContentType Journal Article
Copyright 2019
Copyright_xml – notice: 2019
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.matdes.2019.108256
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID oai_doaj_org_article_7b67ad86793a4caea9ff4a03bf1ca70e
10_1016_j_matdes_2019_108256
S026412751930694X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
4.4
457
4G.
5GY
5VS
6I.
7-5
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAFTH
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADVLN
AEBSH
AEKER
AEZYN
AFJKZ
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BCNDV
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GROUPED_DOAJ
IHE
J1W
KOM
M41
MO0
NCXOZ
OAUVE
OK1
P2P
PC.
Q38
ROL
SDF
SDG
SDP
SPC
SSM
SST
SSZ
T5K
~G-
29M
AAQXK
AATTM
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
JJJVA
MAGPM
O9-
P-8
P-9
R2-
RIG
RNS
RPZ
SEW
SMS
SSH
WUQ
EFKBS
ID FETCH-LOGICAL-c418t-9adc54a01715169f9391a75e92e6967c8011602178d2dac853e22a6483303b33
IEDL.DBID AIKHN
ISSN 0264-1275
IngestDate Wed Aug 27 01:19:22 EDT 2025
Tue Jul 01 02:23:54 EDT 2025
Thu Apr 24 22:58:53 EDT 2025
Tue Dec 03 03:45:08 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Extracellular electron transfer (EET)
Surface modification
Biofilm-surface interaction
Micropillared electrode
Bioelectrochemistry
Electroactive biofilm
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-9adc54a01715169f9391a75e92e6967c8011602178d2dac853e22a6483303b33
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S026412751930694X
ParticipantIDs doaj_primary_oai_doaj_org_article_7b67ad86793a4caea9ff4a03bf1ca70e
crossref_primary_10_1016_j_matdes_2019_108256
crossref_citationtrail_10_1016_j_matdes_2019_108256
elsevier_sciencedirect_doi_10_1016_j_matdes_2019_108256
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-05
PublicationDateYYYYMMDD 2020-01-05
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-05
  day: 05
PublicationDecade 2020
PublicationTitle Materials & design
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Baltianski, Tsur (bib54) 2006
Dominguez-Benetton, Sevda, Vanbroekhoven, Pant (bib57) 2012; 41
Babauta, Renslow, Lewandowski, Beyenal (bib17) 2012; 28
Gralnick, Newman (bib7) 2007; 65
Parra, Lin (bib29) 2009
Esmeryan, Avramova, Castano, Ivanova, Mohammadi, Radeva, Stoyanova, Vladkova (bib20) 2018; 160
Paredes, Becerro, Arana (bib35) 2014; 100
Mandler, Kraus-Ophir (bib28) 2011; 15
Hinks, Han, Wang, Seviour, Marsili, Loo, Wuertz (bib36) 2016; 9
Champigneux, Delia, Bergel (bib33) 2018
Kim, Hwan Ko, Lee, Jun Kim, Byun (bib34) 2014; 104
Li, Shi, Li, Chen, Zhang, Guo, Zhang (bib23) 2019; 183
Seviour, Doyle, Lauw, Hinks, Rice, Nesatyy, Webster, Kjelleberg, Marsili (bib46) 2015; 51
Neidhardt, Bloch, Smith (bib42) 1974; 119
Park, Zeikus (bib45) 2000; 66
Marsili, Baron, Shikhare, Coursolle, Gralnick, Bond (bib53) 2008; 105
Logan, Elimelech (bib4) 2012; 488
Reisner, Haagensen, Schembri, Zechner, Molin (bib49) 2003; 48
Inoue, Parra, Higa, Jiang, Wang, Buie, Coates, Lin (bib32) 2012; 177
Sreekumari, Nandakumar, Kikuchi (bib60) 2001; 17
Neu, Lawrence (bib41) 1997; 24
Zhang, Xia, Luo, Sun, Call, Logan (bib50) 2013; 133
Jiao, Wu, Qiu (bib25) 2018; 154
Carminati, Mezzera, Ferrari, Sampietro, Turolla, Di Mauro, Antonelli (bib39) 2018
Borole, Reguera, Ringeisen, Wang, Feng, Kim (bib43) 2011; 4
Ieropoulos, Greenman, Melhuish, Hart (bib44) 2005; 37
Flemming, Wingender (bib16) 2010; 8
Arnold, Bailey (bib19) 2000; 79
Hasan, Jain, Padmarajan, Purighalla, Sambandamurthy, Chatterjee (bib22) 2018; 140
Champigneux, Renault-Sentenac, Bourrier, Rossi, Delia, Bergel (bib30) 2018; 121
Laczka, Maesa, Godino, del Campo, Fougt-Hansen, Kutter, Snakenborg, Muñoz-Pascual, Baldrich (bib40) 2011; 26
Logan (bib6) 2009; 7
Tesler, Lewin, Baltianski, Tsur (bib55) 2010; 24
Susarrey-Arce, Hernández-Sánchez, Marcello, Diaz-Fernandez, Oknianska, Sorzabal-Bellido, Tiggelaar, Lohse, Gardeniers, Snoeijer (bib21) 2018; 1
Santoro, Arbizzani, Erable, Ieropoulos (bib1) 2017; 356
Beyenal, Babauta (bib26) 2015
Keogh, Lam, Doyle, Matysik, Pavagadhi, Umashankar, Low, Dale, Song, Ng (bib52) 2018; 9
Siu, Chiao (bib58) 2008; 17
Rabaey, Rodriguez, Blackall, Keller, Gross, Batstone, Verstraete, Nealson (bib2) 2007; 1
Babauta, Beyenal (bib15) 2017; 356
Alipour, Karagoz, Taner, Gaeini, Alipour, Zeytin, Yildiz, Durmaz (bib38) 2017; 2
Astorga, Hu, Marsili, Huang (bib24) 2019
TerAvest, Angenent (bib47) 2014; 1
Rutala, Weber (bib37) 2008; vol. 2008
Marsili, Rollefson, Baron, Hozalski, Bond (bib18) 2008; 74
Ye, Ellis, Nain, Behkam (bib31) 2017; 347
Katuri, Kalathil, Ragab, Bian, Alqahtani, Pant, Saikaly (bib3) 2018; 30
Logan, Regan (bib13) 2006; 14
Gorby, Yanina, McLean, Rosso, Moyles, Dohnalkova, Beveridge, Chang, Kim, Kim (bib11) 2006; 103
Rabaey, Boon, Höfte, Verstraete (bib14) 2005; 39
Wood, Barrios, Herzberg, Lee (bib48) 2006; 72
Stams, De Bok, Plugge, Eekert, Miriam, Dolfing, Schraa (bib8) 2006; 8
Gooding, Yang (bib27) 2008; 320
Reguera, McCarthy, Mehta, Nicoll, Tuominen, Lovley (bib12) 2005; 435
Beyene, Werkneh, Ambaye (bib5) 2018; 24
Prasad, Arun, Murugesan, Padmanaban, Satyanarayanan, Berchmans, Yegnaraman (bib10) 2007; 22
Myers, Myers (bib9) 1992; 174
Moormeier, Bose, Horswill, Bayles (bib51) 2014; 5
Diard, Le Gorrec, Montella (bib56) 2013
Díaz, Schilardi, Salvarezza, De Mele (bib59) 2011; 82
Jiao (10.1016/j.matdes.2019.108256_bib25) 2018; 154
Carminati (10.1016/j.matdes.2019.108256_bib39) 2018
Champigneux (10.1016/j.matdes.2019.108256_bib30) 2018; 121
Keogh (10.1016/j.matdes.2019.108256_bib52) 2018; 9
Marsili (10.1016/j.matdes.2019.108256_bib53) 2008; 105
Prasad (10.1016/j.matdes.2019.108256_bib10) 2007; 22
Alipour (10.1016/j.matdes.2019.108256_bib38) 2017; 2
Babauta (10.1016/j.matdes.2019.108256_bib17) 2012; 28
Li (10.1016/j.matdes.2019.108256_bib23) 2019; 183
Parra (10.1016/j.matdes.2019.108256_bib29) 2009
Seviour (10.1016/j.matdes.2019.108256_bib46) 2015; 51
Gorby (10.1016/j.matdes.2019.108256_bib11) 2006; 103
Hinks (10.1016/j.matdes.2019.108256_bib36) 2016; 9
Reisner (10.1016/j.matdes.2019.108256_bib49) 2003; 48
Moormeier (10.1016/j.matdes.2019.108256_bib51) 2014; 5
Susarrey-Arce (10.1016/j.matdes.2019.108256_bib21) 2018; 1
Reguera (10.1016/j.matdes.2019.108256_bib12) 2005; 435
Siu (10.1016/j.matdes.2019.108256_bib58) 2008; 17
Logan (10.1016/j.matdes.2019.108256_bib13) 2006; 14
Mandler (10.1016/j.matdes.2019.108256_bib28) 2011; 15
Santoro (10.1016/j.matdes.2019.108256_bib1) 2017; 356
Zhang (10.1016/j.matdes.2019.108256_bib50) 2013; 133
Stams (10.1016/j.matdes.2019.108256_bib8) 2006; 8
Ieropoulos (10.1016/j.matdes.2019.108256_bib44) 2005; 37
Wood (10.1016/j.matdes.2019.108256_bib48) 2006; 72
Díaz (10.1016/j.matdes.2019.108256_bib59) 2011; 82
Hasan (10.1016/j.matdes.2019.108256_bib22) 2018; 140
Gooding (10.1016/j.matdes.2019.108256_bib27) 2008; 320
Park (10.1016/j.matdes.2019.108256_bib45) 2000; 66
Rabaey (10.1016/j.matdes.2019.108256_bib2) 2007; 1
Esmeryan (10.1016/j.matdes.2019.108256_bib20) 2018; 160
Myers (10.1016/j.matdes.2019.108256_bib9) 1992; 174
Rutala (10.1016/j.matdes.2019.108256_bib37) 2008; vol. 2008
Baltianski (10.1016/j.matdes.2019.108256_bib54) 2006
Kim (10.1016/j.matdes.2019.108256_bib34) 2014; 104
Babauta (10.1016/j.matdes.2019.108256_bib15) 2017; 356
Tesler (10.1016/j.matdes.2019.108256_bib55) 2010; 24
Arnold (10.1016/j.matdes.2019.108256_bib19) 2000; 79
Laczka (10.1016/j.matdes.2019.108256_bib40) 2011; 26
Logan (10.1016/j.matdes.2019.108256_bib4) 2012; 488
Rabaey (10.1016/j.matdes.2019.108256_bib14) 2005; 39
Champigneux (10.1016/j.matdes.2019.108256_bib33) 2018
Gralnick (10.1016/j.matdes.2019.108256_bib7) 2007; 65
Beyenal (10.1016/j.matdes.2019.108256_bib26) 2015
Flemming (10.1016/j.matdes.2019.108256_bib16) 2010; 8
Borole (10.1016/j.matdes.2019.108256_bib43) 2011; 4
Paredes (10.1016/j.matdes.2019.108256_bib35) 2014; 100
Diard (10.1016/j.matdes.2019.108256_bib56) 2013
Neu (10.1016/j.matdes.2019.108256_bib41) 1997; 24
Sreekumari (10.1016/j.matdes.2019.108256_bib60) 2001; 17
TerAvest (10.1016/j.matdes.2019.108256_bib47) 2014; 1
Logan (10.1016/j.matdes.2019.108256_bib6) 2009; 7
Katuri (10.1016/j.matdes.2019.108256_bib3) 2018; 30
Marsili (10.1016/j.matdes.2019.108256_bib18) 2008; 74
Neidhardt (10.1016/j.matdes.2019.108256_bib42) 1974; 119
Beyene (10.1016/j.matdes.2019.108256_bib5) 2018; 24
Astorga (10.1016/j.matdes.2019.108256_bib24) 2019
Inoue (10.1016/j.matdes.2019.108256_bib32) 2012; 177
Ye (10.1016/j.matdes.2019.108256_bib31) 2017; 347
Dominguez-Benetton (10.1016/j.matdes.2019.108256_bib57) 2012; 41
References_xml – volume: 22
  start-page: 2604
  year: 2007
  end-page: 2610
  ident: bib10
  article-title: Direct electron transfer with yeast cells and construction of a mediatorless microbial fuel cell
  publication-title: Biosens. Bioelectron.
– volume: 26
  start-page: 3633
  year: 2011
  end-page: 3640
  ident: bib40
  article-title: Improved bacteria detection by coupling magneto-immunocapture and amperometry at flow-channel microband electrodes
  publication-title: Biosens. Bioelectron.
– volume: 133
  start-page: 74
  year: 2013
  end-page: 81
  ident: bib50
  article-title: Improving startup performance with carbon mesh anodes in separator electrode assembly microbial fuel cells
  publication-title: Bioresour. Technol.
– start-page: 31
  year: 2009
  end-page: 34
  ident: bib29
  article-title: Microbial fuel cell based on electrode-exoelectrogenic bacteria interface, Micro Electro Mechanical Systems
  publication-title: 2009. MEMS 2009. IEEE 22nd International Conference on
– volume: 183
  start-page: 108152
  year: 2019
  ident: bib23
  article-title: Subtractive manufacturing of stable hierarchical micro-nano structures on AA5052 sheet with enhanced water repellence and durable corrosion resistance
  publication-title: Mater. Des.
– volume: 39
  start-page: 3401
  year: 2005
  end-page: 3408
  ident: bib14
  article-title: Microbial phenazine production enhances electron transfer in biofuel cells
  publication-title: Environ. Sci. Technol.
– volume: 4
  start-page: 4813
  year: 2011
  end-page: 4834
  ident: bib43
  article-title: Electroactive biofilms: current status and future research needs
  publication-title: Energy Environ. Sci.
– volume: 82
  start-page: 536
  year: 2011
  end-page: 542
  ident: bib59
  article-title: Have flagella a preferred orientation during early stages of biofilm formation?: AFM study using patterned substrates
  publication-title: Colloids Surfaces B Biointerfaces
– volume: 8
  start-page: 623
  year: 2010
  ident: bib16
  article-title: The biofilm matrix
  publication-title: Nat. Rev. Microbiol.
– volume: 356
  start-page: 225
  year: 2017
  end-page: 244
  ident: bib1
  article-title: Microbial fuel cells: from fundamentals to applications. A review
  publication-title: J. Power Sources
– year: 2018
  ident: bib33
  article-title: Impact of electrode micro-and nano-scale topography on the formation and performance of microbial electrodes
  publication-title: Biosens. Bioelectron.
– volume: 435
  start-page: 1098
  year: 2005
  ident: bib12
  article-title: Extracellular electron transfer via microbial nanowires
  publication-title: Nature
– volume: 2
  year: 2017
  ident: bib38
  article-title: Outbreak of hospital infection from biofilm-embedded pan drug-resistant Pseudomonas aeroginosa, due to a contaminated bronchoscope
  publication-title: J. Prevent. Med.
– volume: 7
  start-page: 375
  year: 2009
  end-page: 381
  ident: bib6
  article-title: Exoelectrogenic bacteria that power microbial fuel cells
  publication-title: Nat. Rev. Microbiol.
– volume: 65
  start-page: 1
  year: 2007
  end-page: 11
  ident: bib7
  article-title: Extracellular respiration
  publication-title: Mol. Microbiol.
– volume: 160
  start-page: 395
  year: 2018
  end-page: 404
  ident: bib20
  article-title: Early stage anti-bioadhesion behavior of superhydrophobic soot based coatings towards Pseudomonas putida
  publication-title: Mater. Des.
– volume: 100
  start-page: 77
  year: 2014
  end-page: 83
  ident: bib35
  article-title: Label-free interdigitated microelectrode based biosensors for bacterial biofilm growth monitoring using Petri dishes
  publication-title: J. Microbiol. Methods
– start-page: S3
  year: 2006
  ident: bib54
  article-title: Analyzing Impedance Spectroscopy Results
– volume: 1
  start-page: 1294
  year: 2018
  end-page: 1300
  ident: bib21
  article-title: Bacterial footprints in elastic pillared microstructures
  publication-title: ACS Appl. Bio Mater.
– volume: 79
  start-page: 1839
  year: 2000
  end-page: 1845
  ident: bib19
  article-title: Surface finishes on stainless steel reduce bacterial attachment and early biofilm formation: scanning electron and atomic force microscopy study
  publication-title: Poult. Sci.
– volume: 51
  start-page: 3789
  year: 2015
  end-page: 3792
  ident: bib46
  article-title: Voltammetric profiling of redox-active metabolites expressed by Pseudomonas aeruginosa for diagnostic purposes
  publication-title: Chem. Commun.
– volume: 9
  start-page: 746
  year: 2016
  end-page: 757
  ident: bib36
  article-title: Naphthoquinone glycosides for bioelectroanalytical enumeration of the faecal indicator Escherichia coli
  publication-title: Microbial Biotechnol.
– start-page: 1
  year: 2018
  end-page: 5
  ident: bib39
  article-title: A Smart Sensing Node for Pervasive Water Quality Monitoring with Anti-fouling self-diagnostics
  publication-title: 2018 IEEE Internatisonal Symposium on Circuits and Systems (ISCAS)
– volume: 121
  start-page: 191
  year: 2018
  end-page: 200
  ident: bib30
  article-title: Effect of surface nano/micro-structuring on the early formation of microbial anodes with Geobacter sulfurreducens: experimental and theoretical approaches
  publication-title: Bioelectrochemistry
– volume: 119
  start-page: 736
  year: 1974
  end-page: 747
  ident: bib42
  article-title: Culture medium for enterobacteria
  publication-title: J. Bacteriol.
– volume: 105
  start-page: 3968
  year: 2008
  end-page: 3973
  ident: bib53
  article-title: Shewanella secretes flavins that mediate extracellular electron transfer
  publication-title: Proc. Natl. Acad. Sci.
– volume: 103
  start-page: 11358
  year: 2006
  end-page: 11363
  ident: bib11
  article-title: Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms
  publication-title: Proc. Natl. Acad. Sci.
– volume: 74
  start-page: 7329
  year: 2008
  end-page: 7337
  ident: bib18
  article-title: Microbial biofilm voltammetry: direct electrochemical characterization of catalytic electrode-attached biofilms
  publication-title: Appl. Environ. Microbiol.
– volume: 14
  start-page: 512
  year: 2006
  end-page: 518
  ident: bib13
  article-title: Electricity-producing bacterial communities in microbial fuel cells
  publication-title: Trends Microbiol.
– volume: 140
  start-page: 332
  year: 2018
  end-page: 344
  ident: bib22
  article-title: Multi-scale surface topography to minimize adherence and viability of nosocomial drug-resistant bacteria
  publication-title: Mater. Des.
– volume: 41
  start-page: 7228
  year: 2012
  end-page: 7246
  ident: bib57
  article-title: The accurate use of impedance analysis for the study of microbial electrochemical systems
  publication-title: Chem. Soc. Rev.
– volume: 5
  year: 2014
  ident: bib51
  article-title: Temporal and stochastic control of Staphylococcus aureus biofilm development
  publication-title: mBio
– year: 2015
  ident: bib26
  article-title: Biofilms in Bioelectrochemical Systems: from Laboratory Practice to Data Interpretation
– volume: 17
  start-page: 303
  year: 2001
  end-page: 316
  ident: bib60
  article-title: Bacterial attachment to stainless steel welds: significance of substratum microstructure
  publication-title: Biofouling
– volume: 72
  start-page: 361
  year: 2006
  end-page: 367
  ident: bib48
  article-title: Motility influences biofilm architecture in Escherichia coli
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 48
  start-page: 933
  year: 2003
  end-page: 946
  ident: bib49
  article-title: Development and maturation of Escherichia coli K-12 biofilms
  publication-title: Mol. Microbiol.
– volume: 24
  start-page: 1
  year: 2018
  end-page: 11
  ident: bib5
  article-title: Current updates on waste to energy (WtE) technologies: a review
  publication-title: Renew. Energy Focus
– volume: 28
  start-page: 789
  year: 2012
  end-page: 812
  ident: bib17
  article-title: Electrochemically active biofilms: facts and fiction. A review
  publication-title: Biofouling
– volume: 66
  start-page: 1292
  year: 2000
  end-page: 1297
  ident: bib45
  article-title: Electricity generation in microbial fuel cells using neutral red as an electronophore
  publication-title: Appl. Environ. Microbiol.
– volume: 174
  start-page: 3429
  year: 1992
  end-page: 3438
  ident: bib9
  article-title: Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR-1
  publication-title: J. Bacteriol.
– volume: 9
  year: 2018
  ident: bib52
  article-title: Extracellular electron transfer powers Enterococcus faecalis biofilm metabolism
  publication-title: mBio
– volume: 24
  start-page: 11
  year: 1997
  end-page: 25
  ident: bib41
  article-title: Development and structure of microbial biofilms in river water studied by confocal laser scanning microscopy
  publication-title: FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Ecol.
– volume: 347
  start-page: 270
  year: 2017
  end-page: 276
  ident: bib31
  article-title: Effect of electrode sub-micron surface feature size on current generation of Shewanella oneidensis in microbial fuel cells
  publication-title: J. Power Sources
– volume: 24
  start-page: 245
  year: 2010
  end-page: 260
  ident: bib55
  article-title: Analyzing results of impedance spectroscopy using novel evolutionary programming techniques
  publication-title: J. Electroceram.
– volume: 17
  start-page: 1329
  year: 2008
  end-page: 1341
  ident: bib58
  article-title: A microfabricated PDMS microbial fuel cell
  publication-title: J. Microelectromech. Syst.
– year: 2013
  ident: bib56
  article-title: Handbook of Electrochemical Impedance Spectroscopy
– volume: 1
  start-page: 9
  year: 2007
  end-page: 18
  ident: bib2
  article-title: Microbial ecology meets electrochemistry: electricity-driven and driving communities
  publication-title: ISME J.
– volume: 104
  start-page: 223702
  year: 2014
  ident: bib34
  article-title: Power enhancement of a μ l-scale microbial fuel cells by surface roughness
  publication-title: Appl. Phys. Lett.
– volume: 177
  start-page: 30
  year: 2012
  end-page: 36
  ident: bib32
  article-title: Structural optimization of contact electrodes in microbial fuel cells for current density enhancements
  publication-title: Sens. Actuators A Phys.
– volume: 30
  start-page: 1707072
  year: 2018
  ident: bib3
  article-title: Dual-function electrocatalytic and macroporous hollow-fiber cathode for converting waste streams to valuable resources using microbial electrochemical systems
  publication-title: Adv. Mater.
– volume: 356
  start-page: 549
  year: 2017
  end-page: 555
  ident: bib15
  article-title: Use of a small overpotential approximation to analyze Geobacter sulfurreducens biofilm impedance
  publication-title: J. Power Sources
– start-page: 4674
  year: 2019
  end-page: 4680
  ident: bib24
  article-title: Electrochemical signature of Escherichia coli on Ni micropillar array electrode for early biofilm characterization
  publication-title: ChemElectroChem
– volume: 154
  start-page: 239
  year: 2018
  end-page: 245
  ident: bib25
  article-title: Preparation and electrochemical performance of hollow activated carbon fiber-carbon nanotubes three-dimensional self-supported electrode for supercapacitor
  publication-title: Mater. Des.
– volume: 8
  start-page: 371
  year: 2006
  end-page: 382
  ident: bib8
  article-title: Exocellular electron transfer in anaerobic microbial communities
  publication-title: Environ. Microbiol.
– volume: 15
  start-page: 1535
  year: 2011
  ident: bib28
  article-title: Self-assembled monolayers (SAMs) for electrochemical sensing
  publication-title: J. Solid State Electrochem.
– volume: 320
  start-page: 85
  year: 2008
  end-page: 89
  ident: bib27
  article-title: The self-assembled monolayer modification of electrodes-some recent advances in biological application
  publication-title: L'Act. Chim.
– volume: 488
  start-page: 313
  year: 2012
  ident: bib4
  article-title: Membrane-based processes for sustainable power generation using water
  publication-title: Nature
– volume: 37
  start-page: 238
  year: 2005
  end-page: 245
  ident: bib44
  article-title: Comparative study of three types of microbial fuel cell
  publication-title: Enzym. Microb. Technol.
– volume: vol. 2008
  year: 2008
  ident: bib37
  publication-title: Guideline for Disinfection and Sterilization in Healthcare Facilities
– volume: 1
  start-page: 2000
  year: 2014
  end-page: 2006
  ident: bib47
  article-title: Oxidizing electrode potentials decrease current production and coulombic efficiency through cytochrome c inactivation in shewanella oneidensis MR-1
  publication-title: ChemElectroChem
– volume: 41
  start-page: 7228
  issue: 21
  year: 2012
  ident: 10.1016/j.matdes.2019.108256_bib57
  article-title: The accurate use of impedance analysis for the study of microbial electrochemical systems
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c2cs35026b
– start-page: S3
  year: 2006
  ident: 10.1016/j.matdes.2019.108256_bib54
– volume: 14
  start-page: 512
  issue: 12
  year: 2006
  ident: 10.1016/j.matdes.2019.108256_bib13
  article-title: Electricity-producing bacterial communities in microbial fuel cells
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2006.10.003
– volume: 103
  start-page: 11358
  issue: 30
  year: 2006
  ident: 10.1016/j.matdes.2019.108256_bib11
  article-title: Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0604517103
– volume: 22
  start-page: 2604
  issue: 11
  year: 2007
  ident: 10.1016/j.matdes.2019.108256_bib10
  article-title: Direct electron transfer with yeast cells and construction of a mediatorless microbial fuel cell
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2006.10.028
– volume: 37
  start-page: 238
  issue: 2
  year: 2005
  ident: 10.1016/j.matdes.2019.108256_bib44
  article-title: Comparative study of three types of microbial fuel cell
  publication-title: Enzym. Microb. Technol.
  doi: 10.1016/j.enzmictec.2005.03.006
– volume: 488
  start-page: 313
  issue: 7411
  year: 2012
  ident: 10.1016/j.matdes.2019.108256_bib4
  article-title: Membrane-based processes for sustainable power generation using water
  publication-title: Nature
  doi: 10.1038/nature11477
– volume: 1
  start-page: 2000
  issue: 11
  year: 2014
  ident: 10.1016/j.matdes.2019.108256_bib47
  article-title: Oxidizing electrode potentials decrease current production and coulombic efficiency through cytochrome c inactivation in shewanella oneidensis MR-1
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201402128
– volume: 320
  start-page: 85
  issue: 321
  year: 2008
  ident: 10.1016/j.matdes.2019.108256_bib27
  article-title: The self-assembled monolayer modification of electrodes-some recent advances in biological application
  publication-title: L'Act. Chim.
– volume: 28
  start-page: 789
  issue: 8
  year: 2012
  ident: 10.1016/j.matdes.2019.108256_bib17
  article-title: Electrochemically active biofilms: facts and fiction. A review
  publication-title: Biofouling
  doi: 10.1080/08927014.2012.710324
– volume: 26
  start-page: 3633
  issue: 8
  year: 2011
  ident: 10.1016/j.matdes.2019.108256_bib40
  article-title: Improved bacteria detection by coupling magneto-immunocapture and amperometry at flow-channel microband electrodes
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2011.02.019
– volume: 17
  start-page: 303
  issue: 4
  year: 2001
  ident: 10.1016/j.matdes.2019.108256_bib60
  article-title: Bacterial attachment to stainless steel welds: significance of substratum microstructure
  publication-title: Biofouling
  doi: 10.1080/08927010109378490
– volume: 347
  start-page: 270
  year: 2017
  ident: 10.1016/j.matdes.2019.108256_bib31
  article-title: Effect of electrode sub-micron surface feature size on current generation of Shewanella oneidensis in microbial fuel cells
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.02.032
– volume: 356
  start-page: 549
  year: 2017
  ident: 10.1016/j.matdes.2019.108256_bib15
  article-title: Use of a small overpotential approximation to analyze Geobacter sulfurreducens biofilm impedance
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.03.021
– volume: 4
  start-page: 4813
  issue: 12
  year: 2011
  ident: 10.1016/j.matdes.2019.108256_bib43
  article-title: Electroactive biofilms: current status and future research needs
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c1ee02511b
– start-page: 4674
  issue: 6
  year: 2019
  ident: 10.1016/j.matdes.2019.108256_bib24
  article-title: Electrochemical signature of Escherichia coli on Ni micropillar array electrode for early biofilm characterization
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201901063
– volume: 17
  start-page: 1329
  issue: 6
  year: 2008
  ident: 10.1016/j.matdes.2019.108256_bib58
  article-title: A microfabricated PDMS microbial fuel cell
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2008.2006816
– volume: 8
  start-page: 623
  issue: 9
  year: 2010
  ident: 10.1016/j.matdes.2019.108256_bib16
  article-title: The biofilm matrix
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro2415
– volume: 1
  start-page: 1294
  issue: 5
  year: 2018
  ident: 10.1016/j.matdes.2019.108256_bib21
  article-title: Bacterial footprints in elastic pillared microstructures
  publication-title: ACS Appl. Bio Mater.
  doi: 10.1021/acsabm.8b00176
– volume: 174
  start-page: 3429
  issue: 11
  year: 1992
  ident: 10.1016/j.matdes.2019.108256_bib9
  article-title: Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR-1
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.174.11.3429-3438.1992
– volume: 154
  start-page: 239
  year: 2018
  ident: 10.1016/j.matdes.2019.108256_bib25
  article-title: Preparation and electrochemical performance of hollow activated carbon fiber-carbon nanotubes three-dimensional self-supported electrode for supercapacitor
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2018.05.021
– year: 2013
  ident: 10.1016/j.matdes.2019.108256_bib56
– volume: 9
  start-page: 746
  issue: 6
  year: 2016
  ident: 10.1016/j.matdes.2019.108256_bib36
  article-title: Naphthoquinone glycosides for bioelectroanalytical enumeration of the faecal indicator Escherichia coli
  publication-title: Microbial Biotechnol.
  doi: 10.1111/1751-7915.12373
– year: 2015
  ident: 10.1016/j.matdes.2019.108256_bib26
– start-page: 31
  year: 2009
  ident: 10.1016/j.matdes.2019.108256_bib29
  article-title: Microbial fuel cell based on electrode-exoelectrogenic bacteria interface, Micro Electro Mechanical Systems
– volume: 2
  issue: 2
  year: 2017
  ident: 10.1016/j.matdes.2019.108256_bib38
  article-title: Outbreak of hospital infection from biofilm-embedded pan drug-resistant Pseudomonas aeroginosa, due to a contaminated bronchoscope
  publication-title: J. Prevent. Med.
– volume: 177
  start-page: 30
  year: 2012
  ident: 10.1016/j.matdes.2019.108256_bib32
  article-title: Structural optimization of contact electrodes in microbial fuel cells for current density enhancements
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2011.09.023
– volume: 24
  start-page: 1
  year: 2018
  ident: 10.1016/j.matdes.2019.108256_bib5
  article-title: Current updates on waste to energy (WtE) technologies: a review
  publication-title: Renew. Energy Focus
  doi: 10.1016/j.ref.2017.11.001
– volume: vol. 2008
  year: 2008
  ident: 10.1016/j.matdes.2019.108256_bib37
– volume: 39
  start-page: 3401
  issue: 9
  year: 2005
  ident: 10.1016/j.matdes.2019.108256_bib14
  article-title: Microbial phenazine production enhances electron transfer in biofuel cells
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es048563o
– volume: 24
  start-page: 11
  issue: 1
  year: 1997
  ident: 10.1016/j.matdes.2019.108256_bib41
  article-title: Development and structure of microbial biofilms in river water studied by confocal laser scanning microscopy
  publication-title: FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Ecol.
  doi: 10.1111/j.1574-6941.1997.tb00419.x
– volume: 121
  start-page: 191
  year: 2018
  ident: 10.1016/j.matdes.2019.108256_bib30
  article-title: Effect of surface nano/micro-structuring on the early formation of microbial anodes with Geobacter sulfurreducens: experimental and theoretical approaches
  publication-title: Bioelectrochemistry
  doi: 10.1016/j.bioelechem.2018.02.005
– volume: 133
  start-page: 74
  year: 2013
  ident: 10.1016/j.matdes.2019.108256_bib50
  article-title: Improving startup performance with carbon mesh anodes in separator electrode assembly microbial fuel cells
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.01.036
– volume: 435
  start-page: 1098
  issue: 7045
  year: 2005
  ident: 10.1016/j.matdes.2019.108256_bib12
  article-title: Extracellular electron transfer via microbial nanowires
  publication-title: Nature
  doi: 10.1038/nature03661
– year: 2018
  ident: 10.1016/j.matdes.2019.108256_bib33
  article-title: Impact of electrode micro-and nano-scale topography on the formation and performance of microbial electrodes
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2018.06.059
– volume: 1
  start-page: 9
  issue: 1
  year: 2007
  ident: 10.1016/j.matdes.2019.108256_bib2
  article-title: Microbial ecology meets electrochemistry: electricity-driven and driving communities
  publication-title: ISME J.
  doi: 10.1038/ismej.2007.4
– volume: 183
  start-page: 108152
  year: 2019
  ident: 10.1016/j.matdes.2019.108256_bib23
  article-title: Subtractive manufacturing of stable hierarchical micro-nano structures on AA5052 sheet with enhanced water repellence and durable corrosion resistance
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2019.108152
– volume: 104
  start-page: 223702
  issue: 22
  year: 2014
  ident: 10.1016/j.matdes.2019.108256_bib34
  article-title: Power enhancement of a μ l-scale microbial fuel cells by surface roughness
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4880596
– volume: 51
  start-page: 3789
  issue: 18
  year: 2015
  ident: 10.1016/j.matdes.2019.108256_bib46
  article-title: Voltammetric profiling of redox-active metabolites expressed by Pseudomonas aeruginosa for diagnostic purposes
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC08590F
– volume: 79
  start-page: 1839
  issue: 12
  year: 2000
  ident: 10.1016/j.matdes.2019.108256_bib19
  article-title: Surface finishes on stainless steel reduce bacterial attachment and early biofilm formation: scanning electron and atomic force microscopy study
  publication-title: Poult. Sci.
  doi: 10.1093/ps/79.12.1839
– volume: 140
  start-page: 332
  year: 2018
  ident: 10.1016/j.matdes.2019.108256_bib22
  article-title: Multi-scale surface topography to minimize adherence and viability of nosocomial drug-resistant bacteria
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2017.11.074
– volume: 48
  start-page: 933
  issue: 4
  year: 2003
  ident: 10.1016/j.matdes.2019.108256_bib49
  article-title: Development and maturation of Escherichia coli K-12 biofilms
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.2003.03490.x
– volume: 15
  start-page: 1535
  issue: 7–8
  year: 2011
  ident: 10.1016/j.matdes.2019.108256_bib28
  article-title: Self-assembled monolayers (SAMs) for electrochemical sensing
  publication-title: J. Solid State Electrochem.
  doi: 10.1007/s10008-011-1493-6
– volume: 356
  start-page: 225
  year: 2017
  ident: 10.1016/j.matdes.2019.108256_bib1
  article-title: Microbial fuel cells: from fundamentals to applications. A review
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.03.109
– volume: 8
  start-page: 371
  issue: 3
  year: 2006
  ident: 10.1016/j.matdes.2019.108256_bib8
  article-title: Exocellular electron transfer in anaerobic microbial communities
  publication-title: Environ. Microbiol.
  doi: 10.1111/j.1462-2920.2006.00989.x
– volume: 74
  start-page: 7329
  issue: 23
  year: 2008
  ident: 10.1016/j.matdes.2019.108256_bib18
  article-title: Microbial biofilm voltammetry: direct electrochemical characterization of catalytic electrode-attached biofilms
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00177-08
– volume: 72
  start-page: 361
  issue: 2
  year: 2006
  ident: 10.1016/j.matdes.2019.108256_bib48
  article-title: Motility influences biofilm architecture in Escherichia coli
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-005-0263-8
– volume: 105
  start-page: 3968
  issue: 10
  year: 2008
  ident: 10.1016/j.matdes.2019.108256_bib53
  article-title: Shewanella secretes flavins that mediate extracellular electron transfer
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0710525105
– volume: 119
  start-page: 736
  issue: 3
  year: 1974
  ident: 10.1016/j.matdes.2019.108256_bib42
  article-title: Culture medium for enterobacteria
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.119.3.736-747.1974
– volume: 24
  start-page: 245
  issue: 4
  year: 2010
  ident: 10.1016/j.matdes.2019.108256_bib55
  article-title: Analyzing results of impedance spectroscopy using novel evolutionary programming techniques
  publication-title: J. Electroceram.
  doi: 10.1007/s10832-009-9565-z
– volume: 7
  start-page: 375
  issue: 5
  year: 2009
  ident: 10.1016/j.matdes.2019.108256_bib6
  article-title: Exoelectrogenic bacteria that power microbial fuel cells
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro2113
– start-page: 1
  year: 2018
  ident: 10.1016/j.matdes.2019.108256_bib39
  article-title: A Smart Sensing Node for Pervasive Water Quality Monitoring with Anti-fouling self-diagnostics
– volume: 66
  start-page: 1292
  issue: 4
  year: 2000
  ident: 10.1016/j.matdes.2019.108256_bib45
  article-title: Electricity generation in microbial fuel cells using neutral red as an electronophore
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.66.4.1292-1297.2000
– volume: 100
  start-page: 77
  year: 2014
  ident: 10.1016/j.matdes.2019.108256_bib35
  article-title: Label-free interdigitated microelectrode based biosensors for bacterial biofilm growth monitoring using Petri dishes
  publication-title: J. Microbiol. Methods
  doi: 10.1016/j.mimet.2014.02.022
– volume: 30
  start-page: 1707072
  issue: 26
  year: 2018
  ident: 10.1016/j.matdes.2019.108256_bib3
  article-title: Dual-function electrocatalytic and macroporous hollow-fiber cathode for converting waste streams to valuable resources using microbial electrochemical systems
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201707072
– volume: 82
  start-page: 536
  issue: 2
  year: 2011
  ident: 10.1016/j.matdes.2019.108256_bib59
  article-title: Have flagella a preferred orientation during early stages of biofilm formation?: AFM study using patterned substrates
  publication-title: Colloids Surfaces B Biointerfaces
  doi: 10.1016/j.colsurfb.2010.10.013
– volume: 9
  issue: 2
  year: 2018
  ident: 10.1016/j.matdes.2019.108256_bib52
  article-title: Extracellular electron transfer powers Enterococcus faecalis biofilm metabolism
  publication-title: mBio
  doi: 10.1128/mBio.00626-17
– volume: 5
  issue: 5
  year: 2014
  ident: 10.1016/j.matdes.2019.108256_bib51
  article-title: Temporal and stochastic control of Staphylococcus aureus biofilm development
  publication-title: mBio
  doi: 10.1128/mBio.01341-14
– volume: 65
  start-page: 1
  issue: 1
  year: 2007
  ident: 10.1016/j.matdes.2019.108256_bib7
  article-title: Extracellular respiration
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2007.05778.x
– volume: 160
  start-page: 395
  year: 2018
  ident: 10.1016/j.matdes.2019.108256_bib20
  article-title: Early stage anti-bioadhesion behavior of superhydrophobic soot based coatings towards Pseudomonas putida
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2018.09.037
SSID ssj0022734
Score 2.3640702
Snippet Extracellular electron transfer (EET) from microorganisms to insoluble metals and electrodes is relevant to energy recovery from wastewater, green production...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 108256
SubjectTerms Bioelectrochemistry
Biofilm-surface interaction
Electroactive biofilm
Extracellular electron transfer (EET)
Micropillared electrode
Surface modification
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8sBqEcdxHI-AqBADLEXqFvlJi_pSGgb-Pb44qTLRhdWy4-h8yn13vnwfQnemUCl3KSXCe0syqR1RVGeEa2NkxgXVrmH7fMtfPrLXCZ_0pL6gJyzSA0fD3QudC2WBFo6pzCinpPeZSpj21CiROPj6hpjXJVNtqgWkLbG6Aqx8gnc_zTWdXQEKWgdU3VRCi10K4tW9oNRw9_diUy_ejI7QYQsU8UN8wWO055Yn6KBHH3iKpu9VI7WJF9BVtwb9oAqrqlI_-HM1t7iVuLEOz5YADjdu042ZlicAQ_9Gw-2JVx47YDvGegYy3gus6lqZKVQPz9B49Dx-eiGtcgIxGS1qIpU1PFiJCgr3YF4ySZXgTqYul7kwBVy_QDZS2NQqE0K2S1OVZwULEU0zdo4Gy9XSXSAsE8-pppSFNC5kKklhWVjiC-tzrQN2GiLWWa40Las4iFvMy6597KuM9i7B3mW09xCR7ap1ZNXYMf8RDmU7Fzixm4HgKWXrKeUuTxki0R1p2cKLCBvCo2Z_bn_5H9tfof0UcnUo3_BrNKirb3cTAE2tbxvf_QV2KvTc
  priority: 102
  providerName: Directory of Open Access Journals
Title Ordered micropillar array gold electrode increases electrochemical signature of early biofilm attachment
URI https://dx.doi.org/10.1016/j.matdes.2019.108256
https://doaj.org/article/7b67ad86793a4caea9ff4a03bf1ca70e
Volume 185
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ05T-wwEIAtjoZXIOA99JZLLmijXV9xXAICLSBBAUjbRT4hCHZXIRT8ezyJs1oakGgtO4nGI8-R8TcIHdtCU-EpyWQILuPK-EwTwzNhrFVcSGJ8S_u8yccP_GoiJivorL8LA2WV6ezvzvT2tE4jwyTN4byqhncxeuCAJ48uCNzenKyidcpUHlV7_eTyenyziLuA4NKlWgDRJ0V_g64t84p-ofPA7SYK6u0odLJeslAtyH_JUC0Zn4sttJm8RnzSfdg2WvHTHfRniSX4Fz3d1m3fTfwKJXZzaCZUY13X-gM_zl4cTv1unMfVFDzFN__Wj9kEDcBQzNGCPvEsYA_oY2wq6On9inXTaPsEqcR_6P7i_P5snKU2CpnlpGgypZ0VXAMYB36KBcUU0VJ4RX2ucmkL-BcDoUnhqNM22m9Pqc55waJ5M4ztorXpbOr_I6xGQRBDCIsxXQxbRoVjcUkoXMiNiY7UALFecqVNiHHodPFS9rVkz2Un7xLkXXbyHqBssWreITZ-mH8Km7KYC4DsdmBWP5ZJQ0ppcqkd0ASZ5lZ7rUKIMmAmEKvlyA-Q7Le0_KJv8VHVt6_f-_XKfbRBIVqHBI44QGtN_e4Po0vTmKOkskdtSuATmNX2zw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3Lb9QwEIdHZXsADoinWJ4-cI12HdtxfCwV1ZaW5cAi7c3ysw1qd1dpOPDf40mc1XIBiatlJ9HY8sw44-8H8MHVphShpIWM0Rdc2VAYankhrHOKC0lt6Gmfy2rxnX9ei_URnI53YbCsMu_9w57e79a5ZZatOds1zexbyh444slTCIK3N9f34BjpVGICxyfnF4vlPu9Cgstw1IKIPinGG3R9mVeKC31AbjdVWG9XopL1gYfqQf4HjurA-Zw9hkc5aiQnw4c9gaOweQoPD1iCz-D6a9vrbpJbLLHboZhQS0zbml_kanvjSda78YE0G4wU78Ld2OYyNIBgMUcP-iTbSAKij4ltUNP7lpiuM-4ajxKfw-rs0-p0UWQZhcJxWneFMt4JbhCMgz_FomKKGimCKkOlKulq_BeDqUntS29c8t-hLE3Fa5bcm2XsBUw22014CUTNo6CWUpZyupS2zGvP0pBY-1hZmwKpKbDRctplxDgqXdzosZbshx7srdHeerD3FIr9qN2A2PhH_484Kfu-CMjuG7btlc4rREtbSeORJsgMdyYYFWOyAbOROiPnYQpynFL9x3pLj2r--vpX_z3yPdxfrL5c6svz5cVreFBi5o6HOeINTLr2Z3ibwpvOvsvL9zdu5_jA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ordered+micropillar+array+gold+electrode+increases+electrochemical+signature+of+early+biofilm+attachment&rft.jtitle=Materials+%26+design&rft.au=Astorga%2C+Solange+E.&rft.au=Hu%2C+Liang+Xing&rft.au=Marsili%2C+Enrico&rft.au=Huang%2C+Yizhong&rft.date=2020-01-05&rft.issn=0264-1275&rft.volume=185&rft.spage=108256&rft_id=info:doi/10.1016%2Fj.matdes.2019.108256&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matdes_2019_108256
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-1275&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-1275&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-1275&client=summon