AVA: An automated and AI-driven intelligent visual analytics framework
With the incredible growth of the scale and complexity of datasets, creating proper visualizations for users becomes more and more challenging in large datasets. Though several visualization recommendation systems have been proposed, so far, the lack of practical engineering inputs is still a major...
Saved in:
Published in | Visual informatics (Online) Vol. 8; no. 2; pp. 106 - 114 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2024
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the incredible growth of the scale and complexity of datasets, creating proper visualizations for users becomes more and more challenging in large datasets. Though several visualization recommendation systems have been proposed, so far, the lack of practical engineering inputs is still a major concern regarding the usage of visualization recommendations in the industry. In this paper, we proposed AVA, an open-sourced web-based framework for Automated Visual Analytics. AVA contains both empiric-driven and insight-driven visualization recommendation methods to meet the demands of creating aesthetic visualizations and understanding expressible insights respectively. The code is available at https://github.com/antvis/AVA. |
---|---|
AbstractList | With the incredible growth of the scale and complexity of datasets, creating proper visualizations for users becomes more and more challenging in large datasets. Though several visualization recommendation systems have been proposed, so far, the lack of practical engineering inputs is still a major concern regarding the usage of visualization recommendations in the industry. In this paper, we proposed AVA, an open-sourced web-based framework for Automated Visual Analytics. AVA contains both empiric-driven and insight-driven visualization recommendation methods to meet the demands of creating aesthetic visualizations and understanding expressible insights respectively. The code is available at https://github.com/antvis/AVA. |
Author | Dong, Xiaoqing Zhou, Jiehui Wang, Arran Zeyu Lin, Zhifeng Lai, Xingui Li, Xi Peng, Di Li, Chenlu Gu, Yuhui Chen, Wei Zhang, Haifeng Wang, Jiazhe Liu, Xingyu Xu, Xinyue |
Author_xml | – sequence: 1 givenname: Jiazhe surname: Wang fullname: Wang, Jiazhe organization: Intelligent Big Data Visualization Lab at Tongji University, Shanghai, China – sequence: 2 givenname: Xi surname: Li fullname: Li, Xi organization: Ant Group, China – sequence: 3 givenname: Chenlu surname: Li fullname: Li, Chenlu organization: Ant Group, China – sequence: 4 givenname: Di surname: Peng fullname: Peng, Di organization: Ant Group, China – sequence: 5 givenname: Arran Zeyu orcidid: 0000-0002-7491-7570 surname: Wang fullname: Wang, Arran Zeyu organization: Ant Group, China – sequence: 6 givenname: Yuhui surname: Gu fullname: Gu, Yuhui organization: Ant Group, China – sequence: 7 givenname: Xingui surname: Lai fullname: Lai, Xingui organization: Ant Group, China – sequence: 8 givenname: Haifeng surname: Zhang fullname: Zhang, Haifeng organization: Ant Group, China – sequence: 9 givenname: Xinyue surname: Xu fullname: Xu, Xinyue organization: Ant Group, China – sequence: 10 givenname: Xiaoqing surname: Dong fullname: Dong, Xiaoqing organization: Ant Group, China – sequence: 11 givenname: Zhifeng surname: Lin fullname: Lin, Zhifeng organization: Ant Group, China – sequence: 12 givenname: Jiehui orcidid: 0000-0003-0709-775X surname: Zhou fullname: Zhou, Jiehui organization: State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China – sequence: 13 givenname: Xingyu surname: Liu fullname: Liu, Xingyu organization: State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China – sequence: 14 givenname: Wei surname: Chen fullname: Chen, Wei email: chenvis@zju.edu.cn organization: State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China |
BookMark | eNqFkE1LxDAQhoMouK7-Aw_9A6352jb1IJTFj4UFLyrewjSZStZuKml2xX9vdBXEg54yhHnemXmOyL4fPBJyymjBKCvPVsXWjc53BadcFrQsKOV7ZMJlqfIZ5Y_7P-pDcjKOK5o6VGIZm5Cr5qE5zxqfwSYOa4hoM_A2axa5DW6LPnM-Yt-7J_QxS4M20KcG6N-iM2PWBVjj6xCej8lBB_2IJ1_vlNxfXd7Nb_Ll7fVi3ixzI5mKeV12VoEBxilWFeOGC8HbthKy451Ssqy5EaI1ApWsasvBqLKrFcwELxlWVkzJYpdrB1jpl-DWEN70AE5_fgzhSUNIq_WowTJVtQjCMiGpmbXUtq2QBhQKZWuVss53WSYM4xiw08ZFiG7wMYDrNaP6Q7Be6Z1g_SFY01InfQmWv-DvZf7BLnYYJklbh0GPxqE3aF1AE9MV7u-Ad8X9mSA |
CitedBy_id | crossref_primary_10_1016_j_visinf_2025_03_002 crossref_primary_10_1109_TVCG_2024_3456200 crossref_primary_10_1109_TVCG_2024_3456369 crossref_primary_10_1016_j_visinf_2024_11_001 crossref_primary_10_1109_TVCG_2024_3456216 crossref_primary_10_1109_TVCG_2024_3456381 |
Cites_doi | 10.1109/TVCG.2007.70594 10.1109/MCG.2006.70 10.1109/TVCG.2021.3114779 10.14778/2831360.2831371 10.1109/TVCG.2018.2865233 10.1109/MCG.2023.3338788 10.1145/3448016.3457267 10.1109/TVCG.2017.2745320 10.1145/3299869.3314037 10.1177/1473871611416549 10.1109/TVCG.2020.3030465 10.1145/3544548.3581416 10.1109/TVCG.2016.2599030 10.1371/journal.pcbi.1005510 10.1145/3201463.3201465 10.1007/s00778-019-00588-3 10.1109/TVCG.2014.2346574 10.1631/FITEE.2200409 10.1109/TVCG.2019.2934785 10.1109/TVCG.2020.3030423 10.1109/TVCG.2011.185 10.1109/TVCG.2014.2346682 10.1145/2856767.2856779 10.14778/3137765.3137813 10.1145/3613904.3642813 10.1145/3313831.3376880 10.1177/14738716241229437 10.1109/SP54263.2024.00213 10.1057/ivs.2008.31 10.1109/MCSE.2007.55 10.1109/TVCG.2019.2934668 10.1109/TVCG.2017.2758362 10.1177/1473871618806555 10.1109/TVCG.2023.3261910 10.1109/TVCG.2018.2864503 10.1109/TVCG.2020.3030403 10.1109/TVCG.2024.3368621 10.1145/3290605.3300358 10.1145/3219819.3219867 10.1109/MCG.2024.3353888 10.1109/TVCG.2019.2934399 10.1109/TVCG.2022.3209445 10.1109/TVCG.2014.2346297 10.1109/TVCG.2018.2865240 10.1145/3290605.3300899 10.1109/TVCG.2015.2467191 10.1109/TVCG.2019.2934398 10.1145/1502650.1502695 10.1109/MCG.2024.3362168 10.1167/16.5.11 10.1109/MCG.2019.2924636 10.1145/3035918.3035922 10.1109/TVCG.2019.2934284 10.1145/3025453.3025768 10.1109/TVCG.2015.2467091 10.1109/TVCG.2007.70570 10.1109/TVCG.2023.3326516 10.1145/3411764.3445674 10.1109/TVCG.2021.3114804 10.1145/22949.22950 10.1109/TVCG.2020.2980227 10.1109/TVCG.2018.2865145 10.1109/TVCG.2023.3326913 10.1109/TVCG.2014.2346575 10.1109/TVCG.2016.2598468 10.1145/3269206.3271744 10.1109/TVCG.2021.3114814 |
ContentType | Journal Article |
Copyright | 2024 The Author(s) |
Copyright_xml | – notice: 2024 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.visinf.2024.06.002 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2468-502X |
EndPage | 114 |
ExternalDocumentID | oai_doaj_org_article_ad187bea3d1340c5b0dbb34ca8e38d98 10_1016_j_visinf_2024_06_002 S2468502X24000226 |
GroupedDBID | 0SF 6I. AACTN AAEDW AAFTH AALRI AAXUO ABMAC ACGFS ADBBV AEXQZ AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ M~E NCXOZ OK1 ROL SSZ 0R~ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKYEP CITATION |
ID | FETCH-LOGICAL-c418t-96fd8aca120e7712c2332bb734f2f884692c33bc3e8479d2ac86f98a53261e7d3 |
IEDL.DBID | DOA |
ISSN | 2468-502X |
IngestDate | Wed Aug 27 01:06:14 EDT 2025 Thu Apr 24 22:59:53 EDT 2025 Tue Jul 01 03:37:20 EDT 2025 Sat Jun 29 15:31:22 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Visualization recommendation Insight mining Automated visual analytics |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c418t-96fd8aca120e7712c2332bb734f2f884692c33bc3e8479d2ac86f98a53261e7d3 |
ORCID | 0000-0003-0709-775X 0000-0002-7491-7570 |
OpenAccessLink | https://doaj.org/article/ad187bea3d1340c5b0dbb34ca8e38d98 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ad187bea3d1340c5b0dbb34ca8e38d98 crossref_citationtrail_10_1016_j_visinf_2024_06_002 crossref_primary_10_1016_j_visinf_2024_06_002 elsevier_sciencedirect_doi_10_1016_j_visinf_2024_06_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2024 2024-06-00 2024-06-01 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: June 2024 |
PublicationDecade | 2020 |
PublicationTitle | Visual informatics (Online) |
PublicationYear | 2024 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Ma, P., Ding, R., Han, S., Zhang, D., 2021. MetaInsight: Automatic Discovery of Structured Knowledge for Exploratory Data Analysis. In: Proc. 2021 ACM SIGMOD Conference. pp. 1262–1274. Moritz, Wang, Nelson, Lin, Smith, Howe, Heer (b42) 2018; 25 Basole, Major (b3) 2024; 44 Wu, Chen, Ma, Xu, Yan, Lv, Qian, Xia (b71) 2023; 24 Shi, Xu, Sun, Shi, Cao (b52) 2020; 27 Gleicher, Albers, Walker, Jusufi, Hansen, Roberts (b20) 2011; 10 Smart, S., Szafir, D.A., 2019. Measuring the separability of shape, size, and color in scatterplots. In: Proc. 2019 CHI Conf. Hum. Factors Comput. Syst.. pp. 1–14. Hu, K., Bakker, M.A., Li, S., Kraska, T., Hidalgo, C., 2019. Vizml: A machine learning approach to visualization recommendation. In: Proc. 2019 CHI Conf. Hum. Factors Comput. Syst.. pp. 1–12. Zhou, Meng, Tang, Zhao, Guo, Hu, Chen (b78) 2018; 25 Cui, Badam, Yalçin, Elmqvist (b13) 2019; 18 Shi, Sun, Xu, Lan, Gotz, Cao (b51) 2021; Vol. 40 Szafir, Borgo, Chen, Edwards, Fisher, Padilla (b57) 2023 Wongsuphasawat, K., Qu, Z., Moritz, D., Chang, R., Ouk, F., Anand, A., Mackinlay, J., Howe, B., Heer, J., 2017. Voyager 2: Augmenting visual analysis with partial view specifications. In: Proc. 2017 CHI Conf. Hum. Factors Comput. Syst.. pp. 2648–2659. Gotz, D., Sun, S., Cao, N., 2016. Adaptive contextualization: Combating bias during high-dimensional visualization and data selection. In: Proc. 21st ACM IUI Conference. pp. 85–95. Ding, R., Han, S., Xu, Y., Zhang, H., Zhang, D., 2019. Quickinsights: Quick and automatic discovery of insights from multi-dimensional data. In: Proc. 2019 ACM SIGMOD Conference. pp. 317–332. Zhou, Wang, Wong, Wang, Wang, Yang, Yan, Feng, Qu, Ying (b81) 2022; 29 Wang, Sun, Zhang, Cui, Xu, Ma, Zhang (b65) 2019; 26 Battle, Ottley (b4) 2023 Chen, Sun, Xu, Chen, Wang, Cao (b12) 2021; 28 Smart, Wu, Szafir (b54) 2019; 26 Demiralp, Haas, Parthasarathy, Pedapati (b15) 2017 Ma, Ding, Wang, Han, Zhang (b37) 2023; 1 Tang, B., Han, S., Yiu, M.L., Ding, R., Zhang, D., 2017. Extracting top-k insights from multi-dimensional data. In: Proc. 2017 ACM SIGMOD Conference. pp. 1509–1524. Ananthanarayanan, R., Lohia, P.K., Bedathur, S., 2018. Datavizard: Recommending visual presentations for structured data. In: Proc. 21st International Workshop on the Web and Databases. pp. 1–6. Mackinlay (b39) 1986; 5 Satyanarayan, Moritz, Wongsuphasawat, Heer (b49) 2016; 23 Zeng, Moh, Du, Hoffswell, Lee, Malik, Koh, Battle (b77) 2021; 28 Chen, Cao, Wang, Cao (b10) 2023 Gotz, Stavropoulos (b21) 2014; 20 Wang, Borland, Gotz (b64) 2024 Lin, H., Moritz, D., Heer, J., 2020. Dziban: Balancing agency & automation in visualization design via anchored recommendations. In: Proc. 2020 CHI Conf. Hum. Factors Comput. Syst.. pp. 1–12. Yu, Silva (b76) 2019; 26 Li, Mei, Shen, Su, Zhang, Wang, Zu, Chen (b31) 2018; 2 Wongsuphasawat, Moritz, Anand, Mackinlay, Howe, Heer (b68) 2015; 22 Wu, Tong, Dwyer, Lee, Isenberg, Qu (b73) 2020; 27 Tian, Cui, Deng, Yi, Yang, Zhang, Wu (b60) 2024 Hunter (b27) 2007; 9 Bostock, Ogievetsky, Heer (b7) 2011; 17 Cui, Zhang, Wang, Huang, Chen, Fang, Zhang, Lou, Zhang (b14) 2019; 26 Ceneda, Gschwandtner, May, Miksch, Schulz, Streit, Tominski (b9) 2016; 23 Nanayakkara, P., Kim, H., Wu, Y., Sarvghad, A., Mahyar, N., Miklau, G., Hullman, J., 2024. Measure-Observe-Remeasure: An Interactive Paradigm for Differentially-Private Exploratory Analysis. In: IEEE Symp. S&P. pp. 231–231. Satyanarayan, Russell, Hoffswell, Heer (b50) 2015; 22 Srinivasan, Drucker, Endert, Stasko (b55) 2018; 25 Armstrong, Wattenberg (b2) 2014; 20 Quadri, Rosen (b46) 2021 Gotz, D., Wen, Z., 2009. Behavior-driven visualization recommendation. In: Proc. 14th ACM IUI Conference. pp. 315–324. Szafir, Haroz, Gleicher, Franconeri (b58) 2016; 16 Kale, Guo, Qiao, Heer, Hullman (b29) 2023 Tseng, C., Quadri, G.J., Wang, Z., Szafir, D.A., 2023. Measuring Categorical Perception in Color-Coded Scatterplots. In: Proc. 2023 CHI Conf. Hum. Factors Comput. Syst.. Qin, Luo, Tang, Li (b45) 2020; 29 Wang, Thompson, Lee (b66) 2023 Benesty, Chen, Huang, Cohen (b5) 2009 Lin, Q., Ke, W., Lou, J.-G., Zhang, H., Sui, K., Xu, Y., Zhou, Z., Qiao, B., Zhang, D., 2018. Bigin4: Instant, interactive insight identification for multi-dimensional big data. In: Proc. 24th ACM KDD Conference. pp. 547–555. Ma, Ding, Wang, Han, Zhang (b36) 2023 Wilson, Bryan, Cranston, Kitzes, Nederbragt, Teal (b67) 2017; 13 Kaul, Borland, Cao, Gotz (b30) 2021; 28 Dimara, Bailly, Bezerianos, Franconeri (b18) 2018; 25 Brown, Ottley, Zhao, Lin, Souvenir, Endert, Chang (b8) 2014; 20 Jin, Guo, Chen, Weiskopf, Gotz, Cao (b28) 2020; 27 Quadri, G.J., Wang, A.Z., Wang, Z., Adorno, J., Rosen, P., Szafir, D.A., 2024. Do You See What I See? A Qualitative Study Eliciting High-Level Visualization Comprehension. In: Proc. 2024 CHI Conf. Hum. Factors Comput. Syst.. pp. 1–26. Xiao, Huang, Lin, Ye, Zeng (b74) 2023 Zhou, Wang, Guo, Wang, Gotz (b79) 2022; 29 Mafrur, R., Sharaf, M.A., Khan, H.A., 2018. Dive: Diversifying view recommendation for visual data exploration. In: Proc. 27th ACM CIKM Conference. pp. 1123–1132. Tseng, C., Wang, A.Z., Quadri, G.J., Albers Szafir, D., 2024. Revisiting Categorical Color Perception in Scatterplots: Sequential, Diverging, and Categorical Palettes. In: Proc. EuroVis 2024 - Short Papers. Rey, Lee, Choe, Irani (b48) 2024; 44 Chen, Huang, Wu, Zhu, Guan, Maciejewski (b11) 2017; 24 Zhou, Z., Wen, X., Wang, Y., Gotz, D., 2021. Modeling and leveraging analytic focus during exploratory visual analysis. In: Proc. 2021 CHI Conf. Hum. Factors Comput. Syst.. pp. 1–15. Vartak, M., Rahman, S., Madden, S., Parameswaran, A., Polyzotis, N., 2015. Seedb: Efficient data-driven visualization recommendations to support visual analytics. In: Proc. VLDB Endowment. Vol. 8, p. 2182. Li, Wang, Aodeng, Zheng, Zhang, Ou, Wang, Liu (b32) 2024 North (b44) 2006; 26 Dibia, Demiralp (b17) 2019; 39 Mackinlay, Hanrahan, Stolte (b40) 2007; 13 Gotz, Zhou (b24) 2009; 8 Dibia (b16) 2023 Wu, Chung, Adar (b72) 2023 Guo, Xu, Zhao, Gotz, Zha, Cao (b25) 2017; 24 Ma, Mei, Guan, Huang, Zhang, Xin, Dai, Wen, Chen (b38) 2020; 27 Xiong, Shapiro, Hullman, Franconeri (b75) 2019; 26 Stolper, Perer, Gotz (b56) 2014; 20 Borland, Wang, Gotz (b6) 2024; 44 Wood, Dykes, Slingsby, Clarke (b70) 2007; 13 Zhou, Wang, Wang, Ye, Wang, Zhou, Han, Ying, Wu, Chen (b80) 2023 Qin (10.1016/j.visinf.2024.06.002_b45) 2020; 29 Gotz (10.1016/j.visinf.2024.06.002_b24) 2009; 8 Hunter (10.1016/j.visinf.2024.06.002_b27) 2007; 9 Xiong (10.1016/j.visinf.2024.06.002_b75) 2019; 26 Kale (10.1016/j.visinf.2024.06.002_b29) 2023 Zeng (10.1016/j.visinf.2024.06.002_b77) 2021; 28 10.1016/j.visinf.2024.06.002_b47 Ma (10.1016/j.visinf.2024.06.002_b36) 2023 Chen (10.1016/j.visinf.2024.06.002_b10) 2023 Szafir (10.1016/j.visinf.2024.06.002_b57) 2023 Moritz (10.1016/j.visinf.2024.06.002_b42) 2018; 25 10.1016/j.visinf.2024.06.002_b82 10.1016/j.visinf.2024.06.002_b41 Wang (10.1016/j.visinf.2024.06.002_b66) 2023 Ma (10.1016/j.visinf.2024.06.002_b37) 2023; 1 10.1016/j.visinf.2024.06.002_b43 Zhou (10.1016/j.visinf.2024.06.002_b79) 2022; 29 Dimara (10.1016/j.visinf.2024.06.002_b18) 2018; 25 Chen (10.1016/j.visinf.2024.06.002_b12) 2021; 28 Gleicher (10.1016/j.visinf.2024.06.002_b20) 2011; 10 Satyanarayan (10.1016/j.visinf.2024.06.002_b50) 2015; 22 Srinivasan (10.1016/j.visinf.2024.06.002_b55) 2018; 25 Basole (10.1016/j.visinf.2024.06.002_b3) 2024; 44 Wu (10.1016/j.visinf.2024.06.002_b72) 2023 Shi (10.1016/j.visinf.2024.06.002_b51) 2021; Vol. 40 10.1016/j.visinf.2024.06.002_b59 Shi (10.1016/j.visinf.2024.06.002_b52) 2020; 27 10.1016/j.visinf.2024.06.002_b19 Wilson (10.1016/j.visinf.2024.06.002_b67) 2017; 13 Kaul (10.1016/j.visinf.2024.06.002_b30) 2021; 28 10.1016/j.visinf.2024.06.002_b53 Mackinlay (10.1016/j.visinf.2024.06.002_b40) 2007; 13 Bostock (10.1016/j.visinf.2024.06.002_b7) 2011; 17 Li (10.1016/j.visinf.2024.06.002_b31) 2018; 2 Wu (10.1016/j.visinf.2024.06.002_b71) 2023; 24 Yu (10.1016/j.visinf.2024.06.002_b76) 2019; 26 Wang (10.1016/j.visinf.2024.06.002_b64) 2024 Wu (10.1016/j.visinf.2024.06.002_b73) 2020; 27 Zhou (10.1016/j.visinf.2024.06.002_b81) 2022; 29 North (10.1016/j.visinf.2024.06.002_b44) 2006; 26 Jin (10.1016/j.visinf.2024.06.002_b28) 2020; 27 Dibia (10.1016/j.visinf.2024.06.002_b16) 2023 10.1016/j.visinf.2024.06.002_b69 Wood (10.1016/j.visinf.2024.06.002_b70) 2007; 13 Borland (10.1016/j.visinf.2024.06.002_b6) 2024; 44 10.1016/j.visinf.2024.06.002_b26 Ma (10.1016/j.visinf.2024.06.002_b38) 2020; 27 Xiao (10.1016/j.visinf.2024.06.002_b74) 2023 Cui (10.1016/j.visinf.2024.06.002_b14) 2019; 26 Guo (10.1016/j.visinf.2024.06.002_b25) 2017; 24 10.1016/j.visinf.2024.06.002_b61 10.1016/j.visinf.2024.06.002_b62 Tian (10.1016/j.visinf.2024.06.002_b60) 2024 10.1016/j.visinf.2024.06.002_b63 Demiralp (10.1016/j.visinf.2024.06.002_b15) 2017 10.1016/j.visinf.2024.06.002_b22 10.1016/j.visinf.2024.06.002_b23 Cui (10.1016/j.visinf.2024.06.002_b13) 2019; 18 Armstrong (10.1016/j.visinf.2024.06.002_b2) 2014; 20 Benesty (10.1016/j.visinf.2024.06.002_b5) 2009 Dibia (10.1016/j.visinf.2024.06.002_b17) 2019; 39 Szafir (10.1016/j.visinf.2024.06.002_b58) 2016; 16 10.1016/j.visinf.2024.06.002_b1 Li (10.1016/j.visinf.2024.06.002_b32) 2024 Smart (10.1016/j.visinf.2024.06.002_b54) 2019; 26 Brown (10.1016/j.visinf.2024.06.002_b8) 2014; 20 Stolper (10.1016/j.visinf.2024.06.002_b56) 2014; 20 10.1016/j.visinf.2024.06.002_b35 Zhou (10.1016/j.visinf.2024.06.002_b80) 2023 Wongsuphasawat (10.1016/j.visinf.2024.06.002_b68) 2015; 22 Rey (10.1016/j.visinf.2024.06.002_b48) 2024; 44 Battle (10.1016/j.visinf.2024.06.002_b4) 2023 Mackinlay (10.1016/j.visinf.2024.06.002_b39) 1986; 5 Chen (10.1016/j.visinf.2024.06.002_b11) 2017; 24 Gotz (10.1016/j.visinf.2024.06.002_b21) 2014; 20 Wang (10.1016/j.visinf.2024.06.002_b65) 2019; 26 10.1016/j.visinf.2024.06.002_b33 Quadri (10.1016/j.visinf.2024.06.002_b46) 2021 10.1016/j.visinf.2024.06.002_b34 Ceneda (10.1016/j.visinf.2024.06.002_b9) 2016; 23 Zhou (10.1016/j.visinf.2024.06.002_b78) 2018; 25 Satyanarayan (10.1016/j.visinf.2024.06.002_b49) 2016; 23 |
References_xml | – volume: 44 start-page: 95 year: 2024 end-page: 104 ident: b6 article-title: Using counterfactuals to improve causal inferences from visualizations publication-title: IEEE Comput. Graph. Appl. – volume: 13 year: 2017 ident: b67 article-title: Good enough practices in scientific computing publication-title: PLoS Comput. Biol. – reference: Lin, Q., Ke, W., Lou, J.-G., Zhang, H., Sui, K., Xu, Y., Zhou, Z., Qiao, B., Zhang, D., 2018. Bigin4: Instant, interactive insight identification for multi-dimensional big data. In: Proc. 24th ACM KDD Conference. pp. 547–555. – year: 2023 ident: b74 article-title: Let the chart spark: Embedding semantic context into chart with text-to-image generative model publication-title: IEEE Trans. Vis. Comput. Graphics – volume: 26 start-page: 853 year: 2019 end-page: 862 ident: b75 article-title: Illusion of causality in visualized data publication-title: IEEE Trans. Vis. Comput. Graphics – volume: 22 start-page: 649 year: 2015 end-page: 658 ident: b68 article-title: Voyager: Exploratory analysis via faceted browsing of visualization recommendations publication-title: IEEE Trans. Vis. Comput. Graphics – volume: 13 start-page: 1176 year: 2007 end-page: 1183 ident: b70 article-title: Interactive visual exploration of a large spatio-temporal dataset: Reflections on a geovisualization mashup publication-title: IEEE Trans. Vis. Comput. Graphics – volume: 25 start-page: 672 year: 2018 end-page: 681 ident: b55 article-title: Augmenting visualizations with interactive data facts to facilitate interpretation and communication publication-title: IEEE Trans. Vis. Comput. Graphics – volume: 39 start-page: 33 year: 2019 end-page: 46 ident: b17 article-title: Data2vis: Automatic generation of data visualizations using sequence-to-sequence recurrent neural networks publication-title: IEEE Comput. Graph. Appl. – volume: 25 start-page: 438 year: 2018 end-page: 448 ident: b42 article-title: Formalizing visualization design knowledge as constraints: Actionable and extensible models in draco publication-title: IEEE Trans. Vis. Comput. Graphics – year: 2023 ident: b29 article-title: Evm: Incorporating model checking into exploratory visual analysis publication-title: IEEE Trans. Vis. Comput. Graphics – volume: 17 start-page: 2301 year: 2011 end-page: 2309 ident: b7 article-title: D3: Data-driven documents publication-title: IEEE Trans. Vis. Comput. Graphics – volume: 20 start-page: 2132 year: 2014 end-page: 2141 ident: b2 article-title: Visualizing statistical mix effects and simpson’s paradox publication-title: IEEE Trans. Vis. Comput. Graphics – year: 2021 ident: b46 article-title: A survey of perception-based visualization studies by task publication-title: IEEE Trans. Vis. Comput. Graphics – volume: 5 start-page: 110 year: 1986 end-page: 141 ident: b39 article-title: Automating the design of graphical presentations of relational information publication-title: ACM Trans. Graph. – volume: 1 start-page: 1 year: 2023 end-page: 27 ident: b37 article-title: XInsight: explainable data analysis through the lens of causality publication-title: Proc. ACM SIGMOD Conf. – volume: Vol. 40 start-page: 495 year: 2021 end-page: 505 ident: b51 article-title: Autoclips: An automatic approach to video generation from data facts publication-title: Comput. Graph. Forum – reference: Vartak, M., Rahman, S., Madden, S., Parameswaran, A., Polyzotis, N., 2015. Seedb: Efficient data-driven visualization recommendations to support visual analytics. In: Proc. VLDB Endowment. Vol. 8, p. 2182. – volume: 24 start-page: 1007 year: 2023 end-page: 1027 ident: b71 article-title: Explainable data transformation recommendation for automatic visualization publication-title: Front. Inf. Technol. Electron. Eng. – year: 2023 ident: b57 article-title: Visualization Psychology – volume: 20 start-page: 1783 year: 2014 end-page: 1792 ident: b21 article-title: Decisionflow: Visual analytics for high-dimensional temporal event sequence data publication-title: IEEE Trans. Vis. Comput. Graphics – reference: Hu, K., Bakker, M.A., Li, S., Kraska, T., Hidalgo, C., 2019. Vizml: A machine learning approach to visualization recommendation. In: Proc. 2019 CHI Conf. Hum. Factors Comput. Syst.. pp. 1–12. – volume: 27 start-page: 3717 year: 2020 end-page: 3732 ident: b38 article-title: Ladv: Deep learning assisted authoring of dashboard visualizations from images and sketches publication-title: IEEE Trans. Vis. Comput. Graphics – volume: 20 start-page: 1653 year: 2014 end-page: 1662 ident: b56 article-title: Progressive visual analytics: User-driven visual exploration of in-progress analytics publication-title: IEEE Trans. Vis. Comput. Graphics – volume: 13 start-page: 1137 year: 2007 end-page: 1144 ident: b40 article-title: Show me: Automatic presentation for visual analysis publication-title: IEEE Trans. Vis. Comput. Graphics – volume: 28 start-page: 346 year: 2021 end-page: 356 ident: b77 article-title: An evaluation-focused framework for visualization recommendation algorithms publication-title: IEEE Trans. Vis. Comput. Graphics – volume: 28 start-page: 206 year: 2021 end-page: 216 ident: b12 article-title: Vizlinter: A linter and fixer framework for data visualization publication-title: IEEE Trans. Vis. Comput. Graphics – volume: 24 start-page: 56 year: 2017 end-page: 65 ident: b25 article-title: Eventthread: Visual summarization and stage analysis of event sequence data publication-title: IEEE Trans. Vis. Comput. Graphics – reference: Gotz, D., Sun, S., Cao, N., 2016. Adaptive contextualization: Combating bias during high-dimensional visualization and data selection. In: Proc. 21st ACM IUI Conference. pp. 85–95. – volume: 29 start-page: 93 year: 2020 end-page: 117 ident: b45 article-title: Making data visualization more efficient and effective: a survey publication-title: Proc. VLDB J. – volume: 28 start-page: 998 year: 2021 end-page: 1008 ident: b30 article-title: Improving visualization interpretation using counterfactuals publication-title: IEEE Trans. Vis. Comput. Graphics – year: 2023 ident: b16 article-title: LIDA: A tool for automatic generation of grammar-agnostic visualizations and infographics using large language models – volume: 44 start-page: 55 year: 2024 end-page: 64 ident: b3 article-title: Generative AI for visualization: Opportunities and challenges publication-title: IEEE Comput. Graph. Appl. – reference: Mafrur, R., Sharaf, M.A., Khan, H.A., 2018. Dive: Diversifying view recommendation for visual data exploration. In: Proc. 27th ACM CIKM Conference. pp. 1123–1132. – volume: 25 start-page: 850 year: 2018 end-page: 860 ident: b18 article-title: Mitigating the attraction effect with visualizations publication-title: IEEE Trans. Vis. Comput. Graphics – volume: 29 start-page: 84 year: 2022 end-page: 94 ident: b79 article-title: A design space for surfacing content recommendations in visual analytic platforms publication-title: IEEE Trans. Vis. Comput. Graphics – volume: 25 start-page: 43 year: 2018 end-page: 53 ident: b78 article-title: Visual abstraction of large scale geospatial origin-destination movement data publication-title: IEEE Trans. Vis. Comput. Graphics – reference: Tang, B., Han, S., Yiu, M.L., Ding, R., Zhang, D., 2017. Extracting top-k insights from multi-dimensional data. In: Proc. 2017 ACM SIGMOD Conference. pp. 1509–1524. – year: 2023 ident: b10 article-title: How does automation shape the process of narrative visualization: A survey of tools publication-title: IEEE Trans. Vis. Comput. Graphics – reference: Quadri, G.J., Wang, A.Z., Wang, Z., Adorno, J., Rosen, P., Szafir, D.A., 2024. Do You See What I See? A Qualitative Study Eliciting High-Level Visualization Comprehension. In: Proc. 2024 CHI Conf. Hum. Factors Comput. Syst.. pp. 1–26. – volume: 44 start-page: 65 year: 2024 end-page: 72 ident: b48 article-title: Databiting: Lightweight, transient, and insight rich exploration of personal data publication-title: IEEE Comput. Graph. Appl. – volume: 2 start-page: 136 year: 2018 end-page: 146 ident: b31 article-title: Echarts: A declarative framework for rapid construction of web-based visualization publication-title: Vis. Inf. – volume: 27 start-page: 453 year: 2020 end-page: 463 ident: b52 article-title: Calliope: Automatic visual data story generation from a spreadsheet publication-title: IEEE Trans. Vis. Comput. Graphics – reference: Ding, R., Han, S., Xu, Y., Zhang, H., Zhang, D., 2019. Quickinsights: Quick and automatic discovery of insights from multi-dimensional data. In: Proc. 2019 ACM SIGMOD Conference. pp. 317–332. – year: 2024 ident: b32 article-title: Visualization generation with large language models: An evaluation – start-page: 1 year: 2023 end-page: 11 ident: b66 article-title: Data formulator: AI-powered concept-driven visualization authoring publication-title: IEEE Trans. Vis. Comput. Graphics – year: 2023 ident: b80 article-title: FraudAuditor: A visual analytics approach for collusive fraud in health insurance publication-title: IEEE Trans. Vis. Comput. Graphics – volume: 10 start-page: 289 year: 2011 end-page: 309 ident: b20 article-title: Visual comparison for information visualization publication-title: Inf. Vis. – volume: 8 start-page: 42 year: 2009 end-page: 55 ident: b24 article-title: Characterizing users’ visual analytic activity for insight provenance publication-title: Inf. Vis. – reference: Lin, H., Moritz, D., Heer, J., 2020. Dziban: Balancing agency & automation in visualization design via anchored recommendations. In: Proc. 2020 CHI Conf. Hum. Factors Comput. Syst.. pp. 1–12. – volume: 26 start-page: 1215 year: 2019 end-page: 1225 ident: b54 article-title: Color crafting: Automating the construction of designer quality color ramps publication-title: IEEE Trans. Vis. Comput. Graphics – volume: 20 start-page: 1663 year: 2014 end-page: 1672 ident: b8 article-title: Finding waldo: Learning about users from their interactions publication-title: IEEE Trans. Vis. Comput. Graphics – volume: 18 start-page: 251 year: 2019 end-page: 267 ident: b13 article-title: Datasite: Proactive visual data exploration with computation of insight-based recommendations publication-title: Inf. Vis. – year: 2024 ident: b64 article-title: An empirical study of counterfactual visualization to support visual causal inference publication-title: Inf. Vis. – reference: Zhou, Z., Wen, X., Wang, Y., Gotz, D., 2021. Modeling and leveraging analytic focus during exploratory visual analysis. In: Proc. 2021 CHI Conf. Hum. Factors Comput. Syst.. pp. 1–15. – start-page: 1 year: 2009 end-page: 4 ident: b5 article-title: Pearson correlation coefficient publication-title: Noise Reduction in Speech Processing – volume: 23 start-page: 341 year: 2016 end-page: 350 ident: b49 article-title: Vega-lite: A grammar of interactive graphics publication-title: IEEE Trans. Vis. Comput. Graphics – volume: 22 start-page: 659 year: 2015 end-page: 668 ident: b50 article-title: Reactive vega: A streaming dataflow architecture for declarative interactive visualization publication-title: IEEE Trans. Vis. Comput. Graphics – volume: 23 start-page: 111 year: 2016 end-page: 120 ident: b9 article-title: Characterizing guidance in visual analytics publication-title: IEEE Trans. Vis. Comput. Graphics – year: 2023 ident: b4 article-title: What do we mean when we say “insight”? A formal synthesis of existing theory publication-title: IEEE Trans. Vis. Comput. Graphics – volume: 26 start-page: 895 year: 2019 end-page: 905 ident: b65 article-title: Datashot: Automatic generation of fact sheets from tabular data publication-title: IEEE Trans. Vis. Comput. Graphics – reference: Smart, S., Szafir, D.A., 2019. Measuring the separability of shape, size, and color in scatterplots. In: Proc. 2019 CHI Conf. Hum. Factors Comput. Syst.. pp. 1–14. – reference: Wongsuphasawat, K., Qu, Z., Moritz, D., Chang, R., Ouk, F., Anand, A., Mackinlay, J., Howe, B., Heer, J., 2017. Voyager 2: Augmenting visual analysis with partial view specifications. In: Proc. 2017 CHI Conf. Hum. Factors Comput. Syst.. pp. 2648–2659. – volume: 16 start-page: 11 year: 2016 ident: b58 article-title: Four types of ensemble coding in data visualizations publication-title: J. Vis. – reference: Tseng, C., Wang, A.Z., Quadri, G.J., Albers Szafir, D., 2024. Revisiting Categorical Color Perception in Scatterplots: Sequential, Diverging, and Categorical Palettes. In: Proc. EuroVis 2024 - Short Papers. – volume: 27 start-page: 464 year: 2020 end-page: 474 ident: b73 article-title: Mobilevisfixer: Tailoring web visualizations for mobile phones leveraging an explainable reinforcement learning framework publication-title: IEEE Trans. Vis. Comput. Graphics – volume: 29 start-page: 809 year: 2022 end-page: 819 ident: b81 article-title: Dpviscreator: Incorporating pattern constraints to privacy-preserving visualizations via differential privacy publication-title: IEEE Trans. Vis. Comput. Graphics – volume: 24 start-page: 2636 year: 2017 end-page: 2648 ident: b11 article-title: VAUD: A visual analysis approach for exploring spatio-temporal urban data publication-title: IEEE Trans. Vis. Comput. Graphics – year: 2023 ident: b72 article-title: Viz2viz: Prompt-driven stylized visualization generation using a diffusion model – volume: 9 start-page: 90 year: 2007 end-page: 95 ident: b27 article-title: Matplotlib: A 2D graphics environment publication-title: Comput. Sci. Eng. – reference: Ma, P., Ding, R., Han, S., Zhang, D., 2021. MetaInsight: Automatic Discovery of Structured Knowledge for Exploratory Data Analysis. In: Proc. 2021 ACM SIGMOD Conference. pp. 1262–1274. – volume: 26 start-page: 906 year: 2019 end-page: 916 ident: b14 article-title: Text-to-viz: Automatic generation of infographics from proportion-related natural language statements publication-title: IEEE Trans. Vis. Comput. Graphics – volume: 27 start-page: 1343 year: 2020 end-page: 1352 ident: b28 article-title: Visual causality analysis of event sequence data publication-title: IEEE Trans. Vis. Comput. Graphics – year: 2024 ident: b60 article-title: Chartgpt: Leveraging llms to generate charts from abstract natural language publication-title: IEEE Trans. Vis. Comput. Graphics – year: 2023 ident: b36 article-title: Demonstration of InsightPilot: An LLM-empowered automated data exploration system – reference: Tseng, C., Quadri, G.J., Wang, Z., Szafir, D.A., 2023. Measuring Categorical Perception in Color-Coded Scatterplots. In: Proc. 2023 CHI Conf. Hum. Factors Comput. Syst.. – reference: Ananthanarayanan, R., Lohia, P.K., Bedathur, S., 2018. Datavizard: Recommending visual presentations for structured data. In: Proc. 21st International Workshop on the Web and Databases. pp. 1–6. – volume: 26 start-page: 6 year: 2006 end-page: 9 ident: b44 article-title: Toward measuring visualization insight publication-title: IEEE Comput. Graph. Appl. – year: 2017 ident: b15 article-title: Foresight: Recommending visual insights publication-title: Proc. VLDB J. – reference: Nanayakkara, P., Kim, H., Wu, Y., Sarvghad, A., Mahyar, N., Miklau, G., Hullman, J., 2024. Measure-Observe-Remeasure: An Interactive Paradigm for Differentially-Private Exploratory Analysis. In: IEEE Symp. S&P. pp. 231–231. – reference: Gotz, D., Wen, Z., 2009. Behavior-driven visualization recommendation. In: Proc. 14th ACM IUI Conference. pp. 315–324. – volume: 26 start-page: 1 year: 2019 end-page: 11 ident: b76 article-title: Flowsense: A natural language interface for visual data exploration within a dataflow system publication-title: IEEE Trans. Vis. Comput. Graphics – year: 2023 ident: 10.1016/j.visinf.2024.06.002_b36 – volume: 13 start-page: 1137 issue: 6 year: 2007 ident: 10.1016/j.visinf.2024.06.002_b40 article-title: Show me: Automatic presentation for visual analysis publication-title: IEEE Trans. Vis. Comput. Graphics doi: 10.1109/TVCG.2007.70594 – volume: 29 start-page: 809 issue: 1 year: 2022 ident: 10.1016/j.visinf.2024.06.002_b81 article-title: Dpviscreator: Incorporating pattern constraints to privacy-preserving visualizations via differential privacy publication-title: IEEE Trans. Vis. Comput. Graphics – volume: 26 start-page: 6 issue: 3 year: 2006 ident: 10.1016/j.visinf.2024.06.002_b44 article-title: Toward measuring visualization insight publication-title: IEEE Comput. Graph. Appl. doi: 10.1109/MCG.2006.70 – volume: 28 start-page: 998 issue: 1 year: 2021 ident: 10.1016/j.visinf.2024.06.002_b30 article-title: Improving visualization interpretation using counterfactuals publication-title: IEEE Trans. Vis. Comput. Graphics doi: 10.1109/TVCG.2021.3114779 – ident: 10.1016/j.visinf.2024.06.002_b63 doi: 10.14778/2831360.2831371 – year: 2023 ident: 10.1016/j.visinf.2024.06.002_b16 – volume: 25 start-page: 850 issue: 1 year: 2018 ident: 10.1016/j.visinf.2024.06.002_b18 article-title: Mitigating the attraction effect with visualizations publication-title: IEEE Trans. Vis. Comput. Graphics doi: 10.1109/TVCG.2018.2865233 – volume: 44 start-page: 95 issue: 1 year: 2024 ident: 10.1016/j.visinf.2024.06.002_b6 article-title: Using counterfactuals to improve causal inferences from visualizations publication-title: IEEE Comput. Graph. Appl. doi: 10.1109/MCG.2023.3338788 – ident: 10.1016/j.visinf.2024.06.002_b35 doi: 10.1145/3448016.3457267 – volume: 24 start-page: 56 issue: 1 year: 2017 ident: 10.1016/j.visinf.2024.06.002_b25 article-title: Eventthread: Visual summarization and stage analysis of event sequence data publication-title: IEEE Trans. Vis. Comput. Graphics doi: 10.1109/TVCG.2017.2745320 – ident: 10.1016/j.visinf.2024.06.002_b19 doi: 10.1145/3299869.3314037 – volume: 10 start-page: 289 issue: 4 year: 2011 ident: 10.1016/j.visinf.2024.06.002_b20 article-title: Visual comparison for information visualization publication-title: Inf. Vis. doi: 10.1177/1473871611416549 – volume: 27 start-page: 1343 issue: 2 year: 2020 ident: 10.1016/j.visinf.2024.06.002_b28 article-title: Visual causality analysis of event sequence data publication-title: IEEE Trans. Vis. Comput. Graphics doi: 10.1109/TVCG.2020.3030465 – ident: 10.1016/j.visinf.2024.06.002_b62 doi: 10.1145/3544548.3581416 – volume: 23 start-page: 341 issue: 1 year: 2016 ident: 10.1016/j.visinf.2024.06.002_b49 article-title: Vega-lite: A grammar of interactive graphics publication-title: IEEE Trans. Vis. Comput. Graphics doi: 10.1109/TVCG.2016.2599030 – ident: 10.1016/j.visinf.2024.06.002_b61 doi: 10.1145/3544548.3581416 – volume: 13 issue: 6 year: 2017 ident: 10.1016/j.visinf.2024.06.002_b67 article-title: Good enough practices in scientific computing publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1005510 – start-page: 1 year: 2009 ident: 10.1016/j.visinf.2024.06.002_b5 article-title: Pearson correlation coefficient – year: 2023 ident: 10.1016/j.visinf.2024.06.002_b72 – ident: 10.1016/j.visinf.2024.06.002_b1 doi: 10.1145/3201463.3201465 – volume: 29 start-page: 93 issue: 1 year: 2020 ident: 10.1016/j.visinf.2024.06.002_b45 article-title: Making data visualization more efficient and effective: a survey publication-title: Proc. VLDB J. doi: 10.1007/s00778-019-00588-3 – volume: 20 start-page: 1653 issue: 12 year: 2014 ident: 10.1016/j.visinf.2024.06.002_b56 article-title: Progressive visual analytics: User-driven visual exploration of in-progress analytics publication-title: IEEE Trans. Vis. Comput. Graphics doi: 10.1109/TVCG.2014.2346574 – volume: 24 start-page: 1007 issue: 7 year: 2023 ident: 10.1016/j.visinf.2024.06.002_b71 article-title: Explainable data transformation recommendation for automatic visualization publication-title: Front. Inf. Technol. Electron. Eng. doi: 10.1631/FITEE.2200409 – volume: 26 start-page: 906 issue: 1 year: 2019 ident: 10.1016/j.visinf.2024.06.002_b14 article-title: Text-to-viz: Automatic generation of infographics from proportion-related natural language statements publication-title: IEEE Trans. Vis. Comput. Graphics doi: 10.1109/TVCG.2019.2934785 – volume: 27 start-page: 464 issue: 2 year: 2020 ident: 10.1016/j.visinf.2024.06.002_b73 article-title: Mobilevisfixer: Tailoring web visualizations for mobile phones leveraging an explainable reinforcement learning framework publication-title: IEEE Trans. Vis. Comput. Graphics doi: 10.1109/TVCG.2020.3030423 – start-page: 1 year: 2023 ident: 10.1016/j.visinf.2024.06.002_b66 article-title: Data formulator: AI-powered concept-driven visualization authoring publication-title: IEEE Trans. Vis. Comput. Graphics – volume: 17 start-page: 2301 issue: 12 year: 2011 ident: 10.1016/j.visinf.2024.06.002_b7 article-title: D3: Data-driven documents publication-title: IEEE Trans. Vis. Comput. Graphics doi: 10.1109/TVCG.2011.185 – volume: 20 start-page: 1783 issue: 12 year: 2014 ident: 10.1016/j.visinf.2024.06.002_b21 article-title: Decisionflow: Visual analytics for high-dimensional temporal event sequence data publication-title: IEEE Trans. Vis. Comput. Graphics doi: 10.1109/TVCG.2014.2346682 – ident: 10.1016/j.visinf.2024.06.002_b22 doi: 10.1145/2856767.2856779 – year: 2017 ident: 10.1016/j.visinf.2024.06.002_b15 article-title: Foresight: Recommending visual insights publication-title: Proc. VLDB J. doi: 10.14778/3137765.3137813 – ident: 10.1016/j.visinf.2024.06.002_b47 doi: 10.1145/3613904.3642813 – ident: 10.1016/j.visinf.2024.06.002_b34 doi: 10.1145/3313831.3376880 – year: 2024 ident: 10.1016/j.visinf.2024.06.002_b64 article-title: An empirical study of counterfactual visualization to support visual causal inference publication-title: Inf. Vis. doi: 10.1177/14738716241229437 – ident: 10.1016/j.visinf.2024.06.002_b43 doi: 10.1109/SP54263.2024.00213 – year: 2023 ident: 10.1016/j.visinf.2024.06.002_b4 article-title: What do we mean when we say “insight”? A formal synthesis of existing theory publication-title: IEEE Trans. Vis. Comput. Graphics – volume: 8 start-page: 42 issue: 1 year: 2009 ident: 10.1016/j.visinf.2024.06.002_b24 article-title: Characterizing users’ visual analytic activity for insight provenance publication-title: Inf. Vis. doi: 10.1057/ivs.2008.31 – volume: 9 start-page: 90 issue: 3 year: 2007 ident: 10.1016/j.visinf.2024.06.002_b27 article-title: Matplotlib: A 2D graphics environment publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2007.55 – volume: 26 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.visinf.2024.06.002_b76 article-title: Flowsense: A natural language interface for visual data exploration within a dataflow system publication-title: IEEE Trans. Vis. Comput. Graphics doi: 10.1109/TVCG.2019.2934668 – volume: 24 start-page: 2636 issue: 9 year: 2017 ident: 10.1016/j.visinf.2024.06.002_b11 article-title: VAUD: A visual analysis approach for exploring spatio-temporal urban data publication-title: IEEE Trans. Vis. Comput. Graphics doi: 10.1109/TVCG.2017.2758362 – volume: 18 start-page: 251 issue: 2 year: 2019 ident: 10.1016/j.visinf.2024.06.002_b13 article-title: Datasite: Proactive visual data exploration with computation of insight-based recommendations publication-title: Inf. Vis. doi: 10.1177/1473871618806555 – year: 2023 ident: 10.1016/j.visinf.2024.06.002_b80 article-title: FraudAuditor: A visual analytics approach for collusive fraud in health insurance publication-title: IEEE Trans. Vis. Comput. Graphics doi: 10.1109/TVCG.2023.3261910 – volume: 25 start-page: 43 issue: 1 year: 2018 ident: 10.1016/j.visinf.2024.06.002_b78 article-title: Visual abstraction of large scale geospatial origin-destination movement data publication-title: IEEE Trans. Vis. Comput. Graphics doi: 10.1109/TVCG.2018.2864503 – volume: Vol. 40 start-page: 495 year: 2021 ident: 10.1016/j.visinf.2024.06.002_b51 article-title: Autoclips: An automatic approach to video generation from data facts – volume: 27 start-page: 453 issue: 2 year: 2020 ident: 10.1016/j.visinf.2024.06.002_b52 article-title: Calliope: Automatic visual data story generation from a spreadsheet publication-title: IEEE Trans. Vis. Comput. Graphics doi: 10.1109/TVCG.2020.3030403 – year: 2024 ident: 10.1016/j.visinf.2024.06.002_b60 article-title: Chartgpt: Leveraging llms to generate charts from abstract natural language publication-title: IEEE Trans. Vis. Comput. Graphics doi: 10.1109/TVCG.2024.3368621 – ident: 10.1016/j.visinf.2024.06.002_b26 doi: 10.1145/3290605.3300358 – ident: 10.1016/j.visinf.2024.06.002_b33 doi: 10.1145/3219819.3219867 – volume: 44 start-page: 65 issue: 2 year: 2024 ident: 10.1016/j.visinf.2024.06.002_b48 article-title: Databiting: Lightweight, transient, and insight rich exploration of personal data publication-title: IEEE Comput. Graph. Appl. doi: 10.1109/MCG.2024.3353888 – volume: 26 start-page: 853 issue: 1 year: 2019 ident: 10.1016/j.visinf.2024.06.002_b75 article-title: Illusion of causality in visualized data publication-title: IEEE Trans. Vis. Comput. Graphics doi: 10.1109/TVCG.2019.2934399 – volume: 2 start-page: 136 issue: 2 year: 2018 ident: 10.1016/j.visinf.2024.06.002_b31 article-title: Echarts: A declarative framework for rapid construction of web-based visualization publication-title: Vis. Inf. – volume: 29 start-page: 84 issue: 1 year: 2022 ident: 10.1016/j.visinf.2024.06.002_b79 article-title: A design space for surfacing content recommendations in visual analytic platforms publication-title: IEEE Trans. Vis. Comput. Graphics doi: 10.1109/TVCG.2022.3209445 – volume: 20 start-page: 2132 issue: 12 year: 2014 ident: 10.1016/j.visinf.2024.06.002_b2 article-title: Visualizing statistical mix effects and simpson’s paradox publication-title: IEEE Trans. Vis. Comput. Graphics doi: 10.1109/TVCG.2014.2346297 – volume: 25 start-page: 438 issue: 1 year: 2018 ident: 10.1016/j.visinf.2024.06.002_b42 article-title: Formalizing visualization design knowledge as constraints: Actionable and extensible models in draco publication-title: IEEE Trans. Vis. Comput. Graphics doi: 10.1109/TVCG.2018.2865240 – ident: 10.1016/j.visinf.2024.06.002_b53 doi: 10.1145/3290605.3300899 – volume: 22 start-page: 649 issue: 1 year: 2015 ident: 10.1016/j.visinf.2024.06.002_b68 article-title: Voyager: Exploratory analysis via faceted browsing of visualization recommendations publication-title: IEEE Trans. Vis. Comput. Graphics doi: 10.1109/TVCG.2015.2467191 – volume: 26 start-page: 895 issue: 1 year: 2019 ident: 10.1016/j.visinf.2024.06.002_b65 article-title: Datashot: Automatic generation of fact sheets from tabular data publication-title: IEEE Trans. Vis. Comput. Graphics doi: 10.1109/TVCG.2019.2934398 – ident: 10.1016/j.visinf.2024.06.002_b23 doi: 10.1145/1502650.1502695 – volume: 44 start-page: 55 issue: 2 year: 2024 ident: 10.1016/j.visinf.2024.06.002_b3 article-title: Generative AI for visualization: Opportunities and challenges publication-title: IEEE Comput. Graph. Appl. doi: 10.1109/MCG.2024.3362168 – year: 2024 ident: 10.1016/j.visinf.2024.06.002_b32 – volume: 16 start-page: 11 issue: 5 year: 2016 ident: 10.1016/j.visinf.2024.06.002_b58 article-title: Four types of ensemble coding in data visualizations publication-title: J. Vis. doi: 10.1167/16.5.11 – volume: 39 start-page: 33 issue: 5 year: 2019 ident: 10.1016/j.visinf.2024.06.002_b17 article-title: Data2vis: Automatic generation of data visualizations using sequence-to-sequence recurrent neural networks publication-title: IEEE Comput. Graph. Appl. doi: 10.1109/MCG.2019.2924636 – ident: 10.1016/j.visinf.2024.06.002_b59 doi: 10.1145/3035918.3035922 – volume: 26 start-page: 1215 issue: 1 year: 2019 ident: 10.1016/j.visinf.2024.06.002_b54 article-title: Color crafting: Automating the construction of designer quality color ramps publication-title: IEEE Trans. Vis. Comput. Graphics doi: 10.1109/TVCG.2019.2934284 – ident: 10.1016/j.visinf.2024.06.002_b69 doi: 10.1145/3025453.3025768 – volume: 22 start-page: 659 issue: 1 year: 2015 ident: 10.1016/j.visinf.2024.06.002_b50 article-title: Reactive vega: A streaming dataflow architecture for declarative interactive visualization publication-title: IEEE Trans. Vis. Comput. Graphics doi: 10.1109/TVCG.2015.2467091 – volume: 13 start-page: 1176 issue: 6 year: 2007 ident: 10.1016/j.visinf.2024.06.002_b70 article-title: Interactive visual exploration of a large spatio-temporal dataset: Reflections on a geovisualization mashup publication-title: IEEE Trans. Vis. Comput. Graphics doi: 10.1109/TVCG.2007.70570 – year: 2023 ident: 10.1016/j.visinf.2024.06.002_b29 article-title: Evm: Incorporating model checking into exploratory visual analysis publication-title: IEEE Trans. Vis. Comput. Graphics doi: 10.1109/TVCG.2023.3326516 – year: 2023 ident: 10.1016/j.visinf.2024.06.002_b57 – ident: 10.1016/j.visinf.2024.06.002_b82 doi: 10.1145/3411764.3445674 – volume: 28 start-page: 206 issue: 1 year: 2021 ident: 10.1016/j.visinf.2024.06.002_b12 article-title: Vizlinter: A linter and fixer framework for data visualization publication-title: IEEE Trans. Vis. Comput. Graphics doi: 10.1109/TVCG.2021.3114804 – volume: 5 start-page: 110 issue: 2 year: 1986 ident: 10.1016/j.visinf.2024.06.002_b39 article-title: Automating the design of graphical presentations of relational information publication-title: ACM Trans. Graph. doi: 10.1145/22949.22950 – volume: 27 start-page: 3717 issue: 9 year: 2020 ident: 10.1016/j.visinf.2024.06.002_b38 article-title: Ladv: Deep learning assisted authoring of dashboard visualizations from images and sketches publication-title: IEEE Trans. Vis. Comput. Graphics doi: 10.1109/TVCG.2020.2980227 – volume: 25 start-page: 672 issue: 1 year: 2018 ident: 10.1016/j.visinf.2024.06.002_b55 article-title: Augmenting visualizations with interactive data facts to facilitate interpretation and communication publication-title: IEEE Trans. Vis. Comput. Graphics doi: 10.1109/TVCG.2018.2865145 – volume: 1 start-page: 1 issue: 2 year: 2023 ident: 10.1016/j.visinf.2024.06.002_b37 article-title: XInsight: explainable data analysis through the lens of causality publication-title: Proc. ACM SIGMOD Conf. – year: 2023 ident: 10.1016/j.visinf.2024.06.002_b10 article-title: How does automation shape the process of narrative visualization: A survey of tools publication-title: IEEE Trans. Vis. Comput. Graphics – year: 2023 ident: 10.1016/j.visinf.2024.06.002_b74 article-title: Let the chart spark: Embedding semantic context into chart with text-to-image generative model publication-title: IEEE Trans. Vis. Comput. Graphics doi: 10.1109/TVCG.2023.3326913 – volume: 20 start-page: 1663 issue: 12 year: 2014 ident: 10.1016/j.visinf.2024.06.002_b8 article-title: Finding waldo: Learning about users from their interactions publication-title: IEEE Trans. Vis. Comput. Graphics doi: 10.1109/TVCG.2014.2346575 – year: 2021 ident: 10.1016/j.visinf.2024.06.002_b46 article-title: A survey of perception-based visualization studies by task publication-title: IEEE Trans. Vis. Comput. Graphics – volume: 23 start-page: 111 issue: 1 year: 2016 ident: 10.1016/j.visinf.2024.06.002_b9 article-title: Characterizing guidance in visual analytics publication-title: IEEE Trans. Vis. Comput. Graphics doi: 10.1109/TVCG.2016.2598468 – ident: 10.1016/j.visinf.2024.06.002_b41 doi: 10.1145/3269206.3271744 – volume: 28 start-page: 346 issue: 1 year: 2021 ident: 10.1016/j.visinf.2024.06.002_b77 article-title: An evaluation-focused framework for visualization recommendation algorithms publication-title: IEEE Trans. Vis. Comput. Graphics doi: 10.1109/TVCG.2021.3114814 |
SSID | ssj0002810111 |
Score | 2.321178 |
Snippet | With the incredible growth of the scale and complexity of datasets, creating proper visualizations for users becomes more and more challenging in large... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 106 |
SubjectTerms | Automated visual analytics Insight mining Visualization recommendation |
Title | AVA: An automated and AI-driven intelligent visual analytics framework |
URI | https://dx.doi.org/10.1016/j.visinf.2024.06.002 https://doaj.org/article/ad187bea3d1340c5b0dbb34ca8e38d98 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA3iyYsoKq5f5OA12CRtk3qr4rIKenJlbyGfsIt0Zen-fydpu_TkXryWdBJm2ryXMPMGofsoEmaDdESGYAgwYvilLNPEA7iEqiq047Ea-f2jnM3zt0WxGLX6ijlhnTxw57gH7agUxmvuwGpmC5M5Y8C-lp5LV6UyX8C80WFqla6MaGyiPtTKpYSuWKzdRNVOlifJzv4mZcCiJNk_gqQRzExP0HHPD3HdresUHfjmDE3rr_oR1w3W23YNFNM7rBuH61fiNnG3wsudsGaLYQFbsKCj2kjUYMZhyL86R_Ppy-fzjPQNEIjNqWxJVQYntdWUZV4IyizjnBkjeB5YkMAcKmY5N5Z7wJjKMW1lGSqpC-Bk1AvHL9Bhs278JcKA0xnPBaeButx4cKGkGrA8lJYJR7MJ4oMrlO3VwWOTim81pIGtVOdAFR2oUjYcmyCye-unU8fYM_4penk3NmpbpwcQcdVHXO2L-ASJIUaqpwkd_IOp5Z_TX_3H9NfoKJrs0sVu0GG72fpbICatuUvf4C8BmuGQ |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AVA%3A+An+automated+and+AI-driven+intelligent+visual+analytics+framework&rft.jtitle=Visual+informatics+%28Online%29&rft.au=Jiazhe+Wang&rft.au=Xi+Li&rft.au=Chenlu+Li&rft.au=Di+Peng&rft.date=2024-06-01&rft.pub=Elsevier&rft.eissn=2468-502X&rft.volume=8&rft.issue=2&rft.spage=106&rft.epage=114&rft_id=info:doi/10.1016%2Fj.visinf.2024.06.002&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ad187bea3d1340c5b0dbb34ca8e38d98 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2468-502X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2468-502X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2468-502X&client=summon |