Material based salient object detection from hyperspectral images

•To the best of our knowledge, this is the first time that salient objects are detected based on extracting explicit material property embedded in the spectral responses via retrieval of endmembers and estimating their abundance.•The novelty also comes from adopting hyperspectral unmixing model as a...

Full description

Saved in:
Bibliographic Details
Published inPattern recognition Vol. 76; pp. 476 - 490
Main Authors Liang, Jie, Zhou, Jun, Tong, Lei, Bai, Xiao, Wang, Bin
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •To the best of our knowledge, this is the first time that salient objects are detected based on extracting explicit material property embedded in the spectral responses via retrieval of endmembers and estimating their abundance.•The novelty also comes from adopting hyperspectral unmixing model as a preprocessing step for salient object detection. This allows the spatial distribution of endmembers be estimated, so the method is capable of dealing with mixed spectral responses in low spatial resolution hyperspectral images.•Different from existing hyperspectral salient object detection methods, we developed a novel method to fuse both local and global features for hyperspectral salient object detection.•We built a hyperspectral image dataset for salient detection, which contains mixed objects with similar color but different materials. While salient object detection has been studied intensively by the computer vision and pattern recognition community, there are still great challenges in practical applications, especially when perceived objects have similar appearance such as intensity, color, and orientation, but different materials. Traditional methods do not provide good solution to this problem since they were mostly developed on color images and do not have the full capability in discriminating materials. More advanced technology and methodology are in demand to gain access to further information beyond human vision. In this paper, we extend the concept of salient object detection to material level based on hyperspectral imaging and present a material-based salient object detection method which can effectively distinguish objects with similar perceived color but different spectral responses. The proposed method first estimates the spatial distribution of different materials or endmembers using a hyperspectral unmixing approach. This step enables the calculation of a conspicuity map based on the global spatial variance of spectral responses. Then the multi-scale center-surround difference of local spectral features is calculated via spectral distance measures to generate local spectral conspicuity maps. These two types of conspicuity maps are fused for the final salient object detection. A new dataset of 45 hyperspectral images is introduced for experimental validation. The results show that our method outperforms several existing hyperspectral salient object detection approaches and the state-of-the-art methods proposed for RGB images.
AbstractList •To the best of our knowledge, this is the first time that salient objects are detected based on extracting explicit material property embedded in the spectral responses via retrieval of endmembers and estimating their abundance.•The novelty also comes from adopting hyperspectral unmixing model as a preprocessing step for salient object detection. This allows the spatial distribution of endmembers be estimated, so the method is capable of dealing with mixed spectral responses in low spatial resolution hyperspectral images.•Different from existing hyperspectral salient object detection methods, we developed a novel method to fuse both local and global features for hyperspectral salient object detection.•We built a hyperspectral image dataset for salient detection, which contains mixed objects with similar color but different materials. While salient object detection has been studied intensively by the computer vision and pattern recognition community, there are still great challenges in practical applications, especially when perceived objects have similar appearance such as intensity, color, and orientation, but different materials. Traditional methods do not provide good solution to this problem since they were mostly developed on color images and do not have the full capability in discriminating materials. More advanced technology and methodology are in demand to gain access to further information beyond human vision. In this paper, we extend the concept of salient object detection to material level based on hyperspectral imaging and present a material-based salient object detection method which can effectively distinguish objects with similar perceived color but different spectral responses. The proposed method first estimates the spatial distribution of different materials or endmembers using a hyperspectral unmixing approach. This step enables the calculation of a conspicuity map based on the global spatial variance of spectral responses. Then the multi-scale center-surround difference of local spectral features is calculated via spectral distance measures to generate local spectral conspicuity maps. These two types of conspicuity maps are fused for the final salient object detection. A new dataset of 45 hyperspectral images is introduced for experimental validation. The results show that our method outperforms several existing hyperspectral salient object detection approaches and the state-of-the-art methods proposed for RGB images.
Author Liang, Jie
Tong, Lei
Bai, Xiao
Zhou, Jun
Wang, Bin
Author_xml – sequence: 1
  givenname: Jie
  surname: Liang
  fullname: Liang, Jie
  organization: Facility Design and Instrumentation Institute, China Aerodynamics Research and Development Center, Sichuan, Mianyang, China
– sequence: 2
  givenname: Jun
  surname: Zhou
  fullname: Zhou, Jun
  email: jun.zhou@griffith.edu.au
  organization: School of Information and Communication Technology, Griffith University, Nathan, Australia
– sequence: 3
  givenname: Lei
  surname: Tong
  fullname: Tong, Lei
  organization: Faculty of Information Technology, Beijing University of Technology, Beijing, China
– sequence: 4
  givenname: Xiao
  surname: Bai
  fullname: Bai, Xiao
  organization: School of Computer Science and Engineer, Beihang University, Beijing, China
– sequence: 5
  givenname: Bin
  surname: Wang
  fullname: Wang, Bin
  organization: Facility Design and Instrumentation Institute, China Aerodynamics Research and Development Center, Sichuan, Mianyang, China
BookMark eNqFkM9KAzEQh4NUsK2-gYd9gV0z2X-pB6EUrULFi55DNpnULNvNkgShb29KPXnQ08DMfMNvvgWZjW5EQm6BFkChueuLSUbl9gWj0BYABWXVBZkDb8u8horNyJzSEvKS0fKKLELoaVpMgzlZv8qI3soh62RAnQU5WBxj5roeVcw0xlSsGzPj3SH7PE7ow5RaPhH2IPcYrsmlkUPAm5-6JB9Pj--b53z3tn3ZrHe5qoDHfFUbBpyV3ChQHZXMrIxp60Z2teYNGsooNZxL2shKg2mM5i1vtAHsVqZsdbkk9-e7yrsQPBqhbJSnbCmMHQRQcZIhenGWIU4yBIBIMhJc_YInn-L743_YwxnD9NiXRS-CSnoUauuTBKGd_fvAN-10fso
CitedBy_id crossref_primary_10_1016_j_cviu_2022_103535
crossref_primary_10_1088_1674_1056_ac8cd7
crossref_primary_10_1109_TIP_2022_3201478
crossref_primary_10_1016_j_compeleceng_2019_08_009
crossref_primary_10_1109_TGRS_2022_3224815
crossref_primary_10_1111_mice_12710
crossref_primary_10_1016_j_dsp_2022_103752
crossref_primary_10_1016_j_patcog_2019_05_012
crossref_primary_10_3390_s19224837
crossref_primary_10_1007_s00521_022_07330_1
crossref_primary_10_1109_TGRS_2020_3006534
crossref_primary_10_3390_rs14235958
crossref_primary_10_1007_s00500_021_06146_w
crossref_primary_10_1109_TGRS_2024_3379380
crossref_primary_10_3390_rs13101922
crossref_primary_10_1016_j_patcog_2020_107404
crossref_primary_10_1109_JSTSP_2022_3180896
crossref_primary_10_1109_TGRS_2024_3366536
crossref_primary_10_1109_TGRS_2021_3052807
crossref_primary_10_1007_s00371_022_02499_x
crossref_primary_10_1007_s00530_024_01363_3
crossref_primary_10_1109_TIP_2020_2965302
crossref_primary_10_1007_s00371_024_03324_3
crossref_primary_10_1109_TGRS_2022_3217097
crossref_primary_10_1016_j_patcog_2019_107131
crossref_primary_10_1016_j_sigpro_2020_107607
crossref_primary_10_1109_TIP_2022_3203605
crossref_primary_10_1109_TIM_2025_3527488
crossref_primary_10_1016_j_optlastec_2025_112796
crossref_primary_10_1016_j_patcog_2022_108788
crossref_primary_10_1007_s10115_018_1243_5
crossref_primary_10_1016_j_sigpro_2020_107672
crossref_primary_10_3390_rs14153512
crossref_primary_10_1109_TGRS_2021_3115699
crossref_primary_10_3390_rs15010231
crossref_primary_10_1016_j_chip_2023_100045
crossref_primary_10_1109_TMM_2023_3331196
crossref_primary_10_1007_s11042_023_17009_x
crossref_primary_10_1016_j_patrec_2019_09_021
crossref_primary_10_1109_TGRS_2024_3367765
crossref_primary_10_3390_rs14040943
crossref_primary_10_1080_10095020_2024_2380476
crossref_primary_10_1016_j_patcog_2020_107303
crossref_primary_10_1016_j_jag_2024_103816
crossref_primary_10_3390_rs14091971
crossref_primary_10_1109_LGRS_2023_3326148
crossref_primary_10_1016_j_isprsjprs_2023_09_015
crossref_primary_10_1109_TGRS_2019_2935150
crossref_primary_10_3390_s22218502
crossref_primary_10_1016_j_patcog_2021_108224
crossref_primary_10_1016_j_neucom_2021_01_028
crossref_primary_10_1016_j_patcog_2022_108969
crossref_primary_10_1109_TGRS_2023_3260634
crossref_primary_10_1109_TGRS_2023_3307071
crossref_primary_10_1109_TIP_2021_3071682
crossref_primary_10_3390_rs16162975
crossref_primary_10_1049_ipr2_12677
crossref_primary_10_3788_AOS230901
crossref_primary_10_1080_2150704X_2021_2005270
crossref_primary_10_1109_ACCESS_2021_3091305
Cites_doi 10.1109/TGRS.2011.2158319
10.1109/TSMC.1979.4310076
10.1109/TGRS.2014.2374218
10.1109/JSTARS.2013.2242255
10.1109/TIP.2015.2393057
10.1016/j.patcog.2010.12.019
10.1109/TGRS.2015.2417162
10.1109/TPAMI.2015.2473844
10.1364/AO.55.008089
10.1016/j.neucom.2015.02.073
10.1109/TIP.2017.2721112
10.1109/TGRS.2016.2601622
10.1007/s11265-010-0533-2
10.1016/j.patcog.2012.02.009
10.1109/TGRS.2011.2162649
10.1017/S0952523804213335
10.1109/TGRS.2014.2363101
10.1038/44565
10.1109/TPAMI.2012.89
10.1109/TGRS.2015.2512659
10.1109/TGRS.2005.844293
10.1109/TIP.2012.2199126
10.1109/TCSVT.2013.2273613
10.1109/TCSVT.2014.2381471
10.1109/TGRS.2012.2213825
10.1109/TPAMI.2010.70
10.1016/j.patcog.2009.04.021
10.1109/JSTARS.2012.2194696
10.1364/JOSAA.19.001484
10.1109/TGRS.2012.2209657
10.1109/JSTARS.2016.2621003
10.1109/TGRS.2016.2586110
10.1109/79.974727
10.1109/34.730558
10.1109/TGRS.2011.2144605
10.1109/TIP.2015.2487833
10.1007/s11263-016-0907-4
10.1016/S0893-6080(00)00026-5
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright_xml – notice: 2017 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.patcog.2017.11.024
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-5142
EndPage 490
ExternalDocumentID 10_1016_j_patcog_2017_11_024
S0031320317304806
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c418t-95f218238fc1cb0a2f9ff756ab5d86ef0200f88a06a4d1f6fd8786df1eb9f37d3
IEDL.DBID .~1
ISSN 0031-3203
IngestDate Tue Jul 01 02:36:27 EDT 2025
Thu Apr 24 23:05:55 EDT 2025
Fri Feb 23 02:25:23 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Hyperspectral unmixing
Material composition
Spectral-spatial distribution
Salient object detection
Hyperspectral imaging
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-95f218238fc1cb0a2f9ff756ab5d86ef0200f88a06a4d1f6fd8786df1eb9f37d3
OpenAccessLink http://hdl.handle.net/10072/381115
PageCount 15
ParticipantIDs crossref_citationtrail_10_1016_j_patcog_2017_11_024
crossref_primary_10_1016_j_patcog_2017_11_024
elsevier_sciencedirect_doi_10_1016_j_patcog_2017_11_024
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2018
2018-04-00
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: April 2018
PublicationDecade 2010
PublicationTitle Pattern recognition
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Han, Zhang, Hu, Guo, Ren, Wu (bib0034) 2015; 25
Nascimento, Ferreira, Foster (bib0058) 2002; 19
Hou, Zhang (bib0029) 2007
Lanaras, Baltsavias, Schindler (bib0012) 2015
Keshava, Mustard (bib0039) 2002; 19
Cheng, Mitra, Huang, Torr, Hu, Zhang, Mitra, Huang, Hu (bib0028) 2011; 37
Fang, Zhang, Li, Lei, Perreira Da Silva, Le Callet (bib0032) 2017; 26
Boardman (bib0040) 1993; 1
Kwon, Tai (bib0011) 2015
Itti, Koch, Niebur (bib0001) 1998; 20
Le Moan, Mansouri, Voisin, Hardeberg (bib0023) 2011; 49
Borji, Itti (bib0002) 2013; 35
Liao, Qian, Zhou, Tang (bib0024) 2016; 54
Lu, Wu, Yuan, Yan, Li (bib0052) 2013; 51
Le Moan, Mansouri, Hardeberg, Voisin (bib0018) 2011
Bioucas-Dias (bib0045) 2009
Du, Raksuntorn, Cai, Moorhead (bib0022) 2008; 46
Han, Zhang, Cheng, Guo, Ren (bib0036) 2015; 53
Fu, Robles-Kelly, Zhou (bib0015) 2006; 33
Foster, Nascimento, Amano (bib0007) 2004; 21
Zhang, Sclaroff (bib0059) 2016; 38
Wang, Du, Zhang (bib0051) 2013; 6
Zhang, Han, Li, Wang, Li (bib0033) 2016; 120
Nascimento, Bioucas-Dias (bib0043) 2005; 43
Chakrabarti, Zickler (bib0008) 2011
Li, Agathos, Zaharie, Bioucas-Dias, Plaza, Li (bib0044) 2015; 53
Bioucas-Dias, Plaza, Dobigeon, Du, Gader, Chanussot (bib0055) 2012; 5
Wang, Xiong, Gao, Shi, Zeng, Wu (bib0010) 2015
Rosin (bib0025) 2009; 42
Hyvärinen, Oja (bib0046) 2000; 13
Fang, Lin, Chen, Tsai, Lin (bib0031) 2014; 24
Lee, Seung (bib0048) 1999; 401
Tong, Zhou, Qian, Bai, Gao (bib0053) 2016; 54
Tong, Zhou, Li, Qian, Gao (bib0054) 2017; 10
Yan, Zhang, Wei, Zhang, Li (bib0020) 2016
Liu, Yuan, Sun, Wang, Zheng, Tang, Shum (bib0027) 2011; 33
Lee, Seung (bib0049) 2001
Li, Bioucas-Dias, Plaza (bib0016) 2012; 50
Ye, Qian, Zhou (bib0014) 2015; 53
Liang, Zhou, Bai, Qian (bib0021) 2013
Cheng, Zhou, Han (bib0037) 2016; 54
Boardman, Kruse, Green (bib0041) 1995; 1
Qian, Jia, Zhou, Robles-Kelly (bib0050) 2011; 49
Qian, Ye, Zhou (bib0017) 2013; 51
Habili, Oorloff (bib0060) 2015; II
Arngren, Schmidt, Larsen (bib0047) 2011; 65
Winter (bib0042) 1999
Kim, Deng, Brown (bib0004) 2012; 44
Oh, Brown, Pollefeys, Kim (bib0009) 2016
Fu, Zheng, Sato, Sato (bib0005) 2016
Borji, Cheng, Jiang, Li (bib0003) 2015; 24
Akhtar, Shafait, Mian (bib0013) 2015
Belkin, Niyogi (bib0056) 2001; 14
Uzair, Mahmood, Mian (bib0006) 2015; 24
Zhang, Geng, Zhuo, Tian, Cao (bib0019) 2016; 55
Fang, Chen, Lin, Lin (bib0030) 2012; 21
Zhao, Ouyang, Li, Wang (bib0035) 2015
Vikram, Tscherepanow, Wrede (bib0026) 2012; 45
Otsu (bib0057) 1979; 9
Yao, Han, Guo, Bu, Liu (bib0038) 2015; 164
Liang (10.1016/j.patcog.2017.11.024_bib0021) 2013
Ye (10.1016/j.patcog.2017.11.024_bib0014) 2015; 53
Hyvärinen (10.1016/j.patcog.2017.11.024_bib0046) 2000; 13
Liao (10.1016/j.patcog.2017.11.024_bib0024) 2016; 54
Foster (10.1016/j.patcog.2017.11.024_bib0007) 2004; 21
Yao (10.1016/j.patcog.2017.11.024_bib0038) 2015; 164
Le Moan (10.1016/j.patcog.2017.11.024_bib0018) 2011
Boardman (10.1016/j.patcog.2017.11.024_bib0041) 1995; 1
Winter (10.1016/j.patcog.2017.11.024_bib0042) 1999
Lee (10.1016/j.patcog.2017.11.024_bib0049) 2001
Hou (10.1016/j.patcog.2017.11.024_bib0029) 2007
Zhang (10.1016/j.patcog.2017.11.024_bib0059) 2016; 38
Han (10.1016/j.patcog.2017.11.024_bib0034) 2015; 25
Boardman (10.1016/j.patcog.2017.11.024_bib0040) 1993; 1
Lu (10.1016/j.patcog.2017.11.024_bib0052) 2013; 51
Fang (10.1016/j.patcog.2017.11.024_bib0030) 2012; 21
Le Moan (10.1016/j.patcog.2017.11.024_bib0023) 2011; 49
Liu (10.1016/j.patcog.2017.11.024_bib0027) 2011; 33
Du (10.1016/j.patcog.2017.11.024_bib0022) 2008; 46
Qian (10.1016/j.patcog.2017.11.024_bib0050) 2011; 49
Uzair (10.1016/j.patcog.2017.11.024_bib0006) 2015; 24
Tong (10.1016/j.patcog.2017.11.024_bib0054) 2017; 10
Fu (10.1016/j.patcog.2017.11.024_bib0005) 2016
Qian (10.1016/j.patcog.2017.11.024_bib0017) 2013; 51
Zhang (10.1016/j.patcog.2017.11.024_bib0019) 2016; 55
Kwon (10.1016/j.patcog.2017.11.024_bib0011) 2015
Bioucas-Dias (10.1016/j.patcog.2017.11.024_bib0045) 2009
Borji (10.1016/j.patcog.2017.11.024_bib0002) 2013; 35
Li (10.1016/j.patcog.2017.11.024_bib0044) 2015; 53
Nascimento (10.1016/j.patcog.2017.11.024_bib0043) 2005; 43
Fang (10.1016/j.patcog.2017.11.024_bib0032) 2017; 26
Arngren (10.1016/j.patcog.2017.11.024_bib0047) 2011; 65
Itti (10.1016/j.patcog.2017.11.024_bib0001) 1998; 20
Cheng (10.1016/j.patcog.2017.11.024_bib0037) 2016; 54
Zhao (10.1016/j.patcog.2017.11.024_bib0035) 2015
Habili (10.1016/j.patcog.2017.11.024_bib0060) 2015; II
Akhtar (10.1016/j.patcog.2017.11.024_bib0013) 2015
Yan (10.1016/j.patcog.2017.11.024_bib0020) 2016
Keshava (10.1016/j.patcog.2017.11.024_bib0039) 2002; 19
Fang (10.1016/j.patcog.2017.11.024_bib0031) 2014; 24
Bioucas-Dias (10.1016/j.patcog.2017.11.024_bib0055) 2012; 5
Li (10.1016/j.patcog.2017.11.024_bib0016) 2012; 50
Lee (10.1016/j.patcog.2017.11.024_bib0048) 1999; 401
Wang (10.1016/j.patcog.2017.11.024_bib0010) 2015
Borji (10.1016/j.patcog.2017.11.024_bib0003) 2015; 24
Kim (10.1016/j.patcog.2017.11.024_bib0004) 2012; 44
Oh (10.1016/j.patcog.2017.11.024_bib0009) 2016
Rosin (10.1016/j.patcog.2017.11.024_bib0025) 2009; 42
Lanaras (10.1016/j.patcog.2017.11.024_bib0012) 2015
Belkin (10.1016/j.patcog.2017.11.024_bib0056) 2001; 14
Zhang (10.1016/j.patcog.2017.11.024_bib0033) 2016; 120
Chakrabarti (10.1016/j.patcog.2017.11.024_bib0008) 2011
Han (10.1016/j.patcog.2017.11.024_bib0036) 2015; 53
Wang (10.1016/j.patcog.2017.11.024_bib0051) 2013; 6
Fu (10.1016/j.patcog.2017.11.024_bib0015) 2006; 33
Otsu (10.1016/j.patcog.2017.11.024_bib0057) 1979; 9
Nascimento (10.1016/j.patcog.2017.11.024_bib0058) 2002; 19
Cheng (10.1016/j.patcog.2017.11.024_bib0028) 2011; 37
Vikram (10.1016/j.patcog.2017.11.024_bib0026) 2012; 45
Tong (10.1016/j.patcog.2017.11.024_bib0053) 2016; 54
References_xml – volume: 401
  start-page: 788
  year: 1999
  end-page: 791
  ident: bib0048
  article-title: Learning the parts of objects by non-negative matrix factorization
  publication-title: Nature
– volume: 164
  start-page: 162
  year: 2015
  end-page: 172
  ident: bib0038
  article-title: A coarse-to-fine model for airport detection from remote sensing images using target-oriented visual saliency and CRF
  publication-title: Neurocomputing
– volume: 19
  start-page: 44
  year: 2002
  end-page: 57
  ident: bib0039
  article-title: Spectral unmixing
  publication-title: IEEE Signal Process. Mag.
– volume: 1
  start-page: 23
  year: 1995
  end-page: 26
  ident: bib0041
  article-title: Mapping target signatures via partial unmixing of AVIRIS data
  publication-title: Summaries of JPL Airborne Earth Science Workshop
– start-page: 1560
  year: 2016
  end-page: 1563
  ident: bib0020
  article-title: Salient object detection in hyperspectral imagery using spectral gradient contrast
  publication-title: Proceedings of the IEEE International Geoscience and Remote Sensing Symposium
– volume: 21
  start-page: 331
  year: 2004
  end-page: 336
  ident: bib0007
  article-title: Information limits on neural identification of colored surfaces in natural scenes
  publication-title: Vis. Neurosci.
– volume: 51
  start-page: 2815
  year: 2013
  end-page: 2826
  ident: bib0052
  article-title: Manifold regularized sparse NMF for hyperspectral unmixing
  publication-title: IEEE Trans. Geosci. Remote Sens.
– start-page: 1
  year: 2007
  end-page: 8
  ident: bib0029
  article-title: Saliency detection: A spectral residual approach
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 13
  start-page: 411
  year: 2000
  end-page: 430
  ident: bib0046
  article-title: Independent component analysis: algorithms and applications
  publication-title: Neural Netw.
– volume: 24
  start-page: 5706
  year: 2015
  end-page: 5722
  ident: bib0003
  article-title: Salient object detection: a benchmark
  publication-title: IEEE Trans. Image Process.
– volume: 1
  start-page: 11
  year: 1993
  end-page: 14
  ident: bib0040
  article-title: Automating spectral unmixing of AVIRIS data using convex geometry concepts
  publication-title: Proceedings of the Annual JPL Airborne Geoscience Workshop
– volume: 20
  start-page: 1254
  year: 1998
  end-page: 1259
  ident: bib0001
  article-title: A model of saliency based visual attention for rapid scene analysis
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 3631
  year: 2015
  end-page: 3640
  ident: bib0013
  article-title: Bayesian sparse representation for hyperspectral image super resolution
  publication-title: Proceedings of the IEEE Computer Vision and Pattern Recognition Conference
– volume: 49
  start-page: 4282
  year: 2011
  end-page: 4297
  ident: bib0050
  article-title: Hyperspectral unmixing via
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 38
  start-page: 889
  year: 2016
  end-page: 902
  ident: bib0059
  article-title: Exploiting surroundedness for saliency detection: a boolean map approach
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 21
  start-page: 3888
  year: 2012
  end-page: 3901
  ident: bib0030
  article-title: Saliency detection in the compressed domain for adaptive image retargeting
  publication-title: IEEE Trans. Image Process.
– volume: 33
  start-page: 353
  year: 2011
  end-page: 367
  ident: bib0027
  article-title: Learning to detect a salient object
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 9
  start-page: 62
  year: 1979
  end-page: 66
  ident: bib0057
  article-title: A thresholding selection method from gray-level histograms
  publication-title: IEEE Trans Syst Man Cybern.
– volume: 65
  start-page: 479
  year: 2011
  end-page: 496
  ident: bib0047
  article-title: Unmixing of hyperspectral images using Bayesian non-negative matrix factorization with volume prior
  publication-title: J. Signal Process. Syst.
– volume: 24
  start-page: 1127
  year: 2015
  end-page: 1137
  ident: bib0006
  article-title: Hyperpsectral face recognition with spatio-spectral information fusion and PLS regression
  publication-title: IEEE Trans. Image Process.
– volume: 53
  start-page: 5067
  year: 2015
  end-page: 5082
  ident: bib0044
  article-title: Minimum volume simplex analysis: a fast algorithm for linear hyperspectral unmixing
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 51
  start-page: 2276
  year: 2013
  end-page: 2291
  ident: bib0017
  article-title: Hyperspectral image classification based on structured sparse logistic regression and three-dimensional wavelet texture features
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 5
  start-page: 354
  year: 2012
  end-page: 379
  ident: bib0055
  article-title: Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 54
  start-page: 3151
  year: 2016
  end-page: 3162
  ident: bib0024
  article-title: A manifold alignment approach for hyperspectral image visualization with natural color
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 49
  start-page: 5104
  year: 2011
  end-page: 5115
  ident: bib0023
  article-title: A constrained band selection method based on information measures for spectral image color visualization
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 37
  start-page: 409
  year: 2011
  end-page: 416
  ident: bib0028
  article-title: Global contrast based salient region detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 6
  start-page: 554
  year: 2013
  end-page: 569
  ident: bib0051
  article-title: An endmember dissimilarity constrained non-negative matrix factorization method for hyperspectral unmixing
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 50
  start-page: 809
  year: 2012
  end-page: 823
  ident: bib0016
  article-title: Spectralspatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: II
  start-page: 1
  year: 2015
  end-page: 4
  ident: bib0060
  article-title: Scyllarus: from research to commercial software
– start-page: 266
  year: 1999
  end-page: 275
  ident: bib0042
  article-title: N-FINDR: an algorithm for fast autonomous spectral endmember determination in hyperspectral data
  publication-title: Proceedings of the SPIE International Symposium on Optical Science, Engineering, and Instrumentation
– start-page: 3586
  year: 2015
  end-page: 3594
  ident: bib0012
  article-title: Hyperspectral super-resolution by coupled spectral unmixing
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– volume: 19
  start-page: 1484
  year: 2002
  end-page: 1490
  ident: bib0058
  article-title: Statistics of spatial cone-excitation ratios in natural scenes
  publication-title: J. Opt. Soc. Am. A
– start-page: 3727
  year: 2016
  end-page: 3736
  ident: bib0005
  article-title: Exploiting spectral-spatial correlation for coded hyperspectral image restoration
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 53
  start-page: 2621
  year: 2015
  end-page: 2639
  ident: bib0014
  article-title: Multi-task sparse nonnegative matrix factorization for joint spectral-spatial hyperspectral imagery denoising
  publication-title: IEEE Trans. Geosci. Remote Sens.
– start-page: 4942
  year: 2015
  end-page: 4950
  ident: bib0010
  article-title: High-speed hyperspectral video acquisition with a dual-camera architecture
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 2393
  year: 2013
  end-page: 2397
  ident: bib0021
  article-title: Salient object detection in hyperspectral imagery
  publication-title: Proceedings of the IEEE International Conference on Image Processing
– volume: 42
  start-page: 2363
  year: 2009
  end-page: 2371
  ident: bib0025
  article-title: A simple method for detecting salient regions
  publication-title: Pattern Recognit.
– volume: 46
  start-page: 1858
  year: 2008
  end-page: 1866
  ident: bib0022
  article-title: Color display for hyperspectral imagery
  publication-title: Image Vis. Comput.
– volume: 24
  start-page: 27
  year: 2014
  end-page: 38
  ident: bib0031
  article-title: A video saliency detection model in compressed domain
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– start-page: 556
  year: 2001
  end-page: 562
  ident: bib0049
  article-title: Algorithms for non-negative matrix factorization
  publication-title: Proceedings of the Advances in Neural Information Processing Systems
– volume: 25
  start-page: 1309
  year: 2015
  end-page: 1321
  ident: bib0034
  article-title: Background prior-based salient object detection via deep reconstruction residual
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– start-page: 1265
  year: 2015
  end-page: 1274
  ident: bib0035
  article-title: Saliency detection by multi-context deep learning
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 44
  start-page: 1461
  year: 2012
  end-page: 1469
  ident: bib0004
  article-title: Visual enhancement of old documents with hyperspectral imaging
  publication-title: Pattern Recognit.
– start-page: 114
  year: 2011
  end-page: 123
  ident: bib0018
  article-title: Saliency in spectral images
  publication-title: Proceedings of the 17th Scandinavian Conference on Image Analysis
– volume: 55
  start-page: 8089
  year: 2016
  end-page: 8100
  ident: bib0019
  article-title: Multiscale target extraction using a spectral saliency map for a hyperspectral image
  publication-title: Appl. Opt.
– volume: 45
  start-page: 3114
  year: 2012
  end-page: 3124
  ident: bib0026
  article-title: A saliency map based on sampling an image into random rectangular regions of interest
  publication-title: Pattern Recognit.
– volume: 35
  start-page: 185
  year: 2013
  end-page: 207
  ident: bib0002
  article-title: State-of-the-art in visual attention modeling
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 120
  start-page: 215
  year: 2016
  end-page: 232
  ident: bib0033
  article-title: Detection of co-salient objects by looking deep and wide
  publication-title: Int. J. Comput. Vis.
– volume: 43
  start-page: 898
  year: 2005
  end-page: 910
  ident: bib0043
  article-title: Vertex component analysis: a fast algorithm to unmix hyperspectral data
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 26
  start-page: 4684
  year: 2017
  end-page: 4696
  ident: bib0032
  article-title: Visual attention modeling for stereoscopic video: a benchmark and computational model
  publication-title: IEEE Trans. Image Process.
– start-page: 307
  year: 2015
  end-page: 315
  ident: bib0011
  article-title: RGB-guided hyperspectral image upsampling
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– start-page: 1
  year: 2009
  end-page: 4
  ident: bib0045
  article-title: A variable splitting augmented Lagrangian approach to linear spectral unmixing
  publication-title: Proceedings of the Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing
– start-page: 193
  year: 2011
  end-page: 200
  ident: bib0008
  article-title: Statistics of real-world hyperspectral images
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 54
  start-page: 6531
  year: 2016
  end-page: 6544
  ident: bib0053
  article-title: Nonnegative-matrix-factorization-based hyperspectral unmixing with partially known endmembers
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 10
  start-page: 1575
  year: 2017
  end-page: 1588
  ident: bib0054
  article-title: Region-based structure preserving nonnegative matrix factorization for hyperspectral unmixing
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 33
  start-page: 958
  year: 2006
  end-page: 977
  ident: bib0015
  article-title: MILIS: Multiple instance learning with instance selection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 2461
  year: 2016
  end-page: 2469
  ident: bib0009
  article-title: Do it yourself hyperspectral imaging with everyday digital cameras
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 14
  start-page: 585
  year: 2001
  end-page: 591
  ident: bib0056
  article-title: Laplacian eigenmaps and spectral techniques for embedding and clustering
  publication-title: Proceedings of the 14th International Conference on Neural Information Processing Systems
– volume: 53
  start-page: 3325
  year: 2015
  end-page: 3337
  ident: bib0036
  article-title: Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 54
  start-page: 7405
  year: 2016
  end-page: 7415
  ident: bib0037
  article-title: Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– start-page: 2461
  year: 2016
  ident: 10.1016/j.patcog.2017.11.024_bib0009
  article-title: Do it yourself hyperspectral imaging with everyday digital cameras
– volume: 1
  start-page: 23
  year: 1995
  ident: 10.1016/j.patcog.2017.11.024_bib0041
  article-title: Mapping target signatures via partial unmixing of AVIRIS data
  publication-title: Summaries of JPL Airborne Earth Science Workshop
– volume: 49
  start-page: 5104
  issue: 12
  year: 2011
  ident: 10.1016/j.patcog.2017.11.024_bib0023
  article-title: A constrained band selection method based on information measures for spectral image color visualization
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2011.2158319
– volume: 9
  start-page: 62
  year: 1979
  ident: 10.1016/j.patcog.2017.11.024_bib0057
  article-title: A thresholding selection method from gray-level histograms
  publication-title: IEEE Trans Syst Man Cybern.
  doi: 10.1109/TSMC.1979.4310076
– volume: 53
  start-page: 3325
  issue: 6
  year: 2015
  ident: 10.1016/j.patcog.2017.11.024_bib0036
  article-title: Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2014.2374218
– start-page: 4942
  year: 2015
  ident: 10.1016/j.patcog.2017.11.024_bib0010
  article-title: High-speed hyperspectral video acquisition with a dual-camera architecture
– start-page: 307
  year: 2015
  ident: 10.1016/j.patcog.2017.11.024_bib0011
  article-title: RGB-guided hyperspectral image upsampling
– start-page: 193
  year: 2011
  ident: 10.1016/j.patcog.2017.11.024_bib0008
  article-title: Statistics of real-world hyperspectral images
– start-page: 1560
  year: 2016
  ident: 10.1016/j.patcog.2017.11.024_bib0020
  article-title: Salient object detection in hyperspectral imagery using spectral gradient contrast
– volume: 6
  start-page: 554
  issue: 2
  year: 2013
  ident: 10.1016/j.patcog.2017.11.024_bib0051
  article-title: An endmember dissimilarity constrained non-negative matrix factorization method for hyperspectral unmixing
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2013.2242255
– volume: 24
  start-page: 1127
  issue: 3
  year: 2015
  ident: 10.1016/j.patcog.2017.11.024_bib0006
  article-title: Hyperpsectral face recognition with spatio-spectral information fusion and PLS regression
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2015.2393057
– start-page: 3631
  year: 2015
  ident: 10.1016/j.patcog.2017.11.024_bib0013
  article-title: Bayesian sparse representation for hyperspectral image super resolution
– volume: 14
  start-page: 585
  year: 2001
  ident: 10.1016/j.patcog.2017.11.024_bib0056
  article-title: Laplacian eigenmaps and spectral techniques for embedding and clustering
– volume: 44
  start-page: 1461
  issue: 7
  year: 2012
  ident: 10.1016/j.patcog.2017.11.024_bib0004
  article-title: Visual enhancement of old documents with hyperspectral imaging
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2010.12.019
– volume: 33
  start-page: 958
  issue: 5
  year: 2006
  ident: 10.1016/j.patcog.2017.11.024_bib0015
  article-title: MILIS: Multiple instance learning with instance selection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 53
  start-page: 5067
  issue: 9
  year: 2015
  ident: 10.1016/j.patcog.2017.11.024_bib0044
  article-title: Minimum volume simplex analysis: a fast algorithm for linear hyperspectral unmixing
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2015.2417162
– volume: 38
  start-page: 889
  issue: 5
  year: 2016
  ident: 10.1016/j.patcog.2017.11.024_bib0059
  article-title: Exploiting surroundedness for saliency detection: a boolean map approach
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2473844
– start-page: 266
  year: 1999
  ident: 10.1016/j.patcog.2017.11.024_bib0042
  article-title: N-FINDR: an algorithm for fast autonomous spectral endmember determination in hyperspectral data
– volume: 55
  start-page: 8089
  issue: 28
  year: 2016
  ident: 10.1016/j.patcog.2017.11.024_bib0019
  article-title: Multiscale target extraction using a spectral saliency map for a hyperspectral image
  publication-title: Appl. Opt.
  doi: 10.1364/AO.55.008089
– volume: 164
  start-page: 162
  year: 2015
  ident: 10.1016/j.patcog.2017.11.024_bib0038
  article-title: A coarse-to-fine model for airport detection from remote sensing images using target-oriented visual saliency and CRF
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.02.073
– volume: 46
  start-page: 1858
  issue: 6
  year: 2008
  ident: 10.1016/j.patcog.2017.11.024_bib0022
  article-title: Color display for hyperspectral imagery
  publication-title: Image Vis. Comput.
– volume: 26
  start-page: 4684
  issue: 10
  year: 2017
  ident: 10.1016/j.patcog.2017.11.024_bib0032
  article-title: Visual attention modeling for stereoscopic video: a benchmark and computational model
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2721112
– volume: 54
  start-page: 7405
  issue: 12
  year: 2016
  ident: 10.1016/j.patcog.2017.11.024_bib0037
  article-title: Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2601622
– volume: 65
  start-page: 479
  issue: 3
  year: 2011
  ident: 10.1016/j.patcog.2017.11.024_bib0047
  article-title: Unmixing of hyperspectral images using Bayesian non-negative matrix factorization with volume prior
  publication-title: J. Signal Process. Syst.
  doi: 10.1007/s11265-010-0533-2
– volume: 45
  start-page: 3114
  issue: 9
  year: 2012
  ident: 10.1016/j.patcog.2017.11.024_bib0026
  article-title: A saliency map based on sampling an image into random rectangular regions of interest
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2012.02.009
– volume: II
  start-page: 1
  year: 2015
  ident: 10.1016/j.patcog.2017.11.024_bib0060
  article-title: Scyllarus: from research to commercial software
– volume: 50
  start-page: 809
  issue: 3
  year: 2012
  ident: 10.1016/j.patcog.2017.11.024_bib0016
  article-title: Spectralspatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2011.2162649
– volume: 21
  start-page: 331
  year: 2004
  ident: 10.1016/j.patcog.2017.11.024_bib0007
  article-title: Information limits on neural identification of colored surfaces in natural scenes
  publication-title: Vis. Neurosci.
  doi: 10.1017/S0952523804213335
– volume: 53
  start-page: 2621
  issue: 5
  year: 2015
  ident: 10.1016/j.patcog.2017.11.024_bib0014
  article-title: Multi-task sparse nonnegative matrix factorization for joint spectral-spatial hyperspectral imagery denoising
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2014.2363101
– volume: 401
  start-page: 788
  issue: 6755
  year: 1999
  ident: 10.1016/j.patcog.2017.11.024_bib0048
  article-title: Learning the parts of objects by non-negative matrix factorization
  publication-title: Nature
  doi: 10.1038/44565
– volume: 35
  start-page: 185
  issue: 1
  year: 2013
  ident: 10.1016/j.patcog.2017.11.024_bib0002
  article-title: State-of-the-art in visual attention modeling
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.89
– volume: 54
  start-page: 3151
  issue: 6
  year: 2016
  ident: 10.1016/j.patcog.2017.11.024_bib0024
  article-title: A manifold alignment approach for hyperspectral image visualization with natural color
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2015.2512659
– volume: 1
  start-page: 11
  year: 1993
  ident: 10.1016/j.patcog.2017.11.024_bib0040
  article-title: Automating spectral unmixing of AVIRIS data using convex geometry concepts
– volume: 43
  start-page: 898
  issue: 4
  year: 2005
  ident: 10.1016/j.patcog.2017.11.024_bib0043
  article-title: Vertex component analysis: a fast algorithm to unmix hyperspectral data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2005.844293
– start-page: 1
  year: 2009
  ident: 10.1016/j.patcog.2017.11.024_bib0045
  article-title: A variable splitting augmented Lagrangian approach to linear spectral unmixing
– start-page: 114
  year: 2011
  ident: 10.1016/j.patcog.2017.11.024_bib0018
  article-title: Saliency in spectral images
– start-page: 1265
  year: 2015
  ident: 10.1016/j.patcog.2017.11.024_bib0035
  article-title: Saliency detection by multi-context deep learning
– volume: 21
  start-page: 3888
  issue: 9
  year: 2012
  ident: 10.1016/j.patcog.2017.11.024_bib0030
  article-title: Saliency detection in the compressed domain for adaptive image retargeting
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2012.2199126
– volume: 24
  start-page: 27
  issue: 1
  year: 2014
  ident: 10.1016/j.patcog.2017.11.024_bib0031
  article-title: A video saliency detection model in compressed domain
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2013.2273613
– volume: 25
  start-page: 1309
  issue: 8
  year: 2015
  ident: 10.1016/j.patcog.2017.11.024_bib0034
  article-title: Background prior-based salient object detection via deep reconstruction residual
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2014.2381471
– start-page: 2393
  year: 2013
  ident: 10.1016/j.patcog.2017.11.024_bib0021
  article-title: Salient object detection in hyperspectral imagery
– volume: 37
  start-page: 409
  issue: 3
  year: 2011
  ident: 10.1016/j.patcog.2017.11.024_bib0028
  article-title: Global contrast based salient region detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 51
  start-page: 2815
  issue: 5
  year: 2013
  ident: 10.1016/j.patcog.2017.11.024_bib0052
  article-title: Manifold regularized sparse NMF for hyperspectral unmixing
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2012.2213825
– start-page: 3586
  year: 2015
  ident: 10.1016/j.patcog.2017.11.024_bib0012
  article-title: Hyperspectral super-resolution by coupled spectral unmixing
– start-page: 556
  year: 2001
  ident: 10.1016/j.patcog.2017.11.024_bib0049
  article-title: Algorithms for non-negative matrix factorization
– start-page: 3727
  year: 2016
  ident: 10.1016/j.patcog.2017.11.024_bib0005
  article-title: Exploiting spectral-spatial correlation for coded hyperspectral image restoration
– volume: 33
  start-page: 353
  issue: 2
  year: 2011
  ident: 10.1016/j.patcog.2017.11.024_bib0027
  article-title: Learning to detect a salient object
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2010.70
– start-page: 1
  year: 2007
  ident: 10.1016/j.patcog.2017.11.024_bib0029
  article-title: Saliency detection: A spectral residual approach
– volume: 42
  start-page: 2363
  issue: 11
  year: 2009
  ident: 10.1016/j.patcog.2017.11.024_bib0025
  article-title: A simple method for detecting salient regions
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2009.04.021
– volume: 5
  start-page: 354
  issue: 2
  year: 2012
  ident: 10.1016/j.patcog.2017.11.024_bib0055
  article-title: Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2012.2194696
– volume: 19
  start-page: 1484
  issue: 8
  year: 2002
  ident: 10.1016/j.patcog.2017.11.024_bib0058
  article-title: Statistics of spatial cone-excitation ratios in natural scenes
  publication-title: J. Opt. Soc. Am. A
  doi: 10.1364/JOSAA.19.001484
– volume: 51
  start-page: 2276
  issue: 4
  year: 2013
  ident: 10.1016/j.patcog.2017.11.024_bib0017
  article-title: Hyperspectral image classification based on structured sparse logistic regression and three-dimensional wavelet texture features
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2012.2209657
– volume: 10
  start-page: 1575
  issue: 4
  year: 2017
  ident: 10.1016/j.patcog.2017.11.024_bib0054
  article-title: Region-based structure preserving nonnegative matrix factorization for hyperspectral unmixing
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2016.2621003
– volume: 54
  start-page: 6531
  issue: 11
  year: 2016
  ident: 10.1016/j.patcog.2017.11.024_bib0053
  article-title: Nonnegative-matrix-factorization-based hyperspectral unmixing with partially known endmembers
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2586110
– volume: 19
  start-page: 44
  issue: 1
  year: 2002
  ident: 10.1016/j.patcog.2017.11.024_bib0039
  article-title: Spectral unmixing
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/79.974727
– volume: 20
  start-page: 1254
  issue: 11
  year: 1998
  ident: 10.1016/j.patcog.2017.11.024_bib0001
  article-title: A model of saliency based visual attention for rapid scene analysis
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.730558
– volume: 49
  start-page: 4282
  issue: 11
  year: 2011
  ident: 10.1016/j.patcog.2017.11.024_bib0050
  article-title: Hyperspectral unmixing via L1/2 sparsity-constrained nonnegative matrix factorization
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2011.2144605
– volume: 24
  start-page: 5706
  issue: 12
  year: 2015
  ident: 10.1016/j.patcog.2017.11.024_bib0003
  article-title: Salient object detection: a benchmark
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2015.2487833
– volume: 120
  start-page: 215
  issue: 2
  year: 2016
  ident: 10.1016/j.patcog.2017.11.024_bib0033
  article-title: Detection of co-salient objects by looking deep and wide
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-016-0907-4
– volume: 13
  start-page: 411
  issue: 4
  year: 2000
  ident: 10.1016/j.patcog.2017.11.024_bib0046
  article-title: Independent component analysis: algorithms and applications
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(00)00026-5
SSID ssj0017142
Score 2.517178
Snippet •To the best of our knowledge, this is the first time that salient objects are detected based on extracting explicit material property embedded in the spectral...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 476
SubjectTerms Hyperspectral imaging
Hyperspectral unmixing
Material composition
Salient object detection
Spectral-spatial distribution
Title Material based salient object detection from hyperspectral images
URI https://dx.doi.org/10.1016/j.patcog.2017.11.024
Volume 76
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXrz4Fuuj7MHrttnuZrM5lmKpSnuy0FvI7ma1omlp49Xf7kweRUEUJBBIyED4MpmZXb75hpAbHocpxEXDhLYRk9JyFsc2ZCJz2kN5YqXB5uTJVI1n8n4ezltk2PTCIK2yjv1VTC-jdX2nV6PZWy0W2OOLsoNwAieVupTdljJCL-9-bGkeON-7UgwXnOHTTftcyfFaQbhbPiHBK-qilmdf_pyevqSc0SHZr2tFOqhe54i0svyYHDRzGGj9W56QwSQtSkeimJMc3UBtDbmELg1uslCXFSXfKqfYS0KfYeVZNViuwWLxBgFlc0pmo9vH4ZjVoxGYlVwXLA49Sq8L7S23Jkj7HvdeQ5Wa0GmVIcqB1zoNVCod98o7HWnlPM9M7EXkxBnZyZd5dk6oc8qafuAAQSeFgNVy4GTIDRwK7GSbiAaRxNa64Ti-4jVpCGIvSYVjgjjCkiIBHNuEba1WlW7GH89HDdjJt--fQGj_1fLi35aXZA-udMXDuSI7xfo9u4YSozCd0oc6ZHdw9zCefgKJddEW
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4BPcAFKA-xPFofytGQxI7jHDggKFpYlhMr7S3EdtwuandXbKqKC3-KP8hMHisqVVSqhCLlkGQiZzL6Zsb6ZgbgS5jGOeKi4ULbhEtpQ56mNuaicNpjeGKloeLk_o3qDuTVMB4uwHNbC0O0ygb7a0yv0Lq5ctxo83g6GlGNL7UdxBMaqdSBapiVveLxN-Zts5PLc_zJh1F08fX2rMub0QLcylCXPI09tS4X2tvQmiCPPO1dxio3sdOqoFUGXus8ULl0oVfe6UQr58PCpF4kTuB7F-GDRLigsQlHT3NeCQ0Ur1uUi5DT8tp6vYpUNkV8nXwjRllyRM1DI_l3f_jKx12sw2oTnLLT-vs_wkIx3oC1dvADa3BgE077eVlZLiMn6NgMg3l0XmxiaFeHuaKsCF5jRsUr7DumunVF5wNKjH4igs22YPAuCtuGpfFkXOwAc05ZEwUOf5mTQmB6HjgZhwYPhXKyA6LVSGabRuU0L-NH1jLS7rNajxnpEXOYDPXYAT6XmtaNOv7xfNIqO_vD4DL0JW9K7v635GdY7t72r7Pry5veHqzgHV2TgPZhqXz4VRxgfFOaT5U9Mbh7bwN-AfWnDdk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Material+based+salient+object+detection+from+hyperspectral+images&rft.jtitle=Pattern+recognition&rft.au=Liang%2C+Jie&rft.au=Zhou%2C+Jun&rft.au=Tong%2C+Lei&rft.au=Bai%2C+Xiao&rft.date=2018-04-01&rft.pub=Elsevier+Ltd&rft.issn=0031-3203&rft.eissn=1873-5142&rft.volume=76&rft.spage=476&rft.epage=490&rft_id=info:doi/10.1016%2Fj.patcog.2017.11.024&rft.externalDocID=S0031320317304806
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon