Material based salient object detection from hyperspectral images
•To the best of our knowledge, this is the first time that salient objects are detected based on extracting explicit material property embedded in the spectral responses via retrieval of endmembers and estimating their abundance.•The novelty also comes from adopting hyperspectral unmixing model as a...
Saved in:
Published in | Pattern recognition Vol. 76; pp. 476 - 490 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.04.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •To the best of our knowledge, this is the first time that salient objects are detected based on extracting explicit material property embedded in the spectral responses via retrieval of endmembers and estimating their abundance.•The novelty also comes from adopting hyperspectral unmixing model as a preprocessing step for salient object detection. This allows the spatial distribution of endmembers be estimated, so the method is capable of dealing with mixed spectral responses in low spatial resolution hyperspectral images.•Different from existing hyperspectral salient object detection methods, we developed a novel method to fuse both local and global features for hyperspectral salient object detection.•We built a hyperspectral image dataset for salient detection, which contains mixed objects with similar color but different materials.
While salient object detection has been studied intensively by the computer vision and pattern recognition community, there are still great challenges in practical applications, especially when perceived objects have similar appearance such as intensity, color, and orientation, but different materials. Traditional methods do not provide good solution to this problem since they were mostly developed on color images and do not have the full capability in discriminating materials. More advanced technology and methodology are in demand to gain access to further information beyond human vision. In this paper, we extend the concept of salient object detection to material level based on hyperspectral imaging and present a material-based salient object detection method which can effectively distinguish objects with similar perceived color but different spectral responses. The proposed method first estimates the spatial distribution of different materials or endmembers using a hyperspectral unmixing approach. This step enables the calculation of a conspicuity map based on the global spatial variance of spectral responses. Then the multi-scale center-surround difference of local spectral features is calculated via spectral distance measures to generate local spectral conspicuity maps. These two types of conspicuity maps are fused for the final salient object detection. A new dataset of 45 hyperspectral images is introduced for experimental validation. The results show that our method outperforms several existing hyperspectral salient object detection approaches and the state-of-the-art methods proposed for RGB images. |
---|---|
AbstractList | •To the best of our knowledge, this is the first time that salient objects are detected based on extracting explicit material property embedded in the spectral responses via retrieval of endmembers and estimating their abundance.•The novelty also comes from adopting hyperspectral unmixing model as a preprocessing step for salient object detection. This allows the spatial distribution of endmembers be estimated, so the method is capable of dealing with mixed spectral responses in low spatial resolution hyperspectral images.•Different from existing hyperspectral salient object detection methods, we developed a novel method to fuse both local and global features for hyperspectral salient object detection.•We built a hyperspectral image dataset for salient detection, which contains mixed objects with similar color but different materials.
While salient object detection has been studied intensively by the computer vision and pattern recognition community, there are still great challenges in practical applications, especially when perceived objects have similar appearance such as intensity, color, and orientation, but different materials. Traditional methods do not provide good solution to this problem since they were mostly developed on color images and do not have the full capability in discriminating materials. More advanced technology and methodology are in demand to gain access to further information beyond human vision. In this paper, we extend the concept of salient object detection to material level based on hyperspectral imaging and present a material-based salient object detection method which can effectively distinguish objects with similar perceived color but different spectral responses. The proposed method first estimates the spatial distribution of different materials or endmembers using a hyperspectral unmixing approach. This step enables the calculation of a conspicuity map based on the global spatial variance of spectral responses. Then the multi-scale center-surround difference of local spectral features is calculated via spectral distance measures to generate local spectral conspicuity maps. These two types of conspicuity maps are fused for the final salient object detection. A new dataset of 45 hyperspectral images is introduced for experimental validation. The results show that our method outperforms several existing hyperspectral salient object detection approaches and the state-of-the-art methods proposed for RGB images. |
Author | Liang, Jie Tong, Lei Bai, Xiao Zhou, Jun Wang, Bin |
Author_xml | – sequence: 1 givenname: Jie surname: Liang fullname: Liang, Jie organization: Facility Design and Instrumentation Institute, China Aerodynamics Research and Development Center, Sichuan, Mianyang, China – sequence: 2 givenname: Jun surname: Zhou fullname: Zhou, Jun email: jun.zhou@griffith.edu.au organization: School of Information and Communication Technology, Griffith University, Nathan, Australia – sequence: 3 givenname: Lei surname: Tong fullname: Tong, Lei organization: Faculty of Information Technology, Beijing University of Technology, Beijing, China – sequence: 4 givenname: Xiao surname: Bai fullname: Bai, Xiao organization: School of Computer Science and Engineer, Beihang University, Beijing, China – sequence: 5 givenname: Bin surname: Wang fullname: Wang, Bin organization: Facility Design and Instrumentation Institute, China Aerodynamics Research and Development Center, Sichuan, Mianyang, China |
BookMark | eNqFkM9KAzEQh4NUsK2-gYd9gV0z2X-pB6EUrULFi55DNpnULNvNkgShb29KPXnQ08DMfMNvvgWZjW5EQm6BFkChueuLSUbl9gWj0BYABWXVBZkDb8u8horNyJzSEvKS0fKKLELoaVpMgzlZv8qI3soh62RAnQU5WBxj5roeVcw0xlSsGzPj3SH7PE7ow5RaPhH2IPcYrsmlkUPAm5-6JB9Pj--b53z3tn3ZrHe5qoDHfFUbBpyV3ChQHZXMrIxp60Z2teYNGsooNZxL2shKg2mM5i1vtAHsVqZsdbkk9-e7yrsQPBqhbJSnbCmMHQRQcZIhenGWIU4yBIBIMhJc_YInn-L743_YwxnD9NiXRS-CSnoUauuTBKGd_fvAN-10fso |
CitedBy_id | crossref_primary_10_1016_j_cviu_2022_103535 crossref_primary_10_1088_1674_1056_ac8cd7 crossref_primary_10_1109_TIP_2022_3201478 crossref_primary_10_1016_j_compeleceng_2019_08_009 crossref_primary_10_1109_TGRS_2022_3224815 crossref_primary_10_1111_mice_12710 crossref_primary_10_1016_j_dsp_2022_103752 crossref_primary_10_1016_j_patcog_2019_05_012 crossref_primary_10_3390_s19224837 crossref_primary_10_1007_s00521_022_07330_1 crossref_primary_10_1109_TGRS_2020_3006534 crossref_primary_10_3390_rs14235958 crossref_primary_10_1007_s00500_021_06146_w crossref_primary_10_1109_TGRS_2024_3379380 crossref_primary_10_3390_rs13101922 crossref_primary_10_1016_j_patcog_2020_107404 crossref_primary_10_1109_JSTSP_2022_3180896 crossref_primary_10_1109_TGRS_2024_3366536 crossref_primary_10_1109_TGRS_2021_3052807 crossref_primary_10_1007_s00371_022_02499_x crossref_primary_10_1007_s00530_024_01363_3 crossref_primary_10_1109_TIP_2020_2965302 crossref_primary_10_1007_s00371_024_03324_3 crossref_primary_10_1109_TGRS_2022_3217097 crossref_primary_10_1016_j_patcog_2019_107131 crossref_primary_10_1016_j_sigpro_2020_107607 crossref_primary_10_1109_TIP_2022_3203605 crossref_primary_10_1109_TIM_2025_3527488 crossref_primary_10_1016_j_optlastec_2025_112796 crossref_primary_10_1016_j_patcog_2022_108788 crossref_primary_10_1007_s10115_018_1243_5 crossref_primary_10_1016_j_sigpro_2020_107672 crossref_primary_10_3390_rs14153512 crossref_primary_10_1109_TGRS_2021_3115699 crossref_primary_10_3390_rs15010231 crossref_primary_10_1016_j_chip_2023_100045 crossref_primary_10_1109_TMM_2023_3331196 crossref_primary_10_1007_s11042_023_17009_x crossref_primary_10_1016_j_patrec_2019_09_021 crossref_primary_10_1109_TGRS_2024_3367765 crossref_primary_10_3390_rs14040943 crossref_primary_10_1080_10095020_2024_2380476 crossref_primary_10_1016_j_patcog_2020_107303 crossref_primary_10_1016_j_jag_2024_103816 crossref_primary_10_3390_rs14091971 crossref_primary_10_1109_LGRS_2023_3326148 crossref_primary_10_1016_j_isprsjprs_2023_09_015 crossref_primary_10_1109_TGRS_2019_2935150 crossref_primary_10_3390_s22218502 crossref_primary_10_1016_j_patcog_2021_108224 crossref_primary_10_1016_j_neucom_2021_01_028 crossref_primary_10_1016_j_patcog_2022_108969 crossref_primary_10_1109_TGRS_2023_3260634 crossref_primary_10_1109_TGRS_2023_3307071 crossref_primary_10_1109_TIP_2021_3071682 crossref_primary_10_3390_rs16162975 crossref_primary_10_1049_ipr2_12677 crossref_primary_10_3788_AOS230901 crossref_primary_10_1080_2150704X_2021_2005270 crossref_primary_10_1109_ACCESS_2021_3091305 |
Cites_doi | 10.1109/TGRS.2011.2158319 10.1109/TSMC.1979.4310076 10.1109/TGRS.2014.2374218 10.1109/JSTARS.2013.2242255 10.1109/TIP.2015.2393057 10.1016/j.patcog.2010.12.019 10.1109/TGRS.2015.2417162 10.1109/TPAMI.2015.2473844 10.1364/AO.55.008089 10.1016/j.neucom.2015.02.073 10.1109/TIP.2017.2721112 10.1109/TGRS.2016.2601622 10.1007/s11265-010-0533-2 10.1016/j.patcog.2012.02.009 10.1109/TGRS.2011.2162649 10.1017/S0952523804213335 10.1109/TGRS.2014.2363101 10.1038/44565 10.1109/TPAMI.2012.89 10.1109/TGRS.2015.2512659 10.1109/TGRS.2005.844293 10.1109/TIP.2012.2199126 10.1109/TCSVT.2013.2273613 10.1109/TCSVT.2014.2381471 10.1109/TGRS.2012.2213825 10.1109/TPAMI.2010.70 10.1016/j.patcog.2009.04.021 10.1109/JSTARS.2012.2194696 10.1364/JOSAA.19.001484 10.1109/TGRS.2012.2209657 10.1109/JSTARS.2016.2621003 10.1109/TGRS.2016.2586110 10.1109/79.974727 10.1109/34.730558 10.1109/TGRS.2011.2144605 10.1109/TIP.2015.2487833 10.1007/s11263-016-0907-4 10.1016/S0893-6080(00)00026-5 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd |
Copyright_xml | – notice: 2017 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.patcog.2017.11.024 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-5142 |
EndPage | 490 |
ExternalDocumentID | 10_1016_j_patcog_2017_11_024 S0031320317304806 |
GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c418t-95f218238fc1cb0a2f9ff756ab5d86ef0200f88a06a4d1f6fd8786df1eb9f37d3 |
IEDL.DBID | .~1 |
ISSN | 0031-3203 |
IngestDate | Tue Jul 01 02:36:27 EDT 2025 Thu Apr 24 23:05:55 EDT 2025 Fri Feb 23 02:25:23 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Hyperspectral unmixing Material composition Spectral-spatial distribution Salient object detection Hyperspectral imaging |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c418t-95f218238fc1cb0a2f9ff756ab5d86ef0200f88a06a4d1f6fd8786df1eb9f37d3 |
OpenAccessLink | http://hdl.handle.net/10072/381115 |
PageCount | 15 |
ParticipantIDs | crossref_citationtrail_10_1016_j_patcog_2017_11_024 crossref_primary_10_1016_j_patcog_2017_11_024 elsevier_sciencedirect_doi_10_1016_j_patcog_2017_11_024 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2018 2018-04-00 |
PublicationDateYYYYMMDD | 2018-04-01 |
PublicationDate_xml | – month: 04 year: 2018 text: April 2018 |
PublicationDecade | 2010 |
PublicationTitle | Pattern recognition |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Han, Zhang, Hu, Guo, Ren, Wu (bib0034) 2015; 25 Nascimento, Ferreira, Foster (bib0058) 2002; 19 Hou, Zhang (bib0029) 2007 Lanaras, Baltsavias, Schindler (bib0012) 2015 Keshava, Mustard (bib0039) 2002; 19 Cheng, Mitra, Huang, Torr, Hu, Zhang, Mitra, Huang, Hu (bib0028) 2011; 37 Fang, Zhang, Li, Lei, Perreira Da Silva, Le Callet (bib0032) 2017; 26 Boardman (bib0040) 1993; 1 Kwon, Tai (bib0011) 2015 Itti, Koch, Niebur (bib0001) 1998; 20 Le Moan, Mansouri, Voisin, Hardeberg (bib0023) 2011; 49 Borji, Itti (bib0002) 2013; 35 Liao, Qian, Zhou, Tang (bib0024) 2016; 54 Lu, Wu, Yuan, Yan, Li (bib0052) 2013; 51 Le Moan, Mansouri, Hardeberg, Voisin (bib0018) 2011 Bioucas-Dias (bib0045) 2009 Du, Raksuntorn, Cai, Moorhead (bib0022) 2008; 46 Han, Zhang, Cheng, Guo, Ren (bib0036) 2015; 53 Fu, Robles-Kelly, Zhou (bib0015) 2006; 33 Foster, Nascimento, Amano (bib0007) 2004; 21 Zhang, Sclaroff (bib0059) 2016; 38 Wang, Du, Zhang (bib0051) 2013; 6 Zhang, Han, Li, Wang, Li (bib0033) 2016; 120 Nascimento, Bioucas-Dias (bib0043) 2005; 43 Chakrabarti, Zickler (bib0008) 2011 Li, Agathos, Zaharie, Bioucas-Dias, Plaza, Li (bib0044) 2015; 53 Bioucas-Dias, Plaza, Dobigeon, Du, Gader, Chanussot (bib0055) 2012; 5 Wang, Xiong, Gao, Shi, Zeng, Wu (bib0010) 2015 Rosin (bib0025) 2009; 42 Hyvärinen, Oja (bib0046) 2000; 13 Fang, Lin, Chen, Tsai, Lin (bib0031) 2014; 24 Lee, Seung (bib0048) 1999; 401 Tong, Zhou, Qian, Bai, Gao (bib0053) 2016; 54 Tong, Zhou, Li, Qian, Gao (bib0054) 2017; 10 Yan, Zhang, Wei, Zhang, Li (bib0020) 2016 Liu, Yuan, Sun, Wang, Zheng, Tang, Shum (bib0027) 2011; 33 Lee, Seung (bib0049) 2001 Li, Bioucas-Dias, Plaza (bib0016) 2012; 50 Ye, Qian, Zhou (bib0014) 2015; 53 Liang, Zhou, Bai, Qian (bib0021) 2013 Cheng, Zhou, Han (bib0037) 2016; 54 Boardman, Kruse, Green (bib0041) 1995; 1 Qian, Jia, Zhou, Robles-Kelly (bib0050) 2011; 49 Qian, Ye, Zhou (bib0017) 2013; 51 Habili, Oorloff (bib0060) 2015; II Arngren, Schmidt, Larsen (bib0047) 2011; 65 Winter (bib0042) 1999 Kim, Deng, Brown (bib0004) 2012; 44 Oh, Brown, Pollefeys, Kim (bib0009) 2016 Fu, Zheng, Sato, Sato (bib0005) 2016 Borji, Cheng, Jiang, Li (bib0003) 2015; 24 Akhtar, Shafait, Mian (bib0013) 2015 Belkin, Niyogi (bib0056) 2001; 14 Uzair, Mahmood, Mian (bib0006) 2015; 24 Zhang, Geng, Zhuo, Tian, Cao (bib0019) 2016; 55 Fang, Chen, Lin, Lin (bib0030) 2012; 21 Zhao, Ouyang, Li, Wang (bib0035) 2015 Vikram, Tscherepanow, Wrede (bib0026) 2012; 45 Otsu (bib0057) 1979; 9 Yao, Han, Guo, Bu, Liu (bib0038) 2015; 164 Liang (10.1016/j.patcog.2017.11.024_bib0021) 2013 Ye (10.1016/j.patcog.2017.11.024_bib0014) 2015; 53 Hyvärinen (10.1016/j.patcog.2017.11.024_bib0046) 2000; 13 Liao (10.1016/j.patcog.2017.11.024_bib0024) 2016; 54 Foster (10.1016/j.patcog.2017.11.024_bib0007) 2004; 21 Yao (10.1016/j.patcog.2017.11.024_bib0038) 2015; 164 Le Moan (10.1016/j.patcog.2017.11.024_bib0018) 2011 Boardman (10.1016/j.patcog.2017.11.024_bib0041) 1995; 1 Winter (10.1016/j.patcog.2017.11.024_bib0042) 1999 Lee (10.1016/j.patcog.2017.11.024_bib0049) 2001 Hou (10.1016/j.patcog.2017.11.024_bib0029) 2007 Zhang (10.1016/j.patcog.2017.11.024_bib0059) 2016; 38 Han (10.1016/j.patcog.2017.11.024_bib0034) 2015; 25 Boardman (10.1016/j.patcog.2017.11.024_bib0040) 1993; 1 Lu (10.1016/j.patcog.2017.11.024_bib0052) 2013; 51 Fang (10.1016/j.patcog.2017.11.024_bib0030) 2012; 21 Le Moan (10.1016/j.patcog.2017.11.024_bib0023) 2011; 49 Liu (10.1016/j.patcog.2017.11.024_bib0027) 2011; 33 Du (10.1016/j.patcog.2017.11.024_bib0022) 2008; 46 Qian (10.1016/j.patcog.2017.11.024_bib0050) 2011; 49 Uzair (10.1016/j.patcog.2017.11.024_bib0006) 2015; 24 Tong (10.1016/j.patcog.2017.11.024_bib0054) 2017; 10 Fu (10.1016/j.patcog.2017.11.024_bib0005) 2016 Qian (10.1016/j.patcog.2017.11.024_bib0017) 2013; 51 Zhang (10.1016/j.patcog.2017.11.024_bib0019) 2016; 55 Kwon (10.1016/j.patcog.2017.11.024_bib0011) 2015 Bioucas-Dias (10.1016/j.patcog.2017.11.024_bib0045) 2009 Borji (10.1016/j.patcog.2017.11.024_bib0002) 2013; 35 Li (10.1016/j.patcog.2017.11.024_bib0044) 2015; 53 Nascimento (10.1016/j.patcog.2017.11.024_bib0043) 2005; 43 Fang (10.1016/j.patcog.2017.11.024_bib0032) 2017; 26 Arngren (10.1016/j.patcog.2017.11.024_bib0047) 2011; 65 Itti (10.1016/j.patcog.2017.11.024_bib0001) 1998; 20 Cheng (10.1016/j.patcog.2017.11.024_bib0037) 2016; 54 Zhao (10.1016/j.patcog.2017.11.024_bib0035) 2015 Habili (10.1016/j.patcog.2017.11.024_bib0060) 2015; II Akhtar (10.1016/j.patcog.2017.11.024_bib0013) 2015 Yan (10.1016/j.patcog.2017.11.024_bib0020) 2016 Keshava (10.1016/j.patcog.2017.11.024_bib0039) 2002; 19 Fang (10.1016/j.patcog.2017.11.024_bib0031) 2014; 24 Bioucas-Dias (10.1016/j.patcog.2017.11.024_bib0055) 2012; 5 Li (10.1016/j.patcog.2017.11.024_bib0016) 2012; 50 Lee (10.1016/j.patcog.2017.11.024_bib0048) 1999; 401 Wang (10.1016/j.patcog.2017.11.024_bib0010) 2015 Borji (10.1016/j.patcog.2017.11.024_bib0003) 2015; 24 Kim (10.1016/j.patcog.2017.11.024_bib0004) 2012; 44 Oh (10.1016/j.patcog.2017.11.024_bib0009) 2016 Rosin (10.1016/j.patcog.2017.11.024_bib0025) 2009; 42 Lanaras (10.1016/j.patcog.2017.11.024_bib0012) 2015 Belkin (10.1016/j.patcog.2017.11.024_bib0056) 2001; 14 Zhang (10.1016/j.patcog.2017.11.024_bib0033) 2016; 120 Chakrabarti (10.1016/j.patcog.2017.11.024_bib0008) 2011 Han (10.1016/j.patcog.2017.11.024_bib0036) 2015; 53 Wang (10.1016/j.patcog.2017.11.024_bib0051) 2013; 6 Fu (10.1016/j.patcog.2017.11.024_bib0015) 2006; 33 Otsu (10.1016/j.patcog.2017.11.024_bib0057) 1979; 9 Nascimento (10.1016/j.patcog.2017.11.024_bib0058) 2002; 19 Cheng (10.1016/j.patcog.2017.11.024_bib0028) 2011; 37 Vikram (10.1016/j.patcog.2017.11.024_bib0026) 2012; 45 Tong (10.1016/j.patcog.2017.11.024_bib0053) 2016; 54 |
References_xml | – volume: 401 start-page: 788 year: 1999 end-page: 791 ident: bib0048 article-title: Learning the parts of objects by non-negative matrix factorization publication-title: Nature – volume: 164 start-page: 162 year: 2015 end-page: 172 ident: bib0038 article-title: A coarse-to-fine model for airport detection from remote sensing images using target-oriented visual saliency and CRF publication-title: Neurocomputing – volume: 19 start-page: 44 year: 2002 end-page: 57 ident: bib0039 article-title: Spectral unmixing publication-title: IEEE Signal Process. Mag. – volume: 1 start-page: 23 year: 1995 end-page: 26 ident: bib0041 article-title: Mapping target signatures via partial unmixing of AVIRIS data publication-title: Summaries of JPL Airborne Earth Science Workshop – start-page: 1560 year: 2016 end-page: 1563 ident: bib0020 article-title: Salient object detection in hyperspectral imagery using spectral gradient contrast publication-title: Proceedings of the IEEE International Geoscience and Remote Sensing Symposium – volume: 21 start-page: 331 year: 2004 end-page: 336 ident: bib0007 article-title: Information limits on neural identification of colored surfaces in natural scenes publication-title: Vis. Neurosci. – volume: 51 start-page: 2815 year: 2013 end-page: 2826 ident: bib0052 article-title: Manifold regularized sparse NMF for hyperspectral unmixing publication-title: IEEE Trans. Geosci. Remote Sens. – start-page: 1 year: 2007 end-page: 8 ident: bib0029 article-title: Saliency detection: A spectral residual approach publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 13 start-page: 411 year: 2000 end-page: 430 ident: bib0046 article-title: Independent component analysis: algorithms and applications publication-title: Neural Netw. – volume: 24 start-page: 5706 year: 2015 end-page: 5722 ident: bib0003 article-title: Salient object detection: a benchmark publication-title: IEEE Trans. Image Process. – volume: 1 start-page: 11 year: 1993 end-page: 14 ident: bib0040 article-title: Automating spectral unmixing of AVIRIS data using convex geometry concepts publication-title: Proceedings of the Annual JPL Airborne Geoscience Workshop – volume: 20 start-page: 1254 year: 1998 end-page: 1259 ident: bib0001 article-title: A model of saliency based visual attention for rapid scene analysis publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 3631 year: 2015 end-page: 3640 ident: bib0013 article-title: Bayesian sparse representation for hyperspectral image super resolution publication-title: Proceedings of the IEEE Computer Vision and Pattern Recognition Conference – volume: 49 start-page: 4282 year: 2011 end-page: 4297 ident: bib0050 article-title: Hyperspectral unmixing via publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 38 start-page: 889 year: 2016 end-page: 902 ident: bib0059 article-title: Exploiting surroundedness for saliency detection: a boolean map approach publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 21 start-page: 3888 year: 2012 end-page: 3901 ident: bib0030 article-title: Saliency detection in the compressed domain for adaptive image retargeting publication-title: IEEE Trans. Image Process. – volume: 33 start-page: 353 year: 2011 end-page: 367 ident: bib0027 article-title: Learning to detect a salient object publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 9 start-page: 62 year: 1979 end-page: 66 ident: bib0057 article-title: A thresholding selection method from gray-level histograms publication-title: IEEE Trans Syst Man Cybern. – volume: 65 start-page: 479 year: 2011 end-page: 496 ident: bib0047 article-title: Unmixing of hyperspectral images using Bayesian non-negative matrix factorization with volume prior publication-title: J. Signal Process. Syst. – volume: 24 start-page: 1127 year: 2015 end-page: 1137 ident: bib0006 article-title: Hyperpsectral face recognition with spatio-spectral information fusion and PLS regression publication-title: IEEE Trans. Image Process. – volume: 53 start-page: 5067 year: 2015 end-page: 5082 ident: bib0044 article-title: Minimum volume simplex analysis: a fast algorithm for linear hyperspectral unmixing publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 51 start-page: 2276 year: 2013 end-page: 2291 ident: bib0017 article-title: Hyperspectral image classification based on structured sparse logistic regression and three-dimensional wavelet texture features publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 5 start-page: 354 year: 2012 end-page: 379 ident: bib0055 article-title: Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 54 start-page: 3151 year: 2016 end-page: 3162 ident: bib0024 article-title: A manifold alignment approach for hyperspectral image visualization with natural color publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 49 start-page: 5104 year: 2011 end-page: 5115 ident: bib0023 article-title: A constrained band selection method based on information measures for spectral image color visualization publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 37 start-page: 409 year: 2011 end-page: 416 ident: bib0028 article-title: Global contrast based salient region detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 6 start-page: 554 year: 2013 end-page: 569 ident: bib0051 article-title: An endmember dissimilarity constrained non-negative matrix factorization method for hyperspectral unmixing publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 50 start-page: 809 year: 2012 end-page: 823 ident: bib0016 article-title: Spectralspatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields publication-title: IEEE Trans. Geosci. Remote Sens. – volume: II start-page: 1 year: 2015 end-page: 4 ident: bib0060 article-title: Scyllarus: from research to commercial software – start-page: 266 year: 1999 end-page: 275 ident: bib0042 article-title: N-FINDR: an algorithm for fast autonomous spectral endmember determination in hyperspectral data publication-title: Proceedings of the SPIE International Symposium on Optical Science, Engineering, and Instrumentation – start-page: 3586 year: 2015 end-page: 3594 ident: bib0012 article-title: Hyperspectral super-resolution by coupled spectral unmixing publication-title: Proceedings of the IEEE International Conference on Computer Vision – volume: 19 start-page: 1484 year: 2002 end-page: 1490 ident: bib0058 article-title: Statistics of spatial cone-excitation ratios in natural scenes publication-title: J. Opt. Soc. Am. A – start-page: 3727 year: 2016 end-page: 3736 ident: bib0005 article-title: Exploiting spectral-spatial correlation for coded hyperspectral image restoration publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 53 start-page: 2621 year: 2015 end-page: 2639 ident: bib0014 article-title: Multi-task sparse nonnegative matrix factorization for joint spectral-spatial hyperspectral imagery denoising publication-title: IEEE Trans. Geosci. Remote Sens. – start-page: 4942 year: 2015 end-page: 4950 ident: bib0010 article-title: High-speed hyperspectral video acquisition with a dual-camera architecture publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 2393 year: 2013 end-page: 2397 ident: bib0021 article-title: Salient object detection in hyperspectral imagery publication-title: Proceedings of the IEEE International Conference on Image Processing – volume: 42 start-page: 2363 year: 2009 end-page: 2371 ident: bib0025 article-title: A simple method for detecting salient regions publication-title: Pattern Recognit. – volume: 46 start-page: 1858 year: 2008 end-page: 1866 ident: bib0022 article-title: Color display for hyperspectral imagery publication-title: Image Vis. Comput. – volume: 24 start-page: 27 year: 2014 end-page: 38 ident: bib0031 article-title: A video saliency detection model in compressed domain publication-title: IEEE Trans. Circuits Syst. Video Technol. – start-page: 556 year: 2001 end-page: 562 ident: bib0049 article-title: Algorithms for non-negative matrix factorization publication-title: Proceedings of the Advances in Neural Information Processing Systems – volume: 25 start-page: 1309 year: 2015 end-page: 1321 ident: bib0034 article-title: Background prior-based salient object detection via deep reconstruction residual publication-title: IEEE Trans. Circuits Syst. Video Technol. – start-page: 1265 year: 2015 end-page: 1274 ident: bib0035 article-title: Saliency detection by multi-context deep learning publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 44 start-page: 1461 year: 2012 end-page: 1469 ident: bib0004 article-title: Visual enhancement of old documents with hyperspectral imaging publication-title: Pattern Recognit. – start-page: 114 year: 2011 end-page: 123 ident: bib0018 article-title: Saliency in spectral images publication-title: Proceedings of the 17th Scandinavian Conference on Image Analysis – volume: 55 start-page: 8089 year: 2016 end-page: 8100 ident: bib0019 article-title: Multiscale target extraction using a spectral saliency map for a hyperspectral image publication-title: Appl. Opt. – volume: 45 start-page: 3114 year: 2012 end-page: 3124 ident: bib0026 article-title: A saliency map based on sampling an image into random rectangular regions of interest publication-title: Pattern Recognit. – volume: 35 start-page: 185 year: 2013 end-page: 207 ident: bib0002 article-title: State-of-the-art in visual attention modeling publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 120 start-page: 215 year: 2016 end-page: 232 ident: bib0033 article-title: Detection of co-salient objects by looking deep and wide publication-title: Int. J. Comput. Vis. – volume: 43 start-page: 898 year: 2005 end-page: 910 ident: bib0043 article-title: Vertex component analysis: a fast algorithm to unmix hyperspectral data publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 26 start-page: 4684 year: 2017 end-page: 4696 ident: bib0032 article-title: Visual attention modeling for stereoscopic video: a benchmark and computational model publication-title: IEEE Trans. Image Process. – start-page: 307 year: 2015 end-page: 315 ident: bib0011 article-title: RGB-guided hyperspectral image upsampling publication-title: Proceedings of the IEEE International Conference on Computer Vision – start-page: 1 year: 2009 end-page: 4 ident: bib0045 article-title: A variable splitting augmented Lagrangian approach to linear spectral unmixing publication-title: Proceedings of the Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing – start-page: 193 year: 2011 end-page: 200 ident: bib0008 article-title: Statistics of real-world hyperspectral images publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 54 start-page: 6531 year: 2016 end-page: 6544 ident: bib0053 article-title: Nonnegative-matrix-factorization-based hyperspectral unmixing with partially known endmembers publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 10 start-page: 1575 year: 2017 end-page: 1588 ident: bib0054 article-title: Region-based structure preserving nonnegative matrix factorization for hyperspectral unmixing publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 33 start-page: 958 year: 2006 end-page: 977 ident: bib0015 article-title: MILIS: Multiple instance learning with instance selection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 2461 year: 2016 end-page: 2469 ident: bib0009 article-title: Do it yourself hyperspectral imaging with everyday digital cameras publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 14 start-page: 585 year: 2001 end-page: 591 ident: bib0056 article-title: Laplacian eigenmaps and spectral techniques for embedding and clustering publication-title: Proceedings of the 14th International Conference on Neural Information Processing Systems – volume: 53 start-page: 3325 year: 2015 end-page: 3337 ident: bib0036 article-title: Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 54 start-page: 7405 year: 2016 end-page: 7415 ident: bib0037 article-title: Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. – start-page: 2461 year: 2016 ident: 10.1016/j.patcog.2017.11.024_bib0009 article-title: Do it yourself hyperspectral imaging with everyday digital cameras – volume: 1 start-page: 23 year: 1995 ident: 10.1016/j.patcog.2017.11.024_bib0041 article-title: Mapping target signatures via partial unmixing of AVIRIS data publication-title: Summaries of JPL Airborne Earth Science Workshop – volume: 49 start-page: 5104 issue: 12 year: 2011 ident: 10.1016/j.patcog.2017.11.024_bib0023 article-title: A constrained band selection method based on information measures for spectral image color visualization publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2011.2158319 – volume: 9 start-page: 62 year: 1979 ident: 10.1016/j.patcog.2017.11.024_bib0057 article-title: A thresholding selection method from gray-level histograms publication-title: IEEE Trans Syst Man Cybern. doi: 10.1109/TSMC.1979.4310076 – volume: 53 start-page: 3325 issue: 6 year: 2015 ident: 10.1016/j.patcog.2017.11.024_bib0036 article-title: Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2014.2374218 – start-page: 4942 year: 2015 ident: 10.1016/j.patcog.2017.11.024_bib0010 article-title: High-speed hyperspectral video acquisition with a dual-camera architecture – start-page: 307 year: 2015 ident: 10.1016/j.patcog.2017.11.024_bib0011 article-title: RGB-guided hyperspectral image upsampling – start-page: 193 year: 2011 ident: 10.1016/j.patcog.2017.11.024_bib0008 article-title: Statistics of real-world hyperspectral images – start-page: 1560 year: 2016 ident: 10.1016/j.patcog.2017.11.024_bib0020 article-title: Salient object detection in hyperspectral imagery using spectral gradient contrast – volume: 6 start-page: 554 issue: 2 year: 2013 ident: 10.1016/j.patcog.2017.11.024_bib0051 article-title: An endmember dissimilarity constrained non-negative matrix factorization method for hyperspectral unmixing publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2013.2242255 – volume: 24 start-page: 1127 issue: 3 year: 2015 ident: 10.1016/j.patcog.2017.11.024_bib0006 article-title: Hyperpsectral face recognition with spatio-spectral information fusion and PLS regression publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2015.2393057 – start-page: 3631 year: 2015 ident: 10.1016/j.patcog.2017.11.024_bib0013 article-title: Bayesian sparse representation for hyperspectral image super resolution – volume: 14 start-page: 585 year: 2001 ident: 10.1016/j.patcog.2017.11.024_bib0056 article-title: Laplacian eigenmaps and spectral techniques for embedding and clustering – volume: 44 start-page: 1461 issue: 7 year: 2012 ident: 10.1016/j.patcog.2017.11.024_bib0004 article-title: Visual enhancement of old documents with hyperspectral imaging publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2010.12.019 – volume: 33 start-page: 958 issue: 5 year: 2006 ident: 10.1016/j.patcog.2017.11.024_bib0015 article-title: MILIS: Multiple instance learning with instance selection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 53 start-page: 5067 issue: 9 year: 2015 ident: 10.1016/j.patcog.2017.11.024_bib0044 article-title: Minimum volume simplex analysis: a fast algorithm for linear hyperspectral unmixing publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2015.2417162 – volume: 38 start-page: 889 issue: 5 year: 2016 ident: 10.1016/j.patcog.2017.11.024_bib0059 article-title: Exploiting surroundedness for saliency detection: a boolean map approach publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2473844 – start-page: 266 year: 1999 ident: 10.1016/j.patcog.2017.11.024_bib0042 article-title: N-FINDR: an algorithm for fast autonomous spectral endmember determination in hyperspectral data – volume: 55 start-page: 8089 issue: 28 year: 2016 ident: 10.1016/j.patcog.2017.11.024_bib0019 article-title: Multiscale target extraction using a spectral saliency map for a hyperspectral image publication-title: Appl. Opt. doi: 10.1364/AO.55.008089 – volume: 164 start-page: 162 year: 2015 ident: 10.1016/j.patcog.2017.11.024_bib0038 article-title: A coarse-to-fine model for airport detection from remote sensing images using target-oriented visual saliency and CRF publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.02.073 – volume: 46 start-page: 1858 issue: 6 year: 2008 ident: 10.1016/j.patcog.2017.11.024_bib0022 article-title: Color display for hyperspectral imagery publication-title: Image Vis. Comput. – volume: 26 start-page: 4684 issue: 10 year: 2017 ident: 10.1016/j.patcog.2017.11.024_bib0032 article-title: Visual attention modeling for stereoscopic video: a benchmark and computational model publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2017.2721112 – volume: 54 start-page: 7405 issue: 12 year: 2016 ident: 10.1016/j.patcog.2017.11.024_bib0037 article-title: Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2601622 – volume: 65 start-page: 479 issue: 3 year: 2011 ident: 10.1016/j.patcog.2017.11.024_bib0047 article-title: Unmixing of hyperspectral images using Bayesian non-negative matrix factorization with volume prior publication-title: J. Signal Process. Syst. doi: 10.1007/s11265-010-0533-2 – volume: 45 start-page: 3114 issue: 9 year: 2012 ident: 10.1016/j.patcog.2017.11.024_bib0026 article-title: A saliency map based on sampling an image into random rectangular regions of interest publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2012.02.009 – volume: II start-page: 1 year: 2015 ident: 10.1016/j.patcog.2017.11.024_bib0060 article-title: Scyllarus: from research to commercial software – volume: 50 start-page: 809 issue: 3 year: 2012 ident: 10.1016/j.patcog.2017.11.024_bib0016 article-title: Spectralspatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2011.2162649 – volume: 21 start-page: 331 year: 2004 ident: 10.1016/j.patcog.2017.11.024_bib0007 article-title: Information limits on neural identification of colored surfaces in natural scenes publication-title: Vis. Neurosci. doi: 10.1017/S0952523804213335 – volume: 53 start-page: 2621 issue: 5 year: 2015 ident: 10.1016/j.patcog.2017.11.024_bib0014 article-title: Multi-task sparse nonnegative matrix factorization for joint spectral-spatial hyperspectral imagery denoising publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2014.2363101 – volume: 401 start-page: 788 issue: 6755 year: 1999 ident: 10.1016/j.patcog.2017.11.024_bib0048 article-title: Learning the parts of objects by non-negative matrix factorization publication-title: Nature doi: 10.1038/44565 – volume: 35 start-page: 185 issue: 1 year: 2013 ident: 10.1016/j.patcog.2017.11.024_bib0002 article-title: State-of-the-art in visual attention modeling publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.89 – volume: 54 start-page: 3151 issue: 6 year: 2016 ident: 10.1016/j.patcog.2017.11.024_bib0024 article-title: A manifold alignment approach for hyperspectral image visualization with natural color publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2015.2512659 – volume: 1 start-page: 11 year: 1993 ident: 10.1016/j.patcog.2017.11.024_bib0040 article-title: Automating spectral unmixing of AVIRIS data using convex geometry concepts – volume: 43 start-page: 898 issue: 4 year: 2005 ident: 10.1016/j.patcog.2017.11.024_bib0043 article-title: Vertex component analysis: a fast algorithm to unmix hyperspectral data publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2005.844293 – start-page: 1 year: 2009 ident: 10.1016/j.patcog.2017.11.024_bib0045 article-title: A variable splitting augmented Lagrangian approach to linear spectral unmixing – start-page: 114 year: 2011 ident: 10.1016/j.patcog.2017.11.024_bib0018 article-title: Saliency in spectral images – start-page: 1265 year: 2015 ident: 10.1016/j.patcog.2017.11.024_bib0035 article-title: Saliency detection by multi-context deep learning – volume: 21 start-page: 3888 issue: 9 year: 2012 ident: 10.1016/j.patcog.2017.11.024_bib0030 article-title: Saliency detection in the compressed domain for adaptive image retargeting publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2012.2199126 – volume: 24 start-page: 27 issue: 1 year: 2014 ident: 10.1016/j.patcog.2017.11.024_bib0031 article-title: A video saliency detection model in compressed domain publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2013.2273613 – volume: 25 start-page: 1309 issue: 8 year: 2015 ident: 10.1016/j.patcog.2017.11.024_bib0034 article-title: Background prior-based salient object detection via deep reconstruction residual publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2014.2381471 – start-page: 2393 year: 2013 ident: 10.1016/j.patcog.2017.11.024_bib0021 article-title: Salient object detection in hyperspectral imagery – volume: 37 start-page: 409 issue: 3 year: 2011 ident: 10.1016/j.patcog.2017.11.024_bib0028 article-title: Global contrast based salient region detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 51 start-page: 2815 issue: 5 year: 2013 ident: 10.1016/j.patcog.2017.11.024_bib0052 article-title: Manifold regularized sparse NMF for hyperspectral unmixing publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2012.2213825 – start-page: 3586 year: 2015 ident: 10.1016/j.patcog.2017.11.024_bib0012 article-title: Hyperspectral super-resolution by coupled spectral unmixing – start-page: 556 year: 2001 ident: 10.1016/j.patcog.2017.11.024_bib0049 article-title: Algorithms for non-negative matrix factorization – start-page: 3727 year: 2016 ident: 10.1016/j.patcog.2017.11.024_bib0005 article-title: Exploiting spectral-spatial correlation for coded hyperspectral image restoration – volume: 33 start-page: 353 issue: 2 year: 2011 ident: 10.1016/j.patcog.2017.11.024_bib0027 article-title: Learning to detect a salient object publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2010.70 – start-page: 1 year: 2007 ident: 10.1016/j.patcog.2017.11.024_bib0029 article-title: Saliency detection: A spectral residual approach – volume: 42 start-page: 2363 issue: 11 year: 2009 ident: 10.1016/j.patcog.2017.11.024_bib0025 article-title: A simple method for detecting salient regions publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2009.04.021 – volume: 5 start-page: 354 issue: 2 year: 2012 ident: 10.1016/j.patcog.2017.11.024_bib0055 article-title: Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2012.2194696 – volume: 19 start-page: 1484 issue: 8 year: 2002 ident: 10.1016/j.patcog.2017.11.024_bib0058 article-title: Statistics of spatial cone-excitation ratios in natural scenes publication-title: J. Opt. Soc. Am. A doi: 10.1364/JOSAA.19.001484 – volume: 51 start-page: 2276 issue: 4 year: 2013 ident: 10.1016/j.patcog.2017.11.024_bib0017 article-title: Hyperspectral image classification based on structured sparse logistic regression and three-dimensional wavelet texture features publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2012.2209657 – volume: 10 start-page: 1575 issue: 4 year: 2017 ident: 10.1016/j.patcog.2017.11.024_bib0054 article-title: Region-based structure preserving nonnegative matrix factorization for hyperspectral unmixing publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2016.2621003 – volume: 54 start-page: 6531 issue: 11 year: 2016 ident: 10.1016/j.patcog.2017.11.024_bib0053 article-title: Nonnegative-matrix-factorization-based hyperspectral unmixing with partially known endmembers publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2586110 – volume: 19 start-page: 44 issue: 1 year: 2002 ident: 10.1016/j.patcog.2017.11.024_bib0039 article-title: Spectral unmixing publication-title: IEEE Signal Process. Mag. doi: 10.1109/79.974727 – volume: 20 start-page: 1254 issue: 11 year: 1998 ident: 10.1016/j.patcog.2017.11.024_bib0001 article-title: A model of saliency based visual attention for rapid scene analysis publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.730558 – volume: 49 start-page: 4282 issue: 11 year: 2011 ident: 10.1016/j.patcog.2017.11.024_bib0050 article-title: Hyperspectral unmixing via L1/2 sparsity-constrained nonnegative matrix factorization publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2011.2144605 – volume: 24 start-page: 5706 issue: 12 year: 2015 ident: 10.1016/j.patcog.2017.11.024_bib0003 article-title: Salient object detection: a benchmark publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2015.2487833 – volume: 120 start-page: 215 issue: 2 year: 2016 ident: 10.1016/j.patcog.2017.11.024_bib0033 article-title: Detection of co-salient objects by looking deep and wide publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-016-0907-4 – volume: 13 start-page: 411 issue: 4 year: 2000 ident: 10.1016/j.patcog.2017.11.024_bib0046 article-title: Independent component analysis: algorithms and applications publication-title: Neural Netw. doi: 10.1016/S0893-6080(00)00026-5 |
SSID | ssj0017142 |
Score | 2.517178 |
Snippet | •To the best of our knowledge, this is the first time that salient objects are detected based on extracting explicit material property embedded in the spectral... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 476 |
SubjectTerms | Hyperspectral imaging Hyperspectral unmixing Material composition Salient object detection Spectral-spatial distribution |
Title | Material based salient object detection from hyperspectral images |
URI | https://dx.doi.org/10.1016/j.patcog.2017.11.024 |
Volume | 76 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXrz4Fuuj7MHrttnuZrM5lmKpSnuy0FvI7ma1omlp49Xf7kweRUEUJBBIyED4MpmZXb75hpAbHocpxEXDhLYRk9JyFsc2ZCJz2kN5YqXB5uTJVI1n8n4ezltk2PTCIK2yjv1VTC-jdX2nV6PZWy0W2OOLsoNwAieVupTdljJCL-9-bGkeON-7UgwXnOHTTftcyfFaQbhbPiHBK-qilmdf_pyevqSc0SHZr2tFOqhe54i0svyYHDRzGGj9W56QwSQtSkeimJMc3UBtDbmELg1uslCXFSXfKqfYS0KfYeVZNViuwWLxBgFlc0pmo9vH4ZjVoxGYlVwXLA49Sq8L7S23Jkj7HvdeQ5Wa0GmVIcqB1zoNVCod98o7HWnlPM9M7EXkxBnZyZd5dk6oc8qafuAAQSeFgNVy4GTIDRwK7GSbiAaRxNa64Ti-4jVpCGIvSYVjgjjCkiIBHNuEba1WlW7GH89HDdjJt--fQGj_1fLi35aXZA-udMXDuSI7xfo9u4YSozCd0oc6ZHdw9zCefgKJddEW |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4BPcAFKA-xPFofytGQxI7jHDggKFpYlhMr7S3EdtwuandXbKqKC3-KP8hMHisqVVSqhCLlkGQiZzL6Zsb6ZgbgS5jGOeKi4ULbhEtpQ56mNuaicNpjeGKloeLk_o3qDuTVMB4uwHNbC0O0ygb7a0yv0Lq5ctxo83g6GlGNL7UdxBMaqdSBapiVveLxN-Zts5PLc_zJh1F08fX2rMub0QLcylCXPI09tS4X2tvQmiCPPO1dxio3sdOqoFUGXus8ULl0oVfe6UQr58PCpF4kTuB7F-GDRLigsQlHT3NeCQ0Ur1uUi5DT8tp6vYpUNkV8nXwjRllyRM1DI_l3f_jKx12sw2oTnLLT-vs_wkIx3oC1dvADa3BgE077eVlZLiMn6NgMg3l0XmxiaFeHuaKsCF5jRsUr7DumunVF5wNKjH4igs22YPAuCtuGpfFkXOwAc05ZEwUOf5mTQmB6HjgZhwYPhXKyA6LVSGabRuU0L-NH1jLS7rNajxnpEXOYDPXYAT6XmtaNOv7xfNIqO_vD4DL0JW9K7v635GdY7t72r7Pry5veHqzgHV2TgPZhqXz4VRxgfFOaT5U9Mbh7bwN-AfWnDdk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Material+based+salient+object+detection+from+hyperspectral+images&rft.jtitle=Pattern+recognition&rft.au=Liang%2C+Jie&rft.au=Zhou%2C+Jun&rft.au=Tong%2C+Lei&rft.au=Bai%2C+Xiao&rft.date=2018-04-01&rft.pub=Elsevier+Ltd&rft.issn=0031-3203&rft.eissn=1873-5142&rft.volume=76&rft.spage=476&rft.epage=490&rft_id=info:doi/10.1016%2Fj.patcog.2017.11.024&rft.externalDocID=S0031320317304806 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |