A review of physics-based machine learning in civil engineering
The recent development of machine learning (ML) and Deep Learning (DL) increases the opportunities in all the sectors. ML is a significant tool that can be applied across many disciplines, but its direct application to civil engineering problems can be challenging. ML for civil engineering applicati...
Saved in:
Published in | Results in engineering Vol. 13; p. 100316 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2022
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The recent development of machine learning (ML) and Deep Learning (DL) increases the opportunities in all the sectors. ML is a significant tool that can be applied across many disciplines, but its direct application to civil engineering problems can be challenging. ML for civil engineering applications that are simulated in the lab often fail in real-world tests. This is usually attributed to a data mismatch between the data used to train and test the ML model and the data it encounters in the real world, a phenomenon known as data shift. However, a physics-based ML model integrates data, partial differential equations (PDEs), and mathematical models to solve data shift problems. Physics-based ML models are trained to solve supervised learning tasks while respecting any given laws of physics described by general nonlinear equations. Physics-based ML, which takes center stage across many science disciplines, plays an important role in fluid dynamics, quantum mechanics, computational resources, and data storage. This paper reviews the history of physics-based ML and its application in civil engineering.
•A detailed explanation of Physics-based machine learning.•A review of recent applications of Physics-based machine learning in Civil Engineering.•Potential research avenues in civil engineering are identified using Physics-based machine learning.•Advantages of physics-based machine learning in civil engineering. |
---|---|
AbstractList | The recent development of machine learning (ML) and Deep Learning (DL) increases the opportunities in all the sectors. ML is a significant tool that can be applied across many disciplines, but its direct application to civil engineering problems can be challenging. ML for civil engineering applications that are simulated in the lab often fail in real-world tests. This is usually attributed to a data mismatch between the data used to train and test the ML model and the data it encounters in the real world, a phenomenon known as data shift. However, a physics-based ML model integrates data, partial differential equations (PDEs), and mathematical models to solve data shift problems. Physics-based ML models are trained to solve supervised learning tasks while respecting any given laws of physics described by general nonlinear equations. Physics-based ML, which takes center stage across many science disciplines, plays an important role in fluid dynamics, quantum mechanics, computational resources, and data storage. This paper reviews the history of physics-based ML and its application in civil engineering. The recent development of machine learning (ML) and Deep Learning (DL) increases the opportunities in all the sectors. ML is a significant tool that can be applied across many disciplines, but its direct application to civil engineering problems can be challenging. ML for civil engineering applications that are simulated in the lab often fail in real-world tests. This is usually attributed to a data mismatch between the data used to train and test the ML model and the data it encounters in the real world, a phenomenon known as data shift. However, a physics-based ML model integrates data, partial differential equations (PDEs), and mathematical models to solve data shift problems. Physics-based ML models are trained to solve supervised learning tasks while respecting any given laws of physics described by general nonlinear equations. Physics-based ML, which takes center stage across many science disciplines, plays an important role in fluid dynamics, quantum mechanics, computational resources, and data storage. This paper reviews the history of physics-based ML and its application in civil engineering. •A detailed explanation of Physics-based machine learning.•A review of recent applications of Physics-based machine learning in Civil Engineering.•Potential research avenues in civil engineering are identified using Physics-based machine learning.•Advantages of physics-based machine learning in civil engineering. |
ArticleNumber | 100316 |
Author | Vadyala, Shashank Reddy Betgeri, Sai Nethra Matthews, John C. Matthews, Elizabeth |
Author_xml | – sequence: 1 givenname: Shashank Reddy surname: Vadyala fullname: Vadyala, Shashank Reddy email: vadyala.shashankreddy@gmail.com organization: Department of Computational Analysis and Modeling, Louisiana Tech University, Ruston, LA, United States – sequence: 2 givenname: Sai Nethra surname: Betgeri fullname: Betgeri, Sai Nethra organization: Department of Computational Analysis and Modeling, Louisiana Tech University, Ruston, LA, United States – sequence: 3 givenname: John C. surname: Matthews fullname: Matthews, John C. organization: TTC, Louisiana Tech University, Ruston, LA, United States – sequence: 4 givenname: Elizabeth orcidid: 0000-0002-3514-4018 surname: Matthews fullname: Matthews, Elizabeth organization: Civil Engineering, Louisiana Tech University, Ruston, LA, United States |
BookMark | eNqFkE1LAzEQhoNUsNb-Aw_7B7bmY3eb9aCU4hcUvOg5TJLZNmWbLclS6b83ugriQU8zTHjemTznZOQ7j4RcMjpjlFVX21lwHv16xilnaUQFq07ImJc1zRkXdPSjPyPTGLeUUi4TK-ZjcrvIAh4cvmVdk-03x-hMzDVEtNkOzCYlZy1C8M6vM-cz4w6uzdK29IBp7_qCnDbQRpx-1Ql5vb97WT7mq-eHp-VilZuCyT6vS9MIybnQyCtRWuRS68LUFimU2tYaBQoLVDKLVdNYFJrVRpeMmUqXcyYm5GnItR1s1T64HYSj6sCpz0EX1gpC70yLqrJYA0iDTNuiKVACB2qB1VLWJU13TMj1kGVCF2PARhnXQ-863wdwrWJUfZhVWzWYVR9m1WA2wcUv-PuYf7CbAcMkKfkOKhqH3qB1AU2ffuH-DngHe_WXaQ |
CitedBy_id | crossref_primary_10_1177_13694332251319346 crossref_primary_10_3390_fluids8070212 crossref_primary_10_1016_j_rineng_2024_101931 crossref_primary_10_1016_j_rineng_2024_102624 crossref_primary_10_1016_j_inffus_2025_102996 crossref_primary_10_3390_app14041638 crossref_primary_10_1007_s00521_023_08347_w crossref_primary_10_1007_s11831_024_10145_z crossref_primary_10_1016_j_rineng_2025_104649 crossref_primary_10_1016_j_bspc_2024_107388 crossref_primary_10_1016_j_rineng_2023_101419 crossref_primary_10_3390_app132212433 crossref_primary_10_1016_j_engappai_2025_110067 crossref_primary_10_1016_j_jhydrol_2024_131370 crossref_primary_10_1007_s11128_023_04223_7 crossref_primary_10_1615_JMachLearnModelComput_2023050011 crossref_primary_10_1016_j_jmrt_2023_06_038 crossref_primary_10_1016_j_egyr_2023_08_009 crossref_primary_10_3390_buildings14041118 crossref_primary_10_3390_app14114712 crossref_primary_10_1016_j_rineng_2023_101664 crossref_primary_10_3390_buildings14020519 crossref_primary_10_1111_mice_13457 crossref_primary_10_1016_j_rineng_2024_102737 crossref_primary_10_1029_2023WR036589 crossref_primary_10_3390_w14152307 crossref_primary_10_1016_j_apm_2024_02_004 crossref_primary_10_3390_app12105232 crossref_primary_10_3390_constrmater3040031 crossref_primary_10_1016_j_ymssp_2024_111522 crossref_primary_10_1016_j_jestch_2023_101605 crossref_primary_10_1016_j_eswa_2025_127302 crossref_primary_10_1016_j_trgeo_2025_101492 crossref_primary_10_1016_j_compind_2023_103883 crossref_primary_10_3390_jmse13020377 crossref_primary_10_1016_j_rineng_2022_100544 crossref_primary_10_1063_5_0222336 crossref_primary_10_1007_s42107_024_01146_1 crossref_primary_10_1007_s11440_023_01874_9 crossref_primary_10_1016_j_istruc_2025_108650 crossref_primary_10_1016_j_rineng_2024_101837 crossref_primary_10_3389_frwa_2023_1123313 crossref_primary_10_1007_s40194_022_01270_z crossref_primary_10_1016_j_compstruct_2023_117752 crossref_primary_10_1016_j_conbuildmat_2024_138962 crossref_primary_10_1002_msd2_70004 crossref_primary_10_1016_j_rineng_2024_102250 crossref_primary_10_1088_1742_6596_2647_19_192013 crossref_primary_10_1002_suco_202300597 crossref_primary_10_1016_j_rineng_2024_102599 crossref_primary_10_1590_1679_78258289 crossref_primary_10_1080_15583058_2023_2200739 crossref_primary_10_1016_j_jrmge_2022_07_001 crossref_primary_10_1016_j_rineng_2024_103724 crossref_primary_10_1016_j_rineng_2022_100659 crossref_primary_10_3389_feart_2023_1308269 crossref_primary_10_3390_vehicles4030038 crossref_primary_10_1016_j_istruc_2024_107667 crossref_primary_10_1016_j_asoc_2024_112026 crossref_primary_10_1016_j_bprint_2024_e00331 crossref_primary_10_1016_j_apm_2024_06_045 crossref_primary_10_1155_2023_8853122 crossref_primary_10_4018_IRMJ_329250 crossref_primary_10_1007_s42107_024_01187_6 crossref_primary_10_1016_j_rineng_2022_100489 crossref_primary_10_1016_j_rineng_2022_100362 crossref_primary_10_1016_j_measurement_2023_113334 crossref_primary_10_1016_j_rineng_2022_100761 crossref_primary_10_1016_j_engstruct_2025_119636 crossref_primary_10_3390_app13052887 crossref_primary_10_1007_s13296_023_00781_9 crossref_primary_10_1016_j_jobe_2025_111788 crossref_primary_10_1016_j_jclepro_2022_132455 crossref_primary_10_1007_s10518_023_01680_4 crossref_primary_10_3390_s23156833 crossref_primary_10_3389_fbuil_2022_1049616 crossref_primary_10_1080_15376494_2023_2298232 crossref_primary_10_1177_03611981221122779 crossref_primary_10_1007_s42107_023_00855_3 crossref_primary_10_1177_14759217241265375 crossref_primary_10_1016_j_rineng_2023_101585 crossref_primary_10_1016_j_rineng_2023_101625 crossref_primary_10_2139_ssrn_4681718 crossref_primary_10_3390_computation11090168 crossref_primary_10_1016_j_ijmecsci_2023_108747 crossref_primary_10_1016_j_asoc_2024_111677 crossref_primary_10_3390_su151411232 crossref_primary_10_1155_2022_4794073 crossref_primary_10_1061_JSDCCC_SCENG_1571 crossref_primary_10_1007_s10661_024_13251_4 crossref_primary_10_3390_electronics12153337 crossref_primary_10_1016_j_tust_2023_105433 crossref_primary_10_1016_j_cma_2024_117243 crossref_primary_10_1108_EC_02_2024_0130 crossref_primary_10_3390_en16103998 crossref_primary_10_1016_j_eswa_2023_120649 crossref_primary_10_1016_j_catena_2024_108601 crossref_primary_10_1177_14759217231154431 crossref_primary_10_1016_j_conbuildmat_2024_137276 crossref_primary_10_1016_j_eng_2024_12_034 crossref_primary_10_1016_j_jpse_2024_100178 crossref_primary_10_1016_j_jobe_2024_108766 crossref_primary_10_1016_j_compstruc_2024_107592 crossref_primary_10_1016_j_rineng_2024_102038 crossref_primary_10_1016_j_rineng_2023_101443 crossref_primary_10_1186_s12911_023_02323_z crossref_primary_10_1108_IJSI_02_2024_0018 crossref_primary_10_1007_s00339_024_08016_2 crossref_primary_10_1021_acs_est_3c05300 crossref_primary_10_1109_ACCESS_2023_3347989 crossref_primary_10_1007_s41939_024_00388_5 crossref_primary_10_1016_j_jobe_2024_109847 |
Cites_doi | 10.1016/j.neucom.2018.06.056 10.1016/j.jcp.2018.08.036 10.1140/epjc/s10052-019-6607-9 10.1038/s41529-019-0094-1 10.1080/10618562.2018.1513496 10.1002/cnm.1640100303 10.1088/1748-9326/ab4d5e 10.1016/j.jcp.2018.10.045 10.1017/S0022112088001818 10.1063/5.0058346 10.1109/JSTARS.2017.2740168 10.1109/ACCESS.2020.2987324 10.1016/j.apmt.2020.100898 10.1017/jfm.2018.872 10.2514/2.1570 10.1016/j.jcp.2017.07.050 10.1371/journal.pone.0197704 10.1007/BF01931367 10.1007/s00348-013-1580-9 10.1175/1520-0469(1962)019<0329:FAFCAA>2.0.CO;2 10.1037/h0042519 10.1103/PhysRevFluids.2.034603 10.1016/S0370-1573(97)00017-3 10.1016/j.engstruct.2020.110704 10.1016/j.jsv.2012.10.017 10.1017/S0022112003005615 10.1103/PhysRevFluids.4.054603 10.1007/BF03024948 10.1017/jfm.2014.168 10.1016/j.jcp.2003.08.021 10.1561/2400000003 10.1080/10618562.2012.715153 10.1016/j.rineng.2021.100245 10.1137/090766498 10.1038/s41746-019-0193-y 10.1615/JMachLearnModelComput.2020033905 10.1002/fld.1365 10.1002/1097-0363(20001115)34:5<425::AID-FLD67>3.0.CO;2-W 10.1016/j.rineng.2021.100251 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 10.1109/TKDE.2017.2720168 10.1016/j.apm.2018.03.037 10.1016/j.eswa.2020.114316 10.1016/j.jcp.2019.05.041 10.1016/j.buildenv.2018.10.035 10.1109/JSEN.2019.2898634 10.1061/9780784482438.011 10.1017/jfm.2016.103 10.1016/j.pnucene.2019.103140 10.1038/323533a0 10.1016/j.simpat.2015.06.004 10.1364/JOSAA.12.001657 10.1109/18.256500 10.1016/j.rineng.2021.100225 10.1017/jfm.2018.147 10.1016/j.jcp.2021.110296 10.1137/S0036142998349102 10.1080/14786440109462720 10.1002/nme.4772 10.1016/j.ijheatmasstransfer.2020.120176 10.1175/BAMS-D-18-0195.1 10.1073/pnas.79.8.2554 10.1162/neco.1997.9.8.1735 10.1109/TAC.2008.2006102 10.1177/8755293020919414 10.5194/wes-6-295-2021 10.1016/j.compfluid.2019.02.012 10.1017/jfm.2016.803 10.1016/j.crma.2004.08.006 10.1016/j.rineng.2020.100188 10.1137/17M1140571 10.1016/S0045-7825(02)00465-6 10.1016/j.cma.2016.03.025 10.1115/1.4044400 10.1115/1.1448332 10.1016/j.rineng.2021.100228 10.1023/A:1018977404843 10.1137/5106482750342221x 10.1016/j.jcp.2019.109056 10.1017/S0022112009992059 10.1016/j.rineng.2021.100205 10.1016/j.energy.2019.115883 10.1126/science.153.3731.34 10.1186/s40323-020-00153-6 10.1016/j.jcp.2020.109275 10.1016/j.jcp.2019.05.024 10.1007/s12046-021-01582-8 10.1017/jfm.2018.283 10.1016/j.jcp.2019.109020 10.1016/j.jcp.2005.01.008 10.1017/jfm.2014.736 10.1126/sciadv.abf5006 10.1061/(ASCE)BE.1943-5592.0001432 10.1016/j.autcon.2020.103346 10.3390/app11094276 10.1007/s00466-020-01952-9 10.1007/s11071-005-2824-x 10.1017/jfm.2019.212 10.1090/qam/910462 10.1016/j.cma.2020.113250 10.1038/s41598-020-65232-5 10.1155/2012/152123 10.1017/S0022112094002351 10.2514/1.35374 10.1017/S0022112010001217 10.1007/s40304-018-0127-z 10.1016/j.ymssp.2019.01.018 10.1016/j.rineng.2020.100172 10.1109/72.712178 |
ContentType | Journal Article |
Copyright | 2021 |
Copyright_xml | – notice: 2021 |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.rineng.2021.100316 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2590-1230 |
ExternalDocumentID | oai_doaj_org_article_6de9aa8ce1bd4f4e8a2a0da1988950cf 10_1016_j_rineng_2021_100316 S2590123021001171 |
GroupedDBID | 0SF 6I. AAEDW AAFTH AALRI AAXUO ADBBV AEXQZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS FDB GROUPED_DOAJ M41 M~E NCXOZ OK1 ROL SSZ 0R~ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c418t-95cf38223be2635de28bb4c9de0a5bd9be3e3da081de6ffde3b19cb511c6b5713 |
IEDL.DBID | DOA |
ISSN | 2590-1230 |
IngestDate | Wed Aug 27 01:30:45 EDT 2025 Thu Apr 24 22:54:25 EDT 2025 Tue Jul 01 01:37:13 EDT 2025 Tue Jul 25 20:59:25 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Physics-based machine learning Deep neural network Civil engineering Machine learning |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c418t-95cf38223be2635de28bb4c9de0a5bd9be3e3da081de6ffde3b19cb511c6b5713 |
ORCID | 0000-0002-3514-4018 |
OpenAccessLink | https://doaj.org/article/6de9aa8ce1bd4f4e8a2a0da1988950cf |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6de9aa8ce1bd4f4e8a2a0da1988950cf crossref_citationtrail_10_1016_j_rineng_2021_100316 crossref_primary_10_1016_j_rineng_2021_100316 elsevier_sciencedirect_doi_10_1016_j_rineng_2021_100316 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2022 2022-03-00 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: March 2022 |
PublicationDecade | 2020 |
PublicationTitle | Results in engineering |
PublicationYear | 2022 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Bellman (bib40) 1966; 153 Rempfer, Fasel (bib52) 1994; 275 Després, Jourdren (bib93) 2020; 408 Barazzetti (bib118) 2015; 57 V Yugandhar (bib14) 2014 Wan (bib45) 2018; 13 Weinan, Yu (bib112) 2018; 6 Liu (bib139) 2019; 3 Guemes (bib124) 2021; 33 McGovern (bib15) 2019; 100 Zokagoa, Soulaïmani (bib34) 2012; 26 Loiseau, Noack, Brunton (bib77) 2018; 844 Xiao (bib128) 2019; 182 Fernex, Noack, Semaan (bib79) 2021; 7 Mohan, Gaitonde (bib43) 2018 Zhang, Liu, Sun (bib159) 2020; 215 Schmid (bib66) 2010; 656 Jolliffe, Cadima (bib32) 2016; 374 Raissi (bib97) 2019; 861 Mendez, Balabane, Buchlin (bib78) 2019; 870 Baloyi, Meyer (bib3) 2020 Barrault (bib59) 2004; 339 Parikh, Boyd (bib21) 2014; 1 Mao (bib108) 2020 Dechter (bib87) 1986 Rumelhart, Hinton, Williams (bib84) 1986; 323 Eivazi (bib104) 2021 Ravindran (bib54) 2000; 34 Williams, Rasmussen (bib99) 2006; vol. 2 Alber (bib16) 2019; 2 Carlberg (bib91) 2019; 395 Figueiredo (bib130) 2019; 24 Chatterjee (bib26) 2000 Liu, Wang (bib148) 2019; 141 Chakraborty, Awolusi, Gutierrez (bib9) 2021; 11 Guastoni (bib123) 2021 Zhu (bib113) 2019; 394 Karpatne (bib18) 2017; 29 Carlberg (bib68) 2013 Zhang (bib132) 2020 Fioretto, Mak, Van Hentenryck (bib146) 2020 Wang, Teng, Perdikaris (bib116) 2020 Griewank, Walther (bib20) 2008 Long, She, Mukhopadhyay (bib149) 2018 Chen, Liu (bib129) 2021; 168 Park, Park (bib152) 2019; 187 Vinuesa, Brunton (bib80) 2021 Sieber, Paschereit, Oberleithner (bib74) 2016; 792 Lu (bib102) 2020 Inazumi (bib8) 2020; 8 Burkardt, Gunzburger, Lee (bib30) 2006; 28 Rosenblatt (bib82) 1958; 65 Kutz (bib90) 2017; 814 Barthelmann, Novak, Ritter (bib37) 2000; 12 Vadyala, Sherer (bib6) 2021 Li (bib105) 2020 Östh (bib70) 2014; 747 Barron (bib101) 1993; 39 Lu (bib24) 2019; 123 Cao (bib62) 2007; 53 Boyd, Parikh, Chu (bib22) 2011 Zhong, Dey, Chakraborty (bib158) 2019 Couplet, Sagaut, Basdevant (bib57) 2003; 491 Sirovich (bib50) 1987; 45 Fuks, Tchelepi (bib114) 2020; 1 Yitmen (bib117) 2021; 11 Bhasme, Vagadiya, Bhatia (bib120) 2021 Zhou, S., et al., A data-driven and physics-based approach to exploring interdependency of interconnected infrastructure, in Computing in Civil Engineering 2019: Data, Sensing, and Analytics. 2019, American Society of Civil Engineers Reston, VA. p. 82-88. Vadyala, Betgeri (bib5) 2021 Zhu, Liu, Yan (bib138) 2021; 67 Di Ciaccio, Troisi (bib10) 2021 Willcox, Peraire (bib56) 2002; 40 Xiao (bib44) 2019; 148 Hanna (bib92) 2020; 118 Dissanayake, Phan‐Thien (bib109) 1994; 10 Vadyala (bib11) 2020 Bijelić, Lin, Deierlein (bib119) 2020 Rai, Sahu (bib19) 2020; 8 Morita (bib100) 2021 Rowley (bib65) 2009; 641 Verleysen, François (bib41) 2005 Meng, Karniadakis (bib150) 2020; 401 Hsieh (bib94) 2009 Chen (bib42) 2012; 2012 Zokagoa, Soulaïmani (bib36) 2018; 32 Reiss (bib76) 2018; 40 Kim (bib147) 2019 Mignolet (bib25) 2013; 332 Chen, Dai (bib55) 2001; 38 Xu (bib142) 2017; 10 Schlegel, Noack (bib72) 2015; 765 Ba (bib144) 2020 Sarkar, Ghanem (bib29) 2002; 191 Berg, Nyström (bib111) 2018; 317 Liu (bib141) 2021; 22 Couplet, Basdevant, Sagaut (bib33) 2005; 207 Bevan (bib140) 2019; 377 Eivazi (bib81) 2021 Lumley (bib49) 1967 Zheng, Moosavi, Akbarzadeh (bib134) 2020; 119 Astrid (bib64) 2008; 53 Sharma (bib4) 2021 Amsallem, Farhat (bib63) 2008; 46 Hochreiter, Schmidhuber (bib86) 1997; 9 Hosseiny (bib156) 2020; 10 Santhosh (bib7) 2021; 11 Sai Nethra Betgeri, Smith (bib13) 2021 Baker (bib17) 2019 San, Maulik (bib154) 2018; 60 Meng (bib151) 2020; 370 Ghanem, Spanos (bib38) 1991 Linnainmaa (bib83) 1976; 16 Srinivasan (bib122) 2019; 4 Goodfellow, Bengio, Courville (bib88) 2016 Holmes (bib28) 1997; 287 Sun, Pan, Choi (bib39) 2019 Wang, Wu, Xiao (bib155) 2017; 2 Zhang, Wang, Giannakis (bib157) 2018 Vadyala, Betgeri (bib12) 2021 Prud'Homme (bib27) 2002; 124 Amsallem, Farhat (bib35) 2014 Malami (bib2) 2021 Sirisup, Karniadakis (bib58) 2004; 194 Raissi, Perdikaris, Karniadakis (bib95) 2017; 348 Rai, Mitra (bib131) 2021; 46 Erichson, Muehlebach, Mahoney (bib121) 2019 Khandelwal (bib126) 2020 Lu, Jin, Karniadakis (bib106) 2019 Lagaris, Likas, Fotiadis (bib110) 1998; 9 Mezić (bib60) 2005; 41 Ballarin (bib71) 2015; 102 Saltzman (bib47) 1962; 19 Momeny (bib1) 2021; 10 Brunton, Proctor, Kutz (bib89) 2016; vol. 113 Lapidus, Pinder (bib98) 2011 Daniel (bib145) 2020; 7 Towne, Schmidt, Colonius (bib75) 2018; 847 Hopfield (bib85) 1982; 79 Sadoughi, Hu (bib153) 2019; 19 Galerkin, Petrograd (bib46) 1915; 19 Raissi (bib115) 2018; 19 Tripathy, Bilionis (bib133) 2018; 375 Wei, Bao, Ruan (bib143) 2020; 160 Geneva, Zabaras (bib127) 2020; 403 Aubry (bib51) 1988; 192 Takbiri-Borujeni, Ayoobi (bib136) 2019 Andreassen (bib137) 2019; 79 Vassallo, Krishnamurthy, Fernando (bib135) 2021; 6 Pearson, Lines (bib31) 1901; 2 Everson, Sirovich (bib53) 1995; 12 Cai (bib107) 2021; 436 Peherstorfer, Willcox (bib73) 2016; 306 Lorenz (bib48) 1963; 20 Cordier (bib69) 2013; 54 Yarotsky (bib103) 2018 Yang (bib23) 2019; 14 Chaturantabut, Sorensen (bib67) 2010; 32 Rozza, Huynh, Patera (bib61) 2007; 15 Raissi, Perdikaris, Karniadakis (bib96) 2019; 378 Srinivasan (10.1016/j.rineng.2021.100316_bib122) 2019; 4 Di Ciaccio (10.1016/j.rineng.2021.100316_bib10) 2021 Rempfer (10.1016/j.rineng.2021.100316_bib52) 1994; 275 Fuks (10.1016/j.rineng.2021.100316_bib114) 2020; 1 Lorenz (10.1016/j.rineng.2021.100316_bib48) 1963; 20 Zhong (10.1016/j.rineng.2021.100316_bib158) 2019 Aubry (10.1016/j.rineng.2021.100316_bib51) 1988; 192 Couplet (10.1016/j.rineng.2021.100316_bib57) 2003; 491 San (10.1016/j.rineng.2021.100316_bib154) 2018; 60 Alber (10.1016/j.rineng.2021.100316_bib16) 2019; 2 Lagaris (10.1016/j.rineng.2021.100316_bib110) 1998; 9 Chakraborty (10.1016/j.rineng.2021.100316_bib9) 2021; 11 Momeny (10.1016/j.rineng.2021.100316_bib1) 2021; 10 Després (10.1016/j.rineng.2021.100316_bib93) 2020; 408 Schlegel (10.1016/j.rineng.2021.100316_bib72) 2015; 765 Fernex (10.1016/j.rineng.2021.100316_bib79) 2021; 7 Liu (10.1016/j.rineng.2021.100316_bib141) 2021; 22 Reiss (10.1016/j.rineng.2021.100316_bib76) 2018; 40 Mao (10.1016/j.rineng.2021.100316_bib108) 2020 Liu (10.1016/j.rineng.2021.100316_bib139) 2019; 3 Burkardt (10.1016/j.rineng.2021.100316_bib30) 2006; 28 Everson (10.1016/j.rineng.2021.100316_bib53) 1995; 12 Mezić (10.1016/j.rineng.2021.100316_bib60) 2005; 41 Khandelwal (10.1016/j.rineng.2021.100316_bib126) 2020 Wang (10.1016/j.rineng.2021.100316_bib116) 2020 Amsallem (10.1016/j.rineng.2021.100316_bib35) 2014 Li (10.1016/j.rineng.2021.100316_bib105) 2020 Vadyala (10.1016/j.rineng.2021.100316_bib5) 2021 Bellman (10.1016/j.rineng.2021.100316_bib40) 1966; 153 Raissi (10.1016/j.rineng.2021.100316_bib97) 2019; 861 Tripathy (10.1016/j.rineng.2021.100316_bib133) 2018; 375 Santhosh (10.1016/j.rineng.2021.100316_bib7) 2021; 11 Figueiredo (10.1016/j.rineng.2021.100316_bib130) 2019; 24 Jolliffe (10.1016/j.rineng.2021.100316_bib32) 2016; 374 Sirovich (10.1016/j.rineng.2021.100316_bib50) 1987; 45 Zhu (10.1016/j.rineng.2021.100316_bib138) 2021; 67 Baloyi (10.1016/j.rineng.2021.100316_bib3) 2020 Sadoughi (10.1016/j.rineng.2021.100316_bib153) 2019; 19 Hsieh (10.1016/j.rineng.2021.100316_bib94) 2009 Zhang (10.1016/j.rineng.2021.100316_bib132) 2020 Sirisup (10.1016/j.rineng.2021.100316_bib58) 2004; 194 Cai (10.1016/j.rineng.2021.100316_bib107) 2021; 436 Bevan (10.1016/j.rineng.2021.100316_bib140) 2019; 377 Meng (10.1016/j.rineng.2021.100316_bib151) 2020; 370 Hosseiny (10.1016/j.rineng.2021.100316_bib156) 2020; 10 Zokagoa (10.1016/j.rineng.2021.100316_bib34) 2012; 26 Cao (10.1016/j.rineng.2021.100316_bib62) 2007; 53 Loiseau (10.1016/j.rineng.2021.100316_bib77) 2018; 844 Eivazi (10.1016/j.rineng.2021.100316_bib81) 2021 Guemes (10.1016/j.rineng.2021.100316_bib124) 2021; 33 Schmid (10.1016/j.rineng.2021.100316_bib66) 2010; 656 Chen (10.1016/j.rineng.2021.100316_bib55) 2001; 38 Barron (10.1016/j.rineng.2021.100316_bib101) 1993; 39 Rai (10.1016/j.rineng.2021.100316_bib131) 2021; 46 Lumley (10.1016/j.rineng.2021.100316_bib49) 1967 Williams (10.1016/j.rineng.2021.100316_bib99) 2006; vol. 2 Wang (10.1016/j.rineng.2021.100316_bib155) 2017; 2 Lu (10.1016/j.rineng.2021.100316_bib106) 2019 Sieber (10.1016/j.rineng.2021.100316_bib74) 2016; 792 Pearson (10.1016/j.rineng.2021.100316_bib31) 1901; 2 Carlberg (10.1016/j.rineng.2021.100316_bib68) 2013 Rowley (10.1016/j.rineng.2021.100316_bib65) 2009; 641 Carlberg (10.1016/j.rineng.2021.100316_bib91) 2019; 395 Rai (10.1016/j.rineng.2021.100316_bib19) 2020; 8 Dechter (10.1016/j.rineng.2021.100316_bib87) 1986 Xu (10.1016/j.rineng.2021.100316_bib142) 2017; 10 Yang (10.1016/j.rineng.2021.100316_bib23) 2019; 14 Holmes (10.1016/j.rineng.2021.100316_bib28) 1997; 287 Guastoni (10.1016/j.rineng.2021.100316_bib123) 2021 Hochreiter (10.1016/j.rineng.2021.100316_bib86) 1997; 9 Weinan (10.1016/j.rineng.2021.100316_bib112) 2018; 6 Inazumi (10.1016/j.rineng.2021.100316_bib8) 2020; 8 Ghanem (10.1016/j.rineng.2021.100316_bib38) 1991 Daniel (10.1016/j.rineng.2021.100316_bib145) 2020; 7 Dissanayake (10.1016/j.rineng.2021.100316_bib109) 1994; 10 Malami (10.1016/j.rineng.2021.100316_bib2) 2021 Chen (10.1016/j.rineng.2021.100316_bib42) 2012; 2012 Linnainmaa (10.1016/j.rineng.2021.100316_bib83) 1976; 16 Goodfellow (10.1016/j.rineng.2021.100316_bib88) 2016 Griewank (10.1016/j.rineng.2021.100316_bib20) 2008 Boyd (10.1016/j.rineng.2021.100316_bib22) 2011 Barthelmann (10.1016/j.rineng.2021.100316_bib37) 2000; 12 Barazzetti (10.1016/j.rineng.2021.100316_bib118) 2015; 57 Park (10.1016/j.rineng.2021.100316_bib152) 2019; 187 Eivazi (10.1016/j.rineng.2021.100316_bib104) 2021 Mohan (10.1016/j.rineng.2021.100316_bib43) 2018 Sarkar (10.1016/j.rineng.2021.100316_bib29) 2002; 191 Vadyala (10.1016/j.rineng.2021.100316_bib6) 2021 Geneva (10.1016/j.rineng.2021.100316_bib127) 2020; 403 Mendez (10.1016/j.rineng.2021.100316_bib78) 2019; 870 Brunton (10.1016/j.rineng.2021.100316_bib89) 2016; vol. 113 Berg (10.1016/j.rineng.2021.100316_bib111) 2018; 317 Östh (10.1016/j.rineng.2021.100316_bib70) 2014; 747 Bhasme (10.1016/j.rineng.2021.100316_bib120) 2021 Towne (10.1016/j.rineng.2021.100316_bib75) 2018; 847 Chaturantabut (10.1016/j.rineng.2021.100316_bib67) 2010; 32 Chatterjee (10.1016/j.rineng.2021.100316_bib26) 2000 Kim (10.1016/j.rineng.2021.100316_bib147) 2019 Willcox (10.1016/j.rineng.2021.100316_bib56) 2002; 40 Zhang (10.1016/j.rineng.2021.100316_bib157) 2018 Verleysen (10.1016/j.rineng.2021.100316_bib41) 2005 Lapidus (10.1016/j.rineng.2021.100316_bib98) 2011 Long (10.1016/j.rineng.2021.100316_bib149) 2018 Couplet (10.1016/j.rineng.2021.100316_bib33) 2005; 207 Liu (10.1016/j.rineng.2021.100316_bib148) 2019; 141 Bijelić (10.1016/j.rineng.2021.100316_bib119) 2020 Prud'Homme (10.1016/j.rineng.2021.100316_bib27) 2002; 124 Wan (10.1016/j.rineng.2021.100316_bib45) 2018; 13 Erichson (10.1016/j.rineng.2021.100316_bib121) 2019 V Yugandhar (10.1016/j.rineng.2021.100316_bib14) 2014 Ballarin (10.1016/j.rineng.2021.100316_bib71) 2015; 102 Galerkin (10.1016/j.rineng.2021.100316_bib46) 1915; 19 Astrid (10.1016/j.rineng.2021.100316_bib64) 2008; 53 Vadyala (10.1016/j.rineng.2021.100316_bib11) 2020 Baker (10.1016/j.rineng.2021.100316_bib17) 2019 Sun (10.1016/j.rineng.2021.100316_bib39) 2019 Vinuesa (10.1016/j.rineng.2021.100316_bib80) 2021 Hopfield (10.1016/j.rineng.2021.100316_bib85) 1982; 79 Vassallo (10.1016/j.rineng.2021.100316_bib135) 2021; 6 Karpatne (10.1016/j.rineng.2021.100316_bib18) 2017; 29 Amsallem (10.1016/j.rineng.2021.100316_bib63) 2008; 46 Kutz (10.1016/j.rineng.2021.100316_bib90) 2017; 814 Zhu (10.1016/j.rineng.2021.100316_bib113) 2019; 394 McGovern (10.1016/j.rineng.2021.100316_bib15) 2019; 100 Sai Nethra Betgeri (10.1016/j.rineng.2021.100316_bib13) 2021 Morita (10.1016/j.rineng.2021.100316_bib100) 2021 Raissi (10.1016/j.rineng.2021.100316_bib95) 2017; 348 Xiao (10.1016/j.rineng.2021.100316_bib128) 2019; 182 Ravindran (10.1016/j.rineng.2021.100316_bib54) 2000; 34 Raissi (10.1016/j.rineng.2021.100316_bib115) 2018; 19 Rumelhart (10.1016/j.rineng.2021.100316_bib84) 1986; 323 Lu (10.1016/j.rineng.2021.100316_bib24) 2019; 123 Parikh (10.1016/j.rineng.2021.100316_bib21) 2014; 1 Cordier (10.1016/j.rineng.2021.100316_bib69) 2013; 54 Barrault (10.1016/j.rineng.2021.100316_bib59) 2004; 339 10.1016/j.rineng.2021.100316_bib125 Rosenblatt (10.1016/j.rineng.2021.100316_bib82) 1958; 65 Peherstorfer (10.1016/j.rineng.2021.100316_bib73) 2016; 306 Fioretto (10.1016/j.rineng.2021.100316_bib146) 2020 Sharma (10.1016/j.rineng.2021.100316_bib4) 2021 Meng (10.1016/j.rineng.2021.100316_bib150) 2020; 401 Hanna (10.1016/j.rineng.2021.100316_bib92) 2020; 118 Saltzman (10.1016/j.rineng.2021.100316_bib47) 1962; 19 Rozza (10.1016/j.rineng.2021.100316_bib61) 2007; 15 Wei (10.1016/j.rineng.2021.100316_bib143) 2020; 160 Mignolet (10.1016/j.rineng.2021.100316_bib25) 2013; 332 Andreassen (10.1016/j.rineng.2021.100316_bib137) 2019; 79 Ba (10.1016/j.rineng.2021.100316_bib144) 2020 Zhang (10.1016/j.rineng.2021.100316_bib159) 2020; 215 Chen (10.1016/j.rineng.2021.100316_bib129) 2021; 168 Zheng (10.1016/j.rineng.2021.100316_bib134) 2020; 119 Lu (10.1016/j.rineng.2021.100316_bib102) 2020 Xiao (10.1016/j.rineng.2021.100316_bib44) 2019; 148 Yarotsky (10.1016/j.rineng.2021.100316_bib103) 2018 Vadyala (10.1016/j.rineng.2021.100316_bib12) 2021 Takbiri-Borujeni (10.1016/j.rineng.2021.100316_bib136) 2019 Yitmen (10.1016/j.rineng.2021.100316_bib117) 2021; 11 Zokagoa (10.1016/j.rineng.2021.100316_bib36) 2018; 32 Raissi (10.1016/j.rineng.2021.100316_bib96) 2019; 378 |
References_xml | – volume: 8 start-page: 71050 year: 2020 end-page: 71073 ident: bib19 article-title: Driven by data or derived through physics? a review of hybrid physics guided machine learning techniques with cyber-physical system (cps) focus publication-title: IEEE Access – start-page: 101 year: 1991 end-page: 119 ident: bib38 article-title: Stochastic finite element method: response statistics publication-title: Stochastic Finite Elements: a Spectral Approach – volume: 41 start-page: 309 year: 2005 end-page: 325 ident: bib60 article-title: Spectral properties of dynamical systems, model reduction and decompositions publication-title: Nonlinear Dynam. – volume: 79 start-page: 2554 year: 1982 end-page: 2558 ident: bib85 article-title: Neural networks and physical systems with emergent collective computational abilities publication-title: Proc. Natl. Acad. Sci. Unit. States Am. – volume: 12 start-page: 1657 year: 1995 end-page: 1664 ident: bib53 article-title: Karhunen–Loeve procedure for gappy data publication-title: JOSA A – volume: 792 start-page: 798 year: 2016 end-page: 828 ident: bib74 article-title: Spectral proper orthogonal decomposition publication-title: J. Fluid Mech. – volume: 275 start-page: 257 year: 1994 end-page: 283 ident: bib52 article-title: Dynamics of three-dimensional coherent structures in a flat-plate boundary layer publication-title: J. Fluid Mech. – year: 2011 ident: bib98 article-title: Numerical Solution of Partial Differential Equations in Science and Engineering – start-page: 928 year: 2021 ident: bib123 article-title: Convolutional-network models to predict wall-bounded turbulence from wall quantities publication-title: J. Fluid Mech. – volume: 182 start-page: 15 year: 2019 end-page: 27 ident: bib128 article-title: A domain decomposition non-intrusive reduced order model for turbulent flows publication-title: Comput. Fluids – volume: 19 start-page: 4181 year: 2019 end-page: 4192 ident: bib153 article-title: Physics-based convolutional neural network for fault diagnosis of rolling element bearings publication-title: IEEE Sensor. J. – volume: 306 start-page: 196 year: 2016 end-page: 215 ident: bib73 article-title: Data-driven operator inference for nonintrusive projection-based model reduction publication-title: Comput. Methods Appl. Mech. Eng. – volume: 375 start-page: 565 year: 2018 end-page: 588 ident: bib133 article-title: Deep UQ: learning deep neural network surrogate models for high dimensional uncertainty quantification publication-title: J. Comput. Phys. – year: 2020 ident: bib3 article-title: The development of a mining method selection model through a detailed assessment of multi-criteria decision methods publication-title: Results in Engineering – volume: 1 year: 2020 ident: bib114 article-title: Limitations of physics informed machine learning for nonlinear two-phase transport in porous media publication-title: Journal of Machine Learning for Modeling and Computing – year: 2011 ident: bib22 article-title: Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers – year: 2020 ident: bib102 article-title: Deep Network Approximation for Smooth Functions – volume: 57 start-page: 71 year: 2015 end-page: 87 ident: bib118 article-title: Cloud-to-BIM-to-FEM: structural simulation with accurate historic BIM from laser scans publication-title: Simulat. Model. Pract. Theor. – volume: 374 start-page: 20150202 year: 2016 ident: bib32 article-title: Principal component analysis: a review and recent developments publication-title: Phil. Trans. Math. Phys. Eng. Sci. – year: 2021 ident: bib12 article-title: Physics-Informed Neural Network Method for Solving One-Dimensional Advection Equation Using PyTorch – year: 2013 ident: bib68 article-title: The GNAT Nonlinear Model-Reduction Method with Application to Large-Scale Turbulent Flows – volume: 7 start-page: eabf5006 year: 2021 ident: bib79 article-title: Cluster-based network modeling—from snapshots to complex dynamical systems publication-title: Sci. Adv. – year: 2021 ident: bib100 article-title: Applying Bayesian Optimization with Gaussian Process Regression to Computational Fluid Dynamics Problems – volume: 11 year: 2021 ident: bib7 article-title: Optimization of CNC turning parameters using face centred CCD approach in RSM and ANN-genetic algorithm for AISI 4340 alloy steel publication-title: Results in Engineering – volume: 29 start-page: 2318 year: 2017 end-page: 2331 ident: bib18 article-title: Theory-guided data science: a new paradigm for scientific discovery from data publication-title: IEEE Trans. Knowl. Data Eng. – year: 1967 ident: bib49 article-title: The Structure of Inhomogeneous Turbulent flows Atmospheric Turbulence and Radio Wave Propagation – volume: 40 start-page: 2323 year: 2002 end-page: 2330 ident: bib56 article-title: Balanced model reduction via the proper orthogonal decomposition publication-title: AIAA J. – volume: 10 start-page: 195 year: 1994 end-page: 201 ident: bib109 article-title: Neural‐network‐based approximations for solving partial differential equations publication-title: Commun. Numer. Methods Eng. – year: 2021 ident: bib6 article-title: Natural Language Processing Accurately Categorizes Indications, Findings and Pathology Reports from Multicenter Colonoscopy – year: 2014 ident: bib14 article-title: BS Nethra. Statistical software packages for research in social sciences publication-title: Recent Research Advancements in Information Technology – volume: vol. 2 year: 2006 ident: bib99 publication-title: Gaussian Processes for Machine Learning – volume: 408 start-page: 109275 year: 2020 ident: bib93 article-title: Machine Learning design of Volume of Fluid schemes for compressible flows publication-title: J. Comput. Phys. – volume: 141 year: 2019 ident: bib148 article-title: Multi-fidelity physics-constrained neural network and its application in materials modeling publication-title: J. Mech. Des. – volume: 19 start-page: 897 year: 1915 ident: bib46 article-title: Series development for some cases of equilibrium of plates and beams publication-title: Wjestnik Ingenerow Petrograd – year: 2021 ident: bib80 article-title: The Potential of Machine Learning to Enhance Computational Fluid Dynamics – volume: 39 start-page: 930 year: 1993 end-page: 945 ident: bib101 article-title: Universal approximation bounds for superpositions of a sigmoidal function publication-title: IEEE Trans. Inf. Theor. – volume: 20 start-page: 130 year: 1963 end-page: 141 ident: bib48 article-title: Deterministic nonperiodic flow publication-title: J. Atmos. Sci. – volume: 45 start-page: 561 year: 1987 end-page: 571 ident: bib50 article-title: Turbulence and the dynamics of coherent structures. I. Coherent structures publication-title: Q. Appl. Math. – year: 2021 ident: bib120 article-title: Enhancing Predictive Skills in Physically-Consistent Way: Physics Informed Machine Learning for Hydrological Processes – volume: 32 start-page: 278 year: 2018 end-page: 292 ident: bib36 article-title: A POD-based reduced-order model for uncertainty analyses in shallow water flows publication-title: Int. J. Comput. Fluid Dynam. – year: 2018 ident: bib149 article-title: HybridNet: integrating model-based and data-driven learning to predict evolution of dynamical systems publication-title: Conference on Robot Learning – year: 2020 ident: bib126 article-title: Physics Guided Machine Learning Methods for Hydrology – year: 1986 ident: bib87 article-title: Learning while Searching in Constraint-Satisfaction Problems – year: 2021 ident: bib5 article-title: Predicting the Spread of COVID-19 in Delhi, India Using Deep Residual Recurrent Neural Networks – volume: 168 start-page: 114316 year: 2021 ident: bib129 article-title: Probabilistic physics-guided machine learning for fatigue data analysis publication-title: Expert Syst. Appl. – volume: 641 start-page: 115 year: 2009 end-page: 127 ident: bib65 article-title: Spectral analysis of nonlinear flows publication-title: J. Fluid Mech. – volume: 747 start-page: 518 year: 2014 end-page: 544 ident: bib70 article-title: On the need for a nonlinear subscale turbulence term in POD models as exemplified for a high-Reynolds-number flow over an Ahmed body publication-title: J. Fluid Mech. – volume: 395 start-page: 105 year: 2019 end-page: 124 ident: bib91 article-title: Recovering missing CFD data for high-order discretizations using deep neural networks and dynamics learning publication-title: J. Comput. Phys. – volume: 7 start-page: 1 year: 2020 end-page: 27 ident: bib145 article-title: Model order reduction assisted by deep neural networks (ROM-net) publication-title: Advanced Modeling and Simulation in Engineering Sciences – volume: 79 start-page: 1 year: 2019 end-page: 24 ident: bib137 article-title: JUNIPR: a framework for unsupervised machine learning in particle physics publication-title: The European Physical Journal C – volume: 54 start-page: 1 year: 2013 end-page: 21 ident: bib69 article-title: Identification strategies for model-based control publication-title: Exp. Fluid – volume: 370 start-page: 113250 year: 2020 ident: bib151 article-title: PPINN: parareal physics-informed neural network for time-dependent PDEs publication-title: Comput. Methods Appl. Mech. Eng. – volume: 38 start-page: 1961 year: 2001 end-page: 1985 ident: bib55 article-title: Adaptive Galerkin methods with error control for a dynamical ginzburg-landau model in superconductivity publication-title: SIAM J. Numer. Anal. – year: 2019 ident: bib136 article-title: Application of physics-based machine learning in combustion modeling publication-title: 11th US National Combustion Meeting – volume: 119 year: 2020 ident: bib134 article-title: Machine learning assisted evaluations in structural design and construction publication-title: Autom. ConStruct. – volume: 3 start-page: 1 year: 2019 end-page: 12 ident: bib139 article-title: Predicting the dissolution kinetics of silicate glasses by topology-informed machine learning publication-title: Npj Materials Degradation – volume: 160 year: 2020 ident: bib143 article-title: Machine learning prediction of thermal transport in porous media with physics-based descriptors publication-title: Int. J. Heat Mass Tran. – volume: 14 start-page: 114027 year: 2019 ident: bib23 article-title: Evaluation and machine learning improvement of global hydrological model-based flood simulations publication-title: Environ. Res. Lett. – year: 2005 ident: bib41 article-title: The curse of dimensionality in data mining and time series prediction publication-title: International Work-Conference on Artificial Neural Networks – volume: 348 start-page: 683 year: 2017 end-page: 693 ident: bib95 article-title: Machine learning of linear differential equations using Gaussian processes publication-title: J. Comput. Phys. – volume: 4 start-page: 54603 year: 2019 ident: bib122 article-title: Predictions of turbulent shear flows using deep neural networks publication-title: Physical Review Fluids – year: 2021 ident: bib10 article-title: Monitoring marine environments with autonomous underwater vehicles: a bibliometric analysis publication-title: Results in Engineering – volume: 339 start-page: 667 year: 2004 end-page: 672 ident: bib59 article-title: An ‘empirical interpolation’method: application to efficient reduced-basis discretization of partial differential equations publication-title: Compt. Rendus Math. – volume: 9 start-page: 987 year: 1998 end-page: 1000 ident: bib110 article-title: Artificial neural networks for solving ordinary and partial differential equations publication-title: IEEE Trans. Neural Network. – volume: 2 start-page: 1 year: 2019 end-page: 11 ident: bib16 article-title: Integrating machine learning and multiscale modeling—perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences publication-title: NPJ digital medicine – volume: 191 start-page: 5499 year: 2002 end-page: 5513 ident: bib29 article-title: Mid-frequency structural dynamics with parameter uncertainty publication-title: Comput. Methods Appl. Mech. Eng. – volume: 34 start-page: 425 year: 2000 end-page: 448 ident: bib54 article-title: A reduced‐order approach for optimal control of fluids using proper orthogonal decomposition publication-title: Int. J. Numer. Methods Fluid. – volume: 6 start-page: 1 year: 2018 end-page: 12 ident: bib112 article-title: The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems publication-title: Communications in Mathematics and Statistics – volume: 40 start-page: A1322 year: 2018 end-page: A1344 ident: bib76 article-title: The shifted proper orthogonal decomposition: a mode decomposition for multiple transport phenomena publication-title: SIAM J. Sci. Comput. – volume: 192 start-page: 115 year: 1988 end-page: 173 ident: bib51 article-title: The dynamics of coherent structures in the wall region of a turbulent boundary layer publication-title: J. Fluid Mech. – year: 2021 ident: bib81 article-title: Towards Extraction of Orthogonal and Parsimonious Non-linear Modes from Turbulent Flows – volume: 13 year: 2018 ident: bib45 article-title: Data-assisted reduced-order modeling of extreme events in complex dynamical systems publication-title: PLoS One – volume: 2 start-page: 559 year: 1901 end-page: 572 ident: bib31 article-title: Planes of closest fit to systems of points in space, london edinburgh dublin philos publication-title: Mag. J. Sci – volume: 46 start-page: 1803 year: 2008 end-page: 1813 ident: bib63 article-title: Interpolation method for adapting reduced-order models and application to aeroelasticity publication-title: AIAA J. – volume: 33 year: 2021 ident: bib124 article-title: From coarse wall measurements to turbulent velocity fields through deep learning publication-title: Phys. Fluid. – volume: 24 year: 2019 ident: bib130 article-title: Finite element–based machine-learning approach to detect damage in bridges under operational and environmental variations publication-title: J. Bridge Eng. – year: 2018 ident: bib43 article-title: A Deep Learning Based Approach to Reduced Order Modeling for Turbulent Flow Control Using LSTM Neural Networks – volume: 118 start-page: 103140 year: 2020 ident: bib92 article-title: Machine-learning based error prediction approach for coarse-grid Computational Fluid Dynamics (CG-CFD) publication-title: Prog. Nucl. Energy – year: 2008 ident: bib20 article-title: Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation – volume: 16 start-page: 146 year: 1976 end-page: 160 ident: bib83 article-title: Taylor expansion of the accumulated rounding error publication-title: BIT Numerical Mathematics – year: 2020 ident: bib116 article-title: Understanding and Mitigating Gradient Pathologies in Physics-Informed Neural Networks – year: 2018 ident: bib157 article-title: Real-time power system state estimation via deep unrolled neural networks publication-title: 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP) – year: 2020 ident: bib146 article-title: Predicting AC optimal power flows: combining deep learning and Lagrangian dual methods publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – year: 2019 ident: bib39 article-title: A Non-intrusive Reduced-Order Modeling Method Using Polynomial Chaos Expansion – volume: 11 year: 2021 ident: bib9 article-title: An explainable machine learning model to predict and elucidate the compressive behavior of high-performance concrete publication-title: Results in Engineering – year: 2019 ident: bib17 article-title: Workshop Report on Basic Research Needs for Scientific Machine Learning: Core Technologies for Artificial Intelligence – year: 2016 ident: bib88 article-title: Deep Learning – volume: 8 year: 2020 ident: bib8 article-title: Artificial intelligence system for supporting soil classification publication-title: Results in Engineering – volume: 844 start-page: 459 year: 2018 end-page: 490 ident: bib77 article-title: Sparse reduced-order modelling: sensor-based dynamics to full-state estimation publication-title: J. Fluid Mech. – volume: 765 start-page: 325 year: 2015 end-page: 352 ident: bib72 article-title: On long-term boundedness of Galerkin models publication-title: J. Fluid Mech. – volume: 67 start-page: 619 year: 2021 end-page: 635 ident: bib138 article-title: Machine learning for metal additive manufacturing: predicting temperature and melt pool fluid dynamics using physics-informed neural networks publication-title: Comput. Mech. – volume: 124 start-page: 70 year: 2002 end-page: 80 ident: bib27 article-title: Reliable real-time solution of parametrized partial differential equations: reduced-basis output bound methods publication-title: J. Fluid Eng. – volume: 10 start-page: 5442 year: 2017 end-page: 5457 ident: bib142 article-title: A novel ozone profile shape retrieval using full-physics inverse learning machine (FP-ILM) publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens. – year: 2019 ident: bib158 article-title: Symplectic Ode-Net: Learning Hamiltonian Dynamics with Control – volume: 1 start-page: 127 year: 2014 end-page: 239 ident: bib21 article-title: Proximal algorithms publication-title: Foundations and Trends in optimization – volume: 123 start-page: 264 year: 2019 end-page: 297 ident: bib24 article-title: Review for order reduction based on proper orthogonal decomposition and outlooks of applications in mechanical systems publication-title: Mech. Syst. Signal Process. – volume: 11 start-page: 4276 year: 2021 ident: bib117 article-title: An adapted model of cognitive digital twins for building lifecycle management publication-title: Appl. Sci. – volume: 46 start-page: 1 year: 2021 end-page: 11 ident: bib131 article-title: A hybrid physics-assisted machine-learning-based damage detection using Lamb wave publication-title: Sādhanā – start-page: 215 year: 2014 end-page: 233 ident: bib35 article-title: On the stability of reduced-order linearized computational fluid dynamics models based on POD and Galerkin projection: descriptor vs non-descriptor forms publication-title: Reduced Order Methods for Modeling and Computational Reduction – year: 2020 ident: bib132 article-title: Data-Driven and Model-Based Methods with Physics-Guided Machine Learning for Damage Identification – year: 2021 ident: bib13 article-title: Comparison of sewer conditions ratings with repair recommendation reports publication-title: North American Society for Trenchless Technology (NASTT) 2021 – year: 2021 ident: bib4 article-title: Deep learning applications to classify cross-topic natural language texts based on their argumentative form publication-title: 2021 2nd International Conference on Smart Electronics and Communication (ICOSEC) – volume: 847 start-page: 821 year: 2018 end-page: 867 ident: bib75 article-title: Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis publication-title: J. Fluid Mech. – volume: 403 year: 2020 ident: bib127 article-title: Modeling the dynamics of PDE systems with physics-constrained deep auto-regressive networks publication-title: J. Comput. Phys. – volume: 436 start-page: 110296 year: 2021 ident: bib107 article-title: DeepM&Mnet: inferring the electroconvection multiphysics fields based on operator approximation by neural networks publication-title: J. Comput. Phys. – volume: 401 start-page: 109020 year: 2020 ident: bib150 article-title: A composite neural network that learns from multi-fidelity data: application to function approximation and inverse PDE problems publication-title: J. Comput. Phys. – volume: 378 start-page: 686 year: 2019 end-page: 707 ident: bib96 article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. – volume: 287 start-page: 337 year: 1997 end-page: 384 ident: bib28 article-title: Low-dimensional models of coherent structures in turbulence publication-title: Phys. Rep. – volume: 870 start-page: 988 year: 2019 end-page: 1036 ident: bib78 article-title: Multi-scale proper orthogonal decomposition of complex fluid flows publication-title: J. Fluid Mech. – year: 2009 ident: bib94 article-title: Machine Learning Methods in the Environmental Sciences: Neural Networks and Kernels – volume: 861 start-page: 119 year: 2019 end-page: 137 ident: bib97 article-title: Deep learning of vortex-induced vibrations publication-title: J. Fluid Mech. – start-page: 808 year: 2000 end-page: 817 ident: bib26 article-title: An introduction to the proper orthogonal decomposition publication-title: Curr. Sci. – volume: 100 start-page: 2175 year: 2019 end-page: 2199 ident: bib15 article-title: Making the black box more transparent: understanding the physical implications of machine learning publication-title: Bull. Am. Meteorol. Soc. – volume: 814 start-page: 1 year: 2017 end-page: 4 ident: bib90 article-title: Deep learning in fluid dynamics publication-title: J. Fluid Mech. – year: 2021 ident: bib2 article-title: Implementation of hybrid neuro-fuzzy and self-turning predictive model for the prediction of concrete carbonation depth: a soft computing technique publication-title: Results in Engineering – year: 2021 ident: bib104 article-title: Physics-informed Neural Networks for Solving Reynolds-averaged Navier $\unicode {x2013} $ Stokes Equations – volume: 394 start-page: 56 year: 2019 end-page: 81 ident: bib113 article-title: Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data publication-title: J. Comput. Phys. – start-page: 1188 year: 2020 end-page: 1207 ident: bib119 article-title: Efficient intensity measures and machine learning classification algorithms for collapse prediction informed by physics-based ground motion simulations publication-title: Earthq. Spectra – volume: 2012 start-page: 1 year: 2012 end-page: 12 ident: bib42 article-title: Support-vector-machine-based reduced-order model for limit cycle oscillation prediction of nonlinear aeroelastic system publication-title: Math. Probl Eng. – volume: 323 start-page: 533 year: 1986 end-page: 536 ident: bib84 article-title: Learning representations by back-propagating errors publication-title: Nature – volume: 187 start-page: 115883 year: 2019 ident: bib152 article-title: Physics-induced graph neural network: an application to wind-farm power estimation publication-title: Energy – volume: 332 start-page: 2437 year: 2013 end-page: 2460 ident: bib25 article-title: A review of indirect/non-intrusive reduced order modeling of nonlinear geometric structures publication-title: J. Sound Vib. – volume: 60 start-page: 681 year: 2018 end-page: 710 ident: bib154 article-title: Machine learning closures for model order reduction of thermal fluids publication-title: Appl. Math. Model. – volume: 12 start-page: 273 year: 2000 end-page: 288 ident: bib37 article-title: High dimensional polynomial interpolation on sparse grids publication-title: Adv. Comput. Math. – volume: 102 start-page: 1136 year: 2015 end-page: 1161 ident: bib71 article-title: Supremizer stabilization of POD–Galerkin approximation of parametrized steady incompressible Navier–Stokes equations publication-title: Int. J. Numer. Methods Eng. – volume: 26 start-page: 275 year: 2012 end-page: 295 ident: bib34 article-title: Low-order modelling of shallow water equations for sensitivity analysis using proper orthogonal decomposition publication-title: Int. J. Comput. Fluid Dynam. – volume: 28 start-page: 459 year: 2006 end-page: 484 ident: bib30 article-title: Centroidal Voronoi tessellation-based reduced-order modeling of complex systems publication-title: SIAM J. Sci. Comput. – volume: 656 start-page: 5 year: 2010 end-page: 28 ident: bib66 article-title: Dynamic mode decomposition of numerical and experimental data publication-title: J. Fluid Mech. – volume: 15 start-page: 1 year: 2007 ident: bib61 article-title: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations publication-title: Arch. Comput. Methods Eng. – year: 2019 ident: bib106 article-title: Deeponet: Learning Nonlinear Operators for Identifying Differential Equations Based on the Universal Approximation Theorem of Operators – year: 2020 ident: bib144 article-title: Deep shape from polarization publication-title: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXIV 16 – year: 2019 ident: bib121 article-title: Physics-informed Autoencoders for Lyapunov-Stable Fluid Flow Prediction – volume: 53 start-page: 2237 year: 2008 end-page: 2251 ident: bib64 article-title: Missing point estimation in models described by proper orthogonal decomposition publication-title: IEEE Trans. Automat. Control – volume: 19 start-page: 932 year: 2018 end-page: 955 ident: bib115 article-title: Deep hidden physics models: deep learning of nonlinear partial differential equations publication-title: J. Mach. Learn. Res. – volume: 207 start-page: 192 year: 2005 end-page: 220 ident: bib33 article-title: Calibrated reduced-order POD-Galerkin system for fluid flow modelling publication-title: J. Comput. Phys. – volume: 153 start-page: 34 year: 1966 end-page: 37 ident: bib40 article-title: Dynamic programming publication-title: Science – year: 2020 ident: bib105 article-title: Fourier Neural Operator for Parametric Partial Differential Equations – year: 2018 ident: bib103 article-title: Optimal approximation of continuous functions by very deep ReLU networks publication-title: Conference on Learning Theory – volume: 491 start-page: 275 year: 2003 end-page: 284 ident: bib57 article-title: Intermodal energy transfers in a proper orthogonal decomposition–Galerkin representation of a turbulent separated flow publication-title: J. Fluid Mech. – volume: 10 start-page: 1 year: 2020 end-page: 14 ident: bib156 article-title: A framework for modeling flood depth using a hybrid of hydraulics and machine learning publication-title: Sci. Rep. – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: bib86 article-title: Long short-term memory publication-title: Neural Comput. – reference: Zhou, S., et al., A data-driven and physics-based approach to exploring interdependency of interconnected infrastructure, in Computing in Civil Engineering 2019: Data, Sensing, and Analytics. 2019, American Society of Civil Engineers Reston, VA. p. 82-88. – year: 2020 ident: bib11 article-title: Prediction of the Number of Covid-19 Confirmed Cases Based on K-Means-Lstm – volume: 22 year: 2021 ident: bib141 article-title: Physics-informed machine learning for composition–process–property design: shape memory alloy demonstration publication-title: Applied Materials Today – volume: 53 start-page: 1571 year: 2007 end-page: 1583 ident: bib62 article-title: A reduced‐order approach to four‐dimensional variational data assimilation using proper orthogonal decomposition publication-title: Int. J. Numer. Methods Fluid. – year: 2020 ident: bib108 article-title: DeepM&Mnet for Hypersonics: Predicting the Coupled Flow and Finite-Rate Chemistry behind a Normal Shock Using Neural-Network Approximation of Operators – volume: 215 year: 2020 ident: bib159 article-title: Physics-guided convolutional neural network (PhyCNN) for data-driven seismic response modeling publication-title: Eng. Struct. – volume: 194 start-page: 92 year: 2004 end-page: 116 ident: bib58 article-title: A spectral viscosity method for correcting the long-term behavior of POD models publication-title: J. Comput. Phys. – volume: 377 year: 2019 ident: bib140 article-title: Machine learning techniques for detecting topological avatars of new physics publication-title: Philosophical Transactions of the Royal Society A – volume: 2 start-page: 34603 year: 2017 ident: bib155 article-title: Physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data publication-title: Physical Review Fluids – volume: vol. 113 start-page: 3932 year: 2016 end-page: 3937 ident: bib89 article-title: Discovering governing equations from data by sparse identification of nonlinear dynamical systems publication-title: Proceedings of the National Academy of Sciences – volume: 32 start-page: 2737 year: 2010 end-page: 2764 ident: bib67 article-title: Nonlinear model reduction via discrete empirical interpolation publication-title: SIAM J. Sci. Comput. – volume: 10 year: 2021 ident: bib1 article-title: A noise robust convolutional neural network for image classification publication-title: Results in Engineering – volume: 65 start-page: 386 year: 1958 ident: bib82 article-title: The perceptron: a probabilistic model for information storage and organization in the brain publication-title: Psychol. Rev. – volume: 6 start-page: 295 year: 2021 end-page: 309 ident: bib135 article-title: Utilizing physics-based input features within a machine learning model to predict wind speed forecasting error publication-title: Wind Energy Science – volume: 317 start-page: 28 year: 2018 end-page: 41 ident: bib111 article-title: A unified deep artificial neural network approach to partial differential equations in complex geometries publication-title: Neurocomputing – volume: 19 start-page: 329 year: 1962 end-page: 341 ident: bib47 article-title: Finite amplitude free convection as an initial value problem—I publication-title: J. Atmos. Sci. – year: 2019 ident: bib147 article-title: Deep fluids: a generative network for parameterized fluid simulations publication-title: Computer Graphics Forum – volume: 148 start-page: 323 year: 2019 end-page: 337 ident: bib44 article-title: A reduced order model for turbulent flows in the urban environment using machine learning publication-title: Build. Environ. – volume: 317 start-page: 28 year: 2018 ident: 10.1016/j.rineng.2021.100316_bib111 article-title: A unified deep artificial neural network approach to partial differential equations in complex geometries publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.06.056 – year: 1967 ident: 10.1016/j.rineng.2021.100316_bib49 – year: 2018 ident: 10.1016/j.rineng.2021.100316_bib157 article-title: Real-time power system state estimation via deep unrolled neural networks – volume: 375 start-page: 565 year: 2018 ident: 10.1016/j.rineng.2021.100316_bib133 article-title: Deep UQ: learning deep neural network surrogate models for high dimensional uncertainty quantification publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.08.036 – year: 2013 ident: 10.1016/j.rineng.2021.100316_bib68 – volume: 79 start-page: 1 issue: 2 year: 2019 ident: 10.1016/j.rineng.2021.100316_bib137 article-title: JUNIPR: a framework for unsupervised machine learning in particle physics publication-title: The European Physical Journal C doi: 10.1140/epjc/s10052-019-6607-9 – volume: 3 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.rineng.2021.100316_bib139 article-title: Predicting the dissolution kinetics of silicate glasses by topology-informed machine learning publication-title: Npj Materials Degradation doi: 10.1038/s41529-019-0094-1 – volume: 32 start-page: 278 issue: 6–7 year: 2018 ident: 10.1016/j.rineng.2021.100316_bib36 article-title: A POD-based reduced-order model for uncertainty analyses in shallow water flows publication-title: Int. J. Comput. Fluid Dynam. doi: 10.1080/10618562.2018.1513496 – volume: 10 start-page: 195 issue: 3 year: 1994 ident: 10.1016/j.rineng.2021.100316_bib109 article-title: Neural‐network‐based approximations for solving partial differential equations publication-title: Commun. Numer. Methods Eng. doi: 10.1002/cnm.1640100303 – volume: 14 start-page: 114027 issue: 11 year: 2019 ident: 10.1016/j.rineng.2021.100316_bib23 article-title: Evaluation and machine learning improvement of global hydrological model-based flood simulations publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/ab4d5e – volume: 378 start-page: 686 year: 2019 ident: 10.1016/j.rineng.2021.100316_bib96 article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.10.045 – volume: 192 start-page: 115 year: 1988 ident: 10.1016/j.rineng.2021.100316_bib51 article-title: The dynamics of coherent structures in the wall region of a turbulent boundary layer publication-title: J. Fluid Mech. doi: 10.1017/S0022112088001818 – volume: 33 issue: 7 year: 2021 ident: 10.1016/j.rineng.2021.100316_bib124 article-title: From coarse wall measurements to turbulent velocity fields through deep learning publication-title: Phys. Fluid. doi: 10.1063/5.0058346 – year: 2021 ident: 10.1016/j.rineng.2021.100316_bib12 – year: 2011 ident: 10.1016/j.rineng.2021.100316_bib22 – year: 2019 ident: 10.1016/j.rineng.2021.100316_bib17 – volume: 10 start-page: 5442 issue: 12 year: 2017 ident: 10.1016/j.rineng.2021.100316_bib142 article-title: A novel ozone profile shape retrieval using full-physics inverse learning machine (FP-ILM) publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens. doi: 10.1109/JSTARS.2017.2740168 – volume: 8 start-page: 71050 year: 2020 ident: 10.1016/j.rineng.2021.100316_bib19 article-title: Driven by data or derived through physics? a review of hybrid physics guided machine learning techniques with cyber-physical system (cps) focus publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2987324 – volume: 22 year: 2021 ident: 10.1016/j.rineng.2021.100316_bib141 article-title: Physics-informed machine learning for composition–process–property design: shape memory alloy demonstration publication-title: Applied Materials Today doi: 10.1016/j.apmt.2020.100898 – volume: 861 start-page: 119 year: 2019 ident: 10.1016/j.rineng.2021.100316_bib97 article-title: Deep learning of vortex-induced vibrations publication-title: J. Fluid Mech. doi: 10.1017/jfm.2018.872 – volume: 40 start-page: 2323 issue: 11 year: 2002 ident: 10.1016/j.rineng.2021.100316_bib56 article-title: Balanced model reduction via the proper orthogonal decomposition publication-title: AIAA J. doi: 10.2514/2.1570 – year: 2020 ident: 10.1016/j.rineng.2021.100316_bib105 – volume: 348 start-page: 683 year: 2017 ident: 10.1016/j.rineng.2021.100316_bib95 article-title: Machine learning of linear differential equations using Gaussian processes publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2017.07.050 – volume: vol. 2 year: 2006 ident: 10.1016/j.rineng.2021.100316_bib99 – volume: 374 start-page: 20150202 issue: 2065 year: 2016 ident: 10.1016/j.rineng.2021.100316_bib32 article-title: Principal component analysis: a review and recent developments publication-title: Phil. Trans. Math. Phys. Eng. Sci. – year: 2018 ident: 10.1016/j.rineng.2021.100316_bib43 – volume: 13 issue: 5 year: 2018 ident: 10.1016/j.rineng.2021.100316_bib45 article-title: Data-assisted reduced-order modeling of extreme events in complex dynamical systems publication-title: PLoS One doi: 10.1371/journal.pone.0197704 – volume: 16 start-page: 146 issue: 2 year: 1976 ident: 10.1016/j.rineng.2021.100316_bib83 article-title: Taylor expansion of the accumulated rounding error publication-title: BIT Numerical Mathematics doi: 10.1007/BF01931367 – volume: 19 start-page: 932 issue: 1 year: 2018 ident: 10.1016/j.rineng.2021.100316_bib115 article-title: Deep hidden physics models: deep learning of nonlinear partial differential equations publication-title: J. Mach. Learn. Res. – volume: 54 start-page: 1 issue: 8 year: 2013 ident: 10.1016/j.rineng.2021.100316_bib69 article-title: Identification strategies for model-based control publication-title: Exp. Fluid doi: 10.1007/s00348-013-1580-9 – volume: 19 start-page: 329 issue: 4 year: 1962 ident: 10.1016/j.rineng.2021.100316_bib47 article-title: Finite amplitude free convection as an initial value problem—I publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1962)019<0329:FAFCAA>2.0.CO;2 – year: 2014 ident: 10.1016/j.rineng.2021.100316_bib14 article-title: BS Nethra. Statistical software packages for research in social sciences – volume: 65 start-page: 386 issue: 6 year: 1958 ident: 10.1016/j.rineng.2021.100316_bib82 article-title: The perceptron: a probabilistic model for information storage and organization in the brain publication-title: Psychol. Rev. doi: 10.1037/h0042519 – volume: 2 start-page: 34603 issue: 3 year: 2017 ident: 10.1016/j.rineng.2021.100316_bib155 article-title: Physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data publication-title: Physical Review Fluids doi: 10.1103/PhysRevFluids.2.034603 – volume: 287 start-page: 337 issue: 4 year: 1997 ident: 10.1016/j.rineng.2021.100316_bib28 article-title: Low-dimensional models of coherent structures in turbulence publication-title: Phys. Rep. doi: 10.1016/S0370-1573(97)00017-3 – volume: 215 year: 2020 ident: 10.1016/j.rineng.2021.100316_bib159 article-title: Physics-guided convolutional neural network (PhyCNN) for data-driven seismic response modeling publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2020.110704 – volume: 332 start-page: 2437 issue: 10 year: 2013 ident: 10.1016/j.rineng.2021.100316_bib25 article-title: A review of indirect/non-intrusive reduced order modeling of nonlinear geometric structures publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2012.10.017 – volume: 491 start-page: 275 year: 2003 ident: 10.1016/j.rineng.2021.100316_bib57 article-title: Intermodal energy transfers in a proper orthogonal decomposition–Galerkin representation of a turbulent separated flow publication-title: J. Fluid Mech. doi: 10.1017/S0022112003005615 – volume: 4 start-page: 54603 issue: 5 year: 2019 ident: 10.1016/j.rineng.2021.100316_bib122 article-title: Predictions of turbulent shear flows using deep neural networks publication-title: Physical Review Fluids doi: 10.1103/PhysRevFluids.4.054603 – volume: 15 start-page: 1 issue: 3 year: 2007 ident: 10.1016/j.rineng.2021.100316_bib61 article-title: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations publication-title: Arch. Comput. Methods Eng. doi: 10.1007/BF03024948 – year: 2019 ident: 10.1016/j.rineng.2021.100316_bib147 article-title: Deep fluids: a generative network for parameterized fluid simulations – volume: 747 start-page: 518 year: 2014 ident: 10.1016/j.rineng.2021.100316_bib70 article-title: On the need for a nonlinear subscale turbulence term in POD models as exemplified for a high-Reynolds-number flow over an Ahmed body publication-title: J. Fluid Mech. doi: 10.1017/jfm.2014.168 – volume: 194 start-page: 92 issue: 1 year: 2004 ident: 10.1016/j.rineng.2021.100316_bib58 article-title: A spectral viscosity method for correcting the long-term behavior of POD models publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2003.08.021 – volume: 1 start-page: 127 issue: 3 year: 2014 ident: 10.1016/j.rineng.2021.100316_bib21 article-title: Proximal algorithms publication-title: Foundations and Trends in optimization doi: 10.1561/2400000003 – volume: 26 start-page: 275 issue: 5 year: 2012 ident: 10.1016/j.rineng.2021.100316_bib34 article-title: Low-order modelling of shallow water equations for sensitivity analysis using proper orthogonal decomposition publication-title: Int. J. Comput. Fluid Dynam. doi: 10.1080/10618562.2012.715153 – volume: 11 year: 2021 ident: 10.1016/j.rineng.2021.100316_bib9 article-title: An explainable machine learning model to predict and elucidate the compressive behavior of high-performance concrete publication-title: Results in Engineering doi: 10.1016/j.rineng.2021.100245 – volume: 32 start-page: 2737 issue: 5 year: 2010 ident: 10.1016/j.rineng.2021.100316_bib67 article-title: Nonlinear model reduction via discrete empirical interpolation publication-title: SIAM J. Sci. Comput. doi: 10.1137/090766498 – year: 2020 ident: 10.1016/j.rineng.2021.100316_bib116 – volume: 2 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.rineng.2021.100316_bib16 article-title: Integrating machine learning and multiscale modeling—perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences publication-title: NPJ digital medicine doi: 10.1038/s41746-019-0193-y – volume: 1 issue: 1 year: 2020 ident: 10.1016/j.rineng.2021.100316_bib114 article-title: Limitations of physics informed machine learning for nonlinear two-phase transport in porous media publication-title: Journal of Machine Learning for Modeling and Computing doi: 10.1615/JMachLearnModelComput.2020033905 – year: 2019 ident: 10.1016/j.rineng.2021.100316_bib121 – volume: 53 start-page: 1571 issue: 10 year: 2007 ident: 10.1016/j.rineng.2021.100316_bib62 article-title: A reduced‐order approach to four‐dimensional variational data assimilation using proper orthogonal decomposition publication-title: Int. J. Numer. Methods Fluid. doi: 10.1002/fld.1365 – year: 2021 ident: 10.1016/j.rineng.2021.100316_bib120 – volume: 34 start-page: 425 issue: 5 year: 2000 ident: 10.1016/j.rineng.2021.100316_bib54 article-title: A reduced‐order approach for optimal control of fluids using proper orthogonal decomposition publication-title: Int. J. Numer. Methods Fluid. doi: 10.1002/1097-0363(20001115)34:5<425::AID-FLD67>3.0.CO;2-W – volume: 11 year: 2021 ident: 10.1016/j.rineng.2021.100316_bib7 article-title: Optimization of CNC turning parameters using face centred CCD approach in RSM and ANN-genetic algorithm for AISI 4340 alloy steel publication-title: Results in Engineering doi: 10.1016/j.rineng.2021.100251 – volume: 20 start-page: 130 issue: 2 year: 1963 ident: 10.1016/j.rineng.2021.100316_bib48 article-title: Deterministic nonperiodic flow publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 – volume: 29 start-page: 2318 issue: 10 year: 2017 ident: 10.1016/j.rineng.2021.100316_bib18 article-title: Theory-guided data science: a new paradigm for scientific discovery from data publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2017.2720168 – volume: 60 start-page: 681 year: 2018 ident: 10.1016/j.rineng.2021.100316_bib154 article-title: Machine learning closures for model order reduction of thermal fluids publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2018.03.037 – volume: 168 start-page: 114316 year: 2021 ident: 10.1016/j.rineng.2021.100316_bib129 article-title: Probabilistic physics-guided machine learning for fatigue data analysis publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.114316 – year: 2008 ident: 10.1016/j.rineng.2021.100316_bib20 – volume: 395 start-page: 105 year: 2019 ident: 10.1016/j.rineng.2021.100316_bib91 article-title: Recovering missing CFD data for high-order discretizations using deep neural networks and dynamics learning publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.05.041 – year: 2019 ident: 10.1016/j.rineng.2021.100316_bib39 – volume: 148 start-page: 323 year: 2019 ident: 10.1016/j.rineng.2021.100316_bib44 article-title: A reduced order model for turbulent flows in the urban environment using machine learning publication-title: Build. Environ. doi: 10.1016/j.buildenv.2018.10.035 – volume: 19 start-page: 4181 issue: 11 year: 2019 ident: 10.1016/j.rineng.2021.100316_bib153 article-title: Physics-based convolutional neural network for fault diagnosis of rolling element bearings publication-title: IEEE Sensor. J. doi: 10.1109/JSEN.2019.2898634 – start-page: 928 year: 2021 ident: 10.1016/j.rineng.2021.100316_bib123 article-title: Convolutional-network models to predict wall-bounded turbulence from wall quantities publication-title: J. Fluid Mech. – ident: 10.1016/j.rineng.2021.100316_bib125 doi: 10.1061/9780784482438.011 – year: 2019 ident: 10.1016/j.rineng.2021.100316_bib136 article-title: Application of physics-based machine learning in combustion modeling – volume: 792 start-page: 798 year: 2016 ident: 10.1016/j.rineng.2021.100316_bib74 article-title: Spectral proper orthogonal decomposition publication-title: J. Fluid Mech. doi: 10.1017/jfm.2016.103 – volume: 118 start-page: 103140 year: 2020 ident: 10.1016/j.rineng.2021.100316_bib92 article-title: Machine-learning based error prediction approach for coarse-grid Computational Fluid Dynamics (CG-CFD) publication-title: Prog. Nucl. Energy doi: 10.1016/j.pnucene.2019.103140 – volume: 323 start-page: 533 issue: 6088 year: 1986 ident: 10.1016/j.rineng.2021.100316_bib84 article-title: Learning representations by back-propagating errors publication-title: Nature doi: 10.1038/323533a0 – volume: 57 start-page: 71 year: 2015 ident: 10.1016/j.rineng.2021.100316_bib118 article-title: Cloud-to-BIM-to-FEM: structural simulation with accurate historic BIM from laser scans publication-title: Simulat. Model. Pract. Theor. doi: 10.1016/j.simpat.2015.06.004 – start-page: 101 year: 1991 ident: 10.1016/j.rineng.2021.100316_bib38 article-title: Stochastic finite element method: response statistics – volume: 12 start-page: 1657 issue: 8 year: 1995 ident: 10.1016/j.rineng.2021.100316_bib53 article-title: Karhunen–Loeve procedure for gappy data publication-title: JOSA A doi: 10.1364/JOSAA.12.001657 – year: 2020 ident: 10.1016/j.rineng.2021.100316_bib126 – year: 2016 ident: 10.1016/j.rineng.2021.100316_bib88 – volume: 39 start-page: 930 issue: 3 year: 1993 ident: 10.1016/j.rineng.2021.100316_bib101 article-title: Universal approximation bounds for superpositions of a sigmoidal function publication-title: IEEE Trans. Inf. Theor. doi: 10.1109/18.256500 – volume: 10 year: 2021 ident: 10.1016/j.rineng.2021.100316_bib1 article-title: A noise robust convolutional neural network for image classification publication-title: Results in Engineering doi: 10.1016/j.rineng.2021.100225 – year: 2019 ident: 10.1016/j.rineng.2021.100316_bib158 – year: 2021 ident: 10.1016/j.rineng.2021.100316_bib104 – volume: 844 start-page: 459 year: 2018 ident: 10.1016/j.rineng.2021.100316_bib77 article-title: Sparse reduced-order modelling: sensor-based dynamics to full-state estimation publication-title: J. Fluid Mech. doi: 10.1017/jfm.2018.147 – volume: 436 start-page: 110296 year: 2021 ident: 10.1016/j.rineng.2021.100316_bib107 article-title: DeepM&Mnet: inferring the electroconvection multiphysics fields based on operator approximation by neural networks publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2021.110296 – volume: 38 start-page: 1961 issue: 6 year: 2001 ident: 10.1016/j.rineng.2021.100316_bib55 article-title: Adaptive Galerkin methods with error control for a dynamical ginzburg-landau model in superconductivity publication-title: SIAM J. Numer. Anal. doi: 10.1137/S0036142998349102 – volume: 2 start-page: 559 issue: 11 year: 1901 ident: 10.1016/j.rineng.2021.100316_bib31 article-title: Planes of closest fit to systems of points in space, london edinburgh dublin philos publication-title: Mag. J. Sci doi: 10.1080/14786440109462720 – volume: 102 start-page: 1136 issue: 5 year: 2015 ident: 10.1016/j.rineng.2021.100316_bib71 article-title: Supremizer stabilization of POD–Galerkin approximation of parametrized steady incompressible Navier–Stokes equations publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.4772 – volume: 160 year: 2020 ident: 10.1016/j.rineng.2021.100316_bib143 article-title: Machine learning prediction of thermal transport in porous media with physics-based descriptors publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2020.120176 – volume: 100 start-page: 2175 issue: 11 year: 2019 ident: 10.1016/j.rineng.2021.100316_bib15 article-title: Making the black box more transparent: understanding the physical implications of machine learning publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/BAMS-D-18-0195.1 – year: 2020 ident: 10.1016/j.rineng.2021.100316_bib108 – volume: 79 start-page: 2554 issue: 8 year: 1982 ident: 10.1016/j.rineng.2021.100316_bib85 article-title: Neural networks and physical systems with emergent collective computational abilities publication-title: Proc. Natl. Acad. Sci. Unit. States Am. doi: 10.1073/pnas.79.8.2554 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.rineng.2021.100316_bib86 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – year: 2020 ident: 10.1016/j.rineng.2021.100316_bib11 – volume: 53 start-page: 2237 issue: 10 year: 2008 ident: 10.1016/j.rineng.2021.100316_bib64 article-title: Missing point estimation in models described by proper orthogonal decomposition publication-title: IEEE Trans. Automat. Control doi: 10.1109/TAC.2008.2006102 – start-page: 1188 year: 2020 ident: 10.1016/j.rineng.2021.100316_bib119 article-title: Efficient intensity measures and machine learning classification algorithms for collapse prediction informed by physics-based ground motion simulations publication-title: Earthq. Spectra doi: 10.1177/8755293020919414 – volume: 6 start-page: 295 issue: 1 year: 2021 ident: 10.1016/j.rineng.2021.100316_bib135 article-title: Utilizing physics-based input features within a machine learning model to predict wind speed forecasting error publication-title: Wind Energy Science doi: 10.5194/wes-6-295-2021 – volume: 182 start-page: 15 year: 2019 ident: 10.1016/j.rineng.2021.100316_bib128 article-title: A domain decomposition non-intrusive reduced order model for turbulent flows publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2019.02.012 – volume: 814 start-page: 1 year: 2017 ident: 10.1016/j.rineng.2021.100316_bib90 article-title: Deep learning in fluid dynamics publication-title: J. Fluid Mech. doi: 10.1017/jfm.2016.803 – volume: 339 start-page: 667 issue: 9 year: 2004 ident: 10.1016/j.rineng.2021.100316_bib59 article-title: An ‘empirical interpolation’method: application to efficient reduced-basis discretization of partial differential equations publication-title: Compt. Rendus Math. doi: 10.1016/j.crma.2004.08.006 – volume: 8 year: 2020 ident: 10.1016/j.rineng.2021.100316_bib8 article-title: Artificial intelligence system for supporting soil classification publication-title: Results in Engineering doi: 10.1016/j.rineng.2020.100188 – year: 1986 ident: 10.1016/j.rineng.2021.100316_bib87 – volume: 40 start-page: A1322 issue: 3 year: 2018 ident: 10.1016/j.rineng.2021.100316_bib76 article-title: The shifted proper orthogonal decomposition: a mode decomposition for multiple transport phenomena publication-title: SIAM J. Sci. Comput. doi: 10.1137/17M1140571 – volume: 19 start-page: 897 year: 1915 ident: 10.1016/j.rineng.2021.100316_bib46 article-title: Series development for some cases of equilibrium of plates and beams publication-title: Wjestnik Ingenerow Petrograd – volume: 191 start-page: 5499 issue: 47–48 year: 2002 ident: 10.1016/j.rineng.2021.100316_bib29 article-title: Mid-frequency structural dynamics with parameter uncertainty publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(02)00465-6 – volume: 306 start-page: 196 year: 2016 ident: 10.1016/j.rineng.2021.100316_bib73 article-title: Data-driven operator inference for nonintrusive projection-based model reduction publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2016.03.025 – year: 2009 ident: 10.1016/j.rineng.2021.100316_bib94 – year: 2020 ident: 10.1016/j.rineng.2021.100316_bib144 article-title: Deep shape from polarization – volume: 377 issue: 2161 year: 2019 ident: 10.1016/j.rineng.2021.100316_bib140 article-title: Machine learning techniques for detecting topological avatars of new physics publication-title: Philosophical Transactions of the Royal Society A – volume: 141 issue: 12 year: 2019 ident: 10.1016/j.rineng.2021.100316_bib148 article-title: Multi-fidelity physics-constrained neural network and its application in materials modeling publication-title: J. Mech. Des. doi: 10.1115/1.4044400 – volume: 124 start-page: 70 issue: 1 year: 2002 ident: 10.1016/j.rineng.2021.100316_bib27 article-title: Reliable real-time solution of parametrized partial differential equations: reduced-basis output bound methods publication-title: J. Fluid Eng. doi: 10.1115/1.1448332 – year: 2021 ident: 10.1016/j.rineng.2021.100316_bib2 article-title: Implementation of hybrid neuro-fuzzy and self-turning predictive model for the prediction of concrete carbonation depth: a soft computing technique publication-title: Results in Engineering doi: 10.1016/j.rineng.2021.100228 – year: 2011 ident: 10.1016/j.rineng.2021.100316_bib98 – year: 2020 ident: 10.1016/j.rineng.2021.100316_bib146 article-title: Predicting AC optimal power flows: combining deep learning and Lagrangian dual methods – year: 2018 ident: 10.1016/j.rineng.2021.100316_bib103 article-title: Optimal approximation of continuous functions by very deep ReLU networks – volume: 12 start-page: 273 issue: 4 year: 2000 ident: 10.1016/j.rineng.2021.100316_bib37 article-title: High dimensional polynomial interpolation on sparse grids publication-title: Adv. Comput. Math. doi: 10.1023/A:1018977404843 – year: 2020 ident: 10.1016/j.rineng.2021.100316_bib132 – volume: 28 start-page: 459 issue: 2 year: 2006 ident: 10.1016/j.rineng.2021.100316_bib30 article-title: Centroidal Voronoi tessellation-based reduced-order modeling of complex systems publication-title: SIAM J. Sci. Comput. doi: 10.1137/5106482750342221x – year: 2021 ident: 10.1016/j.rineng.2021.100316_bib5 – volume: 403 year: 2020 ident: 10.1016/j.rineng.2021.100316_bib127 article-title: Modeling the dynamics of PDE systems with physics-constrained deep auto-regressive networks publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.109056 – volume: 641 start-page: 115 year: 2009 ident: 10.1016/j.rineng.2021.100316_bib65 article-title: Spectral analysis of nonlinear flows publication-title: J. Fluid Mech. doi: 10.1017/S0022112009992059 – year: 2021 ident: 10.1016/j.rineng.2021.100316_bib10 article-title: Monitoring marine environments with autonomous underwater vehicles: a bibliometric analysis publication-title: Results in Engineering doi: 10.1016/j.rineng.2021.100205 – volume: 187 start-page: 115883 year: 2019 ident: 10.1016/j.rineng.2021.100316_bib152 article-title: Physics-induced graph neural network: an application to wind-farm power estimation publication-title: Energy doi: 10.1016/j.energy.2019.115883 – volume: 153 start-page: 34 issue: 3731 year: 1966 ident: 10.1016/j.rineng.2021.100316_bib40 article-title: Dynamic programming publication-title: Science doi: 10.1126/science.153.3731.34 – year: 2018 ident: 10.1016/j.rineng.2021.100316_bib149 article-title: HybridNet: integrating model-based and data-driven learning to predict evolution of dynamical systems – volume: 7 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.rineng.2021.100316_bib145 article-title: Model order reduction assisted by deep neural networks (ROM-net) publication-title: Advanced Modeling and Simulation in Engineering Sciences doi: 10.1186/s40323-020-00153-6 – volume: 408 start-page: 109275 year: 2020 ident: 10.1016/j.rineng.2021.100316_bib93 article-title: Machine Learning design of Volume of Fluid schemes for compressible flows publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2020.109275 – volume: 394 start-page: 56 year: 2019 ident: 10.1016/j.rineng.2021.100316_bib113 article-title: Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.05.024 – year: 2021 ident: 10.1016/j.rineng.2021.100316_bib80 – volume: 46 start-page: 1 issue: 2 year: 2021 ident: 10.1016/j.rineng.2021.100316_bib131 article-title: A hybrid physics-assisted machine-learning-based damage detection using Lamb wave publication-title: Sādhanā doi: 10.1007/s12046-021-01582-8 – volume: 847 start-page: 821 year: 2018 ident: 10.1016/j.rineng.2021.100316_bib75 article-title: Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis publication-title: J. Fluid Mech. doi: 10.1017/jfm.2018.283 – volume: 401 start-page: 109020 year: 2020 ident: 10.1016/j.rineng.2021.100316_bib150 article-title: A composite neural network that learns from multi-fidelity data: application to function approximation and inverse PDE problems publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.109020 – start-page: 808 year: 2000 ident: 10.1016/j.rineng.2021.100316_bib26 article-title: An introduction to the proper orthogonal decomposition publication-title: Curr. Sci. – volume: 207 start-page: 192 issue: 1 year: 2005 ident: 10.1016/j.rineng.2021.100316_bib33 article-title: Calibrated reduced-order POD-Galerkin system for fluid flow modelling publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2005.01.008 – year: 2021 ident: 10.1016/j.rineng.2021.100316_bib100 – volume: 765 start-page: 325 year: 2015 ident: 10.1016/j.rineng.2021.100316_bib72 article-title: On long-term boundedness of Galerkin models publication-title: J. Fluid Mech. doi: 10.1017/jfm.2014.736 – volume: 7 start-page: eabf5006 issue: 25 year: 2021 ident: 10.1016/j.rineng.2021.100316_bib79 article-title: Cluster-based network modeling—from snapshots to complex dynamical systems publication-title: Sci. Adv. doi: 10.1126/sciadv.abf5006 – volume: 24 issue: 7 year: 2019 ident: 10.1016/j.rineng.2021.100316_bib130 article-title: Finite element–based machine-learning approach to detect damage in bridges under operational and environmental variations publication-title: J. Bridge Eng. doi: 10.1061/(ASCE)BE.1943-5592.0001432 – volume: 119 year: 2020 ident: 10.1016/j.rineng.2021.100316_bib134 article-title: Machine learning assisted evaluations in structural design and construction publication-title: Autom. ConStruct. doi: 10.1016/j.autcon.2020.103346 – volume: 11 start-page: 4276 issue: 9 year: 2021 ident: 10.1016/j.rineng.2021.100316_bib117 article-title: An adapted model of cognitive digital twins for building lifecycle management publication-title: Appl. Sci. doi: 10.3390/app11094276 – volume: 67 start-page: 619 issue: 2 year: 2021 ident: 10.1016/j.rineng.2021.100316_bib138 article-title: Machine learning for metal additive manufacturing: predicting temperature and melt pool fluid dynamics using physics-informed neural networks publication-title: Comput. Mech. doi: 10.1007/s00466-020-01952-9 – volume: 41 start-page: 309 issue: 1 year: 2005 ident: 10.1016/j.rineng.2021.100316_bib60 article-title: Spectral properties of dynamical systems, model reduction and decompositions publication-title: Nonlinear Dynam. doi: 10.1007/s11071-005-2824-x – volume: 870 start-page: 988 year: 2019 ident: 10.1016/j.rineng.2021.100316_bib78 article-title: Multi-scale proper orthogonal decomposition of complex fluid flows publication-title: J. Fluid Mech. doi: 10.1017/jfm.2019.212 – year: 2021 ident: 10.1016/j.rineng.2021.100316_bib81 – year: 2021 ident: 10.1016/j.rineng.2021.100316_bib4 article-title: Deep learning applications to classify cross-topic natural language texts based on their argumentative form – start-page: 215 year: 2014 ident: 10.1016/j.rineng.2021.100316_bib35 article-title: On the stability of reduced-order linearized computational fluid dynamics models based on POD and Galerkin projection: descriptor vs non-descriptor forms – volume: 45 start-page: 561 issue: 3 year: 1987 ident: 10.1016/j.rineng.2021.100316_bib50 article-title: Turbulence and the dynamics of coherent structures. I. Coherent structures publication-title: Q. Appl. Math. doi: 10.1090/qam/910462 – volume: 370 start-page: 113250 year: 2020 ident: 10.1016/j.rineng.2021.100316_bib151 article-title: PPINN: parareal physics-informed neural network for time-dependent PDEs publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2020.113250 – volume: 10 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.rineng.2021.100316_bib156 article-title: A framework for modeling flood depth using a hybrid of hydraulics and machine learning publication-title: Sci. Rep. doi: 10.1038/s41598-020-65232-5 – volume: 2012 start-page: 1 year: 2012 ident: 10.1016/j.rineng.2021.100316_bib42 article-title: Support-vector-machine-based reduced-order model for limit cycle oscillation prediction of nonlinear aeroelastic system publication-title: Math. Probl Eng. doi: 10.1155/2012/152123 – year: 2005 ident: 10.1016/j.rineng.2021.100316_bib41 article-title: The curse of dimensionality in data mining and time series prediction – volume: 275 start-page: 257 year: 1994 ident: 10.1016/j.rineng.2021.100316_bib52 article-title: Dynamics of three-dimensional coherent structures in a flat-plate boundary layer publication-title: J. Fluid Mech. doi: 10.1017/S0022112094002351 – volume: 46 start-page: 1803 issue: 7 year: 2008 ident: 10.1016/j.rineng.2021.100316_bib63 article-title: Interpolation method for adapting reduced-order models and application to aeroelasticity publication-title: AIAA J. doi: 10.2514/1.35374 – volume: 656 start-page: 5 year: 2010 ident: 10.1016/j.rineng.2021.100316_bib66 article-title: Dynamic mode decomposition of numerical and experimental data publication-title: J. Fluid Mech. doi: 10.1017/S0022112010001217 – year: 2020 ident: 10.1016/j.rineng.2021.100316_bib102 – year: 2019 ident: 10.1016/j.rineng.2021.100316_bib106 – volume: 6 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.rineng.2021.100316_bib112 article-title: The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems publication-title: Communications in Mathematics and Statistics doi: 10.1007/s40304-018-0127-z – volume: vol. 113 start-page: 3932 year: 2016 ident: 10.1016/j.rineng.2021.100316_bib89 article-title: Discovering governing equations from data by sparse identification of nonlinear dynamical systems – volume: 123 start-page: 264 year: 2019 ident: 10.1016/j.rineng.2021.100316_bib24 article-title: Review for order reduction based on proper orthogonal decomposition and outlooks of applications in mechanical systems publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2019.01.018 – year: 2020 ident: 10.1016/j.rineng.2021.100316_bib3 article-title: The development of a mining method selection model through a detailed assessment of multi-criteria decision methods publication-title: Results in Engineering doi: 10.1016/j.rineng.2020.100172 – year: 2021 ident: 10.1016/j.rineng.2021.100316_bib13 article-title: Comparison of sewer conditions ratings with repair recommendation reports – year: 2021 ident: 10.1016/j.rineng.2021.100316_bib6 – volume: 9 start-page: 987 issue: 5 year: 1998 ident: 10.1016/j.rineng.2021.100316_bib110 article-title: Artificial neural networks for solving ordinary and partial differential equations publication-title: IEEE Trans. Neural Network. doi: 10.1109/72.712178 |
SSID | ssj0002810137 |
Score | 2.5748053 |
Snippet | The recent development of machine learning (ML) and Deep Learning (DL) increases the opportunities in all the sectors. ML is a significant tool that can be... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 100316 |
SubjectTerms | Civil engineering Deep neural network Machine learning Physics-based machine learning |
Title | A review of physics-based machine learning in civil engineering |
URI | https://dx.doi.org/10.1016/j.rineng.2021.100316 https://doaj.org/article/6de9aa8ce1bd4f4e8a2a0da1988950cf |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIpygveWCNSOIkTSZUUKsKqUxU6mb5ca5SlRRBYeS3cxcnJRNdWKIocuzofPL32bn7jrFblYGJLUCAKx8EiYvxrjA6iGKbW2LcRtPRwOQ5G0-Tp1k665T6opgwLw_sDXeXWSiUyg1E2iYugVzFKrQK98p5kYbG0eqLmNfZTC3qI6OoEcxEek_hByJs8-bq4C7KrKvmuD2MI4oTEFTuvINLtXx_B546kDM6ZAcNV-QD_41HbAeqY7bfURA8YfcD7pNP-Mpxf0rxERAyWf5ah0kCb-pCzHlZcVN-lUsOvz2csulo-PI4DpqaCIFJonwdFKlxAkFdaCAZGQtxrnViCguhSrUtNAgQViHQW8icsyB0hLZHWmUyneKO9IztVqsKzhmPCJsj009SgbNiUy2Mo78wmbX9AllRj4nWItI0guFUt2Ip28iwhfR2lGRH6e3YY8HmrTcvmLGl_QMZe9OW5K7rB-gEsnECuc0JeqzfTpVsmINnBNhV-efwF_8x_CXbiykrog5Nu2K76_dPuEaustY3tVvidfI9_AFVAOhQ |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+of+physics-based+machine+learning+in+civil+engineering&rft.jtitle=Results+in+engineering&rft.au=Shashank+Reddy+Vadyala&rft.au=Sai+Nethra+Betgeri&rft.au=John+C.+Matthews&rft.au=Elizabeth+Matthews&rft.date=2022-03-01&rft.pub=Elsevier&rft.issn=2590-1230&rft.eissn=2590-1230&rft.volume=13&rft.spage=100316&rft_id=info:doi/10.1016%2Fj.rineng.2021.100316&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6de9aa8ce1bd4f4e8a2a0da1988950cf |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-1230&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-1230&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-1230&client=summon |