A review of physics-based machine learning in civil engineering

The recent development of machine learning (ML) and Deep Learning (DL) increases the opportunities in all the sectors. ML is a significant tool that can be applied across many disciplines, but its direct application to civil engineering problems can be challenging. ML for civil engineering applicati...

Full description

Saved in:
Bibliographic Details
Published inResults in engineering Vol. 13; p. 100316
Main Authors Vadyala, Shashank Reddy, Betgeri, Sai Nethra, Matthews, John C., Matthews, Elizabeth
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2022
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The recent development of machine learning (ML) and Deep Learning (DL) increases the opportunities in all the sectors. ML is a significant tool that can be applied across many disciplines, but its direct application to civil engineering problems can be challenging. ML for civil engineering applications that are simulated in the lab often fail in real-world tests. This is usually attributed to a data mismatch between the data used to train and test the ML model and the data it encounters in the real world, a phenomenon known as data shift. However, a physics-based ML model integrates data, partial differential equations (PDEs), and mathematical models to solve data shift problems. Physics-based ML models are trained to solve supervised learning tasks while respecting any given laws of physics described by general nonlinear equations. Physics-based ML, which takes center stage across many science disciplines, plays an important role in fluid dynamics, quantum mechanics, computational resources, and data storage. This paper reviews the history of physics-based ML and its application in civil engineering. •A detailed explanation of Physics-based machine learning.•A review of recent applications of Physics-based machine learning in Civil Engineering.•Potential research avenues in civil engineering are identified using Physics-based machine learning.•Advantages of physics-based machine learning in civil engineering.
AbstractList The recent development of machine learning (ML) and Deep Learning (DL) increases the opportunities in all the sectors. ML is a significant tool that can be applied across many disciplines, but its direct application to civil engineering problems can be challenging. ML for civil engineering applications that are simulated in the lab often fail in real-world tests. This is usually attributed to a data mismatch between the data used to train and test the ML model and the data it encounters in the real world, a phenomenon known as data shift. However, a physics-based ML model integrates data, partial differential equations (PDEs), and mathematical models to solve data shift problems. Physics-based ML models are trained to solve supervised learning tasks while respecting any given laws of physics described by general nonlinear equations. Physics-based ML, which takes center stage across many science disciplines, plays an important role in fluid dynamics, quantum mechanics, computational resources, and data storage. This paper reviews the history of physics-based ML and its application in civil engineering.
The recent development of machine learning (ML) and Deep Learning (DL) increases the opportunities in all the sectors. ML is a significant tool that can be applied across many disciplines, but its direct application to civil engineering problems can be challenging. ML for civil engineering applications that are simulated in the lab often fail in real-world tests. This is usually attributed to a data mismatch between the data used to train and test the ML model and the data it encounters in the real world, a phenomenon known as data shift. However, a physics-based ML model integrates data, partial differential equations (PDEs), and mathematical models to solve data shift problems. Physics-based ML models are trained to solve supervised learning tasks while respecting any given laws of physics described by general nonlinear equations. Physics-based ML, which takes center stage across many science disciplines, plays an important role in fluid dynamics, quantum mechanics, computational resources, and data storage. This paper reviews the history of physics-based ML and its application in civil engineering. •A detailed explanation of Physics-based machine learning.•A review of recent applications of Physics-based machine learning in Civil Engineering.•Potential research avenues in civil engineering are identified using Physics-based machine learning.•Advantages of physics-based machine learning in civil engineering.
ArticleNumber 100316
Author Vadyala, Shashank Reddy
Betgeri, Sai Nethra
Matthews, John C.
Matthews, Elizabeth
Author_xml – sequence: 1
  givenname: Shashank Reddy
  surname: Vadyala
  fullname: Vadyala, Shashank Reddy
  email: vadyala.shashankreddy@gmail.com
  organization: Department of Computational Analysis and Modeling, Louisiana Tech University, Ruston, LA, United States
– sequence: 2
  givenname: Sai Nethra
  surname: Betgeri
  fullname: Betgeri, Sai Nethra
  organization: Department of Computational Analysis and Modeling, Louisiana Tech University, Ruston, LA, United States
– sequence: 3
  givenname: John C.
  surname: Matthews
  fullname: Matthews, John C.
  organization: TTC, Louisiana Tech University, Ruston, LA, United States
– sequence: 4
  givenname: Elizabeth
  orcidid: 0000-0002-3514-4018
  surname: Matthews
  fullname: Matthews, Elizabeth
  organization: Civil Engineering, Louisiana Tech University, Ruston, LA, United States
BookMark eNqFkE1LAzEQhoNUsNb-Aw_7B7bmY3eb9aCU4hcUvOg5TJLZNmWbLclS6b83ugriQU8zTHjemTznZOQ7j4RcMjpjlFVX21lwHv16xilnaUQFq07ImJc1zRkXdPSjPyPTGLeUUi4TK-ZjcrvIAh4cvmVdk-03x-hMzDVEtNkOzCYlZy1C8M6vM-cz4w6uzdK29IBp7_qCnDbQRpx-1Ql5vb97WT7mq-eHp-VilZuCyT6vS9MIybnQyCtRWuRS68LUFimU2tYaBQoLVDKLVdNYFJrVRpeMmUqXcyYm5GnItR1s1T64HYSj6sCpz0EX1gpC70yLqrJYA0iDTNuiKVACB2qB1VLWJU13TMj1kGVCF2PARhnXQ-863wdwrWJUfZhVWzWYVR9m1WA2wcUv-PuYf7CbAcMkKfkOKhqH3qB1AU2ffuH-DngHe_WXaQ
CitedBy_id crossref_primary_10_1177_13694332251319346
crossref_primary_10_3390_fluids8070212
crossref_primary_10_1016_j_rineng_2024_101931
crossref_primary_10_1016_j_rineng_2024_102624
crossref_primary_10_1016_j_inffus_2025_102996
crossref_primary_10_3390_app14041638
crossref_primary_10_1007_s00521_023_08347_w
crossref_primary_10_1007_s11831_024_10145_z
crossref_primary_10_1016_j_rineng_2025_104649
crossref_primary_10_1016_j_bspc_2024_107388
crossref_primary_10_1016_j_rineng_2023_101419
crossref_primary_10_3390_app132212433
crossref_primary_10_1016_j_engappai_2025_110067
crossref_primary_10_1016_j_jhydrol_2024_131370
crossref_primary_10_1007_s11128_023_04223_7
crossref_primary_10_1615_JMachLearnModelComput_2023050011
crossref_primary_10_1016_j_jmrt_2023_06_038
crossref_primary_10_1016_j_egyr_2023_08_009
crossref_primary_10_3390_buildings14041118
crossref_primary_10_3390_app14114712
crossref_primary_10_1016_j_rineng_2023_101664
crossref_primary_10_3390_buildings14020519
crossref_primary_10_1111_mice_13457
crossref_primary_10_1016_j_rineng_2024_102737
crossref_primary_10_1029_2023WR036589
crossref_primary_10_3390_w14152307
crossref_primary_10_1016_j_apm_2024_02_004
crossref_primary_10_3390_app12105232
crossref_primary_10_3390_constrmater3040031
crossref_primary_10_1016_j_ymssp_2024_111522
crossref_primary_10_1016_j_jestch_2023_101605
crossref_primary_10_1016_j_eswa_2025_127302
crossref_primary_10_1016_j_trgeo_2025_101492
crossref_primary_10_1016_j_compind_2023_103883
crossref_primary_10_3390_jmse13020377
crossref_primary_10_1016_j_rineng_2022_100544
crossref_primary_10_1063_5_0222336
crossref_primary_10_1007_s42107_024_01146_1
crossref_primary_10_1007_s11440_023_01874_9
crossref_primary_10_1016_j_istruc_2025_108650
crossref_primary_10_1016_j_rineng_2024_101837
crossref_primary_10_3389_frwa_2023_1123313
crossref_primary_10_1007_s40194_022_01270_z
crossref_primary_10_1016_j_compstruct_2023_117752
crossref_primary_10_1016_j_conbuildmat_2024_138962
crossref_primary_10_1002_msd2_70004
crossref_primary_10_1016_j_rineng_2024_102250
crossref_primary_10_1088_1742_6596_2647_19_192013
crossref_primary_10_1002_suco_202300597
crossref_primary_10_1016_j_rineng_2024_102599
crossref_primary_10_1590_1679_78258289
crossref_primary_10_1080_15583058_2023_2200739
crossref_primary_10_1016_j_jrmge_2022_07_001
crossref_primary_10_1016_j_rineng_2024_103724
crossref_primary_10_1016_j_rineng_2022_100659
crossref_primary_10_3389_feart_2023_1308269
crossref_primary_10_3390_vehicles4030038
crossref_primary_10_1016_j_istruc_2024_107667
crossref_primary_10_1016_j_asoc_2024_112026
crossref_primary_10_1016_j_bprint_2024_e00331
crossref_primary_10_1016_j_apm_2024_06_045
crossref_primary_10_1155_2023_8853122
crossref_primary_10_4018_IRMJ_329250
crossref_primary_10_1007_s42107_024_01187_6
crossref_primary_10_1016_j_rineng_2022_100489
crossref_primary_10_1016_j_rineng_2022_100362
crossref_primary_10_1016_j_measurement_2023_113334
crossref_primary_10_1016_j_rineng_2022_100761
crossref_primary_10_1016_j_engstruct_2025_119636
crossref_primary_10_3390_app13052887
crossref_primary_10_1007_s13296_023_00781_9
crossref_primary_10_1016_j_jobe_2025_111788
crossref_primary_10_1016_j_jclepro_2022_132455
crossref_primary_10_1007_s10518_023_01680_4
crossref_primary_10_3390_s23156833
crossref_primary_10_3389_fbuil_2022_1049616
crossref_primary_10_1080_15376494_2023_2298232
crossref_primary_10_1177_03611981221122779
crossref_primary_10_1007_s42107_023_00855_3
crossref_primary_10_1177_14759217241265375
crossref_primary_10_1016_j_rineng_2023_101585
crossref_primary_10_1016_j_rineng_2023_101625
crossref_primary_10_2139_ssrn_4681718
crossref_primary_10_3390_computation11090168
crossref_primary_10_1016_j_ijmecsci_2023_108747
crossref_primary_10_1016_j_asoc_2024_111677
crossref_primary_10_3390_su151411232
crossref_primary_10_1155_2022_4794073
crossref_primary_10_1061_JSDCCC_SCENG_1571
crossref_primary_10_1007_s10661_024_13251_4
crossref_primary_10_3390_electronics12153337
crossref_primary_10_1016_j_tust_2023_105433
crossref_primary_10_1016_j_cma_2024_117243
crossref_primary_10_1108_EC_02_2024_0130
crossref_primary_10_3390_en16103998
crossref_primary_10_1016_j_eswa_2023_120649
crossref_primary_10_1016_j_catena_2024_108601
crossref_primary_10_1177_14759217231154431
crossref_primary_10_1016_j_conbuildmat_2024_137276
crossref_primary_10_1016_j_eng_2024_12_034
crossref_primary_10_1016_j_jpse_2024_100178
crossref_primary_10_1016_j_jobe_2024_108766
crossref_primary_10_1016_j_compstruc_2024_107592
crossref_primary_10_1016_j_rineng_2024_102038
crossref_primary_10_1016_j_rineng_2023_101443
crossref_primary_10_1186_s12911_023_02323_z
crossref_primary_10_1108_IJSI_02_2024_0018
crossref_primary_10_1007_s00339_024_08016_2
crossref_primary_10_1021_acs_est_3c05300
crossref_primary_10_1109_ACCESS_2023_3347989
crossref_primary_10_1007_s41939_024_00388_5
crossref_primary_10_1016_j_jobe_2024_109847
Cites_doi 10.1016/j.neucom.2018.06.056
10.1016/j.jcp.2018.08.036
10.1140/epjc/s10052-019-6607-9
10.1038/s41529-019-0094-1
10.1080/10618562.2018.1513496
10.1002/cnm.1640100303
10.1088/1748-9326/ab4d5e
10.1016/j.jcp.2018.10.045
10.1017/S0022112088001818
10.1063/5.0058346
10.1109/JSTARS.2017.2740168
10.1109/ACCESS.2020.2987324
10.1016/j.apmt.2020.100898
10.1017/jfm.2018.872
10.2514/2.1570
10.1016/j.jcp.2017.07.050
10.1371/journal.pone.0197704
10.1007/BF01931367
10.1007/s00348-013-1580-9
10.1175/1520-0469(1962)019<0329:FAFCAA>2.0.CO;2
10.1037/h0042519
10.1103/PhysRevFluids.2.034603
10.1016/S0370-1573(97)00017-3
10.1016/j.engstruct.2020.110704
10.1016/j.jsv.2012.10.017
10.1017/S0022112003005615
10.1103/PhysRevFluids.4.054603
10.1007/BF03024948
10.1017/jfm.2014.168
10.1016/j.jcp.2003.08.021
10.1561/2400000003
10.1080/10618562.2012.715153
10.1016/j.rineng.2021.100245
10.1137/090766498
10.1038/s41746-019-0193-y
10.1615/JMachLearnModelComput.2020033905
10.1002/fld.1365
10.1002/1097-0363(20001115)34:5<425::AID-FLD67>3.0.CO;2-W
10.1016/j.rineng.2021.100251
10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
10.1109/TKDE.2017.2720168
10.1016/j.apm.2018.03.037
10.1016/j.eswa.2020.114316
10.1016/j.jcp.2019.05.041
10.1016/j.buildenv.2018.10.035
10.1109/JSEN.2019.2898634
10.1061/9780784482438.011
10.1017/jfm.2016.103
10.1016/j.pnucene.2019.103140
10.1038/323533a0
10.1016/j.simpat.2015.06.004
10.1364/JOSAA.12.001657
10.1109/18.256500
10.1016/j.rineng.2021.100225
10.1017/jfm.2018.147
10.1016/j.jcp.2021.110296
10.1137/S0036142998349102
10.1080/14786440109462720
10.1002/nme.4772
10.1016/j.ijheatmasstransfer.2020.120176
10.1175/BAMS-D-18-0195.1
10.1073/pnas.79.8.2554
10.1162/neco.1997.9.8.1735
10.1109/TAC.2008.2006102
10.1177/8755293020919414
10.5194/wes-6-295-2021
10.1016/j.compfluid.2019.02.012
10.1017/jfm.2016.803
10.1016/j.crma.2004.08.006
10.1016/j.rineng.2020.100188
10.1137/17M1140571
10.1016/S0045-7825(02)00465-6
10.1016/j.cma.2016.03.025
10.1115/1.4044400
10.1115/1.1448332
10.1016/j.rineng.2021.100228
10.1023/A:1018977404843
10.1137/5106482750342221x
10.1016/j.jcp.2019.109056
10.1017/S0022112009992059
10.1016/j.rineng.2021.100205
10.1016/j.energy.2019.115883
10.1126/science.153.3731.34
10.1186/s40323-020-00153-6
10.1016/j.jcp.2020.109275
10.1016/j.jcp.2019.05.024
10.1007/s12046-021-01582-8
10.1017/jfm.2018.283
10.1016/j.jcp.2019.109020
10.1016/j.jcp.2005.01.008
10.1017/jfm.2014.736
10.1126/sciadv.abf5006
10.1061/(ASCE)BE.1943-5592.0001432
10.1016/j.autcon.2020.103346
10.3390/app11094276
10.1007/s00466-020-01952-9
10.1007/s11071-005-2824-x
10.1017/jfm.2019.212
10.1090/qam/910462
10.1016/j.cma.2020.113250
10.1038/s41598-020-65232-5
10.1155/2012/152123
10.1017/S0022112094002351
10.2514/1.35374
10.1017/S0022112010001217
10.1007/s40304-018-0127-z
10.1016/j.ymssp.2019.01.018
10.1016/j.rineng.2020.100172
10.1109/72.712178
ContentType Journal Article
Copyright 2021
Copyright_xml – notice: 2021
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.rineng.2021.100316
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2590-1230
ExternalDocumentID oai_doaj_org_article_6de9aa8ce1bd4f4e8a2a0da1988950cf
10_1016_j_rineng_2021_100316
S2590123021001171
GroupedDBID 0SF
6I.
AAEDW
AAFTH
AALRI
AAXUO
ADBBV
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
FDB
GROUPED_DOAJ
M41
M~E
NCXOZ
OK1
ROL
SSZ
0R~
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c418t-95cf38223be2635de28bb4c9de0a5bd9be3e3da081de6ffde3b19cb511c6b5713
IEDL.DBID DOA
ISSN 2590-1230
IngestDate Wed Aug 27 01:30:45 EDT 2025
Thu Apr 24 22:54:25 EDT 2025
Tue Jul 01 01:37:13 EDT 2025
Tue Jul 25 20:59:25 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Physics-based machine learning
Deep neural network
Civil engineering
Machine learning
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-95cf38223be2635de28bb4c9de0a5bd9be3e3da081de6ffde3b19cb511c6b5713
ORCID 0000-0002-3514-4018
OpenAccessLink https://doaj.org/article/6de9aa8ce1bd4f4e8a2a0da1988950cf
ParticipantIDs doaj_primary_oai_doaj_org_article_6de9aa8ce1bd4f4e8a2a0da1988950cf
crossref_citationtrail_10_1016_j_rineng_2021_100316
crossref_primary_10_1016_j_rineng_2021_100316
elsevier_sciencedirect_doi_10_1016_j_rineng_2021_100316
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2022
2022-03-00
2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March 2022
PublicationDecade 2020
PublicationTitle Results in engineering
PublicationYear 2022
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Bellman (bib40) 1966; 153
Rempfer, Fasel (bib52) 1994; 275
Després, Jourdren (bib93) 2020; 408
Barazzetti (bib118) 2015; 57
V Yugandhar (bib14) 2014
Wan (bib45) 2018; 13
Weinan, Yu (bib112) 2018; 6
Liu (bib139) 2019; 3
Guemes (bib124) 2021; 33
McGovern (bib15) 2019; 100
Zokagoa, Soulaïmani (bib34) 2012; 26
Loiseau, Noack, Brunton (bib77) 2018; 844
Xiao (bib128) 2019; 182
Fernex, Noack, Semaan (bib79) 2021; 7
Mohan, Gaitonde (bib43) 2018
Zhang, Liu, Sun (bib159) 2020; 215
Schmid (bib66) 2010; 656
Jolliffe, Cadima (bib32) 2016; 374
Raissi (bib97) 2019; 861
Mendez, Balabane, Buchlin (bib78) 2019; 870
Baloyi, Meyer (bib3) 2020
Barrault (bib59) 2004; 339
Parikh, Boyd (bib21) 2014; 1
Mao (bib108) 2020
Dechter (bib87) 1986
Rumelhart, Hinton, Williams (bib84) 1986; 323
Eivazi (bib104) 2021
Ravindran (bib54) 2000; 34
Williams, Rasmussen (bib99) 2006; vol. 2
Alber (bib16) 2019; 2
Carlberg (bib91) 2019; 395
Figueiredo (bib130) 2019; 24
Chatterjee (bib26) 2000
Liu, Wang (bib148) 2019; 141
Chakraborty, Awolusi, Gutierrez (bib9) 2021; 11
Guastoni (bib123) 2021
Zhu (bib113) 2019; 394
Karpatne (bib18) 2017; 29
Carlberg (bib68) 2013
Zhang (bib132) 2020
Fioretto, Mak, Van Hentenryck (bib146) 2020
Wang, Teng, Perdikaris (bib116) 2020
Griewank, Walther (bib20) 2008
Long, She, Mukhopadhyay (bib149) 2018
Chen, Liu (bib129) 2021; 168
Park, Park (bib152) 2019; 187
Vinuesa, Brunton (bib80) 2021
Sieber, Paschereit, Oberleithner (bib74) 2016; 792
Lu (bib102) 2020
Inazumi (bib8) 2020; 8
Burkardt, Gunzburger, Lee (bib30) 2006; 28
Rosenblatt (bib82) 1958; 65
Kutz (bib90) 2017; 814
Barthelmann, Novak, Ritter (bib37) 2000; 12
Vadyala, Sherer (bib6) 2021
Li (bib105) 2020
Östh (bib70) 2014; 747
Barron (bib101) 1993; 39
Lu (bib24) 2019; 123
Cao (bib62) 2007; 53
Boyd, Parikh, Chu (bib22) 2011
Zhong, Dey, Chakraborty (bib158) 2019
Couplet, Sagaut, Basdevant (bib57) 2003; 491
Sirovich (bib50) 1987; 45
Fuks, Tchelepi (bib114) 2020; 1
Yitmen (bib117) 2021; 11
Bhasme, Vagadiya, Bhatia (bib120) 2021
Zhou, S., et al., A data-driven and physics-based approach to exploring interdependency of interconnected infrastructure, in Computing in Civil Engineering 2019: Data, Sensing, and Analytics. 2019, American Society of Civil Engineers Reston, VA. p. 82-88.
Vadyala, Betgeri (bib5) 2021
Zhu, Liu, Yan (bib138) 2021; 67
Di Ciaccio, Troisi (bib10) 2021
Willcox, Peraire (bib56) 2002; 40
Xiao (bib44) 2019; 148
Hanna (bib92) 2020; 118
Dissanayake, Phan‐Thien (bib109) 1994; 10
Vadyala (bib11) 2020
Bijelić, Lin, Deierlein (bib119) 2020
Rai, Sahu (bib19) 2020; 8
Morita (bib100) 2021
Rowley (bib65) 2009; 641
Verleysen, François (bib41) 2005
Meng, Karniadakis (bib150) 2020; 401
Hsieh (bib94) 2009
Chen (bib42) 2012; 2012
Zokagoa, Soulaïmani (bib36) 2018; 32
Reiss (bib76) 2018; 40
Kim (bib147) 2019
Mignolet (bib25) 2013; 332
Chen, Dai (bib55) 2001; 38
Xu (bib142) 2017; 10
Schlegel, Noack (bib72) 2015; 765
Ba (bib144) 2020
Sarkar, Ghanem (bib29) 2002; 191
Berg, Nyström (bib111) 2018; 317
Liu (bib141) 2021; 22
Couplet, Basdevant, Sagaut (bib33) 2005; 207
Bevan (bib140) 2019; 377
Eivazi (bib81) 2021
Lumley (bib49) 1967
Zheng, Moosavi, Akbarzadeh (bib134) 2020; 119
Astrid (bib64) 2008; 53
Sharma (bib4) 2021
Amsallem, Farhat (bib63) 2008; 46
Hochreiter, Schmidhuber (bib86) 1997; 9
Hosseiny (bib156) 2020; 10
Santhosh (bib7) 2021; 11
Sai Nethra Betgeri, Smith (bib13) 2021
Baker (bib17) 2019
San, Maulik (bib154) 2018; 60
Meng (bib151) 2020; 370
Ghanem, Spanos (bib38) 1991
Linnainmaa (bib83) 1976; 16
Srinivasan (bib122) 2019; 4
Goodfellow, Bengio, Courville (bib88) 2016
Holmes (bib28) 1997; 287
Sun, Pan, Choi (bib39) 2019
Wang, Wu, Xiao (bib155) 2017; 2
Zhang, Wang, Giannakis (bib157) 2018
Vadyala, Betgeri (bib12) 2021
Prud'Homme (bib27) 2002; 124
Amsallem, Farhat (bib35) 2014
Malami (bib2) 2021
Sirisup, Karniadakis (bib58) 2004; 194
Raissi, Perdikaris, Karniadakis (bib95) 2017; 348
Rai, Mitra (bib131) 2021; 46
Erichson, Muehlebach, Mahoney (bib121) 2019
Khandelwal (bib126) 2020
Lu, Jin, Karniadakis (bib106) 2019
Lagaris, Likas, Fotiadis (bib110) 1998; 9
Mezić (bib60) 2005; 41
Ballarin (bib71) 2015; 102
Saltzman (bib47) 1962; 19
Momeny (bib1) 2021; 10
Brunton, Proctor, Kutz (bib89) 2016; vol. 113
Lapidus, Pinder (bib98) 2011
Daniel (bib145) 2020; 7
Towne, Schmidt, Colonius (bib75) 2018; 847
Hopfield (bib85) 1982; 79
Sadoughi, Hu (bib153) 2019; 19
Galerkin, Petrograd (bib46) 1915; 19
Raissi (bib115) 2018; 19
Tripathy, Bilionis (bib133) 2018; 375
Wei, Bao, Ruan (bib143) 2020; 160
Geneva, Zabaras (bib127) 2020; 403
Aubry (bib51) 1988; 192
Takbiri-Borujeni, Ayoobi (bib136) 2019
Andreassen (bib137) 2019; 79
Vassallo, Krishnamurthy, Fernando (bib135) 2021; 6
Pearson, Lines (bib31) 1901; 2
Everson, Sirovich (bib53) 1995; 12
Cai (bib107) 2021; 436
Peherstorfer, Willcox (bib73) 2016; 306
Lorenz (bib48) 1963; 20
Cordier (bib69) 2013; 54
Yarotsky (bib103) 2018
Yang (bib23) 2019; 14
Chaturantabut, Sorensen (bib67) 2010; 32
Rozza, Huynh, Patera (bib61) 2007; 15
Raissi, Perdikaris, Karniadakis (bib96) 2019; 378
Srinivasan (10.1016/j.rineng.2021.100316_bib122) 2019; 4
Di Ciaccio (10.1016/j.rineng.2021.100316_bib10) 2021
Rempfer (10.1016/j.rineng.2021.100316_bib52) 1994; 275
Fuks (10.1016/j.rineng.2021.100316_bib114) 2020; 1
Lorenz (10.1016/j.rineng.2021.100316_bib48) 1963; 20
Zhong (10.1016/j.rineng.2021.100316_bib158) 2019
Aubry (10.1016/j.rineng.2021.100316_bib51) 1988; 192
Couplet (10.1016/j.rineng.2021.100316_bib57) 2003; 491
San (10.1016/j.rineng.2021.100316_bib154) 2018; 60
Alber (10.1016/j.rineng.2021.100316_bib16) 2019; 2
Lagaris (10.1016/j.rineng.2021.100316_bib110) 1998; 9
Chakraborty (10.1016/j.rineng.2021.100316_bib9) 2021; 11
Momeny (10.1016/j.rineng.2021.100316_bib1) 2021; 10
Després (10.1016/j.rineng.2021.100316_bib93) 2020; 408
Schlegel (10.1016/j.rineng.2021.100316_bib72) 2015; 765
Fernex (10.1016/j.rineng.2021.100316_bib79) 2021; 7
Liu (10.1016/j.rineng.2021.100316_bib141) 2021; 22
Reiss (10.1016/j.rineng.2021.100316_bib76) 2018; 40
Mao (10.1016/j.rineng.2021.100316_bib108) 2020
Liu (10.1016/j.rineng.2021.100316_bib139) 2019; 3
Burkardt (10.1016/j.rineng.2021.100316_bib30) 2006; 28
Everson (10.1016/j.rineng.2021.100316_bib53) 1995; 12
Mezić (10.1016/j.rineng.2021.100316_bib60) 2005; 41
Khandelwal (10.1016/j.rineng.2021.100316_bib126) 2020
Wang (10.1016/j.rineng.2021.100316_bib116) 2020
Amsallem (10.1016/j.rineng.2021.100316_bib35) 2014
Li (10.1016/j.rineng.2021.100316_bib105) 2020
Vadyala (10.1016/j.rineng.2021.100316_bib5) 2021
Bellman (10.1016/j.rineng.2021.100316_bib40) 1966; 153
Raissi (10.1016/j.rineng.2021.100316_bib97) 2019; 861
Tripathy (10.1016/j.rineng.2021.100316_bib133) 2018; 375
Santhosh (10.1016/j.rineng.2021.100316_bib7) 2021; 11
Figueiredo (10.1016/j.rineng.2021.100316_bib130) 2019; 24
Jolliffe (10.1016/j.rineng.2021.100316_bib32) 2016; 374
Sirovich (10.1016/j.rineng.2021.100316_bib50) 1987; 45
Zhu (10.1016/j.rineng.2021.100316_bib138) 2021; 67
Baloyi (10.1016/j.rineng.2021.100316_bib3) 2020
Sadoughi (10.1016/j.rineng.2021.100316_bib153) 2019; 19
Hsieh (10.1016/j.rineng.2021.100316_bib94) 2009
Zhang (10.1016/j.rineng.2021.100316_bib132) 2020
Sirisup (10.1016/j.rineng.2021.100316_bib58) 2004; 194
Cai (10.1016/j.rineng.2021.100316_bib107) 2021; 436
Bevan (10.1016/j.rineng.2021.100316_bib140) 2019; 377
Meng (10.1016/j.rineng.2021.100316_bib151) 2020; 370
Hosseiny (10.1016/j.rineng.2021.100316_bib156) 2020; 10
Zokagoa (10.1016/j.rineng.2021.100316_bib34) 2012; 26
Cao (10.1016/j.rineng.2021.100316_bib62) 2007; 53
Loiseau (10.1016/j.rineng.2021.100316_bib77) 2018; 844
Eivazi (10.1016/j.rineng.2021.100316_bib81) 2021
Guemes (10.1016/j.rineng.2021.100316_bib124) 2021; 33
Schmid (10.1016/j.rineng.2021.100316_bib66) 2010; 656
Chen (10.1016/j.rineng.2021.100316_bib55) 2001; 38
Barron (10.1016/j.rineng.2021.100316_bib101) 1993; 39
Rai (10.1016/j.rineng.2021.100316_bib131) 2021; 46
Lumley (10.1016/j.rineng.2021.100316_bib49) 1967
Williams (10.1016/j.rineng.2021.100316_bib99) 2006; vol. 2
Wang (10.1016/j.rineng.2021.100316_bib155) 2017; 2
Lu (10.1016/j.rineng.2021.100316_bib106) 2019
Sieber (10.1016/j.rineng.2021.100316_bib74) 2016; 792
Pearson (10.1016/j.rineng.2021.100316_bib31) 1901; 2
Carlberg (10.1016/j.rineng.2021.100316_bib68) 2013
Rowley (10.1016/j.rineng.2021.100316_bib65) 2009; 641
Carlberg (10.1016/j.rineng.2021.100316_bib91) 2019; 395
Rai (10.1016/j.rineng.2021.100316_bib19) 2020; 8
Dechter (10.1016/j.rineng.2021.100316_bib87) 1986
Xu (10.1016/j.rineng.2021.100316_bib142) 2017; 10
Yang (10.1016/j.rineng.2021.100316_bib23) 2019; 14
Holmes (10.1016/j.rineng.2021.100316_bib28) 1997; 287
Guastoni (10.1016/j.rineng.2021.100316_bib123) 2021
Hochreiter (10.1016/j.rineng.2021.100316_bib86) 1997; 9
Weinan (10.1016/j.rineng.2021.100316_bib112) 2018; 6
Inazumi (10.1016/j.rineng.2021.100316_bib8) 2020; 8
Ghanem (10.1016/j.rineng.2021.100316_bib38) 1991
Daniel (10.1016/j.rineng.2021.100316_bib145) 2020; 7
Dissanayake (10.1016/j.rineng.2021.100316_bib109) 1994; 10
Malami (10.1016/j.rineng.2021.100316_bib2) 2021
Chen (10.1016/j.rineng.2021.100316_bib42) 2012; 2012
Linnainmaa (10.1016/j.rineng.2021.100316_bib83) 1976; 16
Goodfellow (10.1016/j.rineng.2021.100316_bib88) 2016
Griewank (10.1016/j.rineng.2021.100316_bib20) 2008
Boyd (10.1016/j.rineng.2021.100316_bib22) 2011
Barthelmann (10.1016/j.rineng.2021.100316_bib37) 2000; 12
Barazzetti (10.1016/j.rineng.2021.100316_bib118) 2015; 57
Park (10.1016/j.rineng.2021.100316_bib152) 2019; 187
Eivazi (10.1016/j.rineng.2021.100316_bib104) 2021
Mohan (10.1016/j.rineng.2021.100316_bib43) 2018
Sarkar (10.1016/j.rineng.2021.100316_bib29) 2002; 191
Vadyala (10.1016/j.rineng.2021.100316_bib6) 2021
Geneva (10.1016/j.rineng.2021.100316_bib127) 2020; 403
Mendez (10.1016/j.rineng.2021.100316_bib78) 2019; 870
Brunton (10.1016/j.rineng.2021.100316_bib89) 2016; vol. 113
Berg (10.1016/j.rineng.2021.100316_bib111) 2018; 317
Östh (10.1016/j.rineng.2021.100316_bib70) 2014; 747
Bhasme (10.1016/j.rineng.2021.100316_bib120) 2021
Towne (10.1016/j.rineng.2021.100316_bib75) 2018; 847
Chaturantabut (10.1016/j.rineng.2021.100316_bib67) 2010; 32
Chatterjee (10.1016/j.rineng.2021.100316_bib26) 2000
Kim (10.1016/j.rineng.2021.100316_bib147) 2019
Willcox (10.1016/j.rineng.2021.100316_bib56) 2002; 40
Zhang (10.1016/j.rineng.2021.100316_bib157) 2018
Verleysen (10.1016/j.rineng.2021.100316_bib41) 2005
Lapidus (10.1016/j.rineng.2021.100316_bib98) 2011
Long (10.1016/j.rineng.2021.100316_bib149) 2018
Couplet (10.1016/j.rineng.2021.100316_bib33) 2005; 207
Liu (10.1016/j.rineng.2021.100316_bib148) 2019; 141
Bijelić (10.1016/j.rineng.2021.100316_bib119) 2020
Prud'Homme (10.1016/j.rineng.2021.100316_bib27) 2002; 124
Wan (10.1016/j.rineng.2021.100316_bib45) 2018; 13
Erichson (10.1016/j.rineng.2021.100316_bib121) 2019
V Yugandhar (10.1016/j.rineng.2021.100316_bib14) 2014
Ballarin (10.1016/j.rineng.2021.100316_bib71) 2015; 102
Galerkin (10.1016/j.rineng.2021.100316_bib46) 1915; 19
Astrid (10.1016/j.rineng.2021.100316_bib64) 2008; 53
Vadyala (10.1016/j.rineng.2021.100316_bib11) 2020
Baker (10.1016/j.rineng.2021.100316_bib17) 2019
Sun (10.1016/j.rineng.2021.100316_bib39) 2019
Vinuesa (10.1016/j.rineng.2021.100316_bib80) 2021
Hopfield (10.1016/j.rineng.2021.100316_bib85) 1982; 79
Vassallo (10.1016/j.rineng.2021.100316_bib135) 2021; 6
Karpatne (10.1016/j.rineng.2021.100316_bib18) 2017; 29
Amsallem (10.1016/j.rineng.2021.100316_bib63) 2008; 46
Kutz (10.1016/j.rineng.2021.100316_bib90) 2017; 814
Zhu (10.1016/j.rineng.2021.100316_bib113) 2019; 394
McGovern (10.1016/j.rineng.2021.100316_bib15) 2019; 100
Sai Nethra Betgeri (10.1016/j.rineng.2021.100316_bib13) 2021
Morita (10.1016/j.rineng.2021.100316_bib100) 2021
Raissi (10.1016/j.rineng.2021.100316_bib95) 2017; 348
Xiao (10.1016/j.rineng.2021.100316_bib128) 2019; 182
Ravindran (10.1016/j.rineng.2021.100316_bib54) 2000; 34
Raissi (10.1016/j.rineng.2021.100316_bib115) 2018; 19
Rumelhart (10.1016/j.rineng.2021.100316_bib84) 1986; 323
Lu (10.1016/j.rineng.2021.100316_bib24) 2019; 123
Parikh (10.1016/j.rineng.2021.100316_bib21) 2014; 1
Cordier (10.1016/j.rineng.2021.100316_bib69) 2013; 54
Barrault (10.1016/j.rineng.2021.100316_bib59) 2004; 339
10.1016/j.rineng.2021.100316_bib125
Rosenblatt (10.1016/j.rineng.2021.100316_bib82) 1958; 65
Peherstorfer (10.1016/j.rineng.2021.100316_bib73) 2016; 306
Fioretto (10.1016/j.rineng.2021.100316_bib146) 2020
Sharma (10.1016/j.rineng.2021.100316_bib4) 2021
Meng (10.1016/j.rineng.2021.100316_bib150) 2020; 401
Hanna (10.1016/j.rineng.2021.100316_bib92) 2020; 118
Saltzman (10.1016/j.rineng.2021.100316_bib47) 1962; 19
Rozza (10.1016/j.rineng.2021.100316_bib61) 2007; 15
Wei (10.1016/j.rineng.2021.100316_bib143) 2020; 160
Mignolet (10.1016/j.rineng.2021.100316_bib25) 2013; 332
Andreassen (10.1016/j.rineng.2021.100316_bib137) 2019; 79
Ba (10.1016/j.rineng.2021.100316_bib144) 2020
Zhang (10.1016/j.rineng.2021.100316_bib159) 2020; 215
Chen (10.1016/j.rineng.2021.100316_bib129) 2021; 168
Zheng (10.1016/j.rineng.2021.100316_bib134) 2020; 119
Lu (10.1016/j.rineng.2021.100316_bib102) 2020
Xiao (10.1016/j.rineng.2021.100316_bib44) 2019; 148
Yarotsky (10.1016/j.rineng.2021.100316_bib103) 2018
Vadyala (10.1016/j.rineng.2021.100316_bib12) 2021
Takbiri-Borujeni (10.1016/j.rineng.2021.100316_bib136) 2019
Yitmen (10.1016/j.rineng.2021.100316_bib117) 2021; 11
Zokagoa (10.1016/j.rineng.2021.100316_bib36) 2018; 32
Raissi (10.1016/j.rineng.2021.100316_bib96) 2019; 378
References_xml – volume: 8
  start-page: 71050
  year: 2020
  end-page: 71073
  ident: bib19
  article-title: Driven by data or derived through physics? a review of hybrid physics guided machine learning techniques with cyber-physical system (cps) focus
  publication-title: IEEE Access
– start-page: 101
  year: 1991
  end-page: 119
  ident: bib38
  article-title: Stochastic finite element method: response statistics
  publication-title: Stochastic Finite Elements: a Spectral Approach
– volume: 41
  start-page: 309
  year: 2005
  end-page: 325
  ident: bib60
  article-title: Spectral properties of dynamical systems, model reduction and decompositions
  publication-title: Nonlinear Dynam.
– volume: 79
  start-page: 2554
  year: 1982
  end-page: 2558
  ident: bib85
  article-title: Neural networks and physical systems with emergent collective computational abilities
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
– volume: 12
  start-page: 1657
  year: 1995
  end-page: 1664
  ident: bib53
  article-title: Karhunen–Loeve procedure for gappy data
  publication-title: JOSA A
– volume: 792
  start-page: 798
  year: 2016
  end-page: 828
  ident: bib74
  article-title: Spectral proper orthogonal decomposition
  publication-title: J. Fluid Mech.
– volume: 275
  start-page: 257
  year: 1994
  end-page: 283
  ident: bib52
  article-title: Dynamics of three-dimensional coherent structures in a flat-plate boundary layer
  publication-title: J. Fluid Mech.
– year: 2011
  ident: bib98
  article-title: Numerical Solution of Partial Differential Equations in Science and Engineering
– start-page: 928
  year: 2021
  ident: bib123
  article-title: Convolutional-network models to predict wall-bounded turbulence from wall quantities
  publication-title: J. Fluid Mech.
– volume: 182
  start-page: 15
  year: 2019
  end-page: 27
  ident: bib128
  article-title: A domain decomposition non-intrusive reduced order model for turbulent flows
  publication-title: Comput. Fluids
– volume: 19
  start-page: 4181
  year: 2019
  end-page: 4192
  ident: bib153
  article-title: Physics-based convolutional neural network for fault diagnosis of rolling element bearings
  publication-title: IEEE Sensor. J.
– volume: 306
  start-page: 196
  year: 2016
  end-page: 215
  ident: bib73
  article-title: Data-driven operator inference for nonintrusive projection-based model reduction
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 375
  start-page: 565
  year: 2018
  end-page: 588
  ident: bib133
  article-title: Deep UQ: learning deep neural network surrogate models for high dimensional uncertainty quantification
  publication-title: J. Comput. Phys.
– year: 2020
  ident: bib3
  article-title: The development of a mining method selection model through a detailed assessment of multi-criteria decision methods
  publication-title: Results in Engineering
– volume: 1
  year: 2020
  ident: bib114
  article-title: Limitations of physics informed machine learning for nonlinear two-phase transport in porous media
  publication-title: Journal of Machine Learning for Modeling and Computing
– year: 2011
  ident: bib22
  article-title: Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers
– year: 2020
  ident: bib102
  article-title: Deep Network Approximation for Smooth Functions
– volume: 57
  start-page: 71
  year: 2015
  end-page: 87
  ident: bib118
  article-title: Cloud-to-BIM-to-FEM: structural simulation with accurate historic BIM from laser scans
  publication-title: Simulat. Model. Pract. Theor.
– volume: 374
  start-page: 20150202
  year: 2016
  ident: bib32
  article-title: Principal component analysis: a review and recent developments
  publication-title: Phil. Trans. Math. Phys. Eng. Sci.
– year: 2021
  ident: bib12
  article-title: Physics-Informed Neural Network Method for Solving One-Dimensional Advection Equation Using PyTorch
– year: 2013
  ident: bib68
  article-title: The GNAT Nonlinear Model-Reduction Method with Application to Large-Scale Turbulent Flows
– volume: 7
  start-page: eabf5006
  year: 2021
  ident: bib79
  article-title: Cluster-based network modeling—from snapshots to complex dynamical systems
  publication-title: Sci. Adv.
– year: 2021
  ident: bib100
  article-title: Applying Bayesian Optimization with Gaussian Process Regression to Computational Fluid Dynamics Problems
– volume: 11
  year: 2021
  ident: bib7
  article-title: Optimization of CNC turning parameters using face centred CCD approach in RSM and ANN-genetic algorithm for AISI 4340 alloy steel
  publication-title: Results in Engineering
– volume: 29
  start-page: 2318
  year: 2017
  end-page: 2331
  ident: bib18
  article-title: Theory-guided data science: a new paradigm for scientific discovery from data
  publication-title: IEEE Trans. Knowl. Data Eng.
– year: 1967
  ident: bib49
  article-title: The Structure of Inhomogeneous Turbulent flows Atmospheric Turbulence and Radio Wave Propagation
– volume: 40
  start-page: 2323
  year: 2002
  end-page: 2330
  ident: bib56
  article-title: Balanced model reduction via the proper orthogonal decomposition
  publication-title: AIAA J.
– volume: 10
  start-page: 195
  year: 1994
  end-page: 201
  ident: bib109
  article-title: Neural‐network‐based approximations for solving partial differential equations
  publication-title: Commun. Numer. Methods Eng.
– year: 2021
  ident: bib6
  article-title: Natural Language Processing Accurately Categorizes Indications, Findings and Pathology Reports from Multicenter Colonoscopy
– year: 2014
  ident: bib14
  article-title: BS Nethra. Statistical software packages for research in social sciences
  publication-title: Recent Research Advancements in Information Technology
– volume: vol. 2
  year: 2006
  ident: bib99
  publication-title: Gaussian Processes for Machine Learning
– volume: 408
  start-page: 109275
  year: 2020
  ident: bib93
  article-title: Machine Learning design of Volume of Fluid schemes for compressible flows
  publication-title: J. Comput. Phys.
– volume: 141
  year: 2019
  ident: bib148
  article-title: Multi-fidelity physics-constrained neural network and its application in materials modeling
  publication-title: J. Mech. Des.
– volume: 19
  start-page: 897
  year: 1915
  ident: bib46
  article-title: Series development for some cases of equilibrium of plates and beams
  publication-title: Wjestnik Ingenerow Petrograd
– year: 2021
  ident: bib80
  article-title: The Potential of Machine Learning to Enhance Computational Fluid Dynamics
– volume: 39
  start-page: 930
  year: 1993
  end-page: 945
  ident: bib101
  article-title: Universal approximation bounds for superpositions of a sigmoidal function
  publication-title: IEEE Trans. Inf. Theor.
– volume: 20
  start-page: 130
  year: 1963
  end-page: 141
  ident: bib48
  article-title: Deterministic nonperiodic flow
  publication-title: J. Atmos. Sci.
– volume: 45
  start-page: 561
  year: 1987
  end-page: 571
  ident: bib50
  article-title: Turbulence and the dynamics of coherent structures. I. Coherent structures
  publication-title: Q. Appl. Math.
– year: 2021
  ident: bib120
  article-title: Enhancing Predictive Skills in Physically-Consistent Way: Physics Informed Machine Learning for Hydrological Processes
– volume: 32
  start-page: 278
  year: 2018
  end-page: 292
  ident: bib36
  article-title: A POD-based reduced-order model for uncertainty analyses in shallow water flows
  publication-title: Int. J. Comput. Fluid Dynam.
– year: 2018
  ident: bib149
  article-title: HybridNet: integrating model-based and data-driven learning to predict evolution of dynamical systems
  publication-title: Conference on Robot Learning
– year: 2020
  ident: bib126
  article-title: Physics Guided Machine Learning Methods for Hydrology
– year: 1986
  ident: bib87
  article-title: Learning while Searching in Constraint-Satisfaction Problems
– year: 2021
  ident: bib5
  article-title: Predicting the Spread of COVID-19 in Delhi, India Using Deep Residual Recurrent Neural Networks
– volume: 168
  start-page: 114316
  year: 2021
  ident: bib129
  article-title: Probabilistic physics-guided machine learning for fatigue data analysis
  publication-title: Expert Syst. Appl.
– volume: 641
  start-page: 115
  year: 2009
  end-page: 127
  ident: bib65
  article-title: Spectral analysis of nonlinear flows
  publication-title: J. Fluid Mech.
– volume: 747
  start-page: 518
  year: 2014
  end-page: 544
  ident: bib70
  article-title: On the need for a nonlinear subscale turbulence term in POD models as exemplified for a high-Reynolds-number flow over an Ahmed body
  publication-title: J. Fluid Mech.
– volume: 395
  start-page: 105
  year: 2019
  end-page: 124
  ident: bib91
  article-title: Recovering missing CFD data for high-order discretizations using deep neural networks and dynamics learning
  publication-title: J. Comput. Phys.
– volume: 7
  start-page: 1
  year: 2020
  end-page: 27
  ident: bib145
  article-title: Model order reduction assisted by deep neural networks (ROM-net)
  publication-title: Advanced Modeling and Simulation in Engineering Sciences
– volume: 79
  start-page: 1
  year: 2019
  end-page: 24
  ident: bib137
  article-title: JUNIPR: a framework for unsupervised machine learning in particle physics
  publication-title: The European Physical Journal C
– volume: 54
  start-page: 1
  year: 2013
  end-page: 21
  ident: bib69
  article-title: Identification strategies for model-based control
  publication-title: Exp. Fluid
– volume: 370
  start-page: 113250
  year: 2020
  ident: bib151
  article-title: PPINN: parareal physics-informed neural network for time-dependent PDEs
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 38
  start-page: 1961
  year: 2001
  end-page: 1985
  ident: bib55
  article-title: Adaptive Galerkin methods with error control for a dynamical ginzburg-landau model in superconductivity
  publication-title: SIAM J. Numer. Anal.
– year: 2019
  ident: bib136
  article-title: Application of physics-based machine learning in combustion modeling
  publication-title: 11th US National Combustion Meeting
– volume: 119
  year: 2020
  ident: bib134
  article-title: Machine learning assisted evaluations in structural design and construction
  publication-title: Autom. ConStruct.
– volume: 3
  start-page: 1
  year: 2019
  end-page: 12
  ident: bib139
  article-title: Predicting the dissolution kinetics of silicate glasses by topology-informed machine learning
  publication-title: Npj Materials Degradation
– volume: 160
  year: 2020
  ident: bib143
  article-title: Machine learning prediction of thermal transport in porous media with physics-based descriptors
  publication-title: Int. J. Heat Mass Tran.
– volume: 14
  start-page: 114027
  year: 2019
  ident: bib23
  article-title: Evaluation and machine learning improvement of global hydrological model-based flood simulations
  publication-title: Environ. Res. Lett.
– year: 2005
  ident: bib41
  article-title: The curse of dimensionality in data mining and time series prediction
  publication-title: International Work-Conference on Artificial Neural Networks
– volume: 348
  start-page: 683
  year: 2017
  end-page: 693
  ident: bib95
  article-title: Machine learning of linear differential equations using Gaussian processes
  publication-title: J. Comput. Phys.
– volume: 4
  start-page: 54603
  year: 2019
  ident: bib122
  article-title: Predictions of turbulent shear flows using deep neural networks
  publication-title: Physical Review Fluids
– year: 2021
  ident: bib10
  article-title: Monitoring marine environments with autonomous underwater vehicles: a bibliometric analysis
  publication-title: Results in Engineering
– volume: 339
  start-page: 667
  year: 2004
  end-page: 672
  ident: bib59
  article-title: An ‘empirical interpolation’method: application to efficient reduced-basis discretization of partial differential equations
  publication-title: Compt. Rendus Math.
– volume: 9
  start-page: 987
  year: 1998
  end-page: 1000
  ident: bib110
  article-title: Artificial neural networks for solving ordinary and partial differential equations
  publication-title: IEEE Trans. Neural Network.
– volume: 2
  start-page: 1
  year: 2019
  end-page: 11
  ident: bib16
  article-title: Integrating machine learning and multiscale modeling—perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences
  publication-title: NPJ digital medicine
– volume: 191
  start-page: 5499
  year: 2002
  end-page: 5513
  ident: bib29
  article-title: Mid-frequency structural dynamics with parameter uncertainty
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 34
  start-page: 425
  year: 2000
  end-page: 448
  ident: bib54
  article-title: A reduced‐order approach for optimal control of fluids using proper orthogonal decomposition
  publication-title: Int. J. Numer. Methods Fluid.
– volume: 6
  start-page: 1
  year: 2018
  end-page: 12
  ident: bib112
  article-title: The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems
  publication-title: Communications in Mathematics and Statistics
– volume: 40
  start-page: A1322
  year: 2018
  end-page: A1344
  ident: bib76
  article-title: The shifted proper orthogonal decomposition: a mode decomposition for multiple transport phenomena
  publication-title: SIAM J. Sci. Comput.
– volume: 192
  start-page: 115
  year: 1988
  end-page: 173
  ident: bib51
  article-title: The dynamics of coherent structures in the wall region of a turbulent boundary layer
  publication-title: J. Fluid Mech.
– year: 2021
  ident: bib81
  article-title: Towards Extraction of Orthogonal and Parsimonious Non-linear Modes from Turbulent Flows
– volume: 13
  year: 2018
  ident: bib45
  article-title: Data-assisted reduced-order modeling of extreme events in complex dynamical systems
  publication-title: PLoS One
– volume: 2
  start-page: 559
  year: 1901
  end-page: 572
  ident: bib31
  article-title: Planes of closest fit to systems of points in space, london edinburgh dublin philos
  publication-title: Mag. J. Sci
– volume: 46
  start-page: 1803
  year: 2008
  end-page: 1813
  ident: bib63
  article-title: Interpolation method for adapting reduced-order models and application to aeroelasticity
  publication-title: AIAA J.
– volume: 33
  year: 2021
  ident: bib124
  article-title: From coarse wall measurements to turbulent velocity fields through deep learning
  publication-title: Phys. Fluid.
– volume: 24
  year: 2019
  ident: bib130
  article-title: Finite element–based machine-learning approach to detect damage in bridges under operational and environmental variations
  publication-title: J. Bridge Eng.
– year: 2018
  ident: bib43
  article-title: A Deep Learning Based Approach to Reduced Order Modeling for Turbulent Flow Control Using LSTM Neural Networks
– volume: 118
  start-page: 103140
  year: 2020
  ident: bib92
  article-title: Machine-learning based error prediction approach for coarse-grid Computational Fluid Dynamics (CG-CFD)
  publication-title: Prog. Nucl. Energy
– year: 2008
  ident: bib20
  article-title: Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation
– volume: 16
  start-page: 146
  year: 1976
  end-page: 160
  ident: bib83
  article-title: Taylor expansion of the accumulated rounding error
  publication-title: BIT Numerical Mathematics
– year: 2020
  ident: bib116
  article-title: Understanding and Mitigating Gradient Pathologies in Physics-Informed Neural Networks
– year: 2018
  ident: bib157
  article-title: Real-time power system state estimation via deep unrolled neural networks
  publication-title: 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)
– year: 2020
  ident: bib146
  article-title: Predicting AC optimal power flows: combining deep learning and Lagrangian dual methods
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– year: 2019
  ident: bib39
  article-title: A Non-intrusive Reduced-Order Modeling Method Using Polynomial Chaos Expansion
– volume: 11
  year: 2021
  ident: bib9
  article-title: An explainable machine learning model to predict and elucidate the compressive behavior of high-performance concrete
  publication-title: Results in Engineering
– year: 2019
  ident: bib17
  article-title: Workshop Report on Basic Research Needs for Scientific Machine Learning: Core Technologies for Artificial Intelligence
– year: 2016
  ident: bib88
  article-title: Deep Learning
– volume: 8
  year: 2020
  ident: bib8
  article-title: Artificial intelligence system for supporting soil classification
  publication-title: Results in Engineering
– volume: 844
  start-page: 459
  year: 2018
  end-page: 490
  ident: bib77
  article-title: Sparse reduced-order modelling: sensor-based dynamics to full-state estimation
  publication-title: J. Fluid Mech.
– volume: 765
  start-page: 325
  year: 2015
  end-page: 352
  ident: bib72
  article-title: On long-term boundedness of Galerkin models
  publication-title: J. Fluid Mech.
– volume: 67
  start-page: 619
  year: 2021
  end-page: 635
  ident: bib138
  article-title: Machine learning for metal additive manufacturing: predicting temperature and melt pool fluid dynamics using physics-informed neural networks
  publication-title: Comput. Mech.
– volume: 124
  start-page: 70
  year: 2002
  end-page: 80
  ident: bib27
  article-title: Reliable real-time solution of parametrized partial differential equations: reduced-basis output bound methods
  publication-title: J. Fluid Eng.
– volume: 10
  start-page: 5442
  year: 2017
  end-page: 5457
  ident: bib142
  article-title: A novel ozone profile shape retrieval using full-physics inverse learning machine (FP-ILM)
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens.
– year: 2019
  ident: bib158
  article-title: Symplectic Ode-Net: Learning Hamiltonian Dynamics with Control
– volume: 1
  start-page: 127
  year: 2014
  end-page: 239
  ident: bib21
  article-title: Proximal algorithms
  publication-title: Foundations and Trends in optimization
– volume: 123
  start-page: 264
  year: 2019
  end-page: 297
  ident: bib24
  article-title: Review for order reduction based on proper orthogonal decomposition and outlooks of applications in mechanical systems
  publication-title: Mech. Syst. Signal Process.
– volume: 11
  start-page: 4276
  year: 2021
  ident: bib117
  article-title: An adapted model of cognitive digital twins for building lifecycle management
  publication-title: Appl. Sci.
– volume: 46
  start-page: 1
  year: 2021
  end-page: 11
  ident: bib131
  article-title: A hybrid physics-assisted machine-learning-based damage detection using Lamb wave
  publication-title: Sādhanā
– start-page: 215
  year: 2014
  end-page: 233
  ident: bib35
  article-title: On the stability of reduced-order linearized computational fluid dynamics models based on POD and Galerkin projection: descriptor vs non-descriptor forms
  publication-title: Reduced Order Methods for Modeling and Computational Reduction
– year: 2020
  ident: bib132
  article-title: Data-Driven and Model-Based Methods with Physics-Guided Machine Learning for Damage Identification
– year: 2021
  ident: bib13
  article-title: Comparison of sewer conditions ratings with repair recommendation reports
  publication-title: North American Society for Trenchless Technology (NASTT) 2021
– year: 2021
  ident: bib4
  article-title: Deep learning applications to classify cross-topic natural language texts based on their argumentative form
  publication-title: 2021 2nd International Conference on Smart Electronics and Communication (ICOSEC)
– volume: 847
  start-page: 821
  year: 2018
  end-page: 867
  ident: bib75
  article-title: Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis
  publication-title: J. Fluid Mech.
– volume: 403
  year: 2020
  ident: bib127
  article-title: Modeling the dynamics of PDE systems with physics-constrained deep auto-regressive networks
  publication-title: J. Comput. Phys.
– volume: 436
  start-page: 110296
  year: 2021
  ident: bib107
  article-title: DeepM&Mnet: inferring the electroconvection multiphysics fields based on operator approximation by neural networks
  publication-title: J. Comput. Phys.
– volume: 401
  start-page: 109020
  year: 2020
  ident: bib150
  article-title: A composite neural network that learns from multi-fidelity data: application to function approximation and inverse PDE problems
  publication-title: J. Comput. Phys.
– volume: 378
  start-page: 686
  year: 2019
  end-page: 707
  ident: bib96
  article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
– volume: 287
  start-page: 337
  year: 1997
  end-page: 384
  ident: bib28
  article-title: Low-dimensional models of coherent structures in turbulence
  publication-title: Phys. Rep.
– volume: 870
  start-page: 988
  year: 2019
  end-page: 1036
  ident: bib78
  article-title: Multi-scale proper orthogonal decomposition of complex fluid flows
  publication-title: J. Fluid Mech.
– year: 2009
  ident: bib94
  article-title: Machine Learning Methods in the Environmental Sciences: Neural Networks and Kernels
– volume: 861
  start-page: 119
  year: 2019
  end-page: 137
  ident: bib97
  article-title: Deep learning of vortex-induced vibrations
  publication-title: J. Fluid Mech.
– start-page: 808
  year: 2000
  end-page: 817
  ident: bib26
  article-title: An introduction to the proper orthogonal decomposition
  publication-title: Curr. Sci.
– volume: 100
  start-page: 2175
  year: 2019
  end-page: 2199
  ident: bib15
  article-title: Making the black box more transparent: understanding the physical implications of machine learning
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 814
  start-page: 1
  year: 2017
  end-page: 4
  ident: bib90
  article-title: Deep learning in fluid dynamics
  publication-title: J. Fluid Mech.
– year: 2021
  ident: bib2
  article-title: Implementation of hybrid neuro-fuzzy and self-turning predictive model for the prediction of concrete carbonation depth: a soft computing technique
  publication-title: Results in Engineering
– year: 2021
  ident: bib104
  article-title: Physics-informed Neural Networks for Solving Reynolds-averaged Navier $\unicode {x2013} $ Stokes Equations
– volume: 394
  start-page: 56
  year: 2019
  end-page: 81
  ident: bib113
  article-title: Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data
  publication-title: J. Comput. Phys.
– start-page: 1188
  year: 2020
  end-page: 1207
  ident: bib119
  article-title: Efficient intensity measures and machine learning classification algorithms for collapse prediction informed by physics-based ground motion simulations
  publication-title: Earthq. Spectra
– volume: 2012
  start-page: 1
  year: 2012
  end-page: 12
  ident: bib42
  article-title: Support-vector-machine-based reduced-order model for limit cycle oscillation prediction of nonlinear aeroelastic system
  publication-title: Math. Probl Eng.
– volume: 323
  start-page: 533
  year: 1986
  end-page: 536
  ident: bib84
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
– volume: 187
  start-page: 115883
  year: 2019
  ident: bib152
  article-title: Physics-induced graph neural network: an application to wind-farm power estimation
  publication-title: Energy
– volume: 332
  start-page: 2437
  year: 2013
  end-page: 2460
  ident: bib25
  article-title: A review of indirect/non-intrusive reduced order modeling of nonlinear geometric structures
  publication-title: J. Sound Vib.
– volume: 60
  start-page: 681
  year: 2018
  end-page: 710
  ident: bib154
  article-title: Machine learning closures for model order reduction of thermal fluids
  publication-title: Appl. Math. Model.
– volume: 12
  start-page: 273
  year: 2000
  end-page: 288
  ident: bib37
  article-title: High dimensional polynomial interpolation on sparse grids
  publication-title: Adv. Comput. Math.
– volume: 102
  start-page: 1136
  year: 2015
  end-page: 1161
  ident: bib71
  article-title: Supremizer stabilization of POD–Galerkin approximation of parametrized steady incompressible Navier–Stokes equations
  publication-title: Int. J. Numer. Methods Eng.
– volume: 26
  start-page: 275
  year: 2012
  end-page: 295
  ident: bib34
  article-title: Low-order modelling of shallow water equations for sensitivity analysis using proper orthogonal decomposition
  publication-title: Int. J. Comput. Fluid Dynam.
– volume: 28
  start-page: 459
  year: 2006
  end-page: 484
  ident: bib30
  article-title: Centroidal Voronoi tessellation-based reduced-order modeling of complex systems
  publication-title: SIAM J. Sci. Comput.
– volume: 656
  start-page: 5
  year: 2010
  end-page: 28
  ident: bib66
  article-title: Dynamic mode decomposition of numerical and experimental data
  publication-title: J. Fluid Mech.
– volume: 15
  start-page: 1
  year: 2007
  ident: bib61
  article-title: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations
  publication-title: Arch. Comput. Methods Eng.
– year: 2019
  ident: bib106
  article-title: Deeponet: Learning Nonlinear Operators for Identifying Differential Equations Based on the Universal Approximation Theorem of Operators
– year: 2020
  ident: bib144
  article-title: Deep shape from polarization
  publication-title: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXIV 16
– year: 2019
  ident: bib121
  article-title: Physics-informed Autoencoders for Lyapunov-Stable Fluid Flow Prediction
– volume: 53
  start-page: 2237
  year: 2008
  end-page: 2251
  ident: bib64
  article-title: Missing point estimation in models described by proper orthogonal decomposition
  publication-title: IEEE Trans. Automat. Control
– volume: 19
  start-page: 932
  year: 2018
  end-page: 955
  ident: bib115
  article-title: Deep hidden physics models: deep learning of nonlinear partial differential equations
  publication-title: J. Mach. Learn. Res.
– volume: 207
  start-page: 192
  year: 2005
  end-page: 220
  ident: bib33
  article-title: Calibrated reduced-order POD-Galerkin system for fluid flow modelling
  publication-title: J. Comput. Phys.
– volume: 153
  start-page: 34
  year: 1966
  end-page: 37
  ident: bib40
  article-title: Dynamic programming
  publication-title: Science
– year: 2020
  ident: bib105
  article-title: Fourier Neural Operator for Parametric Partial Differential Equations
– year: 2018
  ident: bib103
  article-title: Optimal approximation of continuous functions by very deep ReLU networks
  publication-title: Conference on Learning Theory
– volume: 491
  start-page: 275
  year: 2003
  end-page: 284
  ident: bib57
  article-title: Intermodal energy transfers in a proper orthogonal decomposition–Galerkin representation of a turbulent separated flow
  publication-title: J. Fluid Mech.
– volume: 10
  start-page: 1
  year: 2020
  end-page: 14
  ident: bib156
  article-title: A framework for modeling flood depth using a hybrid of hydraulics and machine learning
  publication-title: Sci. Rep.
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: bib86
  article-title: Long short-term memory
  publication-title: Neural Comput.
– reference: Zhou, S., et al., A data-driven and physics-based approach to exploring interdependency of interconnected infrastructure, in Computing in Civil Engineering 2019: Data, Sensing, and Analytics. 2019, American Society of Civil Engineers Reston, VA. p. 82-88.
– year: 2020
  ident: bib11
  article-title: Prediction of the Number of Covid-19 Confirmed Cases Based on K-Means-Lstm
– volume: 22
  year: 2021
  ident: bib141
  article-title: Physics-informed machine learning for composition–process–property design: shape memory alloy demonstration
  publication-title: Applied Materials Today
– volume: 53
  start-page: 1571
  year: 2007
  end-page: 1583
  ident: bib62
  article-title: A reduced‐order approach to four‐dimensional variational data assimilation using proper orthogonal decomposition
  publication-title: Int. J. Numer. Methods Fluid.
– year: 2020
  ident: bib108
  article-title: DeepM&Mnet for Hypersonics: Predicting the Coupled Flow and Finite-Rate Chemistry behind a Normal Shock Using Neural-Network Approximation of Operators
– volume: 215
  year: 2020
  ident: bib159
  article-title: Physics-guided convolutional neural network (PhyCNN) for data-driven seismic response modeling
  publication-title: Eng. Struct.
– volume: 194
  start-page: 92
  year: 2004
  end-page: 116
  ident: bib58
  article-title: A spectral viscosity method for correcting the long-term behavior of POD models
  publication-title: J. Comput. Phys.
– volume: 377
  year: 2019
  ident: bib140
  article-title: Machine learning techniques for detecting topological avatars of new physics
  publication-title: Philosophical Transactions of the Royal Society A
– volume: 2
  start-page: 34603
  year: 2017
  ident: bib155
  article-title: Physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data
  publication-title: Physical Review Fluids
– volume: vol. 113
  start-page: 3932
  year: 2016
  end-page: 3937
  ident: bib89
  article-title: Discovering governing equations from data by sparse identification of nonlinear dynamical systems
  publication-title: Proceedings of the National Academy of Sciences
– volume: 32
  start-page: 2737
  year: 2010
  end-page: 2764
  ident: bib67
  article-title: Nonlinear model reduction via discrete empirical interpolation
  publication-title: SIAM J. Sci. Comput.
– volume: 10
  year: 2021
  ident: bib1
  article-title: A noise robust convolutional neural network for image classification
  publication-title: Results in Engineering
– volume: 65
  start-page: 386
  year: 1958
  ident: bib82
  article-title: The perceptron: a probabilistic model for information storage and organization in the brain
  publication-title: Psychol. Rev.
– volume: 6
  start-page: 295
  year: 2021
  end-page: 309
  ident: bib135
  article-title: Utilizing physics-based input features within a machine learning model to predict wind speed forecasting error
  publication-title: Wind Energy Science
– volume: 317
  start-page: 28
  year: 2018
  end-page: 41
  ident: bib111
  article-title: A unified deep artificial neural network approach to partial differential equations in complex geometries
  publication-title: Neurocomputing
– volume: 19
  start-page: 329
  year: 1962
  end-page: 341
  ident: bib47
  article-title: Finite amplitude free convection as an initial value problem—I
  publication-title: J. Atmos. Sci.
– year: 2019
  ident: bib147
  article-title: Deep fluids: a generative network for parameterized fluid simulations
  publication-title: Computer Graphics Forum
– volume: 148
  start-page: 323
  year: 2019
  end-page: 337
  ident: bib44
  article-title: A reduced order model for turbulent flows in the urban environment using machine learning
  publication-title: Build. Environ.
– volume: 317
  start-page: 28
  year: 2018
  ident: 10.1016/j.rineng.2021.100316_bib111
  article-title: A unified deep artificial neural network approach to partial differential equations in complex geometries
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.06.056
– year: 1967
  ident: 10.1016/j.rineng.2021.100316_bib49
– year: 2018
  ident: 10.1016/j.rineng.2021.100316_bib157
  article-title: Real-time power system state estimation via deep unrolled neural networks
– volume: 375
  start-page: 565
  year: 2018
  ident: 10.1016/j.rineng.2021.100316_bib133
  article-title: Deep UQ: learning deep neural network surrogate models for high dimensional uncertainty quantification
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.08.036
– year: 2013
  ident: 10.1016/j.rineng.2021.100316_bib68
– volume: 79
  start-page: 1
  issue: 2
  year: 2019
  ident: 10.1016/j.rineng.2021.100316_bib137
  article-title: JUNIPR: a framework for unsupervised machine learning in particle physics
  publication-title: The European Physical Journal C
  doi: 10.1140/epjc/s10052-019-6607-9
– volume: 3
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.rineng.2021.100316_bib139
  article-title: Predicting the dissolution kinetics of silicate glasses by topology-informed machine learning
  publication-title: Npj Materials Degradation
  doi: 10.1038/s41529-019-0094-1
– volume: 32
  start-page: 278
  issue: 6–7
  year: 2018
  ident: 10.1016/j.rineng.2021.100316_bib36
  article-title: A POD-based reduced-order model for uncertainty analyses in shallow water flows
  publication-title: Int. J. Comput. Fluid Dynam.
  doi: 10.1080/10618562.2018.1513496
– volume: 10
  start-page: 195
  issue: 3
  year: 1994
  ident: 10.1016/j.rineng.2021.100316_bib109
  article-title: Neural‐network‐based approximations for solving partial differential equations
  publication-title: Commun. Numer. Methods Eng.
  doi: 10.1002/cnm.1640100303
– volume: 14
  start-page: 114027
  issue: 11
  year: 2019
  ident: 10.1016/j.rineng.2021.100316_bib23
  article-title: Evaluation and machine learning improvement of global hydrological model-based flood simulations
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/ab4d5e
– volume: 378
  start-page: 686
  year: 2019
  ident: 10.1016/j.rineng.2021.100316_bib96
  article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.10.045
– volume: 192
  start-page: 115
  year: 1988
  ident: 10.1016/j.rineng.2021.100316_bib51
  article-title: The dynamics of coherent structures in the wall region of a turbulent boundary layer
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112088001818
– volume: 33
  issue: 7
  year: 2021
  ident: 10.1016/j.rineng.2021.100316_bib124
  article-title: From coarse wall measurements to turbulent velocity fields through deep learning
  publication-title: Phys. Fluid.
  doi: 10.1063/5.0058346
– year: 2021
  ident: 10.1016/j.rineng.2021.100316_bib12
– year: 2011
  ident: 10.1016/j.rineng.2021.100316_bib22
– year: 2019
  ident: 10.1016/j.rineng.2021.100316_bib17
– volume: 10
  start-page: 5442
  issue: 12
  year: 2017
  ident: 10.1016/j.rineng.2021.100316_bib142
  article-title: A novel ozone profile shape retrieval using full-physics inverse learning machine (FP-ILM)
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens.
  doi: 10.1109/JSTARS.2017.2740168
– volume: 8
  start-page: 71050
  year: 2020
  ident: 10.1016/j.rineng.2021.100316_bib19
  article-title: Driven by data or derived through physics? a review of hybrid physics guided machine learning techniques with cyber-physical system (cps) focus
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2987324
– volume: 22
  year: 2021
  ident: 10.1016/j.rineng.2021.100316_bib141
  article-title: Physics-informed machine learning for composition–process–property design: shape memory alloy demonstration
  publication-title: Applied Materials Today
  doi: 10.1016/j.apmt.2020.100898
– volume: 861
  start-page: 119
  year: 2019
  ident: 10.1016/j.rineng.2021.100316_bib97
  article-title: Deep learning of vortex-induced vibrations
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2018.872
– volume: 40
  start-page: 2323
  issue: 11
  year: 2002
  ident: 10.1016/j.rineng.2021.100316_bib56
  article-title: Balanced model reduction via the proper orthogonal decomposition
  publication-title: AIAA J.
  doi: 10.2514/2.1570
– year: 2020
  ident: 10.1016/j.rineng.2021.100316_bib105
– volume: 348
  start-page: 683
  year: 2017
  ident: 10.1016/j.rineng.2021.100316_bib95
  article-title: Machine learning of linear differential equations using Gaussian processes
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.07.050
– volume: vol. 2
  year: 2006
  ident: 10.1016/j.rineng.2021.100316_bib99
– volume: 374
  start-page: 20150202
  issue: 2065
  year: 2016
  ident: 10.1016/j.rineng.2021.100316_bib32
  article-title: Principal component analysis: a review and recent developments
  publication-title: Phil. Trans. Math. Phys. Eng. Sci.
– year: 2018
  ident: 10.1016/j.rineng.2021.100316_bib43
– volume: 13
  issue: 5
  year: 2018
  ident: 10.1016/j.rineng.2021.100316_bib45
  article-title: Data-assisted reduced-order modeling of extreme events in complex dynamical systems
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0197704
– volume: 16
  start-page: 146
  issue: 2
  year: 1976
  ident: 10.1016/j.rineng.2021.100316_bib83
  article-title: Taylor expansion of the accumulated rounding error
  publication-title: BIT Numerical Mathematics
  doi: 10.1007/BF01931367
– volume: 19
  start-page: 932
  issue: 1
  year: 2018
  ident: 10.1016/j.rineng.2021.100316_bib115
  article-title: Deep hidden physics models: deep learning of nonlinear partial differential equations
  publication-title: J. Mach. Learn. Res.
– volume: 54
  start-page: 1
  issue: 8
  year: 2013
  ident: 10.1016/j.rineng.2021.100316_bib69
  article-title: Identification strategies for model-based control
  publication-title: Exp. Fluid
  doi: 10.1007/s00348-013-1580-9
– volume: 19
  start-page: 329
  issue: 4
  year: 1962
  ident: 10.1016/j.rineng.2021.100316_bib47
  article-title: Finite amplitude free convection as an initial value problem—I
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1962)019<0329:FAFCAA>2.0.CO;2
– year: 2014
  ident: 10.1016/j.rineng.2021.100316_bib14
  article-title: BS Nethra. Statistical software packages for research in social sciences
– volume: 65
  start-page: 386
  issue: 6
  year: 1958
  ident: 10.1016/j.rineng.2021.100316_bib82
  article-title: The perceptron: a probabilistic model for information storage and organization in the brain
  publication-title: Psychol. Rev.
  doi: 10.1037/h0042519
– volume: 2
  start-page: 34603
  issue: 3
  year: 2017
  ident: 10.1016/j.rineng.2021.100316_bib155
  article-title: Physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data
  publication-title: Physical Review Fluids
  doi: 10.1103/PhysRevFluids.2.034603
– volume: 287
  start-page: 337
  issue: 4
  year: 1997
  ident: 10.1016/j.rineng.2021.100316_bib28
  article-title: Low-dimensional models of coherent structures in turbulence
  publication-title: Phys. Rep.
  doi: 10.1016/S0370-1573(97)00017-3
– volume: 215
  year: 2020
  ident: 10.1016/j.rineng.2021.100316_bib159
  article-title: Physics-guided convolutional neural network (PhyCNN) for data-driven seismic response modeling
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2020.110704
– volume: 332
  start-page: 2437
  issue: 10
  year: 2013
  ident: 10.1016/j.rineng.2021.100316_bib25
  article-title: A review of indirect/non-intrusive reduced order modeling of nonlinear geometric structures
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2012.10.017
– volume: 491
  start-page: 275
  year: 2003
  ident: 10.1016/j.rineng.2021.100316_bib57
  article-title: Intermodal energy transfers in a proper orthogonal decomposition–Galerkin representation of a turbulent separated flow
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112003005615
– volume: 4
  start-page: 54603
  issue: 5
  year: 2019
  ident: 10.1016/j.rineng.2021.100316_bib122
  article-title: Predictions of turbulent shear flows using deep neural networks
  publication-title: Physical Review Fluids
  doi: 10.1103/PhysRevFluids.4.054603
– volume: 15
  start-page: 1
  issue: 3
  year: 2007
  ident: 10.1016/j.rineng.2021.100316_bib61
  article-title: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/BF03024948
– year: 2019
  ident: 10.1016/j.rineng.2021.100316_bib147
  article-title: Deep fluids: a generative network for parameterized fluid simulations
– volume: 747
  start-page: 518
  year: 2014
  ident: 10.1016/j.rineng.2021.100316_bib70
  article-title: On the need for a nonlinear subscale turbulence term in POD models as exemplified for a high-Reynolds-number flow over an Ahmed body
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2014.168
– volume: 194
  start-page: 92
  issue: 1
  year: 2004
  ident: 10.1016/j.rineng.2021.100316_bib58
  article-title: A spectral viscosity method for correcting the long-term behavior of POD models
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2003.08.021
– volume: 1
  start-page: 127
  issue: 3
  year: 2014
  ident: 10.1016/j.rineng.2021.100316_bib21
  article-title: Proximal algorithms
  publication-title: Foundations and Trends in optimization
  doi: 10.1561/2400000003
– volume: 26
  start-page: 275
  issue: 5
  year: 2012
  ident: 10.1016/j.rineng.2021.100316_bib34
  article-title: Low-order modelling of shallow water equations for sensitivity analysis using proper orthogonal decomposition
  publication-title: Int. J. Comput. Fluid Dynam.
  doi: 10.1080/10618562.2012.715153
– volume: 11
  year: 2021
  ident: 10.1016/j.rineng.2021.100316_bib9
  article-title: An explainable machine learning model to predict and elucidate the compressive behavior of high-performance concrete
  publication-title: Results in Engineering
  doi: 10.1016/j.rineng.2021.100245
– volume: 32
  start-page: 2737
  issue: 5
  year: 2010
  ident: 10.1016/j.rineng.2021.100316_bib67
  article-title: Nonlinear model reduction via discrete empirical interpolation
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/090766498
– year: 2020
  ident: 10.1016/j.rineng.2021.100316_bib116
– volume: 2
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.rineng.2021.100316_bib16
  article-title: Integrating machine learning and multiscale modeling—perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences
  publication-title: NPJ digital medicine
  doi: 10.1038/s41746-019-0193-y
– volume: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.rineng.2021.100316_bib114
  article-title: Limitations of physics informed machine learning for nonlinear two-phase transport in porous media
  publication-title: Journal of Machine Learning for Modeling and Computing
  doi: 10.1615/JMachLearnModelComput.2020033905
– year: 2019
  ident: 10.1016/j.rineng.2021.100316_bib121
– volume: 53
  start-page: 1571
  issue: 10
  year: 2007
  ident: 10.1016/j.rineng.2021.100316_bib62
  article-title: A reduced‐order approach to four‐dimensional variational data assimilation using proper orthogonal decomposition
  publication-title: Int. J. Numer. Methods Fluid.
  doi: 10.1002/fld.1365
– year: 2021
  ident: 10.1016/j.rineng.2021.100316_bib120
– volume: 34
  start-page: 425
  issue: 5
  year: 2000
  ident: 10.1016/j.rineng.2021.100316_bib54
  article-title: A reduced‐order approach for optimal control of fluids using proper orthogonal decomposition
  publication-title: Int. J. Numer. Methods Fluid.
  doi: 10.1002/1097-0363(20001115)34:5<425::AID-FLD67>3.0.CO;2-W
– volume: 11
  year: 2021
  ident: 10.1016/j.rineng.2021.100316_bib7
  article-title: Optimization of CNC turning parameters using face centred CCD approach in RSM and ANN-genetic algorithm for AISI 4340 alloy steel
  publication-title: Results in Engineering
  doi: 10.1016/j.rineng.2021.100251
– volume: 20
  start-page: 130
  issue: 2
  year: 1963
  ident: 10.1016/j.rineng.2021.100316_bib48
  article-title: Deterministic nonperiodic flow
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
– volume: 29
  start-page: 2318
  issue: 10
  year: 2017
  ident: 10.1016/j.rineng.2021.100316_bib18
  article-title: Theory-guided data science: a new paradigm for scientific discovery from data
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2017.2720168
– volume: 60
  start-page: 681
  year: 2018
  ident: 10.1016/j.rineng.2021.100316_bib154
  article-title: Machine learning closures for model order reduction of thermal fluids
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2018.03.037
– volume: 168
  start-page: 114316
  year: 2021
  ident: 10.1016/j.rineng.2021.100316_bib129
  article-title: Probabilistic physics-guided machine learning for fatigue data analysis
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.114316
– year: 2008
  ident: 10.1016/j.rineng.2021.100316_bib20
– volume: 395
  start-page: 105
  year: 2019
  ident: 10.1016/j.rineng.2021.100316_bib91
  article-title: Recovering missing CFD data for high-order discretizations using deep neural networks and dynamics learning
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.05.041
– year: 2019
  ident: 10.1016/j.rineng.2021.100316_bib39
– volume: 148
  start-page: 323
  year: 2019
  ident: 10.1016/j.rineng.2021.100316_bib44
  article-title: A reduced order model for turbulent flows in the urban environment using machine learning
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2018.10.035
– volume: 19
  start-page: 4181
  issue: 11
  year: 2019
  ident: 10.1016/j.rineng.2021.100316_bib153
  article-title: Physics-based convolutional neural network for fault diagnosis of rolling element bearings
  publication-title: IEEE Sensor. J.
  doi: 10.1109/JSEN.2019.2898634
– start-page: 928
  year: 2021
  ident: 10.1016/j.rineng.2021.100316_bib123
  article-title: Convolutional-network models to predict wall-bounded turbulence from wall quantities
  publication-title: J. Fluid Mech.
– ident: 10.1016/j.rineng.2021.100316_bib125
  doi: 10.1061/9780784482438.011
– year: 2019
  ident: 10.1016/j.rineng.2021.100316_bib136
  article-title: Application of physics-based machine learning in combustion modeling
– volume: 792
  start-page: 798
  year: 2016
  ident: 10.1016/j.rineng.2021.100316_bib74
  article-title: Spectral proper orthogonal decomposition
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2016.103
– volume: 118
  start-page: 103140
  year: 2020
  ident: 10.1016/j.rineng.2021.100316_bib92
  article-title: Machine-learning based error prediction approach for coarse-grid Computational Fluid Dynamics (CG-CFD)
  publication-title: Prog. Nucl. Energy
  doi: 10.1016/j.pnucene.2019.103140
– volume: 323
  start-page: 533
  issue: 6088
  year: 1986
  ident: 10.1016/j.rineng.2021.100316_bib84
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 57
  start-page: 71
  year: 2015
  ident: 10.1016/j.rineng.2021.100316_bib118
  article-title: Cloud-to-BIM-to-FEM: structural simulation with accurate historic BIM from laser scans
  publication-title: Simulat. Model. Pract. Theor.
  doi: 10.1016/j.simpat.2015.06.004
– start-page: 101
  year: 1991
  ident: 10.1016/j.rineng.2021.100316_bib38
  article-title: Stochastic finite element method: response statistics
– volume: 12
  start-page: 1657
  issue: 8
  year: 1995
  ident: 10.1016/j.rineng.2021.100316_bib53
  article-title: Karhunen–Loeve procedure for gappy data
  publication-title: JOSA A
  doi: 10.1364/JOSAA.12.001657
– year: 2020
  ident: 10.1016/j.rineng.2021.100316_bib126
– year: 2016
  ident: 10.1016/j.rineng.2021.100316_bib88
– volume: 39
  start-page: 930
  issue: 3
  year: 1993
  ident: 10.1016/j.rineng.2021.100316_bib101
  article-title: Universal approximation bounds for superpositions of a sigmoidal function
  publication-title: IEEE Trans. Inf. Theor.
  doi: 10.1109/18.256500
– volume: 10
  year: 2021
  ident: 10.1016/j.rineng.2021.100316_bib1
  article-title: A noise robust convolutional neural network for image classification
  publication-title: Results in Engineering
  doi: 10.1016/j.rineng.2021.100225
– year: 2019
  ident: 10.1016/j.rineng.2021.100316_bib158
– year: 2021
  ident: 10.1016/j.rineng.2021.100316_bib104
– volume: 844
  start-page: 459
  year: 2018
  ident: 10.1016/j.rineng.2021.100316_bib77
  article-title: Sparse reduced-order modelling: sensor-based dynamics to full-state estimation
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2018.147
– volume: 436
  start-page: 110296
  year: 2021
  ident: 10.1016/j.rineng.2021.100316_bib107
  article-title: DeepM&Mnet: inferring the electroconvection multiphysics fields based on operator approximation by neural networks
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2021.110296
– volume: 38
  start-page: 1961
  issue: 6
  year: 2001
  ident: 10.1016/j.rineng.2021.100316_bib55
  article-title: Adaptive Galerkin methods with error control for a dynamical ginzburg-landau model in superconductivity
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142998349102
– volume: 2
  start-page: 559
  issue: 11
  year: 1901
  ident: 10.1016/j.rineng.2021.100316_bib31
  article-title: Planes of closest fit to systems of points in space, london edinburgh dublin philos
  publication-title: Mag. J. Sci
  doi: 10.1080/14786440109462720
– volume: 102
  start-page: 1136
  issue: 5
  year: 2015
  ident: 10.1016/j.rineng.2021.100316_bib71
  article-title: Supremizer stabilization of POD–Galerkin approximation of parametrized steady incompressible Navier–Stokes equations
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.4772
– volume: 160
  year: 2020
  ident: 10.1016/j.rineng.2021.100316_bib143
  article-title: Machine learning prediction of thermal transport in porous media with physics-based descriptors
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2020.120176
– volume: 100
  start-page: 2175
  issue: 11
  year: 2019
  ident: 10.1016/j.rineng.2021.100316_bib15
  article-title: Making the black box more transparent: understanding the physical implications of machine learning
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/BAMS-D-18-0195.1
– year: 2020
  ident: 10.1016/j.rineng.2021.100316_bib108
– volume: 79
  start-page: 2554
  issue: 8
  year: 1982
  ident: 10.1016/j.rineng.2021.100316_bib85
  article-title: Neural networks and physical systems with emergent collective computational abilities
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
  doi: 10.1073/pnas.79.8.2554
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.rineng.2021.100316_bib86
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– year: 2020
  ident: 10.1016/j.rineng.2021.100316_bib11
– volume: 53
  start-page: 2237
  issue: 10
  year: 2008
  ident: 10.1016/j.rineng.2021.100316_bib64
  article-title: Missing point estimation in models described by proper orthogonal decomposition
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2008.2006102
– start-page: 1188
  year: 2020
  ident: 10.1016/j.rineng.2021.100316_bib119
  article-title: Efficient intensity measures and machine learning classification algorithms for collapse prediction informed by physics-based ground motion simulations
  publication-title: Earthq. Spectra
  doi: 10.1177/8755293020919414
– volume: 6
  start-page: 295
  issue: 1
  year: 2021
  ident: 10.1016/j.rineng.2021.100316_bib135
  article-title: Utilizing physics-based input features within a machine learning model to predict wind speed forecasting error
  publication-title: Wind Energy Science
  doi: 10.5194/wes-6-295-2021
– volume: 182
  start-page: 15
  year: 2019
  ident: 10.1016/j.rineng.2021.100316_bib128
  article-title: A domain decomposition non-intrusive reduced order model for turbulent flows
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2019.02.012
– volume: 814
  start-page: 1
  year: 2017
  ident: 10.1016/j.rineng.2021.100316_bib90
  article-title: Deep learning in fluid dynamics
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2016.803
– volume: 339
  start-page: 667
  issue: 9
  year: 2004
  ident: 10.1016/j.rineng.2021.100316_bib59
  article-title: An ‘empirical interpolation’method: application to efficient reduced-basis discretization of partial differential equations
  publication-title: Compt. Rendus Math.
  doi: 10.1016/j.crma.2004.08.006
– volume: 8
  year: 2020
  ident: 10.1016/j.rineng.2021.100316_bib8
  article-title: Artificial intelligence system for supporting soil classification
  publication-title: Results in Engineering
  doi: 10.1016/j.rineng.2020.100188
– year: 1986
  ident: 10.1016/j.rineng.2021.100316_bib87
– volume: 40
  start-page: A1322
  issue: 3
  year: 2018
  ident: 10.1016/j.rineng.2021.100316_bib76
  article-title: The shifted proper orthogonal decomposition: a mode decomposition for multiple transport phenomena
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/17M1140571
– volume: 19
  start-page: 897
  year: 1915
  ident: 10.1016/j.rineng.2021.100316_bib46
  article-title: Series development for some cases of equilibrium of plates and beams
  publication-title: Wjestnik Ingenerow Petrograd
– volume: 191
  start-page: 5499
  issue: 47–48
  year: 2002
  ident: 10.1016/j.rineng.2021.100316_bib29
  article-title: Mid-frequency structural dynamics with parameter uncertainty
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(02)00465-6
– volume: 306
  start-page: 196
  year: 2016
  ident: 10.1016/j.rineng.2021.100316_bib73
  article-title: Data-driven operator inference for nonintrusive projection-based model reduction
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2016.03.025
– year: 2009
  ident: 10.1016/j.rineng.2021.100316_bib94
– year: 2020
  ident: 10.1016/j.rineng.2021.100316_bib144
  article-title: Deep shape from polarization
– volume: 377
  issue: 2161
  year: 2019
  ident: 10.1016/j.rineng.2021.100316_bib140
  article-title: Machine learning techniques for detecting topological avatars of new physics
  publication-title: Philosophical Transactions of the Royal Society A
– volume: 141
  issue: 12
  year: 2019
  ident: 10.1016/j.rineng.2021.100316_bib148
  article-title: Multi-fidelity physics-constrained neural network and its application in materials modeling
  publication-title: J. Mech. Des.
  doi: 10.1115/1.4044400
– volume: 124
  start-page: 70
  issue: 1
  year: 2002
  ident: 10.1016/j.rineng.2021.100316_bib27
  article-title: Reliable real-time solution of parametrized partial differential equations: reduced-basis output bound methods
  publication-title: J. Fluid Eng.
  doi: 10.1115/1.1448332
– year: 2021
  ident: 10.1016/j.rineng.2021.100316_bib2
  article-title: Implementation of hybrid neuro-fuzzy and self-turning predictive model for the prediction of concrete carbonation depth: a soft computing technique
  publication-title: Results in Engineering
  doi: 10.1016/j.rineng.2021.100228
– year: 2011
  ident: 10.1016/j.rineng.2021.100316_bib98
– year: 2020
  ident: 10.1016/j.rineng.2021.100316_bib146
  article-title: Predicting AC optimal power flows: combining deep learning and Lagrangian dual methods
– year: 2018
  ident: 10.1016/j.rineng.2021.100316_bib103
  article-title: Optimal approximation of continuous functions by very deep ReLU networks
– volume: 12
  start-page: 273
  issue: 4
  year: 2000
  ident: 10.1016/j.rineng.2021.100316_bib37
  article-title: High dimensional polynomial interpolation on sparse grids
  publication-title: Adv. Comput. Math.
  doi: 10.1023/A:1018977404843
– year: 2020
  ident: 10.1016/j.rineng.2021.100316_bib132
– volume: 28
  start-page: 459
  issue: 2
  year: 2006
  ident: 10.1016/j.rineng.2021.100316_bib30
  article-title: Centroidal Voronoi tessellation-based reduced-order modeling of complex systems
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/5106482750342221x
– year: 2021
  ident: 10.1016/j.rineng.2021.100316_bib5
– volume: 403
  year: 2020
  ident: 10.1016/j.rineng.2021.100316_bib127
  article-title: Modeling the dynamics of PDE systems with physics-constrained deep auto-regressive networks
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.109056
– volume: 641
  start-page: 115
  year: 2009
  ident: 10.1016/j.rineng.2021.100316_bib65
  article-title: Spectral analysis of nonlinear flows
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112009992059
– year: 2021
  ident: 10.1016/j.rineng.2021.100316_bib10
  article-title: Monitoring marine environments with autonomous underwater vehicles: a bibliometric analysis
  publication-title: Results in Engineering
  doi: 10.1016/j.rineng.2021.100205
– volume: 187
  start-page: 115883
  year: 2019
  ident: 10.1016/j.rineng.2021.100316_bib152
  article-title: Physics-induced graph neural network: an application to wind-farm power estimation
  publication-title: Energy
  doi: 10.1016/j.energy.2019.115883
– volume: 153
  start-page: 34
  issue: 3731
  year: 1966
  ident: 10.1016/j.rineng.2021.100316_bib40
  article-title: Dynamic programming
  publication-title: Science
  doi: 10.1126/science.153.3731.34
– year: 2018
  ident: 10.1016/j.rineng.2021.100316_bib149
  article-title: HybridNet: integrating model-based and data-driven learning to predict evolution of dynamical systems
– volume: 7
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.rineng.2021.100316_bib145
  article-title: Model order reduction assisted by deep neural networks (ROM-net)
  publication-title: Advanced Modeling and Simulation in Engineering Sciences
  doi: 10.1186/s40323-020-00153-6
– volume: 408
  start-page: 109275
  year: 2020
  ident: 10.1016/j.rineng.2021.100316_bib93
  article-title: Machine Learning design of Volume of Fluid schemes for compressible flows
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.109275
– volume: 394
  start-page: 56
  year: 2019
  ident: 10.1016/j.rineng.2021.100316_bib113
  article-title: Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.05.024
– year: 2021
  ident: 10.1016/j.rineng.2021.100316_bib80
– volume: 46
  start-page: 1
  issue: 2
  year: 2021
  ident: 10.1016/j.rineng.2021.100316_bib131
  article-title: A hybrid physics-assisted machine-learning-based damage detection using Lamb wave
  publication-title: Sādhanā
  doi: 10.1007/s12046-021-01582-8
– volume: 847
  start-page: 821
  year: 2018
  ident: 10.1016/j.rineng.2021.100316_bib75
  article-title: Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2018.283
– volume: 401
  start-page: 109020
  year: 2020
  ident: 10.1016/j.rineng.2021.100316_bib150
  article-title: A composite neural network that learns from multi-fidelity data: application to function approximation and inverse PDE problems
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.109020
– start-page: 808
  year: 2000
  ident: 10.1016/j.rineng.2021.100316_bib26
  article-title: An introduction to the proper orthogonal decomposition
  publication-title: Curr. Sci.
– volume: 207
  start-page: 192
  issue: 1
  year: 2005
  ident: 10.1016/j.rineng.2021.100316_bib33
  article-title: Calibrated reduced-order POD-Galerkin system for fluid flow modelling
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2005.01.008
– year: 2021
  ident: 10.1016/j.rineng.2021.100316_bib100
– volume: 765
  start-page: 325
  year: 2015
  ident: 10.1016/j.rineng.2021.100316_bib72
  article-title: On long-term boundedness of Galerkin models
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2014.736
– volume: 7
  start-page: eabf5006
  issue: 25
  year: 2021
  ident: 10.1016/j.rineng.2021.100316_bib79
  article-title: Cluster-based network modeling—from snapshots to complex dynamical systems
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abf5006
– volume: 24
  issue: 7
  year: 2019
  ident: 10.1016/j.rineng.2021.100316_bib130
  article-title: Finite element–based machine-learning approach to detect damage in bridges under operational and environmental variations
  publication-title: J. Bridge Eng.
  doi: 10.1061/(ASCE)BE.1943-5592.0001432
– volume: 119
  year: 2020
  ident: 10.1016/j.rineng.2021.100316_bib134
  article-title: Machine learning assisted evaluations in structural design and construction
  publication-title: Autom. ConStruct.
  doi: 10.1016/j.autcon.2020.103346
– volume: 11
  start-page: 4276
  issue: 9
  year: 2021
  ident: 10.1016/j.rineng.2021.100316_bib117
  article-title: An adapted model of cognitive digital twins for building lifecycle management
  publication-title: Appl. Sci.
  doi: 10.3390/app11094276
– volume: 67
  start-page: 619
  issue: 2
  year: 2021
  ident: 10.1016/j.rineng.2021.100316_bib138
  article-title: Machine learning for metal additive manufacturing: predicting temperature and melt pool fluid dynamics using physics-informed neural networks
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-020-01952-9
– volume: 41
  start-page: 309
  issue: 1
  year: 2005
  ident: 10.1016/j.rineng.2021.100316_bib60
  article-title: Spectral properties of dynamical systems, model reduction and decompositions
  publication-title: Nonlinear Dynam.
  doi: 10.1007/s11071-005-2824-x
– volume: 870
  start-page: 988
  year: 2019
  ident: 10.1016/j.rineng.2021.100316_bib78
  article-title: Multi-scale proper orthogonal decomposition of complex fluid flows
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2019.212
– year: 2021
  ident: 10.1016/j.rineng.2021.100316_bib81
– year: 2021
  ident: 10.1016/j.rineng.2021.100316_bib4
  article-title: Deep learning applications to classify cross-topic natural language texts based on their argumentative form
– start-page: 215
  year: 2014
  ident: 10.1016/j.rineng.2021.100316_bib35
  article-title: On the stability of reduced-order linearized computational fluid dynamics models based on POD and Galerkin projection: descriptor vs non-descriptor forms
– volume: 45
  start-page: 561
  issue: 3
  year: 1987
  ident: 10.1016/j.rineng.2021.100316_bib50
  article-title: Turbulence and the dynamics of coherent structures. I. Coherent structures
  publication-title: Q. Appl. Math.
  doi: 10.1090/qam/910462
– volume: 370
  start-page: 113250
  year: 2020
  ident: 10.1016/j.rineng.2021.100316_bib151
  article-title: PPINN: parareal physics-informed neural network for time-dependent PDEs
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.113250
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.rineng.2021.100316_bib156
  article-title: A framework for modeling flood depth using a hybrid of hydraulics and machine learning
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-65232-5
– volume: 2012
  start-page: 1
  year: 2012
  ident: 10.1016/j.rineng.2021.100316_bib42
  article-title: Support-vector-machine-based reduced-order model for limit cycle oscillation prediction of nonlinear aeroelastic system
  publication-title: Math. Probl Eng.
  doi: 10.1155/2012/152123
– year: 2005
  ident: 10.1016/j.rineng.2021.100316_bib41
  article-title: The curse of dimensionality in data mining and time series prediction
– volume: 275
  start-page: 257
  year: 1994
  ident: 10.1016/j.rineng.2021.100316_bib52
  article-title: Dynamics of three-dimensional coherent structures in a flat-plate boundary layer
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112094002351
– volume: 46
  start-page: 1803
  issue: 7
  year: 2008
  ident: 10.1016/j.rineng.2021.100316_bib63
  article-title: Interpolation method for adapting reduced-order models and application to aeroelasticity
  publication-title: AIAA J.
  doi: 10.2514/1.35374
– volume: 656
  start-page: 5
  year: 2010
  ident: 10.1016/j.rineng.2021.100316_bib66
  article-title: Dynamic mode decomposition of numerical and experimental data
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112010001217
– year: 2020
  ident: 10.1016/j.rineng.2021.100316_bib102
– year: 2019
  ident: 10.1016/j.rineng.2021.100316_bib106
– volume: 6
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.rineng.2021.100316_bib112
  article-title: The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems
  publication-title: Communications in Mathematics and Statistics
  doi: 10.1007/s40304-018-0127-z
– volume: vol. 113
  start-page: 3932
  year: 2016
  ident: 10.1016/j.rineng.2021.100316_bib89
  article-title: Discovering governing equations from data by sparse identification of nonlinear dynamical systems
– volume: 123
  start-page: 264
  year: 2019
  ident: 10.1016/j.rineng.2021.100316_bib24
  article-title: Review for order reduction based on proper orthogonal decomposition and outlooks of applications in mechanical systems
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2019.01.018
– year: 2020
  ident: 10.1016/j.rineng.2021.100316_bib3
  article-title: The development of a mining method selection model through a detailed assessment of multi-criteria decision methods
  publication-title: Results in Engineering
  doi: 10.1016/j.rineng.2020.100172
– year: 2021
  ident: 10.1016/j.rineng.2021.100316_bib13
  article-title: Comparison of sewer conditions ratings with repair recommendation reports
– year: 2021
  ident: 10.1016/j.rineng.2021.100316_bib6
– volume: 9
  start-page: 987
  issue: 5
  year: 1998
  ident: 10.1016/j.rineng.2021.100316_bib110
  article-title: Artificial neural networks for solving ordinary and partial differential equations
  publication-title: IEEE Trans. Neural Network.
  doi: 10.1109/72.712178
SSID ssj0002810137
Score 2.5748053
Snippet The recent development of machine learning (ML) and Deep Learning (DL) increases the opportunities in all the sectors. ML is a significant tool that can be...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 100316
SubjectTerms Civil engineering
Deep neural network
Machine learning
Physics-based machine learning
Title A review of physics-based machine learning in civil engineering
URI https://dx.doi.org/10.1016/j.rineng.2021.100316
https://doaj.org/article/6de9aa8ce1bd4f4e8a2a0da1988950cf
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIpygveWCNSOIkTSZUUKsKqUxU6mb5ca5SlRRBYeS3cxcnJRNdWKIocuzofPL32bn7jrFblYGJLUCAKx8EiYvxrjA6iGKbW2LcRtPRwOQ5G0-Tp1k665T6opgwLw_sDXeXWSiUyg1E2iYugVzFKrQK98p5kYbG0eqLmNfZTC3qI6OoEcxEek_hByJs8-bq4C7KrKvmuD2MI4oTEFTuvINLtXx_B546kDM6ZAcNV-QD_41HbAeqY7bfURA8YfcD7pNP-Mpxf0rxERAyWf5ah0kCb-pCzHlZcVN-lUsOvz2csulo-PI4DpqaCIFJonwdFKlxAkFdaCAZGQtxrnViCguhSrUtNAgQViHQW8icsyB0hLZHWmUyneKO9IztVqsKzhmPCJsj009SgbNiUy2Mo78wmbX9AllRj4nWItI0guFUt2Ip28iwhfR2lGRH6e3YY8HmrTcvmLGl_QMZe9OW5K7rB-gEsnECuc0JeqzfTpVsmINnBNhV-efwF_8x_CXbiykrog5Nu2K76_dPuEaustY3tVvidfI9_AFVAOhQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+of+physics-based+machine+learning+in+civil+engineering&rft.jtitle=Results+in+engineering&rft.au=Shashank+Reddy+Vadyala&rft.au=Sai+Nethra+Betgeri&rft.au=John+C.+Matthews&rft.au=Elizabeth+Matthews&rft.date=2022-03-01&rft.pub=Elsevier&rft.issn=2590-1230&rft.eissn=2590-1230&rft.volume=13&rft.spage=100316&rft_id=info:doi/10.1016%2Fj.rineng.2021.100316&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6de9aa8ce1bd4f4e8a2a0da1988950cf
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-1230&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-1230&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-1230&client=summon