Human brain networks in cognitive decline: a graph theoretical analysis of cortical connectivity from EEG data

The aim of this study was to investigate the neuronal network characteristics in physiological and pathological brain aging. A database of 378 participants divided in three groups was analyzed: Alzheimer's disease (AD), mild cognitive impairment (MCI), and normal elderly (Nold) subjects. Throug...

Full description

Saved in:
Bibliographic Details
Published inJournal of Alzheimer's disease Vol. 41; no. 1; p. 113
Main Authors Vecchio, Fabrizio, Miraglia, Francesca, Marra, Camillo, Quaranta, Davide, Vita, Maria Gabriella, Bramanti, Placido, Rossini, Paolo Maria
Format Journal Article
LanguageEnglish
Published Netherlands 01.01.2014
Subjects
Online AccessGet more information

Cover

Loading…
Abstract The aim of this study was to investigate the neuronal network characteristics in physiological and pathological brain aging. A database of 378 participants divided in three groups was analyzed: Alzheimer's disease (AD), mild cognitive impairment (MCI), and normal elderly (Nold) subjects. Through EEG recordings, cortical sources were evaluated by sLORETA software, while graph theory parameters (Characteristic Path Length λ, Clustering coefficient γ, and small-world network σ) were computed to the undirected and weighted networks, obtained by the lagged linear coherence evaluated by eLORETA software. EEG cortical sources from spectral analysis showed significant differences in delta, theta, and alpha 1 bands. Furthermore, the analysis of eLORETA cortical connectivity suggested that for the normalized Characteristic Path Length (λ) the pattern differences between normal cognition and dementia were observed in the theta band (MCI subjects are find similar to healthy subjects), while for the normalized Clustering coefficient (γ) a significant increment was found for AD group in delta, theta, and alpha 1 bands; finally, the small world (σ) parameter presented a significant interaction between AD and MCI groups showing a theta increase in MCI. The fact that AD patients respect the MCI subjects were significantly impaired in theta but not in alpha bands connectivity are in line with the hypothesis of an intermediate status of MCI between normal condition and overt dementia.
AbstractList The aim of this study was to investigate the neuronal network characteristics in physiological and pathological brain aging. A database of 378 participants divided in three groups was analyzed: Alzheimer's disease (AD), mild cognitive impairment (MCI), and normal elderly (Nold) subjects. Through EEG recordings, cortical sources were evaluated by sLORETA software, while graph theory parameters (Characteristic Path Length λ, Clustering coefficient γ, and small-world network σ) were computed to the undirected and weighted networks, obtained by the lagged linear coherence evaluated by eLORETA software. EEG cortical sources from spectral analysis showed significant differences in delta, theta, and alpha 1 bands. Furthermore, the analysis of eLORETA cortical connectivity suggested that for the normalized Characteristic Path Length (λ) the pattern differences between normal cognition and dementia were observed in the theta band (MCI subjects are find similar to healthy subjects), while for the normalized Clustering coefficient (γ) a significant increment was found for AD group in delta, theta, and alpha 1 bands; finally, the small world (σ) parameter presented a significant interaction between AD and MCI groups showing a theta increase in MCI. The fact that AD patients respect the MCI subjects were significantly impaired in theta but not in alpha bands connectivity are in line with the hypothesis of an intermediate status of MCI between normal condition and overt dementia.
Author Vita, Maria Gabriella
Marra, Camillo
Rossini, Paolo Maria
Miraglia, Francesca
Vecchio, Fabrizio
Quaranta, Davide
Bramanti, Placido
Author_xml – sequence: 1
  givenname: Fabrizio
  surname: Vecchio
  fullname: Vecchio, Fabrizio
  organization: Brain Connectivity Laboratory, IRCCS San Raffaele Pisana, Rome, Italy
– sequence: 2
  givenname: Francesca
  surname: Miraglia
  fullname: Miraglia, Francesca
  organization: Brain Connectivity Laboratory, IRCCS San Raffaele Pisana, Rome, Italy
– sequence: 3
  givenname: Camillo
  surname: Marra
  fullname: Marra, Camillo
  organization: Institute of Neurology, Catholic University, Rome, Italy Center for Neuropsychological Research, Catholic University, Rome, Italy
– sequence: 4
  givenname: Davide
  surname: Quaranta
  fullname: Quaranta, Davide
  organization: Institute of Neurology, Catholic University, Rome, Italy Center for Neuropsychological Research, Catholic University, Rome, Italy
– sequence: 5
  givenname: Maria Gabriella
  surname: Vita
  fullname: Vita, Maria Gabriella
  organization: Institute of Neurology, Catholic University, Rome, Italy
– sequence: 6
  givenname: Placido
  surname: Bramanti
  fullname: Bramanti, Placido
  organization: IRCCS Centro Neurolesi Bonino-Pulejo, Messina, Italy
– sequence: 7
  givenname: Paolo Maria
  surname: Rossini
  fullname: Rossini, Paolo Maria
  organization: Brain Connectivity Laboratory, IRCCS San Raffaele Pisana, Rome, Italy Institute of Neurology, Catholic University, Rome, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24577480$$D View this record in MEDLINE/PubMed
BookMark eNo1j8FKAzEYhIMo1lYvPoDkBVazyW6TeCu1tkrBi57Ln-TfNrqblGyq9O1dqJ5mGOYbmDE5DzEgIbcluxdciIfX2VNRCs6UPCNXpZJ1oTRTIzLu-0_GmGBaXpIRr2opK8WuSFgdOgjUJPCBBsw_MX31dPA2boPP_hupQ9v6gI8U6DbBfkfzDmPC7C20FAK0x973NDYDkk6hjSGgHWCfj7RJsaOLxZI6yHBNLhpoe7z50wn5eF68z1fF-m35Mp-tC1uVKhe6lmAkg0agQzV1trHgQFRTUYsSha2sAM0Nq53AiltthhKCZkZrrayp-YTcnXb3B9Oh2-yT7yAdN__H-S9421u9
CitedBy_id crossref_primary_10_1117_1_NPh_12_1_015011
crossref_primary_10_1371_journal_pone_0264058
crossref_primary_10_1088_1741_2552_aaaa76
crossref_primary_10_1016_j_clinph_2019_05_027
crossref_primary_10_1111_exsy_13016
crossref_primary_10_3389_fncom_2021_698386
crossref_primary_10_1016_j_neuroimage_2016_01_051
crossref_primary_10_1016_j_clinph_2020_03_031
crossref_primary_10_3390_e21070661
crossref_primary_10_3389_fnins_2022_898902
crossref_primary_10_3390_fi17030102
crossref_primary_10_1089_brain_2020_0824
crossref_primary_10_3389_fncom_2015_00133
crossref_primary_10_1007_s12559_020_09783_9
crossref_primary_10_1016_j_clinph_2015_07_040
crossref_primary_10_3390_ijms20246193
crossref_primary_10_3389_fnins_2021_628880
crossref_primary_10_1016_j_nicl_2021_102711
crossref_primary_10_3233_JAD_201455
crossref_primary_10_3233_JAD_160482
crossref_primary_10_3390_brainsci10060392
crossref_primary_10_3390_brainsci12111575
crossref_primary_10_1016_j_clinph_2019_03_017
crossref_primary_10_3390_electronics10121440
crossref_primary_10_3389_fpsyt_2023_1231861
crossref_primary_10_3390_brainsci12121680
crossref_primary_10_3390_bioengineering9020062
crossref_primary_10_1007_s11357_024_01473_w
crossref_primary_10_1002_hbm_22664
crossref_primary_10_1109_MSMC_2017_2778458
crossref_primary_10_1016_j_clinph_2019_06_006
crossref_primary_10_3233_JAD_210394
crossref_primary_10_1007_s11517_019_02004_y
crossref_primary_10_1016_j_clinph_2025_02_256
crossref_primary_10_1080_24725579_2021_1933268
crossref_primary_10_1016_j_brainresbull_2024_110992
crossref_primary_10_1177_1545968316662525
crossref_primary_10_1002_brb3_1734
crossref_primary_10_1016_j_nicl_2018_101622
crossref_primary_10_3390_medicina60030369
crossref_primary_10_1016_j_clinph_2014_09_019
crossref_primary_10_1016_j_neurobiolaging_2017_05_017
crossref_primary_10_3390_jcm8091470
crossref_primary_10_1159_000486870
crossref_primary_10_3390_jpm10020034
crossref_primary_10_1016_j_neuroscience_2015_12_036
crossref_primary_10_1161_STROKEAHA_122_040747
crossref_primary_10_1109_TNSRE_2022_3150834
crossref_primary_10_14336_AD_2022_0514
crossref_primary_10_3233_JAD_160305
crossref_primary_10_3233_JAD_190670
crossref_primary_10_1016_j_neuroimage_2023_120024
crossref_primary_10_3233_JAD_179932
crossref_primary_10_1109_JBHI_2019_2953475
crossref_primary_10_3389_fnagi_2017_00290
crossref_primary_10_3389_fpsyt_2023_1272120
crossref_primary_10_1016_j_clinph_2016_07_006
crossref_primary_10_1186_s12868_016_0324_1
crossref_primary_10_1016_j_bspc_2021_102499
crossref_primary_10_1556_2006_2020_00020
crossref_primary_10_3389_fnagi_2018_00316
crossref_primary_10_1016_j_ijpsycho_2019_09_012
crossref_primary_10_1142_S0129065720500045
crossref_primary_10_1002_dad2_12526
crossref_primary_10_18632_aging_204044
crossref_primary_10_1007_s11682_016_9528_3
crossref_primary_10_1016_j_neuri_2024_100172
crossref_primary_10_1016_j_clinph_2016_10_090
crossref_primary_10_1016_j_clinph_2015_09_002
crossref_primary_10_1088_1361_6579_aa6b4c
crossref_primary_10_3389_fnagi_2024_1486481
crossref_primary_10_3389_fneur_2022_851897
crossref_primary_10_1007_s11357_021_00508_w
crossref_primary_10_1080_19585969_2022_2043128
crossref_primary_10_1038_nrn3801
crossref_primary_10_3389_fnagi_2019_00310
crossref_primary_10_1016_j_neuroscience_2015_09_028
crossref_primary_10_1155_2018_5174815
crossref_primary_10_1016_j_neubiorev_2014_12_014
crossref_primary_10_1002_ana_25289
crossref_primary_10_1007_s00429_015_1118_4
crossref_primary_10_1007_s00221_018_5200_z
crossref_primary_10_1016_j_neubiorev_2018_09_004
crossref_primary_10_3233_JAD_200962
crossref_primary_10_1177_1545968316656055
crossref_primary_10_3389_fnhum_2017_00282
crossref_primary_10_1088_1741_2552_aa6401
crossref_primary_10_3233_JAD_180342
crossref_primary_10_1109_ACCESS_2020_2979855
crossref_primary_10_3389_fnagi_2017_00304
crossref_primary_10_1016_j_nicl_2019_101809
crossref_primary_10_1177_1550059414529765
crossref_primary_10_1007_s11060_019_03327_4
crossref_primary_10_1038_s41598_022_08685_0
crossref_primary_10_3233_JAD_210350
crossref_primary_10_31083_j_jin2305099
crossref_primary_10_3390_bs11030040
crossref_primary_10_3389_fnins_2024_1423389
crossref_primary_10_3233_JAD_200171
crossref_primary_10_1111_ane_13490
crossref_primary_10_1515_revneuro_2022_0010
crossref_primary_10_1016_j_ijpsycho_2022_08_005
crossref_primary_10_1016_j_bbr_2016_09_057
crossref_primary_10_1007_s11357_020_00176_2
crossref_primary_10_1093_brain_awx050
crossref_primary_10_1007_s11357_023_01022_x
crossref_primary_10_3389_fnbeh_2017_00107
crossref_primary_10_3390_brainsci12030402
crossref_primary_10_1093_ageing_afae121
crossref_primary_10_1016_j_clinph_2020_03_003
crossref_primary_10_1109_TNSRE_2019_2956464
crossref_primary_10_1051_e3sconf_202339601011
crossref_primary_10_1111_ene_13109
crossref_primary_10_3390_brainsci8070134
crossref_primary_10_7554_eLife_09148
crossref_primary_10_1016_j_cnp_2017_09_003
crossref_primary_10_3389_fneur_2016_00161
crossref_primary_10_1186_s13195_014_0086_x
crossref_primary_10_1088_1741_2552_ab79f5
crossref_primary_10_1097_YCT_0000000000000557
crossref_primary_10_3389_fnhum_2020_00048
crossref_primary_10_1016_j_physa_2018_09_043
crossref_primary_10_1111_apha_13979
crossref_primary_10_1002_hbm_23736
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.3233/JAD-132087
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
EISSN 1875-8908
ExternalDocumentID 24577480
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
0VX
29J
36B
4.4
53G
5GY
AAEJI
AAFNC
AAFWJ
AAGLT
AAPII
AAQXI
AAWTL
ABDBF
ABIVO
ABJNI
ABJZC
ABUBZ
ABUJY
ACGFS
ACPQW
ACPRK
ACUHS
ADEBD
ADZMO
AEJQA
AELRD
AENEX
AFRAH
AFRHK
AFYTF
AGIAB
AHDMH
AIRSE
AJGYC
AJNRN
ALIRC
ALMA_UNASSIGNED_HOLDINGS
APPIZ
ARTOV
CAG
CGR
COF
CUY
CVF
DU5
EAD
EAP
EBS
ECM
EIF
EJD
EMB
EMK
EMOBN
ESX
F5P
H13
HZ~
IL9
IOS
J8X
MET
MIO
MV1
NGNOM
NPM
O9-
P2P
Q1R
SAUOL
SCNPE
SFC
SV3
TUS
VUG
ID FETCH-LOGICAL-c418t-957ab70af3ede86dcfcada3463531e3c4c3a92b05d3e42c9be86ea90b9998cb52
IngestDate Mon Jul 21 06:04:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords delta and alpha bands
functional connectivity
graph theory
EEG
sLORETA/eLORETA
mild cognitive impairment
Alzheimer's disease
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c418t-957ab70af3ede86dcfcada3463531e3c4c3a92b05d3e42c9be86ea90b9998cb52
PMID 24577480
ParticipantIDs pubmed_primary_24577480
PublicationCentury 2000
PublicationDate 2014-01-01
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: 2014-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of Alzheimer's disease
PublicationTitleAlternate J Alzheimers Dis
PublicationYear 2014
SSID ssj0003097
Score 2.4578514
Snippet The aim of this study was to investigate the neuronal network characteristics in physiological and pathological brain aging. A database of 378 participants...
SourceID pubmed
SourceType Index Database
StartPage 113
SubjectTerms Aged
Alpha Rhythm - physiology
Alzheimer Disease - physiopathology
Brain - physiopathology
Brain Mapping - methods
Cerebral Cortex - physiopathology
Cognitive Dysfunction - physiopathology
Delta Rhythm - physiology
Electroencephalography - methods
Female
Humans
Male
Neural Pathways - physiopathology
Signal Processing, Computer-Assisted
Software
Theta Rhythm - physiology
Title Human brain networks in cognitive decline: a graph theoretical analysis of cortical connectivity from EEG data
URI https://www.ncbi.nlm.nih.gov/pubmed/24577480
Volume 41
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEN5UvXgxGt-v7MFbgwK7lMWb0VZjoic13szsA22iaGq99N_4T5190GKjRr0QwpaG8H0MM8N8M4TsARdSgOZRmeHjZkkSSaEhEpprZQRAnli988Vl5-yan99mt63We6Nq6W0o99XoS13Jf1DFY4irVcn-Adnxn-IB3Ed8cYsI4_ZXGPsMvLRTHtqVr-d25a2TmiBtlGsl6iTNrjn1J-kiNFqSYBg6DO1C0PaqMFXCyU-63dN2ELF96ck-jh5M341hyV-nP_ncIHoPfZeQ7YEc9Ee-8MvrEAdwH6p13YAP8zopHLqAgRuB1D62KZjH8Um2ChXZAOOCfNNMXCS8kbgw3thirBSJIhZNa-zbYH1inTetidesTpt8ltqUdO_86CSyanD_9m5g__LkwE95ho6uHxr18-pU--16aYbMYCBiJ6vadFB41bO4yH3PW3sZB5OLsD2mw4lT8YrzW64WyUKAiR559iyRlqmWSeWYQx1zaM0civtj5tDAnEMK1PGGNnhDa97Q55LWvKFN3lDLG4q8oZY3K-S61706PovC5I1I8UQMoyLLQeYxlMxoIzpalQo0MI7eKUsMU1wxKFIZZ5oZnqpC4o8MFLHEcEMomaWrZLZ6rsw6oeiOqrwwGn0gzWOjgHc005xLqTR6x-UGWfO35-7Ft1e5q2_c5rcrW2R-QqhtMlfi82x20Dkcyl0H0AcfUmqb
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+brain+networks+in+cognitive+decline%3A+a+graph+theoretical+analysis+of+cortical+connectivity+from+EEG+data&rft.jtitle=Journal+of+Alzheimer%27s+disease&rft.au=Vecchio%2C+Fabrizio&rft.au=Miraglia%2C+Francesca&rft.au=Marra%2C+Camillo&rft.au=Quaranta%2C+Davide&rft.date=2014-01-01&rft.eissn=1875-8908&rft.volume=41&rft.issue=1&rft.spage=113&rft_id=info:doi/10.3233%2FJAD-132087&rft_id=info%3Apmid%2F24577480&rft_id=info%3Apmid%2F24577480&rft.externalDocID=24577480