Human brain networks in cognitive decline: a graph theoretical analysis of cortical connectivity from EEG data
The aim of this study was to investigate the neuronal network characteristics in physiological and pathological brain aging. A database of 378 participants divided in three groups was analyzed: Alzheimer's disease (AD), mild cognitive impairment (MCI), and normal elderly (Nold) subjects. Throug...
Saved in:
Published in | Journal of Alzheimer's disease Vol. 41; no. 1; p. 113 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
01.01.2014
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | The aim of this study was to investigate the neuronal network characteristics in physiological and pathological brain aging. A database of 378 participants divided in three groups was analyzed: Alzheimer's disease (AD), mild cognitive impairment (MCI), and normal elderly (Nold) subjects. Through EEG recordings, cortical sources were evaluated by sLORETA software, while graph theory parameters (Characteristic Path Length λ, Clustering coefficient γ, and small-world network σ) were computed to the undirected and weighted networks, obtained by the lagged linear coherence evaluated by eLORETA software. EEG cortical sources from spectral analysis showed significant differences in delta, theta, and alpha 1 bands. Furthermore, the analysis of eLORETA cortical connectivity suggested that for the normalized Characteristic Path Length (λ) the pattern differences between normal cognition and dementia were observed in the theta band (MCI subjects are find similar to healthy subjects), while for the normalized Clustering coefficient (γ) a significant increment was found for AD group in delta, theta, and alpha 1 bands; finally, the small world (σ) parameter presented a significant interaction between AD and MCI groups showing a theta increase in MCI. The fact that AD patients respect the MCI subjects were significantly impaired in theta but not in alpha bands connectivity are in line with the hypothesis of an intermediate status of MCI between normal condition and overt dementia. |
---|---|
AbstractList | The aim of this study was to investigate the neuronal network characteristics in physiological and pathological brain aging. A database of 378 participants divided in three groups was analyzed: Alzheimer's disease (AD), mild cognitive impairment (MCI), and normal elderly (Nold) subjects. Through EEG recordings, cortical sources were evaluated by sLORETA software, while graph theory parameters (Characteristic Path Length λ, Clustering coefficient γ, and small-world network σ) were computed to the undirected and weighted networks, obtained by the lagged linear coherence evaluated by eLORETA software. EEG cortical sources from spectral analysis showed significant differences in delta, theta, and alpha 1 bands. Furthermore, the analysis of eLORETA cortical connectivity suggested that for the normalized Characteristic Path Length (λ) the pattern differences between normal cognition and dementia were observed in the theta band (MCI subjects are find similar to healthy subjects), while for the normalized Clustering coefficient (γ) a significant increment was found for AD group in delta, theta, and alpha 1 bands; finally, the small world (σ) parameter presented a significant interaction between AD and MCI groups showing a theta increase in MCI. The fact that AD patients respect the MCI subjects were significantly impaired in theta but not in alpha bands connectivity are in line with the hypothesis of an intermediate status of MCI between normal condition and overt dementia. |
Author | Vita, Maria Gabriella Marra, Camillo Rossini, Paolo Maria Miraglia, Francesca Vecchio, Fabrizio Quaranta, Davide Bramanti, Placido |
Author_xml | – sequence: 1 givenname: Fabrizio surname: Vecchio fullname: Vecchio, Fabrizio organization: Brain Connectivity Laboratory, IRCCS San Raffaele Pisana, Rome, Italy – sequence: 2 givenname: Francesca surname: Miraglia fullname: Miraglia, Francesca organization: Brain Connectivity Laboratory, IRCCS San Raffaele Pisana, Rome, Italy – sequence: 3 givenname: Camillo surname: Marra fullname: Marra, Camillo organization: Institute of Neurology, Catholic University, Rome, Italy Center for Neuropsychological Research, Catholic University, Rome, Italy – sequence: 4 givenname: Davide surname: Quaranta fullname: Quaranta, Davide organization: Institute of Neurology, Catholic University, Rome, Italy Center for Neuropsychological Research, Catholic University, Rome, Italy – sequence: 5 givenname: Maria Gabriella surname: Vita fullname: Vita, Maria Gabriella organization: Institute of Neurology, Catholic University, Rome, Italy – sequence: 6 givenname: Placido surname: Bramanti fullname: Bramanti, Placido organization: IRCCS Centro Neurolesi Bonino-Pulejo, Messina, Italy – sequence: 7 givenname: Paolo Maria surname: Rossini fullname: Rossini, Paolo Maria organization: Brain Connectivity Laboratory, IRCCS San Raffaele Pisana, Rome, Italy Institute of Neurology, Catholic University, Rome, Italy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24577480$$D View this record in MEDLINE/PubMed |
BookMark | eNo1j8FKAzEYhIMo1lYvPoDkBVazyW6TeCu1tkrBi57Ln-TfNrqblGyq9O1dqJ5mGOYbmDE5DzEgIbcluxdciIfX2VNRCs6UPCNXpZJ1oTRTIzLu-0_GmGBaXpIRr2opK8WuSFgdOgjUJPCBBsw_MX31dPA2boPP_hupQ9v6gI8U6DbBfkfzDmPC7C20FAK0x973NDYDkk6hjSGgHWCfj7RJsaOLxZI6yHBNLhpoe7z50wn5eF68z1fF-m35Mp-tC1uVKhe6lmAkg0agQzV1trHgQFRTUYsSha2sAM0Nq53AiltthhKCZkZrrayp-YTcnXb3B9Oh2-yT7yAdN__H-S9421u9 |
CitedBy_id | crossref_primary_10_1117_1_NPh_12_1_015011 crossref_primary_10_1371_journal_pone_0264058 crossref_primary_10_1088_1741_2552_aaaa76 crossref_primary_10_1016_j_clinph_2019_05_027 crossref_primary_10_1111_exsy_13016 crossref_primary_10_3389_fncom_2021_698386 crossref_primary_10_1016_j_neuroimage_2016_01_051 crossref_primary_10_1016_j_clinph_2020_03_031 crossref_primary_10_3390_e21070661 crossref_primary_10_3389_fnins_2022_898902 crossref_primary_10_3390_fi17030102 crossref_primary_10_1089_brain_2020_0824 crossref_primary_10_3389_fncom_2015_00133 crossref_primary_10_1007_s12559_020_09783_9 crossref_primary_10_1016_j_clinph_2015_07_040 crossref_primary_10_3390_ijms20246193 crossref_primary_10_3389_fnins_2021_628880 crossref_primary_10_1016_j_nicl_2021_102711 crossref_primary_10_3233_JAD_201455 crossref_primary_10_3233_JAD_160482 crossref_primary_10_3390_brainsci10060392 crossref_primary_10_3390_brainsci12111575 crossref_primary_10_1016_j_clinph_2019_03_017 crossref_primary_10_3390_electronics10121440 crossref_primary_10_3389_fpsyt_2023_1231861 crossref_primary_10_3390_brainsci12121680 crossref_primary_10_3390_bioengineering9020062 crossref_primary_10_1007_s11357_024_01473_w crossref_primary_10_1002_hbm_22664 crossref_primary_10_1109_MSMC_2017_2778458 crossref_primary_10_1016_j_clinph_2019_06_006 crossref_primary_10_3233_JAD_210394 crossref_primary_10_1007_s11517_019_02004_y crossref_primary_10_1016_j_clinph_2025_02_256 crossref_primary_10_1080_24725579_2021_1933268 crossref_primary_10_1016_j_brainresbull_2024_110992 crossref_primary_10_1177_1545968316662525 crossref_primary_10_1002_brb3_1734 crossref_primary_10_1016_j_nicl_2018_101622 crossref_primary_10_3390_medicina60030369 crossref_primary_10_1016_j_clinph_2014_09_019 crossref_primary_10_1016_j_neurobiolaging_2017_05_017 crossref_primary_10_3390_jcm8091470 crossref_primary_10_1159_000486870 crossref_primary_10_3390_jpm10020034 crossref_primary_10_1016_j_neuroscience_2015_12_036 crossref_primary_10_1161_STROKEAHA_122_040747 crossref_primary_10_1109_TNSRE_2022_3150834 crossref_primary_10_14336_AD_2022_0514 crossref_primary_10_3233_JAD_160305 crossref_primary_10_3233_JAD_190670 crossref_primary_10_1016_j_neuroimage_2023_120024 crossref_primary_10_3233_JAD_179932 crossref_primary_10_1109_JBHI_2019_2953475 crossref_primary_10_3389_fnagi_2017_00290 crossref_primary_10_3389_fpsyt_2023_1272120 crossref_primary_10_1016_j_clinph_2016_07_006 crossref_primary_10_1186_s12868_016_0324_1 crossref_primary_10_1016_j_bspc_2021_102499 crossref_primary_10_1556_2006_2020_00020 crossref_primary_10_3389_fnagi_2018_00316 crossref_primary_10_1016_j_ijpsycho_2019_09_012 crossref_primary_10_1142_S0129065720500045 crossref_primary_10_1002_dad2_12526 crossref_primary_10_18632_aging_204044 crossref_primary_10_1007_s11682_016_9528_3 crossref_primary_10_1016_j_neuri_2024_100172 crossref_primary_10_1016_j_clinph_2016_10_090 crossref_primary_10_1016_j_clinph_2015_09_002 crossref_primary_10_1088_1361_6579_aa6b4c crossref_primary_10_3389_fnagi_2024_1486481 crossref_primary_10_3389_fneur_2022_851897 crossref_primary_10_1007_s11357_021_00508_w crossref_primary_10_1080_19585969_2022_2043128 crossref_primary_10_1038_nrn3801 crossref_primary_10_3389_fnagi_2019_00310 crossref_primary_10_1016_j_neuroscience_2015_09_028 crossref_primary_10_1155_2018_5174815 crossref_primary_10_1016_j_neubiorev_2014_12_014 crossref_primary_10_1002_ana_25289 crossref_primary_10_1007_s00429_015_1118_4 crossref_primary_10_1007_s00221_018_5200_z crossref_primary_10_1016_j_neubiorev_2018_09_004 crossref_primary_10_3233_JAD_200962 crossref_primary_10_1177_1545968316656055 crossref_primary_10_3389_fnhum_2017_00282 crossref_primary_10_1088_1741_2552_aa6401 crossref_primary_10_3233_JAD_180342 crossref_primary_10_1109_ACCESS_2020_2979855 crossref_primary_10_3389_fnagi_2017_00304 crossref_primary_10_1016_j_nicl_2019_101809 crossref_primary_10_1177_1550059414529765 crossref_primary_10_1007_s11060_019_03327_4 crossref_primary_10_1038_s41598_022_08685_0 crossref_primary_10_3233_JAD_210350 crossref_primary_10_31083_j_jin2305099 crossref_primary_10_3390_bs11030040 crossref_primary_10_3389_fnins_2024_1423389 crossref_primary_10_3233_JAD_200171 crossref_primary_10_1111_ane_13490 crossref_primary_10_1515_revneuro_2022_0010 crossref_primary_10_1016_j_ijpsycho_2022_08_005 crossref_primary_10_1016_j_bbr_2016_09_057 crossref_primary_10_1007_s11357_020_00176_2 crossref_primary_10_1093_brain_awx050 crossref_primary_10_1007_s11357_023_01022_x crossref_primary_10_3389_fnbeh_2017_00107 crossref_primary_10_3390_brainsci12030402 crossref_primary_10_1093_ageing_afae121 crossref_primary_10_1016_j_clinph_2020_03_003 crossref_primary_10_1109_TNSRE_2019_2956464 crossref_primary_10_1051_e3sconf_202339601011 crossref_primary_10_1111_ene_13109 crossref_primary_10_3390_brainsci8070134 crossref_primary_10_7554_eLife_09148 crossref_primary_10_1016_j_cnp_2017_09_003 crossref_primary_10_3389_fneur_2016_00161 crossref_primary_10_1186_s13195_014_0086_x crossref_primary_10_1088_1741_2552_ab79f5 crossref_primary_10_1097_YCT_0000000000000557 crossref_primary_10_3389_fnhum_2020_00048 crossref_primary_10_1016_j_physa_2018_09_043 crossref_primary_10_1111_apha_13979 crossref_primary_10_1002_hbm_23736 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.3233/JAD-132087 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
EISSN | 1875-8908 |
ExternalDocumentID | 24577480 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 0VX 29J 36B 4.4 53G 5GY AAEJI AAFNC AAFWJ AAGLT AAPII AAQXI AAWTL ABDBF ABIVO ABJNI ABJZC ABUBZ ABUJY ACGFS ACPQW ACPRK ACUHS ADEBD ADZMO AEJQA AELRD AENEX AFRAH AFRHK AFYTF AGIAB AHDMH AIRSE AJGYC AJNRN ALIRC ALMA_UNASSIGNED_HOLDINGS APPIZ ARTOV CAG CGR COF CUY CVF DU5 EAD EAP EBS ECM EIF EJD EMB EMK EMOBN ESX F5P H13 HZ~ IL9 IOS J8X MET MIO MV1 NGNOM NPM O9- P2P Q1R SAUOL SCNPE SFC SV3 TUS VUG |
ID | FETCH-LOGICAL-c418t-957ab70af3ede86dcfcada3463531e3c4c3a92b05d3e42c9be86ea90b9998cb52 |
IngestDate | Mon Jul 21 06:04:23 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | delta and alpha bands functional connectivity graph theory EEG sLORETA/eLORETA mild cognitive impairment Alzheimer's disease |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c418t-957ab70af3ede86dcfcada3463531e3c4c3a92b05d3e42c9be86ea90b9998cb52 |
PMID | 24577480 |
ParticipantIDs | pubmed_primary_24577480 |
PublicationCentury | 2000 |
PublicationDate | 2014-01-01 |
PublicationDateYYYYMMDD | 2014-01-01 |
PublicationDate_xml | – month: 01 year: 2014 text: 2014-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of Alzheimer's disease |
PublicationTitleAlternate | J Alzheimers Dis |
PublicationYear | 2014 |
SSID | ssj0003097 |
Score | 2.4578514 |
Snippet | The aim of this study was to investigate the neuronal network characteristics in physiological and pathological brain aging. A database of 378 participants... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 113 |
SubjectTerms | Aged Alpha Rhythm - physiology Alzheimer Disease - physiopathology Brain - physiopathology Brain Mapping - methods Cerebral Cortex - physiopathology Cognitive Dysfunction - physiopathology Delta Rhythm - physiology Electroencephalography - methods Female Humans Male Neural Pathways - physiopathology Signal Processing, Computer-Assisted Software Theta Rhythm - physiology |
Title | Human brain networks in cognitive decline: a graph theoretical analysis of cortical connectivity from EEG data |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24577480 |
Volume | 41 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEN5UvXgxGt-v7MFbgwK7lMWb0VZjoic13szsA22iaGq99N_4T5190GKjRr0QwpaG8H0MM8N8M4TsARdSgOZRmeHjZkkSSaEhEpprZQRAnli988Vl5-yan99mt63We6Nq6W0o99XoS13Jf1DFY4irVcn-Adnxn-IB3Ed8cYsI4_ZXGPsMvLRTHtqVr-d25a2TmiBtlGsl6iTNrjn1J-kiNFqSYBg6DO1C0PaqMFXCyU-63dN2ELF96ck-jh5M341hyV-nP_ncIHoPfZeQ7YEc9Ee-8MvrEAdwH6p13YAP8zopHLqAgRuB1D62KZjH8Um2ChXZAOOCfNNMXCS8kbgw3thirBSJIhZNa-zbYH1inTetidesTpt8ltqUdO_86CSyanD_9m5g__LkwE95ho6uHxr18-pU--16aYbMYCBiJ6vadFB41bO4yH3PW3sZB5OLsD2mw4lT8YrzW64WyUKAiR559iyRlqmWSeWYQx1zaM0civtj5tDAnEMK1PGGNnhDa97Q55LWvKFN3lDLG4q8oZY3K-S61706PovC5I1I8UQMoyLLQeYxlMxoIzpalQo0MI7eKUsMU1wxKFIZZ5oZnqpC4o8MFLHEcEMomaWrZLZ6rsw6oeiOqrwwGn0gzWOjgHc005xLqTR6x-UGWfO35-7Ft1e5q2_c5rcrW2R-QqhtMlfi82x20Dkcyl0H0AcfUmqb |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+brain+networks+in+cognitive+decline%3A+a+graph+theoretical+analysis+of+cortical+connectivity+from+EEG+data&rft.jtitle=Journal+of+Alzheimer%27s+disease&rft.au=Vecchio%2C+Fabrizio&rft.au=Miraglia%2C+Francesca&rft.au=Marra%2C+Camillo&rft.au=Quaranta%2C+Davide&rft.date=2014-01-01&rft.eissn=1875-8908&rft.volume=41&rft.issue=1&rft.spage=113&rft_id=info:doi/10.3233%2FJAD-132087&rft_id=info%3Apmid%2F24577480&rft_id=info%3Apmid%2F24577480&rft.externalDocID=24577480 |