Revisiting catalytic performance of supported metal dimers for oxygen reduction reaction via magnetic coupling from first principles

In this study, we selected 10 Co-based double-atom catalysts (DACs) catalysts, namely CoMN6-gra(OH) (M ​= ​Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn), and investigated their oxygen reduction reactions (ORR) catalytic performances with/without considering the magnetic coupling by means of density functio...

Full description

Saved in:
Bibliographic Details
Published inAdvanced Powder Materials Vol. 1; no. 3; p. 100031
Main Authors Yu, Linke, Li, Fengyu, Zhao, Jingxiang, Chen, Zhongfang
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2022
KeAi Communications Co. Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this study, we selected 10 Co-based double-atom catalysts (DACs) catalysts, namely CoMN6-gra(OH) (M ​= ​Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn), and investigated their oxygen reduction reactions (ORR) catalytic performances with/without considering the magnetic coupling by means of density functional theory (DFT) calculations. It was found that CoNiN6-gra(OH), CoCuN6-gra(OH), and CoZnN6-gra(OH) exhibit good catalytic activity of ORR (with low overpotentials of 0.33, 0.34 and 0.23 ​V, respectively) when the magnetic coupling is considered. In particular, magnetic changes in CoMN6-gra(OH) candidates play a vital role in their ORR catalytic activity. Interestingly, the d-band center can be utilized to well rationalize the ORR catalytic activity. This work highlights the importance of considering the magnetic coupling to well predict the activity of ORR catalysts, and discloses that the manipulation of the magnetic coupling between transition metal atoms is an emerging and powerful approach for the development of high-performance electrocatalysts for ORR and other related reactions. [Display omitted]
AbstractList In this study, we selected 10 Co-based double-atom catalysts (DACs) catalysts, namely CoMN6-gra(OH) (M ​= ​Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn), and investigated their oxygen reduction reactions (ORR) catalytic performances with/without considering the magnetic coupling by means of density functional theory (DFT) calculations. It was found that CoNiN6-gra(OH), CoCuN6-gra(OH), and CoZnN6-gra(OH) exhibit good catalytic activity of ORR (with low overpotentials of 0.33, 0.34 and 0.23 ​V, respectively) when the magnetic coupling is considered. In particular, magnetic changes in CoMN6-gra(OH) candidates play a vital role in their ORR catalytic activity. Interestingly, the d-band center can be utilized to well rationalize the ORR catalytic activity. This work highlights the importance of considering the magnetic coupling to well predict the activity of ORR catalysts, and discloses that the manipulation of the magnetic coupling between transition metal atoms is an emerging and powerful approach for the development of high-performance electrocatalysts for ORR and other related reactions.
In this study, we selected 10 Co-based double-atom catalysts (DACs) catalysts, namely CoMN6-gra(OH) (M ​= ​Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn), and investigated their oxygen reduction reactions (ORR) catalytic performances with/without considering the magnetic coupling by means of density functional theory (DFT) calculations. It was found that CoNiN6-gra(OH), CoCuN6-gra(OH), and CoZnN6-gra(OH) exhibit good catalytic activity of ORR (with low overpotentials of 0.33, 0.34 and 0.23 ​V, respectively) when the magnetic coupling is considered. In particular, magnetic changes in CoMN6-gra(OH) candidates play a vital role in their ORR catalytic activity. Interestingly, the d-band center can be utilized to well rationalize the ORR catalytic activity. This work highlights the importance of considering the magnetic coupling to well predict the activity of ORR catalysts, and discloses that the manipulation of the magnetic coupling between transition metal atoms is an emerging and powerful approach for the development of high-performance electrocatalysts for ORR and other related reactions. [Display omitted]
ArticleNumber 100031
Author Yu, Linke
Chen, Zhongfang
Li, Fengyu
Zhao, Jingxiang
Author_xml – sequence: 1
  givenname: Linke
  surname: Yu
  fullname: Yu, Linke
  organization: School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China
– sequence: 2
  givenname: Fengyu
  orcidid: 0000-0002-9483-8554
  surname: Li
  fullname: Li, Fengyu
  email: fengyuli@imu.edu.cn
  organization: School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China
– sequence: 3
  givenname: Jingxiang
  orcidid: 0000-0001-6023-8887
  surname: Zhao
  fullname: Zhao, Jingxiang
  email: xjz_hmily@163.com
  organization: College of Chemistry and Chemical Engineering, Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, 150025, China
– sequence: 4
  givenname: Zhongfang
  surname: Chen
  fullname: Chen, Zhongfang
  email: zhongfang.chen1@upr.edu
  organization: Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan, PR, 00931, USA
BookMark eNqFkc-KFDEQxoOs4LruG3jIC0ybf92T9iDIouvCgiAK3kJ1UhkydHeaJDM4dx_ctC0iHvSSfIT6flWp7zm5muOMhLzkrOGMd6-ODSwTFGwEE6JhvGFMPSHXYr8XOy3V16s_9DNym_ORMSZ02-leXpPvn_AccihhPlALBcZLCZYumHxME8wWafQ0n5YlpoKOTlhLqAsTpkxrCY3fLgecaUJ3siXEVcEmzgHoBIcZV6CNp2Vce_gUJ-pDyoUuKcw2LCPmF-SphzHj7a_7hnx5_-7z3Yfd48f7h7u3jzuruC67XmELknX1QEDpvG6920uFVkGLApT1GvYDICgxeD4IIQVznPfc9s77Tt6Qh43rIhxN7T9BupgIwfx8iOlgINVxRzRSs0F55yUIVLxV2rlusILr1nkFva8stbFsijkn9L95nJk1GHM0WzBmDcYwbmow1fb6L5sNBdaFlQRh_J_5zWbGuqRzwGSyDVhDciGhLfUX4d-AH5ils1g
CitedBy_id crossref_primary_10_1021_acs_energyfuels_2c01871
crossref_primary_10_1016_j_jcat_2022_10_011
crossref_primary_10_1039_D2TA00709F
crossref_primary_10_1007_s11467_022_1208_8
crossref_primary_10_1002_aenm_202403524
crossref_primary_10_3390_cryst12091289
crossref_primary_10_1021_acs_jpclett_4c02399
crossref_primary_10_1039_D2CP01793H
crossref_primary_10_3390_nano12091518
crossref_primary_10_1039_D2TA02642B
crossref_primary_10_1039_D2NA00348A
crossref_primary_10_1039_D2TA03269D
crossref_primary_10_1039_D2TA05056K
crossref_primary_10_1039_D2CP00672C
crossref_primary_10_1149_1945_7111_ac7c95
crossref_primary_10_1002_elan_202300030
crossref_primary_10_1039_D2CP02911A
crossref_primary_10_1002_adfm_202316699
crossref_primary_10_1021_acscatal_3c01584
crossref_primary_10_1039_D4TA06497F
crossref_primary_10_1002_cssc_202401957
crossref_primary_10_1039_D2TA08240C
crossref_primary_10_1021_acsnano_3c10451
crossref_primary_10_1103_PhysRevApplied_19_054094
crossref_primary_10_1002_sstr_202400175
crossref_primary_10_3390_catal12111387
crossref_primary_10_1002_adfm_202311618
crossref_primary_10_1039_D2TA02463B
crossref_primary_10_1039_D4TA02381A
crossref_primary_10_1016_j_ijhydene_2023_12_142
crossref_primary_10_1039_D4TC04102J
crossref_primary_10_1016_j_jcat_2024_115524
crossref_primary_10_1002_advs_202309883
crossref_primary_10_1016_j_chphma_2022_03_007
crossref_primary_10_1016_j_mtnano_2022_100278
crossref_primary_10_1002_eem2_12600
crossref_primary_10_1002_smll_202307863
crossref_primary_10_1002_adts_202301016
crossref_primary_10_1007_s12598_023_02415_9
crossref_primary_10_1021_acsestengg_4c00177
Cites_doi 10.1126/science.aan2255
10.1016/j.jcis.2021.02.052
10.1021/acs.nanolett.9b05123
10.1002/advs.202000176
10.1021/acs.chemrev.7b00488
10.1021/ja512411b
10.1039/C8NR07106C
10.1021/acs.jpcc.0c00446
10.1021/acs.jpclett.1c02432
10.1021/acscatal.1c01030
10.1021/acs.jpcc.0c10617
10.1002/smll.201900288
10.1021/acs.jpcc.9b09647
10.1002/anie.201109257
10.1002/adfm.201904782
10.1039/D0TA08004G
10.1021/acssuschemeng.9b04058
10.1039/C8EE01157E
10.1038/s41467-019-12509-7
10.1021/acs.jpclett.1c00421
10.1038/nmat4367
10.1021/acs.jpclett.9b03392
10.1021/acsnano.7b08196
10.1021/acs.jpcc.0c08692
10.1039/C9RA02822F
10.1021/jacs.9b09352
10.1021/jp8001564
10.1021/jacs.8b08682
10.1021/jacs.5b01088
10.1016/j.carbon.2017.12.121
10.1016/j.apcatb.2018.08.074
10.1002/adma.201802234
10.1021/acsami.0c21597
10.1021/acs.jpclett.9b00891
10.1021/acs.jpcc.9b11990
10.1021/acs.jpcc.8b09203
10.1016/j.matt.2019.11.014
10.1021/nn500880v
10.1021/acsami.0c15870
10.1021/acsami.9b13580
10.1021/jacs.1c03135
10.1021/cs3000792
10.1016/j.nantod.2016.09.001
10.1002/adma.201905622
10.1021/acsami.9b04217
10.1063/5.0039979
10.1002/cctc.202100989
10.1149/1945-7111/abe34c
10.1002/cctc.201000397
10.1021/cr020730k
10.1021/jacs.7b10385
10.1021/jacs.9b08362
10.1039/C9TA13599E
10.1016/j.ccr.2014.12.013
10.1021/jacs.1c00889
10.1002/aenm.201500245
10.1103/PhysRevLett.77.3865
10.1039/c2ra20839c
10.1021/jacs.9b13349
10.1016/j.apmate.2021.10.004
10.1038/nchem.1095
10.1016/j.colsurfa.2021.126219
10.1002/aenm.201801956
10.1016/0927-0256(96)00008-0
10.1103/PhysRevB.50.17953
10.1021/acsami.0c13597
10.1021/jacs.8b07816
10.1038/s42005-018-0078-4
10.1039/c1cp21687b
10.1021/acs.jpcc.1c07044
10.1016/j.nanoen.2020.104597
10.1021/acscatal.9b02178
10.1021/acs.chemrev.7b00335
10.1103/PhysRevB.57.1505
10.1016/j.colsurfa.2020.126060
10.1002/anie.201810175
10.1021/jp106469x
10.1021/acscatal.9b04323
10.1016/j.apenergy.2017.03.132
10.1002/smtd.201800480
10.1103/PhysRevB.54.11169
10.1021/acs.jpcc.1c01495
10.1021/jacs.0c07206
10.1016/j.nanoen.2018.02.025
10.1021/acs.jpcc.9b09306
ContentType Journal Article
Copyright 2022 Central South University.
Copyright_xml – notice: 2022 Central South University.
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.apmate.2022.01.004
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2772-834X
ExternalDocumentID oai_doaj_org_article_380b4fdf3a2e41548dd6bc2185df4a9f
10_1016_j_apmate_2022_01_004
S2772834X22000100
GroupedDBID 6I.
AAFTH
AAXUO
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ARCSS
EBS
FDB
GROUPED_DOAJ
M41
M~E
ROL
AALRI
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AITUG
AKBMS
AKRWK
AKYEP
CITATION
ID FETCH-LOGICAL-c418t-94e5a3065a3eae3df85fd734ec4a5e2a4cf8a7baea42bf1b22320d1191c9dff63
IEDL.DBID DOA
ISSN 2772-834X
IngestDate Wed Aug 27 01:30:23 EDT 2025
Tue Jul 01 03:19:45 EDT 2025
Thu Apr 24 23:10:13 EDT 2025
Tue Jul 25 20:59:37 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords First-principles calculations
Double-atom catalysts
Oxygen reduction reaction
Magnetic coupling
d-band center
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-94e5a3065a3eae3df85fd734ec4a5e2a4cf8a7baea42bf1b22320d1191c9dff63
ORCID 0000-0001-6023-8887
0000-0002-9483-8554
OpenAccessLink https://doaj.org/article/380b4fdf3a2e41548dd6bc2185df4a9f
ParticipantIDs doaj_primary_oai_doaj_org_article_380b4fdf3a2e41548dd6bc2185df4a9f
crossref_primary_10_1016_j_apmate_2022_01_004
crossref_citationtrail_10_1016_j_apmate_2022_01_004
elsevier_sciencedirect_doi_10_1016_j_apmate_2022_01_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2022
2022-07-00
2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: July 2022
PublicationDecade 2020
PublicationTitle Advanced Powder Materials
PublicationYear 2022
Publisher Elsevier B.V
KeAi Communications Co. Ltd
Publisher_xml – name: Elsevier B.V
– name: KeAi Communications Co. Ltd
References Deng, Li, Tang (bib14) 2019; 123
Yang, Xia, Kang, Du, Kang, Gan, Li (bib88) 2020; 7
Chang, Bai, Li, Ren, Liu, Yang, Zhong, Lu (bib25) 2020; 20
Deng, Su, Li, Shen, Chen, Tang (bib51) 2020; 8
Ahluwalia, Wang, Osmieri, Peng, Cetinbas, Park, Myers, Chung, Neyerlin (bib35) 2021; 168
Zhu, Zhang, Chen, Zhang, Liu, Xia, Dai, Amal, Lu (bib46) 2020; 71
Li, Li, Huang, Cao, Wen (bib62) 2021; 13
Yia, Jianga, Baoa, Zoua, Liaoc, Zhang (bib15) 2019; 848
Li, Zhao, Cai, Yin, Zhao (bib68) 2020; 8
Mathew, Sundararaman, Letchworth-Weaver, Arias, Hennig (bib78) 2014; 140
Xu, Elangovan, Li, Liu (bib55) 2021; 125
Liu, Zhu, Yang, Jia, Jin, Wang (bib59) 2019; 9
Man, Su, Calle-Vallejo, Hansen, Martínez, Inoglu, Kitchin, Jaramillo, Nørskov, Rossmeisl (bib81) 2011; 3
Bučko, Hafner, Lebègue, Ángyán (bib76) 2010; 114
Hunter, Fischer, Yuan, Hankel, Searles (bib87) 2019; 9
Duan, Wang (bib19) 2011; 13
Yuan, Ma, Ai, Kang, Lee (bib21) 2021; 592
Osgood, Devaguptapu, Xu, Cho, Wu (bib29) 2016; 11
Ling, Xia, Li, Zhou, Luo, Bu, Huang, Liu, Kang, Zhou (bib41) 2021; 13
Pan, Zhang, Liu, Chen, Li (bib43) 2020; 2
Eriksson, Gray (bib3) 2017; 202
Zhang, Wu, Peng, Wang, Xia, Guo (bib6) 2015; 137
Blöchl (bib73) 1994; 50
Xiao, Chen, Zhu, Zhang, Zhao, Gao, Wang, Zhao, Ge, Jiang, Chen, Liu, Xing (bib56) 2019; 141
Smeets, McCusker, Baerlocher, Xie, Chen, Zones (bib4) 2015; 137
Wang, Markovic, Stamenkovic (bib17) 2012; 2
Feng, An, Li, Zuo, Song, Ning, Jiang, Cheng, Zhang, Xia (bib2) 2019; 10
Li, Liu, Chen (bib42) 2019; 3
Sadighi, Liu, Zhao, Ciucci, Kim (bib27) 2018; 10
Yang, Zhao, Zhang, Zhao, Xiao, Ma, Ajayan, Shi, Chen (bib1) 2018; 12
Guo, Feng, Chen, Song, Dong, Yu, Dong (bib22) 2021; 125
Tang, Chen, Li, Li, Jiao, Zheng, Xu, Davey, Qiao (bib63) 2021; 143
Dudarev, Botton, Savrasov, Humphreys, Sutton (bib77) 1998; 57
Liu, Zhao, Duan, Huang (bib16) 2019; 31
Gao, Cao, Gao, Xu, Zheng, Jiang, Yu (bib83) 2014; 8
H. Jing, P. Zhu, X. Zheng, Z. Zhang, D. Wang, Y. Li. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis, Adv. Powder Mater. 1 (2022)100013
Chung, Cullen, Higgins, Sneed, Holby, More, Zelenay (bib89) 2017; 357
Russell (bib18) 2008; 10
.
Gewirth, Varnell, DiAscro (bib9) 2018; 118
Dang, Tang, Liu, Li, Wang, Zhong, Luo, Jiang (bib67) 2021; 12
Anand, Nørskov (bib93) 2020; 10
Reddy, Krishnamurthy, Grinberg (bib61) 2020; 124
Gong, Zhong, Li, Qiu, Zheng, Jiang, Jiang (bib65) 2020; 142
Kresse, Furthmüller (bib71) 1996; 54
Zitolo, Goellner, Armel, Sougrati, Mineva, Stievano, Fonda, Jaouen (bib91) 2015; 14
Liang, Wu, Hu, Zhao, Zeng (bib92) 2018; 1
Deng, Li, He, Shen, Li (bib57) 2020; 124
Zhao, Tao, Dang, Wang, Xia, Wang, Liu, Gao, Zhang, Zhao (bib26) 2019; 15
Li, Li, Zhang, Jiang (bib64) 2018; 140
Flores-Lasluisa, Salinas-Torres, Lόpez-Ramόn, Álvarez, Moreno-Castilla, Cazorla-Amorόs, Morallόn (bib12) 2021; 613
Zhao, Huang, Jin, Chen (bib70) 2015; 289–290
Meng, Yin, Li, Tang, Wang, Wu (bib85) 2019; 7
Zhang, Zhao, Chen, Huang, Dong, Chen, Liu, Wang, Yan, Li, Wang (bib58) 2019; 141
Zhong, Qiu, Shen, Wang, Yuan, Jia, Bi, Jiang (bib66) 2021; 143
Sun, Guo, Shao, Huang, Li, He, Wang (bib84) 2018; 8
Chen, Tian, Tang (bib28) 2021; 125
Chen, Huang, Sun, Lai (bib8) 2020; 124
Qian, Lu, Xu, Wu, Tian, Li, Huo, Sun, Duan (bib30) 2015; 5
Xue, Shen, Jiang, Sengdala, Chen, Feng (bib24) 2019; 10
Chung, Cullen, Higgins, Sneed, Holby, More, Zelenay (bib37) 2017; 357
Kulkarni, Siahrostami, Patel, Nørskov (bib10) 2018; 118
Zhang, Gong, Ma, Wang, Zhang, Xia (bib50) 2020; 124
Ye, Chen, Lin, Yang, Chen, Zheng, Qi, Wang, Long, Chen, Zhu, Gao, Song, Jiang, Xiong (bib47) 2019; 5
Liu, Cheng, Wang, Li, Wang, Wu (bib86) 2018; 117
Vesborg, Jaramillo (bib11) 2012; 2
Li, He, Cao, Sun, Diao, Gao, Lu, Zhang, Guo, Li, Liu, Ren, Liu, Zhang, Yang, Jiang, Zhang (bib36) 2019; 240
Staffell, Scamman, Abad, Balcombe, Dodds, Ekins, Shahd, Ward (bib7) 2019; 12
Perdew, Burke, Ernzerhof (bib74) 1996; 77
Zhao, Gu, Chen (bib90) 2019; 29
Wang, Zhang, Xia, Roy, Chang, Baek, Dai (bib20) 2012; 51
Xue, Meng, Huang, Feng, Qi (bib23) 2021; 3
Ziegelbauer, Olson, Pylypenko, Alamgir, Jaye, Atanassov, Mukerjee (bib39) 2008; 112
Winter, Brodd (bib5) 2004; 104
Chowdhury, Datta (bib75) 2018; 122
Qiao, Wang, Yang, Allard, Jiang, Cui, Liu, Li, Zhang (bib34) 2011; 3
Lu, Wang, Hu, Liu, Zhao, Yang, Li, Luo, Chi, Jiang, Li, Mu, Liao, Zhang, Sun (bib49) 2019; 58
Chen, Lin, Qing, Zhang, Li (bib54) 2021; 615
Zeng, Liu, Chen, Chen, Fan, Lau (bib79) 2020; 12
Zhu, Shi, Xu, Fu, Wan, Yang, Yao, Song, Zhou, Du, Beckman, Su, Lin (bib38) 2018; 8
Xiao, Zhang, Chen, Zhu, Gao, Jin, Ge, Jiang, Chen, Liu, Xing (bib45) 2018; 48
Jiang, Liu, Xing, Liu, Guo, Liu, Zhao (bib94) 2021; 8
Roy, Pramanik, Sarkar (bib53) 2021; 12
Guo, Gu, Lin, Zhang, Chen, Huang (bib80) 2020; 142
Zhu, Yan, Gu, Liu, Dai, Gu, Li (bib52) 2019; 10
Sun, Deng, Tian, Tang (bib31) 2021; 11
Guo, Hu, Wu, Jing, Liu, Ren, Zhao, Jiang, Xu, Zhang, Hu (bib32) 2019; 11
Zhang, Yang, Lu, Wang (bib60) 2018; 130
Wang, Huang, Liu, Chang, Tang, Li, Chen, Jia, Yao, Wei, Wu, Li (bib69) 2017; 139
Shao, Meng, Sun, Guo, Xue, Huang, He, Li, Wang (bib82) 2020; 12
Ying, Luo, Qiao, Huang (bib44) 2020; 31
Kresse, Furthmüller (bib72) 1996; 6
Han, Ling, Yu, Xie, Li, Peng, Zhong, Zhao, Deng, Hu (bib48) 2019; 31
Wang, Li, Heine (bib13) 2018; 140
Ha, Shi, Yan, Chen, Li, Xu, Wu (bib33) 2019; 11
Feng (10.1016/j.apmate.2022.01.004_bib2) 2019; 10
Meng (10.1016/j.apmate.2022.01.004_bib85) 2019; 7
Li (10.1016/j.apmate.2022.01.004_bib42) 2019; 3
Anand (10.1016/j.apmate.2022.01.004_bib93) 2020; 10
Mathew (10.1016/j.apmate.2022.01.004_bib78) 2014; 140
Deng (10.1016/j.apmate.2022.01.004_bib51) 2020; 8
Zhang (10.1016/j.apmate.2022.01.004_bib60) 2018; 130
Zhong (10.1016/j.apmate.2022.01.004_bib66) 2021; 143
Chung (10.1016/j.apmate.2022.01.004_bib89) 2017; 357
Zitolo (10.1016/j.apmate.2022.01.004_bib91) 2015; 14
Dudarev (10.1016/j.apmate.2022.01.004_bib77) 1998; 57
Zhao (10.1016/j.apmate.2022.01.004_bib26) 2019; 15
Roy (10.1016/j.apmate.2022.01.004_bib53) 2021; 12
Duan (10.1016/j.apmate.2022.01.004_bib19) 2011; 13
Guo (10.1016/j.apmate.2022.01.004_bib22) 2021; 125
Zhu (10.1016/j.apmate.2022.01.004_bib52) 2019; 10
Chowdhury (10.1016/j.apmate.2022.01.004_bib75) 2018; 122
Liang (10.1016/j.apmate.2022.01.004_bib92) 2018; 1
Deng (10.1016/j.apmate.2022.01.004_bib14) 2019; 123
Sun (10.1016/j.apmate.2022.01.004_bib84) 2018; 8
10.1016/j.apmate.2022.01.004_bib40
Xiao (10.1016/j.apmate.2022.01.004_bib45) 2018; 48
Li (10.1016/j.apmate.2022.01.004_bib64) 2018; 140
Chang (10.1016/j.apmate.2022.01.004_bib25) 2020; 20
Ziegelbauer (10.1016/j.apmate.2022.01.004_bib39) 2008; 112
Kresse (10.1016/j.apmate.2022.01.004_bib71) 1996; 54
Russell (10.1016/j.apmate.2022.01.004_bib18) 2008; 10
Sadighi (10.1016/j.apmate.2022.01.004_bib27) 2018; 10
Zhao (10.1016/j.apmate.2022.01.004_bib90) 2019; 29
Pan (10.1016/j.apmate.2022.01.004_bib43) 2020; 2
Yuan (10.1016/j.apmate.2022.01.004_bib21) 2021; 592
Ling (10.1016/j.apmate.2022.01.004_bib41) 2021; 13
Lu (10.1016/j.apmate.2022.01.004_bib49) 2019; 58
Yang (10.1016/j.apmate.2022.01.004_bib88) 2020; 7
Chen (10.1016/j.apmate.2022.01.004_bib28) 2021; 125
Gewirth (10.1016/j.apmate.2022.01.004_bib9) 2018; 118
Li (10.1016/j.apmate.2022.01.004_bib36) 2019; 240
Zhang (10.1016/j.apmate.2022.01.004_bib58) 2019; 141
Kresse (10.1016/j.apmate.2022.01.004_bib72) 1996; 6
Shao (10.1016/j.apmate.2022.01.004_bib82) 2020; 12
Xu (10.1016/j.apmate.2022.01.004_bib55) 2021; 125
Guo (10.1016/j.apmate.2022.01.004_bib80) 2020; 142
Liu (10.1016/j.apmate.2022.01.004_bib16) 2019; 31
Zhang (10.1016/j.apmate.2022.01.004_bib50) 2020; 124
Zhao (10.1016/j.apmate.2022.01.004_bib70) 2015; 289–290
Hunter (10.1016/j.apmate.2022.01.004_bib87) 2019; 9
Gong (10.1016/j.apmate.2022.01.004_bib65) 2020; 142
Yang (10.1016/j.apmate.2022.01.004_bib1) 2018; 12
Eriksson (10.1016/j.apmate.2022.01.004_bib3) 2017; 202
Flores-Lasluisa (10.1016/j.apmate.2022.01.004_bib12) 2021; 613
Chen (10.1016/j.apmate.2022.01.004_bib8) 2020; 124
Qiao (10.1016/j.apmate.2022.01.004_bib34) 2011; 3
Wang (10.1016/j.apmate.2022.01.004_bib20) 2012; 51
Qian (10.1016/j.apmate.2022.01.004_bib30) 2015; 5
Chen (10.1016/j.apmate.2022.01.004_bib54) 2021; 615
Han (10.1016/j.apmate.2022.01.004_bib48) 2019; 31
Zeng (10.1016/j.apmate.2022.01.004_bib79) 2020; 12
Zhu (10.1016/j.apmate.2022.01.004_bib46) 2020; 71
Chung (10.1016/j.apmate.2022.01.004_bib37) 2017; 357
Liu (10.1016/j.apmate.2022.01.004_bib86) 2018; 117
Dang (10.1016/j.apmate.2022.01.004_bib67) 2021; 12
Staffell (10.1016/j.apmate.2022.01.004_bib7) 2019; 12
Ye (10.1016/j.apmate.2022.01.004_bib47) 2019; 5
Xiao (10.1016/j.apmate.2022.01.004_bib56) 2019; 141
Blöchl (10.1016/j.apmate.2022.01.004_bib73) 1994; 50
Jiang (10.1016/j.apmate.2022.01.004_bib94) 2021; 8
Li (10.1016/j.apmate.2022.01.004_bib68) 2020; 8
Wang (10.1016/j.apmate.2022.01.004_bib69) 2017; 139
Vesborg (10.1016/j.apmate.2022.01.004_bib11) 2012; 2
Tang (10.1016/j.apmate.2022.01.004_bib63) 2021; 143
Wang (10.1016/j.apmate.2022.01.004_bib17) 2012; 2
Sun (10.1016/j.apmate.2022.01.004_bib31) 2021; 11
Winter (10.1016/j.apmate.2022.01.004_bib5) 2004; 104
Yia (10.1016/j.apmate.2022.01.004_bib15) 2019; 848
Wang (10.1016/j.apmate.2022.01.004_bib13) 2018; 140
Smeets (10.1016/j.apmate.2022.01.004_bib4) 2015; 137
Zhang (10.1016/j.apmate.2022.01.004_bib6) 2015; 137
Xue (10.1016/j.apmate.2022.01.004_bib23) 2021; 3
Reddy (10.1016/j.apmate.2022.01.004_bib61) 2020; 124
Guo (10.1016/j.apmate.2022.01.004_bib32) 2019; 11
Ha (10.1016/j.apmate.2022.01.004_bib33) 2019; 11
Liu (10.1016/j.apmate.2022.01.004_bib59) 2019; 9
Deng (10.1016/j.apmate.2022.01.004_bib57) 2020; 124
Osgood (10.1016/j.apmate.2022.01.004_bib29) 2016; 11
Man (10.1016/j.apmate.2022.01.004_bib81) 2011; 3
Perdew (10.1016/j.apmate.2022.01.004_bib74) 1996; 77
Kulkarni (10.1016/j.apmate.2022.01.004_bib10) 2018; 118
Xue (10.1016/j.apmate.2022.01.004_bib24) 2019; 10
Ahluwalia (10.1016/j.apmate.2022.01.004_bib35) 2021; 168
Li (10.1016/j.apmate.2022.01.004_bib62) 2021; 13
Zhu (10.1016/j.apmate.2022.01.004_bib38) 2018; 8
Bučko (10.1016/j.apmate.2022.01.004_bib76) 2010; 114
Gao (10.1016/j.apmate.2022.01.004_bib83) 2014; 8
Ying (10.1016/j.apmate.2022.01.004_bib44) 2020; 31
References_xml – volume: 124
  start-page: 27387
  year: 2020
  end-page: 27395
  ident: bib50
  article-title: Disperse multimetal atom-doped carbon as efficient bifunctional electrocatalysts for oxygen reduction and evolution reactions: Design strategies
  publication-title: J. Phys. Chem. C
– volume: 31
  start-page: 3
  year: 2020
  ident: bib44
  article-title: “More is different:” Synergistic effect and structural engineering in double-atom catalysts
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 2865
  year: 2019
  end-page: 2878
  ident: bib47
  article-title: Precisely tuning the number of Fe atoms in clusters on N-doped carbon toward acidic oxygen reduction reaction
  publication-title: Inside Chem.
– volume: 10
  start-page: 7760
  year: 2019
  end-page: 7766
  ident: bib52
  article-title: Activity origin and design principles for oxygen reduction on dualmetal-site catalysts: A combined density functional theory and machine learning study
  publication-title: J. Phys. Chem. Lett.
– volume: 615
  year: 2021
  ident: bib54
  article-title: Density functional theory study of the sulfur/oxygen doped CoN
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
– volume: 143
  start-page: 4405
  year: 2021
  end-page: 4413
  ident: bib66
  article-title: Electronic spin moment as a catalytic descriptor for Fe single-atom catalysts supported on C
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 17412
  year: 2021
  end-page: 17419
  ident: bib41
  article-title: Single transition metal atom bound to the unconventional phase of the MoS
  publication-title: ACS Appl. Mater. Interfaces
– volume: 141
  start-page: 20118
  year: 2019
  end-page: 20126
  ident: bib58
  article-title: Tuning the coordination environment in single-atom catalysts to achieve highly efficient oxygen reduction reactions
  publication-title: J. Am. Chem. Soc.
– volume: 122
  start-page: 27233
  year: 2018
  end-page: 27240
  ident: bib75
  article-title: Silicon-doped nitrogen-coordinated graphene as electrocatalyst for oxygen reduction reaction
  publication-title: J. Phys. Chem. C
– volume: 117
  start-page: 1
  year: 2018
  end-page: 8
  ident: bib86
  article-title: Fe-porphyrin carbon matrix as a bifunctional catalyst for oxygen reduction and CO
  publication-title: Mol. Phys.
– volume: 2
  start-page: 7933
  year: 2012
  end-page: 7947
  ident: bib11
  article-title: Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy
  publication-title: RSC Adv.
– volume: 1
  start-page: 74
  year: 2018
  ident: bib92
  article-title: Large magnetic anisotropy in chemically engineered iridium dimer
  publication-title: Commun. Phys.
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  ident: bib74
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
– volume: 12
  start-page: 829
  year: 2018
  end-page: 835
  ident: bib1
  article-title: Graphene-based standalone solar energy converter for water desalination and purification
  publication-title: ACS Nano
– volume: 140
  start-page: 12732
  year: 2018
  end-page: 12735
  ident: bib13
  article-title: PtTe monolayer: two-dimensional electrocatalyst with high basal plane activity toward oxygen reduction reaction
  publication-title: J. Am. Chem. Soc.
– volume: 71
  year: 2020
  ident: bib46
  article-title: Harnessing the interplay of Fe-Ni atom pairs embedded in nitrogen-doped carbon for bifunctional oxygen electrocatalysis
  publication-title: Nano Energy
– volume: 357
  start-page: 479
  year: 2017
  end-page: 484
  ident: bib37
  article-title: Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst
  publication-title: Science
– volume: 125
  start-page: 22581
  year: 2021
  end-page: 22590
  ident: bib28
  article-title: First-principles studies on electrocatalytic activity of novel two-dimensional MA
  publication-title: J. Phys. Chem. C
– volume: 141
  start-page: 17763
  year: 2019
  end-page: 17770
  ident: bib56
  article-title: Climbing the apex of the ORR volcano plot via binuclear site construction: Electronic and geometric engineering
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 3722
  year: 2008
  end-page: 3730
  ident: bib18
  article-title: Electrocatalysis: theory and experiment at the interface
  publication-title: Phys. Chem. Chem. Phys.
– volume: 8
  year: 2018
  ident: bib84
  article-title: A facile strategy to construct amorphous spinel-based electrocatalysts with massive oxygen vacancies using ionic liquid dopant
  publication-title: Adv. Energy Mater.
– volume: 137
  start-page: 2015
  year: 2015
  end-page: 2020
  ident: bib4
  article-title: SSZ-87: a borosilicate zeolite with unusually flexible 10-ring pore openings
  publication-title: J. Am. Chem. Soc.
– volume: 31
  start-page: 1802234
  year: 2019
  ident: bib16
  article-title: Nanoscale structure design for high-performance Pt-based ORR catalysts
  publication-title: Adv. Mater.
– volume: 123
  start-page: 27116
  year: 2019
  end-page: 27123
  ident: bib14
  article-title: Electrocatalytic oxygen reduction reaction over the Au
  publication-title: J. Phys. Chem. C
– volume: 143
  start-page: 7819
  year: 2021
  end-page: 7827
  ident: bib63
  article-title: Tailoring acidic oxygen reduction selectivity on single-atom catalysts via modification of first and second coordination spheres
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 4533
  year: 2020
  end-page: 4543
  ident: bib68
  article-title: Nitrogen electroreduction performance of transition metal dimers embedded into N-doped graphene: A theoretical prediction
  publication-title: J. Mater. Chem. A
– volume: 124
  start-page: 1413
  year: 2020
  end-page: 1420
  ident: bib8
  article-title: Modifications of metal and ligand to modulate the oxygen reduction reaction activity of two-dimensional MOF catalysts
  publication-title: J. Phys. Chem. C
– volume: 142
  start-page: 5709
  year: 2020
  end-page: 5721
  ident: bib80
  article-title: Tackling the activity and selectivity challenges of electrocatalysts toward the nitrogen reduction reaction
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 20178
  year: 2011
  end-page: 20187
  ident: bib19
  article-title: A first principles study of oxygen reduction reaction on a Pt(111) surface modified by a subsurface transition metal M (M = Ni, Co, or Fe)
  publication-title: Phys. Chem. Chem. Phys.
– volume: 3
  start-page: 1800480
  year: 2019
  ident: bib42
  article-title: 1+1ʹ > 2: heteronuclear Biatom catalyst outperforms its homonuclear counterparts for CO oxidation
  publication-title: Small Methods
– volume: 54
  start-page: 11169
  year: 1996
  end-page: 11186
  ident: bib71
  article-title: Efficient iterative schemes for
  publication-title: Phys. Rev. B
– volume: 2
  start-page: 78
  year: 2020
  end-page: 110
  ident: bib43
  article-title: Structural regulation with atomic-level precision: From single-atomic site to diatomic and atomic interface catalysis
  publication-title: Matter
– volume: 12
  start-page: 51846
  year: 2020
  end-page: 51853
  ident: bib82
  article-title: Engineering of amorphous structures and sulfur defects into ultrathin FeS nanosheets to achieve superior electrocatalytic alkaline oxygen evolution
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  year: 2020
  ident: bib88
  article-title: Unveiling the axial hydroxyl ligand on Fe–N
  publication-title: Adv. Sci.
– volume: 2
  start-page: 891
  year: 2012
  end-page: 898
  ident: bib17
  article-title: Advanced platinum alloy electrocatalysts for the oxygen reduction reaction
  publication-title: ACS Catal.
– volume: 140
  year: 2014
  ident: bib78
  article-title: Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways
  publication-title: J. Chem. Phys.
– volume: 118
  start-page: 2313
  year: 2018
  end-page: 2339
  ident: bib9
  article-title: Nonprecious metal catalysts for oxygen reduction in heterogeneous aqueous systems
  publication-title: Chem. Rev.
– volume: 10
  start-page: 4514
  year: 2019
  ident: bib2
  article-title: Atomically ordered non-precious Co
  publication-title: Nat. Commun.
– volume: 8
  year: 2018
  ident: bib38
  article-title: Hierarchically porous M–N–C (M = Co and Fe) single-atom electrocatalysts with robust MN
  publication-title: Adv. Energy Mater.
– volume: 10
  start-page: 3440
  year: 2019
  end-page: 3446
  ident: bib24
  article-title: Tuning the catalytic property of phosphorene for oxygen evolution and reduction reactions by changing oxidation degree
  publication-title: J. Phys. Chem. Lett.
– volume: 140
  start-page: 15149
  year: 2018
  end-page: 15152
  ident: bib64
  article-title: Cooperative spin transition of monodispersed FeN
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 7957
  year: 2021
  end-page: 7969
  ident: bib31
  article-title: Oxygen electrocatalysis by [Au
  publication-title: ACS Catal.
– volume: 3
  start-page: 634
  year: 2011
  end-page: 641
  ident: bib34
  article-title: Single-atom catalysis of CO oxidation using Pt
  publication-title: Nat. Chem.
– volume: 10
  start-page: 336
  year: 2020
  end-page: 345
  ident: bib93
  article-title: Scaling relations in homogeneous catalysis: analyzing the buchwald−hartwig amination reaction
  publication-title: ACS Catal.
– volume: 9
  start-page: 7660
  year: 2019
  end-page: 7667
  ident: bib87
  article-title: Evaluating the catalytic efficiency of paired, single-atom catalysts for the oxygen reduction reaction
  publication-title: ACS Catal.
– volume: 8
  year: 2021
  ident: bib94
  article-title: Recent progress on 2D magnets: Fundamental mechanism, structural design and modification
  publication-title: Appl. Phys. Rev.
– volume: 124
  start-page: 19530
  year: 2020
  end-page: 19537
  ident: bib57
  article-title: Understanding and breaking the scaling relations in the oxygen reduction reaction on Pd
  publication-title: J. Phys. Chem. C
– volume: 118
  start-page: 2302
  year: 2018
  end-page: 2312
  ident: bib10
  article-title: Understanding catalytic activity trends in the oxygen reduction reaction
  publication-title: Chem. Rev.
– volume: 168
  year: 2021
  ident: bib35
  article-title: Stability of atomically dispersed Fe–N–C ORR catalyst in polymer electrolyte fuel cell environment
  publication-title: J. Electrochem. Soc.
– reference: H. Jing, P. Zhu, X. Zheng, Z. Zhang, D. Wang, Y. Li. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis, Adv. Powder Mater. 1 (2022)100013,
– volume: 130
  start-page: 112
  year: 2018
  end-page: 119
  ident: bib60
  article-title: Bifunctional CoN
  publication-title: Carbon
– volume: 11
  start-page: 21506
  year: 2019
  end-page: 21514
  ident: bib32
  article-title: Tuning the bifunctional oxygen electrocatalytic properties of core−shell Co
  publication-title: ACS Appl. Mater. Interfaces
– volume: 12
  start-page: 52549
  year: 2020
  end-page: 52559
  ident: bib79
  article-title: Single atoms on a nitrogen-doped boron phosphide monolayer: A new promising bifunctional electrocatalyst for ORR and OER
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 1
  year: 2015
  end-page: 6
  ident: bib30
  article-title: Trinary layered double hydroxides as high-performance bifunctional materials for oxygen electrocatalysis
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 22656
  year: 2019
  end-page: 22667
  ident: bib59
  article-title: Systematic exploration of N,C configurational effects on the ORR performance of Fe−N doped graphene catalysts based on DFT Calculations
  publication-title: RSC Adv.
– volume: 613
  year: 2021
  ident: bib12
  article-title: Copper ferrite nanospheres composites mixed with carbon black to boost the oxygen reduction reaction
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
– volume: 112
  start-page: 8839
  year: 2008
  end-page: 8849
  ident: bib39
  article-title: Direct spectroscopic observation of the structural origin of peroxide generation from Co-based pyrolyzed porphyrins for ORR applications
  publication-title: J. Phys. Chem. C
– volume: 357
  start-page: 479
  year: 2017
  end-page: 484
  ident: bib89
  article-title: Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst
  publication-title: Science
– volume: 137
  start-page: 6263
  year: 2015
  end-page: 6269
  ident: bib6
  article-title: One-step, facile and ultrafast synthesis of phase- and size-controlled Pt−Bi intermetallic nanocatalysts through continuous flow microfluidics
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 24563
  year: 2020
  end-page: 24571
  ident: bib51
  article-title: Understanding activity origin for the oxygen reduction reaction on bi-atom catalysts by DFT studies and machine-learning
  publication-title: J. Mater. Chem. A
– volume: 139
  start-page: 17281
  year: 2017
  end-page: 17284
  ident: bib69
  article-title: Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction
  publication-title: J. Am. Chem. Soc.
– volume: 240
  start-page: 112
  year: 2019
  end-page: 121
  ident: bib36
  article-title: Atomic Co/Ni dual sites and Co/Ni alloy nanoparticles in N-doped porous janus-like carbon frameworks for bifunctional oxygen electrocatalysis
  publication-title: Appl. Catal., B
– volume: 114
  start-page: 11814
  year: 2010
  end-page: 11824
  ident: bib76
  article-title: Improved description of the structure of molecular and layered crystals: Ab initio DFT calculations with van der waals corrections
  publication-title: J. Phys. Chem. A
– volume: 58
  start-page: 2622
  year: 2019
  end-page: 2626
  ident: bib49
  article-title: An isolated zinc−cobalt atomic pair for highly active and durable oxygen reduction
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  start-page: 15
  year: 1996
  end-page: 50
  ident: bib72
  article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
  publication-title: Comput. Mater. Sci.
– volume: 7
  start-page: 17273
  year: 2019
  end-page: 17281
  ident: bib85
  article-title: Improved oxygen reduction activity in heteronuclear FeCo-codoped graphene: A theoretical study
  publication-title: ACS Sustain. Chem. Eng.
– volume: 50
  start-page: 17953
  year: 1994
  end-page: 17979
  ident: bib73
  article-title: Projector augmented-wave method
  publication-title: Phys. Rev. B
– volume: 11
  start-page: 45546
  year: 2019
  end-page: 45553
  ident: bib33
  article-title: Multifunctional electrocatalysis on a porous N-doped NiCo
  publication-title: ACS Appl. Mater. Interfaces
– volume: 124
  start-page: 11275
  year: 2020
  end-page: 11283
  ident: bib61
  article-title: First-principles study of the ligand substituent effect on ORR catalysis by metallocorroles
  publication-title: J. Phys. Chem. C
– volume: 104
  start-page: 4245
  year: 2004
  end-page: 4269
  ident: bib5
  article-title: What are batteries, fuel cells, and supercapacitors?
  publication-title: Chem. Rev.
– volume: 125
  start-page: 9747
  year: 2021
  end-page: 9755
  ident: bib22
  article-title: Theoretical insights into enhanced electrocatalytic activity of oxygen reduction reactions on N/S-codoped graphene quantum dots
  publication-title: J. Phys. Chem. C
– volume: 13
  start-page: 4645
  year: 2021
  end-page: 4651
  ident: bib62
  article-title: Boosting the electrocatalytic activity of Fe−Co dual-atom catalysts for oxygen reduction reaction by ligand-modification engineering
  publication-title: ChemCatChem
– volume: 31
  start-page: 1905622
  year: 2019
  ident: bib48
  article-title: Atomically dispersed binary Co−Ni sites in nitrogen-doped hollow carbon nanocubes for reversible oxygen reduction and evolution
  publication-title: Adv. Mater.
– volume: 592
  start-page: 440
  year: 2021
  end-page: 447
  ident: bib21
  article-title: A simple general descriptor for rational design of graphyne-based bifunctional electrocatalysts toward hydrogen evolution and oxygen reduction reactions
  publication-title: J. Colloid Interface Sci.
– volume: 57
  start-page: 1505
  year: 1998
  ident: bib77
  article-title: Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study
  publication-title: Phys. Rev. B Phys.
– volume: 3
  year: 2021
  ident: bib23
  article-title: Black phosphorus-based materials for energy storage and electrocatalytic applications
  publication-title: J. Phys. Energy
– volume: 142
  start-page: 16723
  year: 2020
  end-page: 16731
  ident: bib65
  article-title: Regulating photocatalysis by spin-state manipulation of cobalt in covalent organic frameworks
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 22549
  year: 2018
  ident: bib27
  article-title: Metallic MoS
  publication-title: Nanoscale
– volume: 848
  year: 2019
  ident: bib15
  article-title: Recent progress of Pt-based catalysts for oxygen reduction reaction in preparation strategies and catalytic mechanism
  publication-title: J. Electroanal. Chem.
– volume: 14
  start-page: 937
  year: 2015
  ident: bib91
  article-title: Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials
  publication-title: Nat. Mater.
– volume: 12
  start-page: 463
  year: 2019
  ident: bib7
  article-title: The role of hydrogen and fuel cells in the global energy system
  publication-title: Energy Environ. Sci.
– reference: .
– volume: 12
  start-page: 8355
  year: 2021
  end-page: 8362
  ident: bib67
  article-title: Regulating electronic spin moments of single-atom catalyst sites via single-atom promoter tuning on s-vacancy MoS
  publication-title: J. Phys. Chem. Lett.
– volume: 12
  start-page: 2788
  year: 2021
  end-page: 2795
  ident: bib53
  article-title: Graphitic carbon nitride sheet supported single-atom metal-free photocatalyst for oxygen reduction reaction: A first-principles analysis
  publication-title: J. Phys. Chem. Lett.
– volume: 11
  start-page: 601
  year: 2016
  end-page: 625
  ident: bib29
  article-title: Transition metal (Fe, Co, Ni, and Mn) oxides for oxygen reduction and evolution bifunctional catalysts in alkaline media
  publication-title: Nano Today
– volume: 15
  year: 2019
  ident: bib26
  article-title: High-indexed PtNi alloy skin spiraled on Pd nanowires for highly efficient oxygen reduction reaction catalysis
  publication-title: Small
– volume: 3
  start-page: 1159
  year: 2011
  end-page: 1165
  ident: bib81
  article-title: Universality in oxygen evolution electrocatalysis on oxide surfaces
  publication-title: ChemCatChem
– volume: 125
  start-page: 2334
  year: 2021
  end-page: 2344
  ident: bib55
  article-title: Graphene-based dual-metal sites for oxygen reduction reaction: A theoretical study
  publication-title: J. Phys. Chem. C
– volume: 289–290
  start-page: 315
  year: 2015
  end-page: 340
  ident: bib70
  article-title: Magnetic properties of atomic clusters and endohedral metallofullerenes
  publication-title: Coord. Chem. Rev.
– volume: 8
  start-page: 3970
  year: 2014
  end-page: 3978
  ident: bib83
  article-title: Nitrogen-doped graphene supported CoSe
  publication-title: ACS Nano
– volume: 51
  start-page: 4209
  year: 2012
  end-page: 4212
  ident: bib20
  article-title: BCN graphene as efficient metal-free electrocatalyst for the oxygen reduction reaction
  publication-title: Angew. Chem. Int. Ed.
– volume: 20
  start-page: 2416
  year: 2020
  end-page: 2422
  ident: bib25
  article-title: Strain-modulated platinum−palladium nanowires for oxygen reduction reaction
  publication-title: Nano Lett.
– volume: 48
  start-page: 396
  year: 2018
  end-page: 403
  ident: bib45
  article-title: Identification of binuclear Co
  publication-title: Nano Energy
– volume: 202
  start-page: 348
  year: 2017
  end-page: 364
  ident: bib3
  article-title: Optimization and integration of hybrid renewable energy hydrogen fuel cell energy systems – A critical review
  publication-title: Appl. Energy
– volume: 29
  year: 2019
  ident: bib90
  article-title: Oxygen evolution reaction on 2D ferromagnetic Fe
  publication-title: Adv. Funct. Mater.
– volume: 357
  start-page: 479
  year: 2017
  ident: 10.1016/j.apmate.2022.01.004_bib37
  article-title: Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst
  publication-title: Science
  doi: 10.1126/science.aan2255
– volume: 592
  start-page: 440
  year: 2021
  ident: 10.1016/j.apmate.2022.01.004_bib21
  article-title: A simple general descriptor for rational design of graphyne-based bifunctional electrocatalysts toward hydrogen evolution and oxygen reduction reactions
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.02.052
– volume: 20
  start-page: 2416
  year: 2020
  ident: 10.1016/j.apmate.2022.01.004_bib25
  article-title: Strain-modulated platinum−palladium nanowires for oxygen reduction reaction
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b05123
– volume: 7
  year: 2020
  ident: 10.1016/j.apmate.2022.01.004_bib88
  article-title: Unveiling the axial hydroxyl ligand on Fe–N4–C electrocatalysts and its impact on the pH-dependent oxygen reduction activities and poisoning kinetics
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202000176
– volume: 118
  start-page: 2302
  year: 2018
  ident: 10.1016/j.apmate.2022.01.004_bib10
  article-title: Understanding catalytic activity trends in the oxygen reduction reaction
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00488
– volume: 137
  start-page: 2015
  year: 2015
  ident: 10.1016/j.apmate.2022.01.004_bib4
  article-title: SSZ-87: a borosilicate zeolite with unusually flexible 10-ring pore openings
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja512411b
– volume: 10
  start-page: 22549
  year: 2018
  ident: 10.1016/j.apmate.2022.01.004_bib27
  article-title: Metallic MoS2 nanosheets: Multifunctional electrocatalyst for the ORR, OER and Li–O2 batteries
  publication-title: Nanoscale
  doi: 10.1039/C8NR07106C
– volume: 124
  start-page: 19530
  year: 2020
  ident: 10.1016/j.apmate.2022.01.004_bib57
  article-title: Understanding and breaking the scaling relations in the oxygen reduction reaction on PdxCu4−x subnanoclusters supported by defective two-dimensional boron nitride materials
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.0c00446
– volume: 12
  start-page: 8355
  year: 2021
  ident: 10.1016/j.apmate.2022.01.004_bib67
  article-title: Regulating electronic spin moments of single-atom catalyst sites via single-atom promoter tuning on s-vacancy MoS2 for efficient nitrogen fixation
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.1c02432
– volume: 10
  start-page: 3722
  year: 2008
  ident: 10.1016/j.apmate.2022.01.004_bib18
  article-title: Electrocatalysis: theory and experiment at the interface
  publication-title: Phys. Chem. Chem. Phys.
– volume: 11
  start-page: 7957
  year: 2021
  ident: 10.1016/j.apmate.2022.01.004_bib31
  article-title: Oxygen electrocatalysis by [Au25(SR)18]: Charge, doping, and ligand removal effect
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c01030
– volume: 125
  start-page: 2334
  year: 2021
  ident: 10.1016/j.apmate.2022.01.004_bib55
  article-title: Graphene-based dual-metal sites for oxygen reduction reaction: A theoretical study
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.0c10617
– volume: 15
  year: 2019
  ident: 10.1016/j.apmate.2022.01.004_bib26
  article-title: High-indexed PtNi alloy skin spiraled on Pd nanowires for highly efficient oxygen reduction reaction catalysis
  publication-title: Small
  doi: 10.1002/smll.201900288
– volume: 124
  start-page: 1413
  year: 2020
  ident: 10.1016/j.apmate.2022.01.004_bib8
  article-title: Modifications of metal and ligand to modulate the oxygen reduction reaction activity of two-dimensional MOF catalysts
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b09647
– volume: 51
  start-page: 4209
  year: 2012
  ident: 10.1016/j.apmate.2022.01.004_bib20
  article-title: BCN graphene as efficient metal-free electrocatalyst for the oxygen reduction reaction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201109257
– volume: 29
  year: 2019
  ident: 10.1016/j.apmate.2022.01.004_bib90
  article-title: Oxygen evolution reaction on 2D ferromagnetic Fe3GeTe2: Boosting the reactivity by the self-reduction of surface hydroxyl
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201904782
– volume: 8
  start-page: 24563
  year: 2020
  ident: 10.1016/j.apmate.2022.01.004_bib51
  article-title: Understanding activity origin for the oxygen reduction reaction on bi-atom catalysts by DFT studies and machine-learning
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA08004G
– volume: 7
  start-page: 17273
  year: 2019
  ident: 10.1016/j.apmate.2022.01.004_bib85
  article-title: Improved oxygen reduction activity in heteronuclear FeCo-codoped graphene: A theoretical study
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b04058
– volume: 12
  start-page: 463
  year: 2019
  ident: 10.1016/j.apmate.2022.01.004_bib7
  article-title: The role of hydrogen and fuel cells in the global energy system
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE01157E
– volume: 10
  start-page: 4514
  year: 2019
  ident: 10.1016/j.apmate.2022.01.004_bib2
  article-title: Atomically ordered non-precious Co3Ta intermetallic nanoparticles as high-performance catalysts for hydrazine electrooxidation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12509-7
– volume: 12
  start-page: 2788
  year: 2021
  ident: 10.1016/j.apmate.2022.01.004_bib53
  article-title: Graphitic carbon nitride sheet supported single-atom metal-free photocatalyst for oxygen reduction reaction: A first-principles analysis
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.1c00421
– volume: 14
  start-page: 937
  year: 2015
  ident: 10.1016/j.apmate.2022.01.004_bib91
  article-title: Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4367
– volume: 10
  start-page: 7760
  year: 2019
  ident: 10.1016/j.apmate.2022.01.004_bib52
  article-title: Activity origin and design principles for oxygen reduction on dualmetal-site catalysts: A combined density functional theory and machine learning study
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.9b03392
– volume: 12
  start-page: 829
  year: 2018
  ident: 10.1016/j.apmate.2022.01.004_bib1
  article-title: Graphene-based standalone solar energy converter for water desalination and purification
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b08196
– volume: 124
  start-page: 27387
  year: 2020
  ident: 10.1016/j.apmate.2022.01.004_bib50
  article-title: Disperse multimetal atom-doped carbon as efficient bifunctional electrocatalysts for oxygen reduction and evolution reactions: Design strategies
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.0c08692
– volume: 9
  start-page: 22656
  year: 2019
  ident: 10.1016/j.apmate.2022.01.004_bib59
  article-title: Systematic exploration of N,C configurational effects on the ORR performance of Fe−N doped graphene catalysts based on DFT Calculations
  publication-title: RSC Adv.
  doi: 10.1039/C9RA02822F
– volume: 141
  start-page: 20118
  year: 2019
  ident: 10.1016/j.apmate.2022.01.004_bib58
  article-title: Tuning the coordination environment in single-atom catalysts to achieve highly efficient oxygen reduction reactions
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b09352
– volume: 112
  start-page: 8839
  year: 2008
  ident: 10.1016/j.apmate.2022.01.004_bib39
  article-title: Direct spectroscopic observation of the structural origin of peroxide generation from Co-based pyrolyzed porphyrins for ORR applications
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp8001564
– volume: 140
  start-page: 12732
  year: 2018
  ident: 10.1016/j.apmate.2022.01.004_bib13
  article-title: PtTe monolayer: two-dimensional electrocatalyst with high basal plane activity toward oxygen reduction reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b08682
– volume: 137
  start-page: 6263
  year: 2015
  ident: 10.1016/j.apmate.2022.01.004_bib6
  article-title: One-step, facile and ultrafast synthesis of phase- and size-controlled Pt−Bi intermetallic nanocatalysts through continuous flow microfluidics
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b01088
– volume: 130
  start-page: 112
  year: 2018
  ident: 10.1016/j.apmate.2022.01.004_bib60
  article-title: Bifunctional CoNx embedded graphene electrocatalysts for OER and ORR: A theoretical evaluation
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.12.121
– volume: 240
  start-page: 112
  year: 2019
  ident: 10.1016/j.apmate.2022.01.004_bib36
  article-title: Atomic Co/Ni dual sites and Co/Ni alloy nanoparticles in N-doped porous janus-like carbon frameworks for bifunctional oxygen electrocatalysis
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2018.08.074
– volume: 5
  start-page: 2865
  year: 2019
  ident: 10.1016/j.apmate.2022.01.004_bib47
  article-title: Precisely tuning the number of Fe atoms in clusters on N-doped carbon toward acidic oxygen reduction reaction
  publication-title: Inside Chem.
– volume: 31
  start-page: 1802234
  year: 2019
  ident: 10.1016/j.apmate.2022.01.004_bib16
  article-title: Nanoscale structure design for high-performance Pt-based ORR catalysts
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802234
– volume: 13
  start-page: 17412
  year: 2021
  ident: 10.1016/j.apmate.2022.01.004_bib41
  article-title: Single transition metal atom bound to the unconventional phase of the MoS2 monolayer for catalytic oxygen reduction reaction: A first-principles study
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c21597
– volume: 140
  year: 2014
  ident: 10.1016/j.apmate.2022.01.004_bib78
  article-title: Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways
  publication-title: J. Chem. Phys.
– volume: 10
  start-page: 3440
  year: 2019
  ident: 10.1016/j.apmate.2022.01.004_bib24
  article-title: Tuning the catalytic property of phosphorene for oxygen evolution and reduction reactions by changing oxidation degree
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.9b00891
– volume: 124
  start-page: 11275
  year: 2020
  ident: 10.1016/j.apmate.2022.01.004_bib61
  article-title: First-principles study of the ligand substituent effect on ORR catalysis by metallocorroles
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b11990
– volume: 122
  start-page: 27233
  year: 2018
  ident: 10.1016/j.apmate.2022.01.004_bib75
  article-title: Silicon-doped nitrogen-coordinated graphene as electrocatalyst for oxygen reduction reaction
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b09203
– volume: 2
  start-page: 78
  year: 2020
  ident: 10.1016/j.apmate.2022.01.004_bib43
  article-title: Structural regulation with atomic-level precision: From single-atomic site to diatomic and atomic interface catalysis
  publication-title: Matter
  doi: 10.1016/j.matt.2019.11.014
– volume: 8
  start-page: 3970
  year: 2014
  ident: 10.1016/j.apmate.2022.01.004_bib83
  article-title: Nitrogen-doped graphene supported CoSe2 nanobelt composite catalyst for efficient water oxidation
  publication-title: ACS Nano
  doi: 10.1021/nn500880v
– volume: 12
  start-page: 51846
  year: 2020
  ident: 10.1016/j.apmate.2022.01.004_bib82
  article-title: Engineering of amorphous structures and sulfur defects into ultrathin FeS nanosheets to achieve superior electrocatalytic alkaline oxygen evolution
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c15870
– volume: 11
  start-page: 45546
  year: 2019
  ident: 10.1016/j.apmate.2022.01.004_bib33
  article-title: Multifunctional electrocatalysis on a porous N-doped NiCo2O4@C nanonetwork
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b13580
– volume: 143
  start-page: 7819
  year: 2021
  ident: 10.1016/j.apmate.2022.01.004_bib63
  article-title: Tailoring acidic oxygen reduction selectivity on single-atom catalysts via modification of first and second coordination spheres
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c03135
– volume: 357
  start-page: 479
  year: 2017
  ident: 10.1016/j.apmate.2022.01.004_bib89
  article-title: Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst
  publication-title: Science
  doi: 10.1126/science.aan2255
– volume: 2
  start-page: 891
  year: 2012
  ident: 10.1016/j.apmate.2022.01.004_bib17
  article-title: Advanced platinum alloy electrocatalysts for the oxygen reduction reaction
  publication-title: ACS Catal.
  doi: 10.1021/cs3000792
– volume: 3
  year: 2021
  ident: 10.1016/j.apmate.2022.01.004_bib23
  article-title: Black phosphorus-based materials for energy storage and electrocatalytic applications
  publication-title: J. Phys. Energy
– volume: 11
  start-page: 601
  year: 2016
  ident: 10.1016/j.apmate.2022.01.004_bib29
  article-title: Transition metal (Fe, Co, Ni, and Mn) oxides for oxygen reduction and evolution bifunctional catalysts in alkaline media
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2016.09.001
– volume: 31
  start-page: 1905622
  year: 2019
  ident: 10.1016/j.apmate.2022.01.004_bib48
  article-title: Atomically dispersed binary Co−Ni sites in nitrogen-doped hollow carbon nanocubes for reversible oxygen reduction and evolution
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201905622
– volume: 8
  year: 2018
  ident: 10.1016/j.apmate.2022.01.004_bib84
  article-title: A facile strategy to construct amorphous spinel-based electrocatalysts with massive oxygen vacancies using ionic liquid dopant
  publication-title: Adv. Energy Mater.
– volume: 11
  start-page: 21506
  year: 2019
  ident: 10.1016/j.apmate.2022.01.004_bib32
  article-title: Tuning the bifunctional oxygen electrocatalytic properties of core−shell Co3O4@NiFe LDH catalysts for Zn−Air batteries: Effects of interfacial cation valences
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b04217
– volume: 8
  year: 2021
  ident: 10.1016/j.apmate.2022.01.004_bib94
  article-title: Recent progress on 2D magnets: Fundamental mechanism, structural design and modification
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/5.0039979
– volume: 31
  start-page: 3
  year: 2020
  ident: 10.1016/j.apmate.2022.01.004_bib44
  article-title: “More is different:” Synergistic effect and structural engineering in double-atom catalysts
  publication-title: Adv. Funct. Mater.
– volume: 13
  start-page: 4645
  year: 2021
  ident: 10.1016/j.apmate.2022.01.004_bib62
  article-title: Boosting the electrocatalytic activity of Fe−Co dual-atom catalysts for oxygen reduction reaction by ligand-modification engineering
  publication-title: ChemCatChem
  doi: 10.1002/cctc.202100989
– volume: 168
  year: 2021
  ident: 10.1016/j.apmate.2022.01.004_bib35
  article-title: Stability of atomically dispersed Fe–N–C ORR catalyst in polymer electrolyte fuel cell environment
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/abe34c
– volume: 3
  start-page: 1159
  year: 2011
  ident: 10.1016/j.apmate.2022.01.004_bib81
  article-title: Universality in oxygen evolution electrocatalysis on oxide surfaces
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201000397
– volume: 104
  start-page: 4245
  year: 2004
  ident: 10.1016/j.apmate.2022.01.004_bib5
  article-title: What are batteries, fuel cells, and supercapacitors?
  publication-title: Chem. Rev.
  doi: 10.1021/cr020730k
– volume: 139
  start-page: 17281
  year: 2017
  ident: 10.1016/j.apmate.2022.01.004_bib69
  article-title: Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b10385
– volume: 141
  start-page: 17763
  year: 2019
  ident: 10.1016/j.apmate.2022.01.004_bib56
  article-title: Climbing the apex of the ORR volcano plot via binuclear site construction: Electronic and geometric engineering
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b08362
– volume: 8
  start-page: 4533
  year: 2020
  ident: 10.1016/j.apmate.2022.01.004_bib68
  article-title: Nitrogen electroreduction performance of transition metal dimers embedded into N-doped graphene: A theoretical prediction
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA13599E
– volume: 289–290
  start-page: 315
  year: 2015
  ident: 10.1016/j.apmate.2022.01.004_bib70
  article-title: Magnetic properties of atomic clusters and endohedral metallofullerenes
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2014.12.013
– volume: 143
  start-page: 4405
  year: 2021
  ident: 10.1016/j.apmate.2022.01.004_bib66
  article-title: Electronic spin moment as a catalytic descriptor for Fe single-atom catalysts supported on C2N
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c00889
– volume: 5
  start-page: 1
  year: 2015
  ident: 10.1016/j.apmate.2022.01.004_bib30
  article-title: Trinary layered double hydroxides as high-performance bifunctional materials for oxygen electrocatalysis
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201500245
– volume: 77
  start-page: 3865
  year: 1996
  ident: 10.1016/j.apmate.2022.01.004_bib74
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 2
  start-page: 7933
  year: 2012
  ident: 10.1016/j.apmate.2022.01.004_bib11
  article-title: Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy
  publication-title: RSC Adv.
  doi: 10.1039/c2ra20839c
– volume: 142
  start-page: 5709
  year: 2020
  ident: 10.1016/j.apmate.2022.01.004_bib80
  article-title: Tackling the activity and selectivity challenges of electrocatalysts toward the nitrogen reduction reaction via atomically dispersed biatom catalysts
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b13349
– ident: 10.1016/j.apmate.2022.01.004_bib40
  doi: 10.1016/j.apmate.2021.10.004
– volume: 3
  start-page: 634
  year: 2011
  ident: 10.1016/j.apmate.2022.01.004_bib34
  article-title: Single-atom catalysis of CO oxidation using Pt1/FeOx
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1095
– volume: 615
  year: 2021
  ident: 10.1016/j.apmate.2022.01.004_bib54
  article-title: Density functional theory study of the sulfur/oxygen doped CoN4−graphene electrocatalyst for oxygen reduction reaction
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2021.126219
– volume: 8
  year: 2018
  ident: 10.1016/j.apmate.2022.01.004_bib38
  article-title: Hierarchically porous M–N–C (M = Co and Fe) single-atom electrocatalysts with robust MNx active moieties enable enhanced ORR performance
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801956
– volume: 6
  start-page: 15
  year: 1996
  ident: 10.1016/j.apmate.2022.01.004_bib72
  article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 50
  start-page: 17953
  year: 1994
  ident: 10.1016/j.apmate.2022.01.004_bib73
  article-title: Projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 12
  start-page: 52549
  year: 2020
  ident: 10.1016/j.apmate.2022.01.004_bib79
  article-title: Single atoms on a nitrogen-doped boron phosphide monolayer: A new promising bifunctional electrocatalyst for ORR and OER
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c13597
– volume: 140
  start-page: 15149
  year: 2018
  ident: 10.1016/j.apmate.2022.01.004_bib64
  article-title: Cooperative spin transition of monodispersed FeN3 sites within graphene induced by CO adsorption
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b07816
– volume: 1
  start-page: 74
  year: 2018
  ident: 10.1016/j.apmate.2022.01.004_bib92
  article-title: Large magnetic anisotropy in chemically engineered iridium dimer
  publication-title: Commun. Phys.
  doi: 10.1038/s42005-018-0078-4
– volume: 13
  start-page: 20178
  year: 2011
  ident: 10.1016/j.apmate.2022.01.004_bib19
  article-title: A first principles study of oxygen reduction reaction on a Pt(111) surface modified by a subsurface transition metal M (M = Ni, Co, or Fe)
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c1cp21687b
– volume: 125
  start-page: 22581
  year: 2021
  ident: 10.1016/j.apmate.2022.01.004_bib28
  article-title: First-principles studies on electrocatalytic activity of novel two-dimensional MA2Z4 monolayers toward oxygen reduction reaction
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.1c07044
– volume: 117
  start-page: 1
  year: 2018
  ident: 10.1016/j.apmate.2022.01.004_bib86
  article-title: Fe-porphyrin carbon matrix as a bifunctional catalyst for oxygen reduction and CO2 reduction from theoretical perspective
  publication-title: Mol. Phys.
– volume: 71
  year: 2020
  ident: 10.1016/j.apmate.2022.01.004_bib46
  article-title: Harnessing the interplay of Fe-Ni atom pairs embedded in nitrogen-doped carbon for bifunctional oxygen electrocatalysis
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104597
– volume: 848
  year: 2019
  ident: 10.1016/j.apmate.2022.01.004_bib15
  article-title: Recent progress of Pt-based catalysts for oxygen reduction reaction in preparation strategies and catalytic mechanism
  publication-title: J. Electroanal. Chem.
– volume: 9
  start-page: 7660
  year: 2019
  ident: 10.1016/j.apmate.2022.01.004_bib87
  article-title: Evaluating the catalytic efficiency of paired, single-atom catalysts for the oxygen reduction reaction
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b02178
– volume: 118
  start-page: 2313
  year: 2018
  ident: 10.1016/j.apmate.2022.01.004_bib9
  article-title: Nonprecious metal catalysts for oxygen reduction in heterogeneous aqueous systems
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00335
– volume: 57
  start-page: 1505
  year: 1998
  ident: 10.1016/j.apmate.2022.01.004_bib77
  article-title: Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study
  publication-title: Phys. Rev. B Phys.
  doi: 10.1103/PhysRevB.57.1505
– volume: 613
  year: 2021
  ident: 10.1016/j.apmate.2022.01.004_bib12
  article-title: Copper ferrite nanospheres composites mixed with carbon black to boost the oxygen reduction reaction
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2020.126060
– volume: 58
  start-page: 2622
  year: 2019
  ident: 10.1016/j.apmate.2022.01.004_bib49
  article-title: An isolated zinc−cobalt atomic pair for highly active and durable oxygen reduction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201810175
– volume: 114
  start-page: 11814
  year: 2010
  ident: 10.1016/j.apmate.2022.01.004_bib76
  article-title: Improved description of the structure of molecular and layered crystals: Ab initio DFT calculations with van der waals corrections
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp106469x
– volume: 10
  start-page: 336
  year: 2020
  ident: 10.1016/j.apmate.2022.01.004_bib93
  article-title: Scaling relations in homogeneous catalysis: analyzing the buchwald−hartwig amination reaction
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b04323
– volume: 202
  start-page: 348
  year: 2017
  ident: 10.1016/j.apmate.2022.01.004_bib3
  article-title: Optimization and integration of hybrid renewable energy hydrogen fuel cell energy systems – A critical review
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.03.132
– volume: 3
  start-page: 1800480
  year: 2019
  ident: 10.1016/j.apmate.2022.01.004_bib42
  article-title: 1+1ʹ > 2: heteronuclear Biatom catalyst outperforms its homonuclear counterparts for CO oxidation
  publication-title: Small Methods
  doi: 10.1002/smtd.201800480
– volume: 54
  start-page: 11169
  year: 1996
  ident: 10.1016/j.apmate.2022.01.004_bib71
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 125
  start-page: 9747
  year: 2021
  ident: 10.1016/j.apmate.2022.01.004_bib22
  article-title: Theoretical insights into enhanced electrocatalytic activity of oxygen reduction reactions on N/S-codoped graphene quantum dots
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.1c01495
– volume: 142
  start-page: 16723
  year: 2020
  ident: 10.1016/j.apmate.2022.01.004_bib65
  article-title: Regulating photocatalysis by spin-state manipulation of cobalt in covalent organic frameworks
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c07206
– volume: 48
  start-page: 396
  year: 2018
  ident: 10.1016/j.apmate.2022.01.004_bib45
  article-title: Identification of binuclear Co2N5 active sites for oxygen reduction reaction with more than one magnitude higher activity than single atom CoN4 Site
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.02.025
– volume: 123
  start-page: 27116
  year: 2019
  ident: 10.1016/j.apmate.2022.01.004_bib14
  article-title: Electrocatalytic oxygen reduction reaction over the Au22(L8)6 nanocluster with promising activity: A DFT study
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b09306
SSID ssj0002856893
Score 2.5011826
Snippet In this study, we selected 10 Co-based double-atom catalysts (DACs) catalysts, namely CoMN6-gra(OH) (M ​= ​Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn), and...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 100031
SubjectTerms d-band center
Double-atom catalysts
First-principles calculations
Magnetic coupling
Oxygen reduction reaction
Title Revisiting catalytic performance of supported metal dimers for oxygen reduction reaction via magnetic coupling from first principles
URI https://dx.doi.org/10.1016/j.apmate.2022.01.004
https://doaj.org/article/380b4fdf3a2e41548dd6bc2185df4a9f
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUlp15KS1O6_WIOuYp6JdmSj21JCIX2EBLYmxh9TNjQ7C7JbmguPfWHVyPb6Z6aSy_G2LJlRoPnaXjzRoijrGLqqFfSJNNI0zVWBttaicZlGyJFHSpB9nt3emG-LtrFXqsv5oQN8sCD4T5q1wRDiTSqbBhfp9SFWAJTm8hgT_z3LTFvbzN1VVNGbeeq4q4q8FE6bRZT3VwldzG1v6pkKlVVO8c-bVNcqvL9e-FpL-ScPBfPRqwIn4ZvfCGe5NVL8fus1oMzWxlq7uW-3IXNX_4_rAlud5sqWJ7gOpchkJacnoYyBNY_74vPwA1LtvKilLOhtgHulgjXeLniskaI6x3X6l4C158ALQtIhM2UmL89FBcnx-dfTuXYSkFGM3db2ZvcIjeJR50x60SupWS1ydFgmxWaSA5twIxGBZqHAhpUk1j8LfaJqNOvxMFqvcqvBfREDTKusIimKxs2l0jZjI7Q5tTZmdCTIX0cdca53cUPPxHKrvxgfs_m983cF_PPhHx4ajPobDwy_jOv0cNYVsmuF4rv-NF3_GO-MxN2WmE_Ao4BSJRXLf85_Zv_Mf1b8ZRfOZB_34mD7c0uvy8QZxs-VG8ux2-_jv8AUQv_aA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revisiting+catalytic+performance+of+supported+metal+dimers+for+oxygen+reduction+reaction+via+magnetic+coupling+from+first+principles&rft.jtitle=Advanced+Powder+Materials&rft.au=Linke+Yu&rft.au=Fengyu+Li&rft.au=Jingxiang+Zhao&rft.au=Zhongfang+Chen&rft.date=2022-07-01&rft.pub=KeAi+Communications+Co.+Ltd&rft.issn=2772-834X&rft.eissn=2772-834X&rft.volume=1&rft.issue=3&rft.spage=100031&rft_id=info:doi/10.1016%2Fj.apmate.2022.01.004&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_380b4fdf3a2e41548dd6bc2185df4a9f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2772-834X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2772-834X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2772-834X&client=summon