Revisiting catalytic performance of supported metal dimers for oxygen reduction reaction via magnetic coupling from first principles
In this study, we selected 10 Co-based double-atom catalysts (DACs) catalysts, namely CoMN6-gra(OH) (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn), and investigated their oxygen reduction reactions (ORR) catalytic performances with/without considering the magnetic coupling by means of density functio...
Saved in:
Published in | Advanced Powder Materials Vol. 1; no. 3; p. 100031 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.07.2022
KeAi Communications Co. Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this study, we selected 10 Co-based double-atom catalysts (DACs) catalysts, namely CoMN6-gra(OH) (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn), and investigated their oxygen reduction reactions (ORR) catalytic performances with/without considering the magnetic coupling by means of density functional theory (DFT) calculations. It was found that CoNiN6-gra(OH), CoCuN6-gra(OH), and CoZnN6-gra(OH) exhibit good catalytic activity of ORR (with low overpotentials of 0.33, 0.34 and 0.23 V, respectively) when the magnetic coupling is considered. In particular, magnetic changes in CoMN6-gra(OH) candidates play a vital role in their ORR catalytic activity. Interestingly, the d-band center can be utilized to well rationalize the ORR catalytic activity. This work highlights the importance of considering the magnetic coupling to well predict the activity of ORR catalysts, and discloses that the manipulation of the magnetic coupling between transition metal atoms is an emerging and powerful approach for the development of high-performance electrocatalysts for ORR and other related reactions.
[Display omitted] |
---|---|
AbstractList | In this study, we selected 10 Co-based double-atom catalysts (DACs) catalysts, namely CoMN6-gra(OH) (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn), and investigated their oxygen reduction reactions (ORR) catalytic performances with/without considering the magnetic coupling by means of density functional theory (DFT) calculations. It was found that CoNiN6-gra(OH), CoCuN6-gra(OH), and CoZnN6-gra(OH) exhibit good catalytic activity of ORR (with low overpotentials of 0.33, 0.34 and 0.23 V, respectively) when the magnetic coupling is considered. In particular, magnetic changes in CoMN6-gra(OH) candidates play a vital role in their ORR catalytic activity. Interestingly, the d-band center can be utilized to well rationalize the ORR catalytic activity. This work highlights the importance of considering the magnetic coupling to well predict the activity of ORR catalysts, and discloses that the manipulation of the magnetic coupling between transition metal atoms is an emerging and powerful approach for the development of high-performance electrocatalysts for ORR and other related reactions. In this study, we selected 10 Co-based double-atom catalysts (DACs) catalysts, namely CoMN6-gra(OH) (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn), and investigated their oxygen reduction reactions (ORR) catalytic performances with/without considering the magnetic coupling by means of density functional theory (DFT) calculations. It was found that CoNiN6-gra(OH), CoCuN6-gra(OH), and CoZnN6-gra(OH) exhibit good catalytic activity of ORR (with low overpotentials of 0.33, 0.34 and 0.23 V, respectively) when the magnetic coupling is considered. In particular, magnetic changes in CoMN6-gra(OH) candidates play a vital role in their ORR catalytic activity. Interestingly, the d-band center can be utilized to well rationalize the ORR catalytic activity. This work highlights the importance of considering the magnetic coupling to well predict the activity of ORR catalysts, and discloses that the manipulation of the magnetic coupling between transition metal atoms is an emerging and powerful approach for the development of high-performance electrocatalysts for ORR and other related reactions. [Display omitted] |
ArticleNumber | 100031 |
Author | Yu, Linke Chen, Zhongfang Li, Fengyu Zhao, Jingxiang |
Author_xml | – sequence: 1 givenname: Linke surname: Yu fullname: Yu, Linke organization: School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China – sequence: 2 givenname: Fengyu orcidid: 0000-0002-9483-8554 surname: Li fullname: Li, Fengyu email: fengyuli@imu.edu.cn organization: School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China – sequence: 3 givenname: Jingxiang orcidid: 0000-0001-6023-8887 surname: Zhao fullname: Zhao, Jingxiang email: xjz_hmily@163.com organization: College of Chemistry and Chemical Engineering, Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, 150025, China – sequence: 4 givenname: Zhongfang surname: Chen fullname: Chen, Zhongfang email: zhongfang.chen1@upr.edu organization: Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan, PR, 00931, USA |
BookMark | eNqFkc-KFDEQxoOs4LruG3jIC0ybf92T9iDIouvCgiAK3kJ1UhkydHeaJDM4dx_ctC0iHvSSfIT6flWp7zm5muOMhLzkrOGMd6-ODSwTFGwEE6JhvGFMPSHXYr8XOy3V16s_9DNym_ORMSZ02-leXpPvn_AccihhPlALBcZLCZYumHxME8wWafQ0n5YlpoKOTlhLqAsTpkxrCY3fLgecaUJ3siXEVcEmzgHoBIcZV6CNp2Vce_gUJ-pDyoUuKcw2LCPmF-SphzHj7a_7hnx5_-7z3Yfd48f7h7u3jzuruC67XmELknX1QEDpvG6920uFVkGLApT1GvYDICgxeD4IIQVznPfc9s77Tt6Qh43rIhxN7T9BupgIwfx8iOlgINVxRzRSs0F55yUIVLxV2rlusILr1nkFva8stbFsijkn9L95nJk1GHM0WzBmDcYwbmow1fb6L5sNBdaFlQRh_J_5zWbGuqRzwGSyDVhDciGhLfUX4d-AH5ils1g |
CitedBy_id | crossref_primary_10_1021_acs_energyfuels_2c01871 crossref_primary_10_1016_j_jcat_2022_10_011 crossref_primary_10_1039_D2TA00709F crossref_primary_10_1007_s11467_022_1208_8 crossref_primary_10_1002_aenm_202403524 crossref_primary_10_3390_cryst12091289 crossref_primary_10_1021_acs_jpclett_4c02399 crossref_primary_10_1039_D2CP01793H crossref_primary_10_3390_nano12091518 crossref_primary_10_1039_D2TA02642B crossref_primary_10_1039_D2NA00348A crossref_primary_10_1039_D2TA03269D crossref_primary_10_1039_D2TA05056K crossref_primary_10_1039_D2CP00672C crossref_primary_10_1149_1945_7111_ac7c95 crossref_primary_10_1002_elan_202300030 crossref_primary_10_1039_D2CP02911A crossref_primary_10_1002_adfm_202316699 crossref_primary_10_1021_acscatal_3c01584 crossref_primary_10_1039_D4TA06497F crossref_primary_10_1002_cssc_202401957 crossref_primary_10_1039_D2TA08240C crossref_primary_10_1021_acsnano_3c10451 crossref_primary_10_1103_PhysRevApplied_19_054094 crossref_primary_10_1002_sstr_202400175 crossref_primary_10_3390_catal12111387 crossref_primary_10_1002_adfm_202311618 crossref_primary_10_1039_D2TA02463B crossref_primary_10_1039_D4TA02381A crossref_primary_10_1016_j_ijhydene_2023_12_142 crossref_primary_10_1039_D4TC04102J crossref_primary_10_1016_j_jcat_2024_115524 crossref_primary_10_1002_advs_202309883 crossref_primary_10_1016_j_chphma_2022_03_007 crossref_primary_10_1016_j_mtnano_2022_100278 crossref_primary_10_1002_eem2_12600 crossref_primary_10_1002_smll_202307863 crossref_primary_10_1002_adts_202301016 crossref_primary_10_1007_s12598_023_02415_9 crossref_primary_10_1021_acsestengg_4c00177 |
Cites_doi | 10.1126/science.aan2255 10.1016/j.jcis.2021.02.052 10.1021/acs.nanolett.9b05123 10.1002/advs.202000176 10.1021/acs.chemrev.7b00488 10.1021/ja512411b 10.1039/C8NR07106C 10.1021/acs.jpcc.0c00446 10.1021/acs.jpclett.1c02432 10.1021/acscatal.1c01030 10.1021/acs.jpcc.0c10617 10.1002/smll.201900288 10.1021/acs.jpcc.9b09647 10.1002/anie.201109257 10.1002/adfm.201904782 10.1039/D0TA08004G 10.1021/acssuschemeng.9b04058 10.1039/C8EE01157E 10.1038/s41467-019-12509-7 10.1021/acs.jpclett.1c00421 10.1038/nmat4367 10.1021/acs.jpclett.9b03392 10.1021/acsnano.7b08196 10.1021/acs.jpcc.0c08692 10.1039/C9RA02822F 10.1021/jacs.9b09352 10.1021/jp8001564 10.1021/jacs.8b08682 10.1021/jacs.5b01088 10.1016/j.carbon.2017.12.121 10.1016/j.apcatb.2018.08.074 10.1002/adma.201802234 10.1021/acsami.0c21597 10.1021/acs.jpclett.9b00891 10.1021/acs.jpcc.9b11990 10.1021/acs.jpcc.8b09203 10.1016/j.matt.2019.11.014 10.1021/nn500880v 10.1021/acsami.0c15870 10.1021/acsami.9b13580 10.1021/jacs.1c03135 10.1021/cs3000792 10.1016/j.nantod.2016.09.001 10.1002/adma.201905622 10.1021/acsami.9b04217 10.1063/5.0039979 10.1002/cctc.202100989 10.1149/1945-7111/abe34c 10.1002/cctc.201000397 10.1021/cr020730k 10.1021/jacs.7b10385 10.1021/jacs.9b08362 10.1039/C9TA13599E 10.1016/j.ccr.2014.12.013 10.1021/jacs.1c00889 10.1002/aenm.201500245 10.1103/PhysRevLett.77.3865 10.1039/c2ra20839c 10.1021/jacs.9b13349 10.1016/j.apmate.2021.10.004 10.1038/nchem.1095 10.1016/j.colsurfa.2021.126219 10.1002/aenm.201801956 10.1016/0927-0256(96)00008-0 10.1103/PhysRevB.50.17953 10.1021/acsami.0c13597 10.1021/jacs.8b07816 10.1038/s42005-018-0078-4 10.1039/c1cp21687b 10.1021/acs.jpcc.1c07044 10.1016/j.nanoen.2020.104597 10.1021/acscatal.9b02178 10.1021/acs.chemrev.7b00335 10.1103/PhysRevB.57.1505 10.1016/j.colsurfa.2020.126060 10.1002/anie.201810175 10.1021/jp106469x 10.1021/acscatal.9b04323 10.1016/j.apenergy.2017.03.132 10.1002/smtd.201800480 10.1103/PhysRevB.54.11169 10.1021/acs.jpcc.1c01495 10.1021/jacs.0c07206 10.1016/j.nanoen.2018.02.025 10.1021/acs.jpcc.9b09306 |
ContentType | Journal Article |
Copyright | 2022 Central South University. |
Copyright_xml | – notice: 2022 Central South University. |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.apmate.2022.01.004 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2772-834X |
ExternalDocumentID | oai_doaj_org_article_380b4fdf3a2e41548dd6bc2185df4a9f 10_1016_j_apmate_2022_01_004 S2772834X22000100 |
GroupedDBID | 6I. AAFTH AAXUO ALMA_UNASSIGNED_HOLDINGS AMRAJ ARCSS EBS FDB GROUPED_DOAJ M41 M~E ROL AALRI AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AITUG AKBMS AKRWK AKYEP CITATION |
ID | FETCH-LOGICAL-c418t-94e5a3065a3eae3df85fd734ec4a5e2a4cf8a7baea42bf1b22320d1191c9dff63 |
IEDL.DBID | DOA |
ISSN | 2772-834X |
IngestDate | Wed Aug 27 01:30:23 EDT 2025 Tue Jul 01 03:19:45 EDT 2025 Thu Apr 24 23:10:13 EDT 2025 Tue Jul 25 20:59:37 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | First-principles calculations Double-atom catalysts Oxygen reduction reaction Magnetic coupling d-band center |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c418t-94e5a3065a3eae3df85fd734ec4a5e2a4cf8a7baea42bf1b22320d1191c9dff63 |
ORCID | 0000-0001-6023-8887 0000-0002-9483-8554 |
OpenAccessLink | https://doaj.org/article/380b4fdf3a2e41548dd6bc2185df4a9f |
ParticipantIDs | doaj_primary_oai_doaj_org_article_380b4fdf3a2e41548dd6bc2185df4a9f crossref_primary_10_1016_j_apmate_2022_01_004 crossref_citationtrail_10_1016_j_apmate_2022_01_004 elsevier_sciencedirect_doi_10_1016_j_apmate_2022_01_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2022 2022-07-00 2022-07-01 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: July 2022 |
PublicationDecade | 2020 |
PublicationTitle | Advanced Powder Materials |
PublicationYear | 2022 |
Publisher | Elsevier B.V KeAi Communications Co. Ltd |
Publisher_xml | – name: Elsevier B.V – name: KeAi Communications Co. Ltd |
References | Deng, Li, Tang (bib14) 2019; 123 Yang, Xia, Kang, Du, Kang, Gan, Li (bib88) 2020; 7 Chang, Bai, Li, Ren, Liu, Yang, Zhong, Lu (bib25) 2020; 20 Deng, Su, Li, Shen, Chen, Tang (bib51) 2020; 8 Ahluwalia, Wang, Osmieri, Peng, Cetinbas, Park, Myers, Chung, Neyerlin (bib35) 2021; 168 Zhu, Zhang, Chen, Zhang, Liu, Xia, Dai, Amal, Lu (bib46) 2020; 71 Li, Li, Huang, Cao, Wen (bib62) 2021; 13 Yia, Jianga, Baoa, Zoua, Liaoc, Zhang (bib15) 2019; 848 Li, Zhao, Cai, Yin, Zhao (bib68) 2020; 8 Mathew, Sundararaman, Letchworth-Weaver, Arias, Hennig (bib78) 2014; 140 Xu, Elangovan, Li, Liu (bib55) 2021; 125 Liu, Zhu, Yang, Jia, Jin, Wang (bib59) 2019; 9 Man, Su, Calle-Vallejo, Hansen, Martínez, Inoglu, Kitchin, Jaramillo, Nørskov, Rossmeisl (bib81) 2011; 3 Bučko, Hafner, Lebègue, Ángyán (bib76) 2010; 114 Hunter, Fischer, Yuan, Hankel, Searles (bib87) 2019; 9 Duan, Wang (bib19) 2011; 13 Yuan, Ma, Ai, Kang, Lee (bib21) 2021; 592 Osgood, Devaguptapu, Xu, Cho, Wu (bib29) 2016; 11 Ling, Xia, Li, Zhou, Luo, Bu, Huang, Liu, Kang, Zhou (bib41) 2021; 13 Pan, Zhang, Liu, Chen, Li (bib43) 2020; 2 Eriksson, Gray (bib3) 2017; 202 Zhang, Wu, Peng, Wang, Xia, Guo (bib6) 2015; 137 Blöchl (bib73) 1994; 50 Xiao, Chen, Zhu, Zhang, Zhao, Gao, Wang, Zhao, Ge, Jiang, Chen, Liu, Xing (bib56) 2019; 141 Smeets, McCusker, Baerlocher, Xie, Chen, Zones (bib4) 2015; 137 Wang, Markovic, Stamenkovic (bib17) 2012; 2 Feng, An, Li, Zuo, Song, Ning, Jiang, Cheng, Zhang, Xia (bib2) 2019; 10 Li, Liu, Chen (bib42) 2019; 3 Sadighi, Liu, Zhao, Ciucci, Kim (bib27) 2018; 10 Yang, Zhao, Zhang, Zhao, Xiao, Ma, Ajayan, Shi, Chen (bib1) 2018; 12 Guo, Feng, Chen, Song, Dong, Yu, Dong (bib22) 2021; 125 Tang, Chen, Li, Li, Jiao, Zheng, Xu, Davey, Qiao (bib63) 2021; 143 Dudarev, Botton, Savrasov, Humphreys, Sutton (bib77) 1998; 57 Liu, Zhao, Duan, Huang (bib16) 2019; 31 Gao, Cao, Gao, Xu, Zheng, Jiang, Yu (bib83) 2014; 8 H. Jing, P. Zhu, X. Zheng, Z. Zhang, D. Wang, Y. Li. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis, Adv. Powder Mater. 1 (2022)100013 Chung, Cullen, Higgins, Sneed, Holby, More, Zelenay (bib89) 2017; 357 Russell (bib18) 2008; 10 . Gewirth, Varnell, DiAscro (bib9) 2018; 118 Dang, Tang, Liu, Li, Wang, Zhong, Luo, Jiang (bib67) 2021; 12 Anand, Nørskov (bib93) 2020; 10 Reddy, Krishnamurthy, Grinberg (bib61) 2020; 124 Gong, Zhong, Li, Qiu, Zheng, Jiang, Jiang (bib65) 2020; 142 Kresse, Furthmüller (bib71) 1996; 54 Zitolo, Goellner, Armel, Sougrati, Mineva, Stievano, Fonda, Jaouen (bib91) 2015; 14 Liang, Wu, Hu, Zhao, Zeng (bib92) 2018; 1 Deng, Li, He, Shen, Li (bib57) 2020; 124 Zhao, Tao, Dang, Wang, Xia, Wang, Liu, Gao, Zhang, Zhao (bib26) 2019; 15 Li, Li, Zhang, Jiang (bib64) 2018; 140 Flores-Lasluisa, Salinas-Torres, Lόpez-Ramόn, Álvarez, Moreno-Castilla, Cazorla-Amorόs, Morallόn (bib12) 2021; 613 Zhao, Huang, Jin, Chen (bib70) 2015; 289–290 Meng, Yin, Li, Tang, Wang, Wu (bib85) 2019; 7 Zhang, Zhao, Chen, Huang, Dong, Chen, Liu, Wang, Yan, Li, Wang (bib58) 2019; 141 Zhong, Qiu, Shen, Wang, Yuan, Jia, Bi, Jiang (bib66) 2021; 143 Sun, Guo, Shao, Huang, Li, He, Wang (bib84) 2018; 8 Chen, Tian, Tang (bib28) 2021; 125 Chen, Huang, Sun, Lai (bib8) 2020; 124 Qian, Lu, Xu, Wu, Tian, Li, Huo, Sun, Duan (bib30) 2015; 5 Xue, Shen, Jiang, Sengdala, Chen, Feng (bib24) 2019; 10 Chung, Cullen, Higgins, Sneed, Holby, More, Zelenay (bib37) 2017; 357 Kulkarni, Siahrostami, Patel, Nørskov (bib10) 2018; 118 Zhang, Gong, Ma, Wang, Zhang, Xia (bib50) 2020; 124 Ye, Chen, Lin, Yang, Chen, Zheng, Qi, Wang, Long, Chen, Zhu, Gao, Song, Jiang, Xiong (bib47) 2019; 5 Liu, Cheng, Wang, Li, Wang, Wu (bib86) 2018; 117 Vesborg, Jaramillo (bib11) 2012; 2 Li, He, Cao, Sun, Diao, Gao, Lu, Zhang, Guo, Li, Liu, Ren, Liu, Zhang, Yang, Jiang, Zhang (bib36) 2019; 240 Staffell, Scamman, Abad, Balcombe, Dodds, Ekins, Shahd, Ward (bib7) 2019; 12 Perdew, Burke, Ernzerhof (bib74) 1996; 77 Zhao, Gu, Chen (bib90) 2019; 29 Wang, Zhang, Xia, Roy, Chang, Baek, Dai (bib20) 2012; 51 Xue, Meng, Huang, Feng, Qi (bib23) 2021; 3 Ziegelbauer, Olson, Pylypenko, Alamgir, Jaye, Atanassov, Mukerjee (bib39) 2008; 112 Winter, Brodd (bib5) 2004; 104 Chowdhury, Datta (bib75) 2018; 122 Qiao, Wang, Yang, Allard, Jiang, Cui, Liu, Li, Zhang (bib34) 2011; 3 Lu, Wang, Hu, Liu, Zhao, Yang, Li, Luo, Chi, Jiang, Li, Mu, Liao, Zhang, Sun (bib49) 2019; 58 Chen, Lin, Qing, Zhang, Li (bib54) 2021; 615 Zeng, Liu, Chen, Chen, Fan, Lau (bib79) 2020; 12 Zhu, Shi, Xu, Fu, Wan, Yang, Yao, Song, Zhou, Du, Beckman, Su, Lin (bib38) 2018; 8 Xiao, Zhang, Chen, Zhu, Gao, Jin, Ge, Jiang, Chen, Liu, Xing (bib45) 2018; 48 Jiang, Liu, Xing, Liu, Guo, Liu, Zhao (bib94) 2021; 8 Roy, Pramanik, Sarkar (bib53) 2021; 12 Guo, Gu, Lin, Zhang, Chen, Huang (bib80) 2020; 142 Zhu, Yan, Gu, Liu, Dai, Gu, Li (bib52) 2019; 10 Sun, Deng, Tian, Tang (bib31) 2021; 11 Guo, Hu, Wu, Jing, Liu, Ren, Zhao, Jiang, Xu, Zhang, Hu (bib32) 2019; 11 Zhang, Yang, Lu, Wang (bib60) 2018; 130 Wang, Huang, Liu, Chang, Tang, Li, Chen, Jia, Yao, Wei, Wu, Li (bib69) 2017; 139 Shao, Meng, Sun, Guo, Xue, Huang, He, Li, Wang (bib82) 2020; 12 Ying, Luo, Qiao, Huang (bib44) 2020; 31 Kresse, Furthmüller (bib72) 1996; 6 Han, Ling, Yu, Xie, Li, Peng, Zhong, Zhao, Deng, Hu (bib48) 2019; 31 Wang, Li, Heine (bib13) 2018; 140 Ha, Shi, Yan, Chen, Li, Xu, Wu (bib33) 2019; 11 Feng (10.1016/j.apmate.2022.01.004_bib2) 2019; 10 Meng (10.1016/j.apmate.2022.01.004_bib85) 2019; 7 Li (10.1016/j.apmate.2022.01.004_bib42) 2019; 3 Anand (10.1016/j.apmate.2022.01.004_bib93) 2020; 10 Mathew (10.1016/j.apmate.2022.01.004_bib78) 2014; 140 Deng (10.1016/j.apmate.2022.01.004_bib51) 2020; 8 Zhang (10.1016/j.apmate.2022.01.004_bib60) 2018; 130 Zhong (10.1016/j.apmate.2022.01.004_bib66) 2021; 143 Chung (10.1016/j.apmate.2022.01.004_bib89) 2017; 357 Zitolo (10.1016/j.apmate.2022.01.004_bib91) 2015; 14 Dudarev (10.1016/j.apmate.2022.01.004_bib77) 1998; 57 Zhao (10.1016/j.apmate.2022.01.004_bib26) 2019; 15 Roy (10.1016/j.apmate.2022.01.004_bib53) 2021; 12 Duan (10.1016/j.apmate.2022.01.004_bib19) 2011; 13 Guo (10.1016/j.apmate.2022.01.004_bib22) 2021; 125 Zhu (10.1016/j.apmate.2022.01.004_bib52) 2019; 10 Chowdhury (10.1016/j.apmate.2022.01.004_bib75) 2018; 122 Liang (10.1016/j.apmate.2022.01.004_bib92) 2018; 1 Deng (10.1016/j.apmate.2022.01.004_bib14) 2019; 123 Sun (10.1016/j.apmate.2022.01.004_bib84) 2018; 8 10.1016/j.apmate.2022.01.004_bib40 Xiao (10.1016/j.apmate.2022.01.004_bib45) 2018; 48 Li (10.1016/j.apmate.2022.01.004_bib64) 2018; 140 Chang (10.1016/j.apmate.2022.01.004_bib25) 2020; 20 Ziegelbauer (10.1016/j.apmate.2022.01.004_bib39) 2008; 112 Kresse (10.1016/j.apmate.2022.01.004_bib71) 1996; 54 Russell (10.1016/j.apmate.2022.01.004_bib18) 2008; 10 Sadighi (10.1016/j.apmate.2022.01.004_bib27) 2018; 10 Zhao (10.1016/j.apmate.2022.01.004_bib90) 2019; 29 Pan (10.1016/j.apmate.2022.01.004_bib43) 2020; 2 Yuan (10.1016/j.apmate.2022.01.004_bib21) 2021; 592 Ling (10.1016/j.apmate.2022.01.004_bib41) 2021; 13 Lu (10.1016/j.apmate.2022.01.004_bib49) 2019; 58 Yang (10.1016/j.apmate.2022.01.004_bib88) 2020; 7 Chen (10.1016/j.apmate.2022.01.004_bib28) 2021; 125 Gewirth (10.1016/j.apmate.2022.01.004_bib9) 2018; 118 Li (10.1016/j.apmate.2022.01.004_bib36) 2019; 240 Zhang (10.1016/j.apmate.2022.01.004_bib58) 2019; 141 Kresse (10.1016/j.apmate.2022.01.004_bib72) 1996; 6 Shao (10.1016/j.apmate.2022.01.004_bib82) 2020; 12 Xu (10.1016/j.apmate.2022.01.004_bib55) 2021; 125 Guo (10.1016/j.apmate.2022.01.004_bib80) 2020; 142 Liu (10.1016/j.apmate.2022.01.004_bib16) 2019; 31 Zhang (10.1016/j.apmate.2022.01.004_bib50) 2020; 124 Zhao (10.1016/j.apmate.2022.01.004_bib70) 2015; 289–290 Hunter (10.1016/j.apmate.2022.01.004_bib87) 2019; 9 Gong (10.1016/j.apmate.2022.01.004_bib65) 2020; 142 Yang (10.1016/j.apmate.2022.01.004_bib1) 2018; 12 Eriksson (10.1016/j.apmate.2022.01.004_bib3) 2017; 202 Flores-Lasluisa (10.1016/j.apmate.2022.01.004_bib12) 2021; 613 Chen (10.1016/j.apmate.2022.01.004_bib8) 2020; 124 Qiao (10.1016/j.apmate.2022.01.004_bib34) 2011; 3 Wang (10.1016/j.apmate.2022.01.004_bib20) 2012; 51 Qian (10.1016/j.apmate.2022.01.004_bib30) 2015; 5 Chen (10.1016/j.apmate.2022.01.004_bib54) 2021; 615 Han (10.1016/j.apmate.2022.01.004_bib48) 2019; 31 Zeng (10.1016/j.apmate.2022.01.004_bib79) 2020; 12 Zhu (10.1016/j.apmate.2022.01.004_bib46) 2020; 71 Chung (10.1016/j.apmate.2022.01.004_bib37) 2017; 357 Liu (10.1016/j.apmate.2022.01.004_bib86) 2018; 117 Dang (10.1016/j.apmate.2022.01.004_bib67) 2021; 12 Staffell (10.1016/j.apmate.2022.01.004_bib7) 2019; 12 Ye (10.1016/j.apmate.2022.01.004_bib47) 2019; 5 Xiao (10.1016/j.apmate.2022.01.004_bib56) 2019; 141 Blöchl (10.1016/j.apmate.2022.01.004_bib73) 1994; 50 Jiang (10.1016/j.apmate.2022.01.004_bib94) 2021; 8 Li (10.1016/j.apmate.2022.01.004_bib68) 2020; 8 Wang (10.1016/j.apmate.2022.01.004_bib69) 2017; 139 Vesborg (10.1016/j.apmate.2022.01.004_bib11) 2012; 2 Tang (10.1016/j.apmate.2022.01.004_bib63) 2021; 143 Wang (10.1016/j.apmate.2022.01.004_bib17) 2012; 2 Sun (10.1016/j.apmate.2022.01.004_bib31) 2021; 11 Winter (10.1016/j.apmate.2022.01.004_bib5) 2004; 104 Yia (10.1016/j.apmate.2022.01.004_bib15) 2019; 848 Wang (10.1016/j.apmate.2022.01.004_bib13) 2018; 140 Smeets (10.1016/j.apmate.2022.01.004_bib4) 2015; 137 Zhang (10.1016/j.apmate.2022.01.004_bib6) 2015; 137 Xue (10.1016/j.apmate.2022.01.004_bib23) 2021; 3 Reddy (10.1016/j.apmate.2022.01.004_bib61) 2020; 124 Guo (10.1016/j.apmate.2022.01.004_bib32) 2019; 11 Ha (10.1016/j.apmate.2022.01.004_bib33) 2019; 11 Liu (10.1016/j.apmate.2022.01.004_bib59) 2019; 9 Deng (10.1016/j.apmate.2022.01.004_bib57) 2020; 124 Osgood (10.1016/j.apmate.2022.01.004_bib29) 2016; 11 Man (10.1016/j.apmate.2022.01.004_bib81) 2011; 3 Perdew (10.1016/j.apmate.2022.01.004_bib74) 1996; 77 Kulkarni (10.1016/j.apmate.2022.01.004_bib10) 2018; 118 Xue (10.1016/j.apmate.2022.01.004_bib24) 2019; 10 Ahluwalia (10.1016/j.apmate.2022.01.004_bib35) 2021; 168 Li (10.1016/j.apmate.2022.01.004_bib62) 2021; 13 Zhu (10.1016/j.apmate.2022.01.004_bib38) 2018; 8 Bučko (10.1016/j.apmate.2022.01.004_bib76) 2010; 114 Gao (10.1016/j.apmate.2022.01.004_bib83) 2014; 8 Ying (10.1016/j.apmate.2022.01.004_bib44) 2020; 31 |
References_xml | – volume: 124 start-page: 27387 year: 2020 end-page: 27395 ident: bib50 article-title: Disperse multimetal atom-doped carbon as efficient bifunctional electrocatalysts for oxygen reduction and evolution reactions: Design strategies publication-title: J. Phys. Chem. C – volume: 31 start-page: 3 year: 2020 ident: bib44 article-title: “More is different:” Synergistic effect and structural engineering in double-atom catalysts publication-title: Adv. Funct. Mater. – volume: 5 start-page: 2865 year: 2019 end-page: 2878 ident: bib47 article-title: Precisely tuning the number of Fe atoms in clusters on N-doped carbon toward acidic oxygen reduction reaction publication-title: Inside Chem. – volume: 10 start-page: 7760 year: 2019 end-page: 7766 ident: bib52 article-title: Activity origin and design principles for oxygen reduction on dualmetal-site catalysts: A combined density functional theory and machine learning study publication-title: J. Phys. Chem. Lett. – volume: 615 year: 2021 ident: bib54 article-title: Density functional theory study of the sulfur/oxygen doped CoN publication-title: Colloids Surf. A Physicochem. Eng. Asp. – volume: 143 start-page: 4405 year: 2021 end-page: 4413 ident: bib66 article-title: Electronic spin moment as a catalytic descriptor for Fe single-atom catalysts supported on C publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 17412 year: 2021 end-page: 17419 ident: bib41 article-title: Single transition metal atom bound to the unconventional phase of the MoS publication-title: ACS Appl. Mater. Interfaces – volume: 141 start-page: 20118 year: 2019 end-page: 20126 ident: bib58 article-title: Tuning the coordination environment in single-atom catalysts to achieve highly efficient oxygen reduction reactions publication-title: J. Am. Chem. Soc. – volume: 122 start-page: 27233 year: 2018 end-page: 27240 ident: bib75 article-title: Silicon-doped nitrogen-coordinated graphene as electrocatalyst for oxygen reduction reaction publication-title: J. Phys. Chem. C – volume: 117 start-page: 1 year: 2018 end-page: 8 ident: bib86 article-title: Fe-porphyrin carbon matrix as a bifunctional catalyst for oxygen reduction and CO publication-title: Mol. Phys. – volume: 2 start-page: 7933 year: 2012 end-page: 7947 ident: bib11 article-title: Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy publication-title: RSC Adv. – volume: 1 start-page: 74 year: 2018 ident: bib92 article-title: Large magnetic anisotropy in chemically engineered iridium dimer publication-title: Commun. Phys. – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: bib74 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. – volume: 12 start-page: 829 year: 2018 end-page: 835 ident: bib1 article-title: Graphene-based standalone solar energy converter for water desalination and purification publication-title: ACS Nano – volume: 140 start-page: 12732 year: 2018 end-page: 12735 ident: bib13 article-title: PtTe monolayer: two-dimensional electrocatalyst with high basal plane activity toward oxygen reduction reaction publication-title: J. Am. Chem. Soc. – volume: 71 year: 2020 ident: bib46 article-title: Harnessing the interplay of Fe-Ni atom pairs embedded in nitrogen-doped carbon for bifunctional oxygen electrocatalysis publication-title: Nano Energy – volume: 357 start-page: 479 year: 2017 end-page: 484 ident: bib37 article-title: Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst publication-title: Science – volume: 125 start-page: 22581 year: 2021 end-page: 22590 ident: bib28 article-title: First-principles studies on electrocatalytic activity of novel two-dimensional MA publication-title: J. Phys. Chem. C – volume: 141 start-page: 17763 year: 2019 end-page: 17770 ident: bib56 article-title: Climbing the apex of the ORR volcano plot via binuclear site construction: Electronic and geometric engineering publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 3722 year: 2008 end-page: 3730 ident: bib18 article-title: Electrocatalysis: theory and experiment at the interface publication-title: Phys. Chem. Chem. Phys. – volume: 8 year: 2018 ident: bib84 article-title: A facile strategy to construct amorphous spinel-based electrocatalysts with massive oxygen vacancies using ionic liquid dopant publication-title: Adv. Energy Mater. – volume: 137 start-page: 2015 year: 2015 end-page: 2020 ident: bib4 article-title: SSZ-87: a borosilicate zeolite with unusually flexible 10-ring pore openings publication-title: J. Am. Chem. Soc. – volume: 31 start-page: 1802234 year: 2019 ident: bib16 article-title: Nanoscale structure design for high-performance Pt-based ORR catalysts publication-title: Adv. Mater. – volume: 123 start-page: 27116 year: 2019 end-page: 27123 ident: bib14 article-title: Electrocatalytic oxygen reduction reaction over the Au publication-title: J. Phys. Chem. C – volume: 143 start-page: 7819 year: 2021 end-page: 7827 ident: bib63 article-title: Tailoring acidic oxygen reduction selectivity on single-atom catalysts via modification of first and second coordination spheres publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 4533 year: 2020 end-page: 4543 ident: bib68 article-title: Nitrogen electroreduction performance of transition metal dimers embedded into N-doped graphene: A theoretical prediction publication-title: J. Mater. Chem. A – volume: 124 start-page: 1413 year: 2020 end-page: 1420 ident: bib8 article-title: Modifications of metal and ligand to modulate the oxygen reduction reaction activity of two-dimensional MOF catalysts publication-title: J. Phys. Chem. C – volume: 142 start-page: 5709 year: 2020 end-page: 5721 ident: bib80 article-title: Tackling the activity and selectivity challenges of electrocatalysts toward the nitrogen reduction reaction publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 20178 year: 2011 end-page: 20187 ident: bib19 article-title: A first principles study of oxygen reduction reaction on a Pt(111) surface modified by a subsurface transition metal M (M = Ni, Co, or Fe) publication-title: Phys. Chem. Chem. Phys. – volume: 3 start-page: 1800480 year: 2019 ident: bib42 article-title: 1+1ʹ > 2: heteronuclear Biatom catalyst outperforms its homonuclear counterparts for CO oxidation publication-title: Small Methods – volume: 54 start-page: 11169 year: 1996 end-page: 11186 ident: bib71 article-title: Efficient iterative schemes for publication-title: Phys. Rev. B – volume: 2 start-page: 78 year: 2020 end-page: 110 ident: bib43 article-title: Structural regulation with atomic-level precision: From single-atomic site to diatomic and atomic interface catalysis publication-title: Matter – volume: 12 start-page: 51846 year: 2020 end-page: 51853 ident: bib82 article-title: Engineering of amorphous structures and sulfur defects into ultrathin FeS nanosheets to achieve superior electrocatalytic alkaline oxygen evolution publication-title: ACS Appl. Mater. Interfaces – volume: 7 year: 2020 ident: bib88 article-title: Unveiling the axial hydroxyl ligand on Fe–N publication-title: Adv. Sci. – volume: 2 start-page: 891 year: 2012 end-page: 898 ident: bib17 article-title: Advanced platinum alloy electrocatalysts for the oxygen reduction reaction publication-title: ACS Catal. – volume: 140 year: 2014 ident: bib78 article-title: Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways publication-title: J. Chem. Phys. – volume: 118 start-page: 2313 year: 2018 end-page: 2339 ident: bib9 article-title: Nonprecious metal catalysts for oxygen reduction in heterogeneous aqueous systems publication-title: Chem. Rev. – volume: 10 start-page: 4514 year: 2019 ident: bib2 article-title: Atomically ordered non-precious Co publication-title: Nat. Commun. – volume: 8 year: 2018 ident: bib38 article-title: Hierarchically porous M–N–C (M = Co and Fe) single-atom electrocatalysts with robust MN publication-title: Adv. Energy Mater. – volume: 10 start-page: 3440 year: 2019 end-page: 3446 ident: bib24 article-title: Tuning the catalytic property of phosphorene for oxygen evolution and reduction reactions by changing oxidation degree publication-title: J. Phys. Chem. Lett. – volume: 140 start-page: 15149 year: 2018 end-page: 15152 ident: bib64 article-title: Cooperative spin transition of monodispersed FeN publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 7957 year: 2021 end-page: 7969 ident: bib31 article-title: Oxygen electrocatalysis by [Au publication-title: ACS Catal. – volume: 3 start-page: 634 year: 2011 end-page: 641 ident: bib34 article-title: Single-atom catalysis of CO oxidation using Pt publication-title: Nat. Chem. – volume: 10 start-page: 336 year: 2020 end-page: 345 ident: bib93 article-title: Scaling relations in homogeneous catalysis: analyzing the buchwald−hartwig amination reaction publication-title: ACS Catal. – volume: 9 start-page: 7660 year: 2019 end-page: 7667 ident: bib87 article-title: Evaluating the catalytic efficiency of paired, single-atom catalysts for the oxygen reduction reaction publication-title: ACS Catal. – volume: 8 year: 2021 ident: bib94 article-title: Recent progress on 2D magnets: Fundamental mechanism, structural design and modification publication-title: Appl. Phys. Rev. – volume: 124 start-page: 19530 year: 2020 end-page: 19537 ident: bib57 article-title: Understanding and breaking the scaling relations in the oxygen reduction reaction on Pd publication-title: J. Phys. Chem. C – volume: 118 start-page: 2302 year: 2018 end-page: 2312 ident: bib10 article-title: Understanding catalytic activity trends in the oxygen reduction reaction publication-title: Chem. Rev. – volume: 168 year: 2021 ident: bib35 article-title: Stability of atomically dispersed Fe–N–C ORR catalyst in polymer electrolyte fuel cell environment publication-title: J. Electrochem. Soc. – reference: H. Jing, P. Zhu, X. Zheng, Z. Zhang, D. Wang, Y. Li. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis, Adv. Powder Mater. 1 (2022)100013, – volume: 130 start-page: 112 year: 2018 end-page: 119 ident: bib60 article-title: Bifunctional CoN publication-title: Carbon – volume: 11 start-page: 21506 year: 2019 end-page: 21514 ident: bib32 article-title: Tuning the bifunctional oxygen electrocatalytic properties of core−shell Co publication-title: ACS Appl. Mater. Interfaces – volume: 12 start-page: 52549 year: 2020 end-page: 52559 ident: bib79 article-title: Single atoms on a nitrogen-doped boron phosphide monolayer: A new promising bifunctional electrocatalyst for ORR and OER publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 1 year: 2015 end-page: 6 ident: bib30 article-title: Trinary layered double hydroxides as high-performance bifunctional materials for oxygen electrocatalysis publication-title: Adv. Energy Mater. – volume: 9 start-page: 22656 year: 2019 end-page: 22667 ident: bib59 article-title: Systematic exploration of N,C configurational effects on the ORR performance of Fe−N doped graphene catalysts based on DFT Calculations publication-title: RSC Adv. – volume: 613 year: 2021 ident: bib12 article-title: Copper ferrite nanospheres composites mixed with carbon black to boost the oxygen reduction reaction publication-title: Colloids Surf. A Physicochem. Eng. Asp. – volume: 112 start-page: 8839 year: 2008 end-page: 8849 ident: bib39 article-title: Direct spectroscopic observation of the structural origin of peroxide generation from Co-based pyrolyzed porphyrins for ORR applications publication-title: J. Phys. Chem. C – volume: 357 start-page: 479 year: 2017 end-page: 484 ident: bib89 article-title: Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst publication-title: Science – volume: 137 start-page: 6263 year: 2015 end-page: 6269 ident: bib6 article-title: One-step, facile and ultrafast synthesis of phase- and size-controlled Pt−Bi intermetallic nanocatalysts through continuous flow microfluidics publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 24563 year: 2020 end-page: 24571 ident: bib51 article-title: Understanding activity origin for the oxygen reduction reaction on bi-atom catalysts by DFT studies and machine-learning publication-title: J. Mater. Chem. A – volume: 139 start-page: 17281 year: 2017 end-page: 17284 ident: bib69 article-title: Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction publication-title: J. Am. Chem. Soc. – volume: 240 start-page: 112 year: 2019 end-page: 121 ident: bib36 article-title: Atomic Co/Ni dual sites and Co/Ni alloy nanoparticles in N-doped porous janus-like carbon frameworks for bifunctional oxygen electrocatalysis publication-title: Appl. Catal., B – volume: 114 start-page: 11814 year: 2010 end-page: 11824 ident: bib76 article-title: Improved description of the structure of molecular and layered crystals: Ab initio DFT calculations with van der waals corrections publication-title: J. Phys. Chem. A – volume: 58 start-page: 2622 year: 2019 end-page: 2626 ident: bib49 article-title: An isolated zinc−cobalt atomic pair for highly active and durable oxygen reduction publication-title: Angew. Chem. Int. Ed. – volume: 6 start-page: 15 year: 1996 end-page: 50 ident: bib72 article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set publication-title: Comput. Mater. Sci. – volume: 7 start-page: 17273 year: 2019 end-page: 17281 ident: bib85 article-title: Improved oxygen reduction activity in heteronuclear FeCo-codoped graphene: A theoretical study publication-title: ACS Sustain. Chem. Eng. – volume: 50 start-page: 17953 year: 1994 end-page: 17979 ident: bib73 article-title: Projector augmented-wave method publication-title: Phys. Rev. B – volume: 11 start-page: 45546 year: 2019 end-page: 45553 ident: bib33 article-title: Multifunctional electrocatalysis on a porous N-doped NiCo publication-title: ACS Appl. Mater. Interfaces – volume: 124 start-page: 11275 year: 2020 end-page: 11283 ident: bib61 article-title: First-principles study of the ligand substituent effect on ORR catalysis by metallocorroles publication-title: J. Phys. Chem. C – volume: 104 start-page: 4245 year: 2004 end-page: 4269 ident: bib5 article-title: What are batteries, fuel cells, and supercapacitors? publication-title: Chem. Rev. – volume: 125 start-page: 9747 year: 2021 end-page: 9755 ident: bib22 article-title: Theoretical insights into enhanced electrocatalytic activity of oxygen reduction reactions on N/S-codoped graphene quantum dots publication-title: J. Phys. Chem. C – volume: 13 start-page: 4645 year: 2021 end-page: 4651 ident: bib62 article-title: Boosting the electrocatalytic activity of Fe−Co dual-atom catalysts for oxygen reduction reaction by ligand-modification engineering publication-title: ChemCatChem – volume: 31 start-page: 1905622 year: 2019 ident: bib48 article-title: Atomically dispersed binary Co−Ni sites in nitrogen-doped hollow carbon nanocubes for reversible oxygen reduction and evolution publication-title: Adv. Mater. – volume: 592 start-page: 440 year: 2021 end-page: 447 ident: bib21 article-title: A simple general descriptor for rational design of graphyne-based bifunctional electrocatalysts toward hydrogen evolution and oxygen reduction reactions publication-title: J. Colloid Interface Sci. – volume: 57 start-page: 1505 year: 1998 ident: bib77 article-title: Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study publication-title: Phys. Rev. B Phys. – volume: 3 year: 2021 ident: bib23 article-title: Black phosphorus-based materials for energy storage and electrocatalytic applications publication-title: J. Phys. Energy – volume: 142 start-page: 16723 year: 2020 end-page: 16731 ident: bib65 article-title: Regulating photocatalysis by spin-state manipulation of cobalt in covalent organic frameworks publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 22549 year: 2018 ident: bib27 article-title: Metallic MoS publication-title: Nanoscale – volume: 848 year: 2019 ident: bib15 article-title: Recent progress of Pt-based catalysts for oxygen reduction reaction in preparation strategies and catalytic mechanism publication-title: J. Electroanal. Chem. – volume: 14 start-page: 937 year: 2015 ident: bib91 article-title: Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials publication-title: Nat. Mater. – volume: 12 start-page: 463 year: 2019 ident: bib7 article-title: The role of hydrogen and fuel cells in the global energy system publication-title: Energy Environ. Sci. – reference: . – volume: 12 start-page: 8355 year: 2021 end-page: 8362 ident: bib67 article-title: Regulating electronic spin moments of single-atom catalyst sites via single-atom promoter tuning on s-vacancy MoS publication-title: J. Phys. Chem. Lett. – volume: 12 start-page: 2788 year: 2021 end-page: 2795 ident: bib53 article-title: Graphitic carbon nitride sheet supported single-atom metal-free photocatalyst for oxygen reduction reaction: A first-principles analysis publication-title: J. Phys. Chem. Lett. – volume: 11 start-page: 601 year: 2016 end-page: 625 ident: bib29 article-title: Transition metal (Fe, Co, Ni, and Mn) oxides for oxygen reduction and evolution bifunctional catalysts in alkaline media publication-title: Nano Today – volume: 15 year: 2019 ident: bib26 article-title: High-indexed PtNi alloy skin spiraled on Pd nanowires for highly efficient oxygen reduction reaction catalysis publication-title: Small – volume: 3 start-page: 1159 year: 2011 end-page: 1165 ident: bib81 article-title: Universality in oxygen evolution electrocatalysis on oxide surfaces publication-title: ChemCatChem – volume: 125 start-page: 2334 year: 2021 end-page: 2344 ident: bib55 article-title: Graphene-based dual-metal sites for oxygen reduction reaction: A theoretical study publication-title: J. Phys. Chem. C – volume: 289–290 start-page: 315 year: 2015 end-page: 340 ident: bib70 article-title: Magnetic properties of atomic clusters and endohedral metallofullerenes publication-title: Coord. Chem. Rev. – volume: 8 start-page: 3970 year: 2014 end-page: 3978 ident: bib83 article-title: Nitrogen-doped graphene supported CoSe publication-title: ACS Nano – volume: 51 start-page: 4209 year: 2012 end-page: 4212 ident: bib20 article-title: BCN graphene as efficient metal-free electrocatalyst for the oxygen reduction reaction publication-title: Angew. Chem. Int. Ed. – volume: 20 start-page: 2416 year: 2020 end-page: 2422 ident: bib25 article-title: Strain-modulated platinum−palladium nanowires for oxygen reduction reaction publication-title: Nano Lett. – volume: 48 start-page: 396 year: 2018 end-page: 403 ident: bib45 article-title: Identification of binuclear Co publication-title: Nano Energy – volume: 202 start-page: 348 year: 2017 end-page: 364 ident: bib3 article-title: Optimization and integration of hybrid renewable energy hydrogen fuel cell energy systems – A critical review publication-title: Appl. Energy – volume: 29 year: 2019 ident: bib90 article-title: Oxygen evolution reaction on 2D ferromagnetic Fe publication-title: Adv. Funct. Mater. – volume: 357 start-page: 479 year: 2017 ident: 10.1016/j.apmate.2022.01.004_bib37 article-title: Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst publication-title: Science doi: 10.1126/science.aan2255 – volume: 592 start-page: 440 year: 2021 ident: 10.1016/j.apmate.2022.01.004_bib21 article-title: A simple general descriptor for rational design of graphyne-based bifunctional electrocatalysts toward hydrogen evolution and oxygen reduction reactions publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.02.052 – volume: 20 start-page: 2416 year: 2020 ident: 10.1016/j.apmate.2022.01.004_bib25 article-title: Strain-modulated platinum−palladium nanowires for oxygen reduction reaction publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b05123 – volume: 7 year: 2020 ident: 10.1016/j.apmate.2022.01.004_bib88 article-title: Unveiling the axial hydroxyl ligand on Fe–N4–C electrocatalysts and its impact on the pH-dependent oxygen reduction activities and poisoning kinetics publication-title: Adv. Sci. doi: 10.1002/advs.202000176 – volume: 118 start-page: 2302 year: 2018 ident: 10.1016/j.apmate.2022.01.004_bib10 article-title: Understanding catalytic activity trends in the oxygen reduction reaction publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00488 – volume: 137 start-page: 2015 year: 2015 ident: 10.1016/j.apmate.2022.01.004_bib4 article-title: SSZ-87: a borosilicate zeolite with unusually flexible 10-ring pore openings publication-title: J. Am. Chem. Soc. doi: 10.1021/ja512411b – volume: 10 start-page: 22549 year: 2018 ident: 10.1016/j.apmate.2022.01.004_bib27 article-title: Metallic MoS2 nanosheets: Multifunctional electrocatalyst for the ORR, OER and Li–O2 batteries publication-title: Nanoscale doi: 10.1039/C8NR07106C – volume: 124 start-page: 19530 year: 2020 ident: 10.1016/j.apmate.2022.01.004_bib57 article-title: Understanding and breaking the scaling relations in the oxygen reduction reaction on PdxCu4−x subnanoclusters supported by defective two-dimensional boron nitride materials publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.0c00446 – volume: 12 start-page: 8355 year: 2021 ident: 10.1016/j.apmate.2022.01.004_bib67 article-title: Regulating electronic spin moments of single-atom catalyst sites via single-atom promoter tuning on s-vacancy MoS2 for efficient nitrogen fixation publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.1c02432 – volume: 10 start-page: 3722 year: 2008 ident: 10.1016/j.apmate.2022.01.004_bib18 article-title: Electrocatalysis: theory and experiment at the interface publication-title: Phys. Chem. Chem. Phys. – volume: 11 start-page: 7957 year: 2021 ident: 10.1016/j.apmate.2022.01.004_bib31 article-title: Oxygen electrocatalysis by [Au25(SR)18]: Charge, doping, and ligand removal effect publication-title: ACS Catal. doi: 10.1021/acscatal.1c01030 – volume: 125 start-page: 2334 year: 2021 ident: 10.1016/j.apmate.2022.01.004_bib55 article-title: Graphene-based dual-metal sites for oxygen reduction reaction: A theoretical study publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.0c10617 – volume: 15 year: 2019 ident: 10.1016/j.apmate.2022.01.004_bib26 article-title: High-indexed PtNi alloy skin spiraled on Pd nanowires for highly efficient oxygen reduction reaction catalysis publication-title: Small doi: 10.1002/smll.201900288 – volume: 124 start-page: 1413 year: 2020 ident: 10.1016/j.apmate.2022.01.004_bib8 article-title: Modifications of metal and ligand to modulate the oxygen reduction reaction activity of two-dimensional MOF catalysts publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b09647 – volume: 51 start-page: 4209 year: 2012 ident: 10.1016/j.apmate.2022.01.004_bib20 article-title: BCN graphene as efficient metal-free electrocatalyst for the oxygen reduction reaction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201109257 – volume: 29 year: 2019 ident: 10.1016/j.apmate.2022.01.004_bib90 article-title: Oxygen evolution reaction on 2D ferromagnetic Fe3GeTe2: Boosting the reactivity by the self-reduction of surface hydroxyl publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201904782 – volume: 8 start-page: 24563 year: 2020 ident: 10.1016/j.apmate.2022.01.004_bib51 article-title: Understanding activity origin for the oxygen reduction reaction on bi-atom catalysts by DFT studies and machine-learning publication-title: J. Mater. Chem. A doi: 10.1039/D0TA08004G – volume: 7 start-page: 17273 year: 2019 ident: 10.1016/j.apmate.2022.01.004_bib85 article-title: Improved oxygen reduction activity in heteronuclear FeCo-codoped graphene: A theoretical study publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b04058 – volume: 12 start-page: 463 year: 2019 ident: 10.1016/j.apmate.2022.01.004_bib7 article-title: The role of hydrogen and fuel cells in the global energy system publication-title: Energy Environ. Sci. doi: 10.1039/C8EE01157E – volume: 10 start-page: 4514 year: 2019 ident: 10.1016/j.apmate.2022.01.004_bib2 article-title: Atomically ordered non-precious Co3Ta intermetallic nanoparticles as high-performance catalysts for hydrazine electrooxidation publication-title: Nat. Commun. doi: 10.1038/s41467-019-12509-7 – volume: 12 start-page: 2788 year: 2021 ident: 10.1016/j.apmate.2022.01.004_bib53 article-title: Graphitic carbon nitride sheet supported single-atom metal-free photocatalyst for oxygen reduction reaction: A first-principles analysis publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.1c00421 – volume: 14 start-page: 937 year: 2015 ident: 10.1016/j.apmate.2022.01.004_bib91 article-title: Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials publication-title: Nat. Mater. doi: 10.1038/nmat4367 – volume: 10 start-page: 7760 year: 2019 ident: 10.1016/j.apmate.2022.01.004_bib52 article-title: Activity origin and design principles for oxygen reduction on dualmetal-site catalysts: A combined density functional theory and machine learning study publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b03392 – volume: 12 start-page: 829 year: 2018 ident: 10.1016/j.apmate.2022.01.004_bib1 article-title: Graphene-based standalone solar energy converter for water desalination and purification publication-title: ACS Nano doi: 10.1021/acsnano.7b08196 – volume: 124 start-page: 27387 year: 2020 ident: 10.1016/j.apmate.2022.01.004_bib50 article-title: Disperse multimetal atom-doped carbon as efficient bifunctional electrocatalysts for oxygen reduction and evolution reactions: Design strategies publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.0c08692 – volume: 9 start-page: 22656 year: 2019 ident: 10.1016/j.apmate.2022.01.004_bib59 article-title: Systematic exploration of N,C configurational effects on the ORR performance of Fe−N doped graphene catalysts based on DFT Calculations publication-title: RSC Adv. doi: 10.1039/C9RA02822F – volume: 141 start-page: 20118 year: 2019 ident: 10.1016/j.apmate.2022.01.004_bib58 article-title: Tuning the coordination environment in single-atom catalysts to achieve highly efficient oxygen reduction reactions publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b09352 – volume: 112 start-page: 8839 year: 2008 ident: 10.1016/j.apmate.2022.01.004_bib39 article-title: Direct spectroscopic observation of the structural origin of peroxide generation from Co-based pyrolyzed porphyrins for ORR applications publication-title: J. Phys. Chem. C doi: 10.1021/jp8001564 – volume: 140 start-page: 12732 year: 2018 ident: 10.1016/j.apmate.2022.01.004_bib13 article-title: PtTe monolayer: two-dimensional electrocatalyst with high basal plane activity toward oxygen reduction reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b08682 – volume: 137 start-page: 6263 year: 2015 ident: 10.1016/j.apmate.2022.01.004_bib6 article-title: One-step, facile and ultrafast synthesis of phase- and size-controlled Pt−Bi intermetallic nanocatalysts through continuous flow microfluidics publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b01088 – volume: 130 start-page: 112 year: 2018 ident: 10.1016/j.apmate.2022.01.004_bib60 article-title: Bifunctional CoNx embedded graphene electrocatalysts for OER and ORR: A theoretical evaluation publication-title: Carbon doi: 10.1016/j.carbon.2017.12.121 – volume: 240 start-page: 112 year: 2019 ident: 10.1016/j.apmate.2022.01.004_bib36 article-title: Atomic Co/Ni dual sites and Co/Ni alloy nanoparticles in N-doped porous janus-like carbon frameworks for bifunctional oxygen electrocatalysis publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2018.08.074 – volume: 5 start-page: 2865 year: 2019 ident: 10.1016/j.apmate.2022.01.004_bib47 article-title: Precisely tuning the number of Fe atoms in clusters on N-doped carbon toward acidic oxygen reduction reaction publication-title: Inside Chem. – volume: 31 start-page: 1802234 year: 2019 ident: 10.1016/j.apmate.2022.01.004_bib16 article-title: Nanoscale structure design for high-performance Pt-based ORR catalysts publication-title: Adv. Mater. doi: 10.1002/adma.201802234 – volume: 13 start-page: 17412 year: 2021 ident: 10.1016/j.apmate.2022.01.004_bib41 article-title: Single transition metal atom bound to the unconventional phase of the MoS2 monolayer for catalytic oxygen reduction reaction: A first-principles study publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c21597 – volume: 140 year: 2014 ident: 10.1016/j.apmate.2022.01.004_bib78 article-title: Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways publication-title: J. Chem. Phys. – volume: 10 start-page: 3440 year: 2019 ident: 10.1016/j.apmate.2022.01.004_bib24 article-title: Tuning the catalytic property of phosphorene for oxygen evolution and reduction reactions by changing oxidation degree publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b00891 – volume: 124 start-page: 11275 year: 2020 ident: 10.1016/j.apmate.2022.01.004_bib61 article-title: First-principles study of the ligand substituent effect on ORR catalysis by metallocorroles publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b11990 – volume: 122 start-page: 27233 year: 2018 ident: 10.1016/j.apmate.2022.01.004_bib75 article-title: Silicon-doped nitrogen-coordinated graphene as electrocatalyst for oxygen reduction reaction publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b09203 – volume: 2 start-page: 78 year: 2020 ident: 10.1016/j.apmate.2022.01.004_bib43 article-title: Structural regulation with atomic-level precision: From single-atomic site to diatomic and atomic interface catalysis publication-title: Matter doi: 10.1016/j.matt.2019.11.014 – volume: 8 start-page: 3970 year: 2014 ident: 10.1016/j.apmate.2022.01.004_bib83 article-title: Nitrogen-doped graphene supported CoSe2 nanobelt composite catalyst for efficient water oxidation publication-title: ACS Nano doi: 10.1021/nn500880v – volume: 12 start-page: 51846 year: 2020 ident: 10.1016/j.apmate.2022.01.004_bib82 article-title: Engineering of amorphous structures and sulfur defects into ultrathin FeS nanosheets to achieve superior electrocatalytic alkaline oxygen evolution publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c15870 – volume: 11 start-page: 45546 year: 2019 ident: 10.1016/j.apmate.2022.01.004_bib33 article-title: Multifunctional electrocatalysis on a porous N-doped NiCo2O4@C nanonetwork publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b13580 – volume: 143 start-page: 7819 year: 2021 ident: 10.1016/j.apmate.2022.01.004_bib63 article-title: Tailoring acidic oxygen reduction selectivity on single-atom catalysts via modification of first and second coordination spheres publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c03135 – volume: 357 start-page: 479 year: 2017 ident: 10.1016/j.apmate.2022.01.004_bib89 article-title: Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst publication-title: Science doi: 10.1126/science.aan2255 – volume: 2 start-page: 891 year: 2012 ident: 10.1016/j.apmate.2022.01.004_bib17 article-title: Advanced platinum alloy electrocatalysts for the oxygen reduction reaction publication-title: ACS Catal. doi: 10.1021/cs3000792 – volume: 3 year: 2021 ident: 10.1016/j.apmate.2022.01.004_bib23 article-title: Black phosphorus-based materials for energy storage and electrocatalytic applications publication-title: J. Phys. Energy – volume: 11 start-page: 601 year: 2016 ident: 10.1016/j.apmate.2022.01.004_bib29 article-title: Transition metal (Fe, Co, Ni, and Mn) oxides for oxygen reduction and evolution bifunctional catalysts in alkaline media publication-title: Nano Today doi: 10.1016/j.nantod.2016.09.001 – volume: 31 start-page: 1905622 year: 2019 ident: 10.1016/j.apmate.2022.01.004_bib48 article-title: Atomically dispersed binary Co−Ni sites in nitrogen-doped hollow carbon nanocubes for reversible oxygen reduction and evolution publication-title: Adv. Mater. doi: 10.1002/adma.201905622 – volume: 8 year: 2018 ident: 10.1016/j.apmate.2022.01.004_bib84 article-title: A facile strategy to construct amorphous spinel-based electrocatalysts with massive oxygen vacancies using ionic liquid dopant publication-title: Adv. Energy Mater. – volume: 11 start-page: 21506 year: 2019 ident: 10.1016/j.apmate.2022.01.004_bib32 article-title: Tuning the bifunctional oxygen electrocatalytic properties of core−shell Co3O4@NiFe LDH catalysts for Zn−Air batteries: Effects of interfacial cation valences publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b04217 – volume: 8 year: 2021 ident: 10.1016/j.apmate.2022.01.004_bib94 article-title: Recent progress on 2D magnets: Fundamental mechanism, structural design and modification publication-title: Appl. Phys. Rev. doi: 10.1063/5.0039979 – volume: 31 start-page: 3 year: 2020 ident: 10.1016/j.apmate.2022.01.004_bib44 article-title: “More is different:” Synergistic effect and structural engineering in double-atom catalysts publication-title: Adv. Funct. Mater. – volume: 13 start-page: 4645 year: 2021 ident: 10.1016/j.apmate.2022.01.004_bib62 article-title: Boosting the electrocatalytic activity of Fe−Co dual-atom catalysts for oxygen reduction reaction by ligand-modification engineering publication-title: ChemCatChem doi: 10.1002/cctc.202100989 – volume: 168 year: 2021 ident: 10.1016/j.apmate.2022.01.004_bib35 article-title: Stability of atomically dispersed Fe–N–C ORR catalyst in polymer electrolyte fuel cell environment publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/abe34c – volume: 3 start-page: 1159 year: 2011 ident: 10.1016/j.apmate.2022.01.004_bib81 article-title: Universality in oxygen evolution electrocatalysis on oxide surfaces publication-title: ChemCatChem doi: 10.1002/cctc.201000397 – volume: 104 start-page: 4245 year: 2004 ident: 10.1016/j.apmate.2022.01.004_bib5 article-title: What are batteries, fuel cells, and supercapacitors? publication-title: Chem. Rev. doi: 10.1021/cr020730k – volume: 139 start-page: 17281 year: 2017 ident: 10.1016/j.apmate.2022.01.004_bib69 article-title: Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b10385 – volume: 141 start-page: 17763 year: 2019 ident: 10.1016/j.apmate.2022.01.004_bib56 article-title: Climbing the apex of the ORR volcano plot via binuclear site construction: Electronic and geometric engineering publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b08362 – volume: 8 start-page: 4533 year: 2020 ident: 10.1016/j.apmate.2022.01.004_bib68 article-title: Nitrogen electroreduction performance of transition metal dimers embedded into N-doped graphene: A theoretical prediction publication-title: J. Mater. Chem. A doi: 10.1039/C9TA13599E – volume: 289–290 start-page: 315 year: 2015 ident: 10.1016/j.apmate.2022.01.004_bib70 article-title: Magnetic properties of atomic clusters and endohedral metallofullerenes publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2014.12.013 – volume: 143 start-page: 4405 year: 2021 ident: 10.1016/j.apmate.2022.01.004_bib66 article-title: Electronic spin moment as a catalytic descriptor for Fe single-atom catalysts supported on C2N publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c00889 – volume: 5 start-page: 1 year: 2015 ident: 10.1016/j.apmate.2022.01.004_bib30 article-title: Trinary layered double hydroxides as high-performance bifunctional materials for oxygen electrocatalysis publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201500245 – volume: 77 start-page: 3865 year: 1996 ident: 10.1016/j.apmate.2022.01.004_bib74 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 2 start-page: 7933 year: 2012 ident: 10.1016/j.apmate.2022.01.004_bib11 article-title: Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy publication-title: RSC Adv. doi: 10.1039/c2ra20839c – volume: 142 start-page: 5709 year: 2020 ident: 10.1016/j.apmate.2022.01.004_bib80 article-title: Tackling the activity and selectivity challenges of electrocatalysts toward the nitrogen reduction reaction via atomically dispersed biatom catalysts publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b13349 – ident: 10.1016/j.apmate.2022.01.004_bib40 doi: 10.1016/j.apmate.2021.10.004 – volume: 3 start-page: 634 year: 2011 ident: 10.1016/j.apmate.2022.01.004_bib34 article-title: Single-atom catalysis of CO oxidation using Pt1/FeOx publication-title: Nat. Chem. doi: 10.1038/nchem.1095 – volume: 615 year: 2021 ident: 10.1016/j.apmate.2022.01.004_bib54 article-title: Density functional theory study of the sulfur/oxygen doped CoN4−graphene electrocatalyst for oxygen reduction reaction publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2021.126219 – volume: 8 year: 2018 ident: 10.1016/j.apmate.2022.01.004_bib38 article-title: Hierarchically porous M–N–C (M = Co and Fe) single-atom electrocatalysts with robust MNx active moieties enable enhanced ORR performance publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801956 – volume: 6 start-page: 15 year: 1996 ident: 10.1016/j.apmate.2022.01.004_bib72 article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 50 start-page: 17953 year: 1994 ident: 10.1016/j.apmate.2022.01.004_bib73 article-title: Projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 12 start-page: 52549 year: 2020 ident: 10.1016/j.apmate.2022.01.004_bib79 article-title: Single atoms on a nitrogen-doped boron phosphide monolayer: A new promising bifunctional electrocatalyst for ORR and OER publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c13597 – volume: 140 start-page: 15149 year: 2018 ident: 10.1016/j.apmate.2022.01.004_bib64 article-title: Cooperative spin transition of monodispersed FeN3 sites within graphene induced by CO adsorption publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b07816 – volume: 1 start-page: 74 year: 2018 ident: 10.1016/j.apmate.2022.01.004_bib92 article-title: Large magnetic anisotropy in chemically engineered iridium dimer publication-title: Commun. Phys. doi: 10.1038/s42005-018-0078-4 – volume: 13 start-page: 20178 year: 2011 ident: 10.1016/j.apmate.2022.01.004_bib19 article-title: A first principles study of oxygen reduction reaction on a Pt(111) surface modified by a subsurface transition metal M (M = Ni, Co, or Fe) publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c1cp21687b – volume: 125 start-page: 22581 year: 2021 ident: 10.1016/j.apmate.2022.01.004_bib28 article-title: First-principles studies on electrocatalytic activity of novel two-dimensional MA2Z4 monolayers toward oxygen reduction reaction publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.1c07044 – volume: 117 start-page: 1 year: 2018 ident: 10.1016/j.apmate.2022.01.004_bib86 article-title: Fe-porphyrin carbon matrix as a bifunctional catalyst for oxygen reduction and CO2 reduction from theoretical perspective publication-title: Mol. Phys. – volume: 71 year: 2020 ident: 10.1016/j.apmate.2022.01.004_bib46 article-title: Harnessing the interplay of Fe-Ni atom pairs embedded in nitrogen-doped carbon for bifunctional oxygen electrocatalysis publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104597 – volume: 848 year: 2019 ident: 10.1016/j.apmate.2022.01.004_bib15 article-title: Recent progress of Pt-based catalysts for oxygen reduction reaction in preparation strategies and catalytic mechanism publication-title: J. Electroanal. Chem. – volume: 9 start-page: 7660 year: 2019 ident: 10.1016/j.apmate.2022.01.004_bib87 article-title: Evaluating the catalytic efficiency of paired, single-atom catalysts for the oxygen reduction reaction publication-title: ACS Catal. doi: 10.1021/acscatal.9b02178 – volume: 118 start-page: 2313 year: 2018 ident: 10.1016/j.apmate.2022.01.004_bib9 article-title: Nonprecious metal catalysts for oxygen reduction in heterogeneous aqueous systems publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00335 – volume: 57 start-page: 1505 year: 1998 ident: 10.1016/j.apmate.2022.01.004_bib77 article-title: Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study publication-title: Phys. Rev. B Phys. doi: 10.1103/PhysRevB.57.1505 – volume: 613 year: 2021 ident: 10.1016/j.apmate.2022.01.004_bib12 article-title: Copper ferrite nanospheres composites mixed with carbon black to boost the oxygen reduction reaction publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2020.126060 – volume: 58 start-page: 2622 year: 2019 ident: 10.1016/j.apmate.2022.01.004_bib49 article-title: An isolated zinc−cobalt atomic pair for highly active and durable oxygen reduction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201810175 – volume: 114 start-page: 11814 year: 2010 ident: 10.1016/j.apmate.2022.01.004_bib76 article-title: Improved description of the structure of molecular and layered crystals: Ab initio DFT calculations with van der waals corrections publication-title: J. Phys. Chem. A doi: 10.1021/jp106469x – volume: 10 start-page: 336 year: 2020 ident: 10.1016/j.apmate.2022.01.004_bib93 article-title: Scaling relations in homogeneous catalysis: analyzing the buchwald−hartwig amination reaction publication-title: ACS Catal. doi: 10.1021/acscatal.9b04323 – volume: 202 start-page: 348 year: 2017 ident: 10.1016/j.apmate.2022.01.004_bib3 article-title: Optimization and integration of hybrid renewable energy hydrogen fuel cell energy systems – A critical review publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.03.132 – volume: 3 start-page: 1800480 year: 2019 ident: 10.1016/j.apmate.2022.01.004_bib42 article-title: 1+1ʹ > 2: heteronuclear Biatom catalyst outperforms its homonuclear counterparts for CO oxidation publication-title: Small Methods doi: 10.1002/smtd.201800480 – volume: 54 start-page: 11169 year: 1996 ident: 10.1016/j.apmate.2022.01.004_bib71 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 125 start-page: 9747 year: 2021 ident: 10.1016/j.apmate.2022.01.004_bib22 article-title: Theoretical insights into enhanced electrocatalytic activity of oxygen reduction reactions on N/S-codoped graphene quantum dots publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.1c01495 – volume: 142 start-page: 16723 year: 2020 ident: 10.1016/j.apmate.2022.01.004_bib65 article-title: Regulating photocatalysis by spin-state manipulation of cobalt in covalent organic frameworks publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c07206 – volume: 48 start-page: 396 year: 2018 ident: 10.1016/j.apmate.2022.01.004_bib45 article-title: Identification of binuclear Co2N5 active sites for oxygen reduction reaction with more than one magnitude higher activity than single atom CoN4 Site publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.02.025 – volume: 123 start-page: 27116 year: 2019 ident: 10.1016/j.apmate.2022.01.004_bib14 article-title: Electrocatalytic oxygen reduction reaction over the Au22(L8)6 nanocluster with promising activity: A DFT study publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b09306 |
SSID | ssj0002856893 |
Score | 2.5011826 |
Snippet | In this study, we selected 10 Co-based double-atom catalysts (DACs) catalysts, namely CoMN6-gra(OH) (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn), and... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 100031 |
SubjectTerms | d-band center Double-atom catalysts First-principles calculations Magnetic coupling Oxygen reduction reaction |
Title | Revisiting catalytic performance of supported metal dimers for oxygen reduction reaction via magnetic coupling from first principles |
URI | https://dx.doi.org/10.1016/j.apmate.2022.01.004 https://doaj.org/article/380b4fdf3a2e41548dd6bc2185df4a9f |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUlp15KS1O6_WIOuYp6JdmSj21JCIX2EBLYmxh9TNjQ7C7JbmguPfWHVyPb6Z6aSy_G2LJlRoPnaXjzRoijrGLqqFfSJNNI0zVWBttaicZlGyJFHSpB9nt3emG-LtrFXqsv5oQN8sCD4T5q1wRDiTSqbBhfp9SFWAJTm8hgT_z3LTFvbzN1VVNGbeeq4q4q8FE6bRZT3VwldzG1v6pkKlVVO8c-bVNcqvL9e-FpL-ScPBfPRqwIn4ZvfCGe5NVL8fus1oMzWxlq7uW-3IXNX_4_rAlud5sqWJ7gOpchkJacnoYyBNY_74vPwA1LtvKilLOhtgHulgjXeLniskaI6x3X6l4C158ALQtIhM2UmL89FBcnx-dfTuXYSkFGM3db2ZvcIjeJR50x60SupWS1ydFgmxWaSA5twIxGBZqHAhpUk1j8LfaJqNOvxMFqvcqvBfREDTKusIimKxs2l0jZjI7Q5tTZmdCTIX0cdca53cUPPxHKrvxgfs_m983cF_PPhHx4ajPobDwy_jOv0cNYVsmuF4rv-NF3_GO-MxN2WmE_Ao4BSJRXLf85_Zv_Mf1b8ZRfOZB_34mD7c0uvy8QZxs-VG8ux2-_jv8AUQv_aA |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revisiting+catalytic+performance+of+supported+metal+dimers+for+oxygen+reduction+reaction+via+magnetic+coupling+from+first+principles&rft.jtitle=Advanced+Powder+Materials&rft.au=Linke+Yu&rft.au=Fengyu+Li&rft.au=Jingxiang+Zhao&rft.au=Zhongfang+Chen&rft.date=2022-07-01&rft.pub=KeAi+Communications+Co.+Ltd&rft.issn=2772-834X&rft.eissn=2772-834X&rft.volume=1&rft.issue=3&rft.spage=100031&rft_id=info:doi/10.1016%2Fj.apmate.2022.01.004&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_380b4fdf3a2e41548dd6bc2185df4a9f |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2772-834X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2772-834X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2772-834X&client=summon |