Detection of Male and Female Litchi Flowers Using YOLO-HPFD Multi-Teacher Feature Distillation and FPGA-Embedded Platform

Litchi florescence has large flower spikes and volume; reasonable control of the ratio of male to female litchi flowers is the key operational aspect of litchi orchards for preserving quality and increasing production. To achieve the rapid detection of male and female litchi flowers, reduce manual s...

Full description

Saved in:
Bibliographic Details
Published inAgronomy (Basel) Vol. 13; no. 4; p. 987
Main Authors Lyu, Shilei, Zhao, Yawen, Liu, Xueya, Li, Zhen, Wang, Chao, Shen, Jiyuan
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Litchi florescence has large flower spikes and volume; reasonable control of the ratio of male to female litchi flowers is the key operational aspect of litchi orchards for preserving quality and increasing production. To achieve the rapid detection of male and female litchi flowers, reduce manual statistical errors, and meet the demand for accurate fertilizer regulation, an intelligent detection method for male and female litchi flowers suitable for deployment to low-power embedded platforms is proposed. The method uses multi-teacher pre-activation feature distillation (MPFD) and chooses the relatively complex YOLOv4 and YOLOv5-l as the teacher models and the relatively simple YOLOv4-Tiny as the student model. By dynamically learning the intermediate feature knowledge of the different teacher models, the student model can improve its detection performance by meeting the embedded platform application requirements such as low power consumption and real-time performance. The main objectives of this study are as follows: optimize the distillation position before the activation function (pre-activation) to reduce the feature distillation loss; use the LogCosh-Squared function as the distillation distance loss function to improve distillation performance; adopt the margin-activation method to improve the features of the teacher model passed to the student model; and propose to adopt the Convolution and Group Normalization (Conv-GN) structure for the feature transformation of the student model to prevent effective information loss. Moreover, the distilled student model is quantified and ported for deployment to a field-programmable gate array (FPGA)-embedded platform to design and implement a fast, intelligent detection system for male and female litchi flowers. The experimental results show that compared with an undistilled student model, the mAP of the student model obtained after MPFD feature distillation is improved by 4.42 to 94.21%; the size of the detection model ported and deployed to the FPGA-embedded platform is 5.91 MB, and the power consumption is only 10 W, which is 73.85% and 94.54% lower than that of the detection models on the server and PC platforms, respectively, and it can better meet the application requirements of rapid detection and accurate statistics of male and female litchi flowers.
AbstractList Litchi florescence has large flower spikes and volume; reasonable control of the ratio of male to female litchi flowers is the key operational aspect of litchi orchards for preserving quality and increasing production. To achieve the rapid detection of male and female litchi flowers, reduce manual statistical errors, and meet the demand for accurate fertilizer regulation, an intelligent detection method for male and female litchi flowers suitable for deployment to low-power embedded platforms is proposed. The method uses multi-teacher pre-activation feature distillation (MPFD) and chooses the relatively complex YOLOv4 and YOLOv5-l as the teacher models and the relatively simple YOLOv4-Tiny as the student model. By dynamically learning the intermediate feature knowledge of the different teacher models, the student model can improve its detection performance by meeting the embedded platform application requirements such as low power consumption and real-time performance. The main objectives of this study are as follows: optimize the distillation position before the activation function (pre-activation) to reduce the feature distillation loss; use the LogCosh-Squared function as the distillation distance loss function to improve distillation performance; adopt the margin-activation method to improve the features of the teacher model passed to the student model; and propose to adopt the Convolution and Group Normalization (Conv-GN) structure for the feature transformation of the student model to prevent effective information loss. Moreover, the distilled student model is quantified and ported for deployment to a field-programmable gate array (FPGA)-embedded platform to design and implement a fast, intelligent detection system for male and female litchi flowers. The experimental results show that compared with an undistilled student model, the mAP of the student model obtained after MPFD feature distillation is improved by 4.42 to 94.21%; the size of the detection model ported and deployed to the FPGA-embedded platform is 5.91 MB, and the power consumption is only 10 W, which is 73.85% and 94.54% lower than that of the detection models on the server and PC platforms, respectively, and it can better meet the application requirements of rapid detection and accurate statistics of male and female litchi flowers.
Audience Academic
Author Liu, Xueya
Lyu, Shilei
Li, Zhen
Wang, Chao
Zhao, Yawen
Shen, Jiyuan
Author_xml – sequence: 1
  givenname: Shilei
  surname: Lyu
  fullname: Lyu, Shilei
– sequence: 2
  givenname: Yawen
  surname: Zhao
  fullname: Zhao, Yawen
– sequence: 3
  givenname: Xueya
  surname: Liu
  fullname: Liu, Xueya
– sequence: 4
  givenname: Zhen
  surname: Li
  fullname: Li, Zhen
– sequence: 5
  givenname: Chao
  surname: Wang
  fullname: Wang, Chao
– sequence: 6
  givenname: Jiyuan
  surname: Shen
  fullname: Shen, Jiyuan
BookMark eNpdkUFvGyEQhVGVSk3d3HtcqedNYWFhOVpxnERyZB_cQ09oDIODtbukLFblfx9iV1VVODAaeN8M8z6TqzGOSMhXRm851_Q77FMc43BinAqqO_WBXDdU8Vpw3V79E38iN9N0oGVpxjuqrslpgRltDnGsoq-eoccKRlctcXgPVyHbl1At-_gb01T9mMK4r36uV-v6cbNcVM_HPod6i2BfMBUN5GPCahGmHPoeztAzbPMwr--HHTqHrtqUGx_T8IV89NBPePPnnJHt8n5791iv1g9Pd_NVbQXrcq0bqbQAq2XjQVCpGVCgsnym5QhtA-Cd1k54KTvGuMId97rTkjkO1gk-I08XrItwMK8pDJBOJkIw50RMewMpB9uj2WmtPTaeNloJ3nLATkGpIXeMipbbwvp2Yb2m-OuIUzaHeExj6d40HZWibZsy1xm5vbzalxGaMPqYE9iyHQ7BFuN8KPm5EopTxbgsAnoR2BSnKaH_2yaj5t1f87-__A2UQZnJ
CitedBy_id crossref_primary_10_34133_plantphenomics_0172
crossref_primary_10_3390_app14051907
crossref_primary_10_3390_agronomy13112721
crossref_primary_10_1109_LSP_2024_3359573
Cites_doi 10.1007/s11119-022-09882-7
10.3390/electronics8030295
10.1016/j.compag.2021.106150
10.1109/TVLSI.2019.2905242
10.1186/s12870-021-03309-7
10.1109/CVPR.2017.754
10.1145/3402937
10.3390/s22031255
10.1016/j.foodchem.2008.09.088
10.1016/j.compag.2021.106398
10.3390/su12010271
10.1007/978-3-030-01261-8_1
10.3390/s19194091
10.1016/j.patrec.2021.03.014
10.1007/978-3-030-58555-6_19
10.1142/S0218001413540074
10.1186/1471-2229-13-55
10.1016/j.neucom.2020.07.048
10.1088/1742-6596/2171/1/012041
10.1016/j.compag.2020.105742
10.3390/electronics9050832
10.1016/j.jff.2013.02.002
10.1371/journal.pone.0176053
10.1109/ICCVW54120.2021.00312
10.1111/1541-4337.12590
10.3389/fpls.2022.966639
10.1038/s41598-021-02225-y
10.1109/LRA.2018.2849498
10.1016/j.jep.2015.08.054
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SN
7SS
7ST
7T7
7TM
7X2
8FD
8FE
8FH
8FK
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
M0K
P64
PATMY
PIMPY
PQEST
PQQKQ
PQUKI
PYCSY
SOI
DOA
DOI 10.3390/agronomy13040987
DatabaseName CrossRef
ProQuest Central (Corporate)
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Agricultural Science Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Agriculture & Environmental Science Database
ProQuest Central Essentials
ProQuest Central
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Agriculture Science Database
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
Environment Abstracts
Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest Central
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest SciTech Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest Central (Alumni)
DatabaseTitleList Agricultural Science Database


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2073-4395
ExternalDocumentID oai_doaj_org_article_b999fe2f02974353ae87aea56b10453c
A747307136
10_3390_agronomy13040987
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 2XV
5VS
7X2
7XC
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
ECGQY
GROUPED_DOAJ
HCIFZ
IAO
ITC
KQ8
M0K
MODMG
M~E
OK1
OZF
PATMY
PIMPY
PROAC
PYCSY
3V.
7SN
7SS
7ST
7T7
7TM
8FD
8FK
ABUWG
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PQEST
PQQKQ
PQUKI
SOI
ID FETCH-LOGICAL-c418t-926794ac962fa40691a0a0639553ea52aafd99d4f6681137eb3f98961d3acd43
IEDL.DBID DOA
ISSN 2073-4395
IngestDate Tue Oct 22 15:16:16 EDT 2024
Mon Nov 04 14:29:33 EST 2024
Tue Nov 12 22:49:56 EST 2024
Fri Aug 23 03:46:04 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-926794ac962fa40691a0a0639553ea52aafd99d4f6681137eb3f98961d3acd43
OpenAccessLink https://doaj.org/article/b999fe2f02974353ae87aea56b10453c
PQID 2806455291
PQPubID 2032440
ParticipantIDs doaj_primary_oai_doaj_org_article_b999fe2f02974353ae87aea56b10453c
proquest_journals_2806455291
gale_infotracacademiconefile_A747307136
crossref_primary_10_3390_agronomy13040987
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Agronomy (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Wu (ref_19) 2013; 5
ref_36
ref_13
ref_35
La (ref_41) 2020; 13
Lin (ref_7) 2022; 23
ref_32
ref_31
ref_30
Nguyen (ref_24) 2019; 27
Xiong (ref_16) 2017; 3
Zhong (ref_14) 2021; 189
Guo (ref_34) 2021; 11
Dorj (ref_12) 2013; 27
ref_17
ref_39
ref_38
ref_15
ref_37
Zaras (ref_33) 2021; 146
Liu (ref_21) 2020; 415
Liu (ref_4) 2009; 114
Zhao (ref_2) 2020; 19
Ibrahim (ref_18) 2015; 174
ref_25
Sun (ref_10) 2021; 185
ref_23
ref_45
ref_22
ref_44
ref_43
ref_20
ref_42
Ye (ref_8) 2022; 2171
ref_40
ref_1
Lin (ref_6) 2022; 13
ref_3
Dias (ref_9) 2018; 3
ref_29
ref_28
Xiong (ref_5) 2021; 52
Wu (ref_11) 2020; 178
ref_27
ref_26
References_xml – ident: ref_28
– ident: ref_30
– volume: 23
  start-page: 1226
  year: 2022
  ident: ref_7
  article-title: Estimating litchi flower number using a multicolumn convolutional neural network based on a density map
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-022-09882-7
  contributor:
    fullname: Lin
– ident: ref_22
  doi: 10.3390/electronics8030295
– ident: ref_26
– volume: 185
  start-page: 106150
  year: 2021
  ident: ref_10
  article-title: Apple, peach, and pear flower detection using semantic segmentation network and shape constraint level set
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106150
  contributor:
    fullname: Sun
– volume: 27
  start-page: 1861
  year: 2019
  ident: ref_24
  article-title: A high-throughput and power-efficient FPGA implementation of YOLO CNN for object detection
  publication-title: IEEE Trans. Very Large Scale Integr. (VLSI) Syst.
  doi: 10.1109/TVLSI.2019.2905242
  contributor:
    fullname: Nguyen
– ident: ref_3
  doi: 10.1186/s12870-021-03309-7
– ident: ref_39
– ident: ref_32
  doi: 10.1109/CVPR.2017.754
– ident: ref_37
– ident: ref_42
– volume: 52
  start-page: 252
  year: 2021
  ident: ref_5
  article-title: Litchi flower and leaf segmentation and recognition based on deep semantic segmentation
  publication-title: Trans. Chin. Soc. Agric. Mach.
  contributor:
    fullname: Xiong
– ident: ref_35
– ident: ref_44
– volume: 13
  start-page: 1
  year: 2020
  ident: ref_41
  article-title: Fpgadefender: Malicious self-oscillator scanning for xilinx ultrascale+ fpgas
  publication-title: ACM Trans. Reconfigurable Technol. Syst. (TRETS)
  doi: 10.1145/3402937
  contributor:
    fullname: La
– ident: ref_13
  doi: 10.3390/s22031255
– volume: 114
  start-page: 577
  year: 2009
  ident: ref_4
  article-title: Antioxidant properties of various solvent extracts from lychee (Litchi chinenesis Sonn.) flowers
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2008.09.088
  contributor:
    fullname: Liu
– volume: 189
  start-page: 106398
  year: 2021
  ident: ref_14
  article-title: A method for litchi picking points calculation in natural environment based on main fruit bearing branch detection
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106398
  contributor:
    fullname: Zhong
– ident: ref_1
  doi: 10.3390/su12010271
– ident: ref_40
  doi: 10.1007/978-3-030-01261-8_1
– ident: ref_15
  doi: 10.3390/s19194091
– volume: 3
  start-page: 4
  year: 2017
  ident: ref_16
  article-title: A Method for Identification and Matching of the Picking Point for Mature Litchi under Structural Environment
  publication-title: J. Appl. Biotechnol. Bioeng.
  contributor:
    fullname: Xiong
– ident: ref_25
– volume: 146
  start-page: 215
  year: 2021
  ident: ref_33
  article-title: Improving knowledge distillation using unified ensembles of specialized teachers
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2021.03.014
  contributor:
    fullname: Zaras
– ident: ref_36
  doi: 10.1007/978-3-030-58555-6_19
– ident: ref_29
– ident: ref_27
– volume: 27
  start-page: 1354007
  year: 2013
  ident: ref_12
  article-title: A novel technique for tangerine yield prediction using flower detection algorithm
  publication-title: Int. J. Pattern Recognit. Artif. Intell.
  doi: 10.1142/S0218001413540074
  contributor:
    fullname: Dorj
– ident: ref_17
  doi: 10.1186/1471-2229-13-55
– volume: 415
  start-page: 106
  year: 2020
  ident: ref_21
  article-title: Adaptive multi-teacher multi-level knowledge distillation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.07.048
  contributor:
    fullname: Liu
– volume: 2171
  start-page: 012041
  year: 2022
  ident: ref_8
  article-title: Polyphyletic Loss: Litchi Flower Detection with Occlusion
  publication-title: Proc. J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/2171/1/012041
  contributor:
    fullname: Ye
– volume: 178
  start-page: 105742
  year: 2020
  ident: ref_11
  article-title: Using channel pruning-based YOLO v4 deep learning algorithm for the real-time and accurate detection of apple flowers in natural environments
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105742
  contributor:
    fullname: Wu
– ident: ref_38
– ident: ref_45
– ident: ref_23
  doi: 10.3390/electronics9050832
– ident: ref_43
– volume: 5
  start-page: 923
  year: 2013
  ident: ref_19
  article-title: Inhibitory effects of litchi (Litchi chinensis Sonn.) flower-water extracts on lipase activity and diet-induced obesity
  publication-title: J. Funct. Foods
  doi: 10.1016/j.jff.2013.02.002
  contributor:
    fullname: Wu
– ident: ref_20
  doi: 10.1371/journal.pone.0176053
– ident: ref_31
  doi: 10.1109/ICCVW54120.2021.00312
– volume: 19
  start-page: 2139
  year: 2020
  ident: ref_2
  article-title: Nutrient components, health benefits, and safety of litchi (Litchi chinensis Sonn.): A review
  publication-title: Compr. Rev. Food Sci. Food Saf.
  doi: 10.1111/1541-4337.12590
  contributor:
    fullname: Zhao
– volume: 13
  start-page: 3001
  year: 2022
  ident: ref_6
  article-title: A novel approach for estimating the flowering rate of litchi based on deep learning and UAV images
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2022.966639
  contributor:
    fullname: Lin
– volume: 11
  start-page: 22744
  year: 2021
  ident: ref_34
  article-title: Improved YOLOv4-tiny network for real-time electronic component detection
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-02225-y
  contributor:
    fullname: Guo
– volume: 3
  start-page: 3003
  year: 2018
  ident: ref_9
  article-title: Multispecies fruit flower detection using a refined semantic segmentation network
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2018.2849498
  contributor:
    fullname: Dias
– volume: 174
  start-page: 492
  year: 2015
  ident: ref_18
  article-title: Litchi chinensis: Medicinal uses, phytochemistry, and pharmacology
  publication-title: J. Ethnopharmacol.
  doi: 10.1016/j.jep.2015.08.054
  contributor:
    fullname: Ibrahim
SSID ssj0000913807
Score 2.3039684
Snippet Litchi florescence has large flower spikes and volume; reasonable control of the ratio of male to female litchi flowers is the key operational aspect of litchi...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
StartPage 987
SubjectTerms Design
Detectors
Digital integrated circuits
Distillation
Embedded systems
Females
Field programmable gate arrays
florescence information monitoring
Flowers
FPGA
Fruits
Learning
Litchi
litchi flowers
Males
Methods
Object recognition
Orchards
Platforms
Power consumption
Power management
Semantics
sep feature distillation
Software
Students
Teachers
YOLO
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Na9wwEBXt5tIeSj_ppmnQIRByELElyyudyqa77hLysZQE0pOQJXkJJN7UcQ_9952RtUkotPhiLCOExjN-Txq9IWSPq0zXnmtWg4VZwa1kymcZA_QqHQJg4ZAonp6Vi8vi-EpepQW3-5RWuYmJMVD7tcM18kPcASyk5Dr_cveTYdUo3F1NJTSeky0OTCEbka2j-dny-8MqC6peqmwy7E8K4PeHdtXF0wIQu4HaYCbdk_9RlO3_V3COf5zqNXmVoCKdDrZ9Q56F9i15OV11SS4jvCO_Z6GPuVQtXTf0FPqjtvW0Crd4e3INJrmm1U2shEZjdgD9cX5yzhbLakbj2VuWJJ0pYkHok87Q6W-GDLmhs-W3KZvf1gFClKdLaEGc-55cVPOLrwuWiikwV-SqZ5qX4HrW6ZI3Fo-75jaziE-kFMFKbm3jtfZFU5Yqz8UESHajlS5zL6zzhfhARu26DR8JzZ3gqnHAhbRGbR5lURTOC3jbwlWOycFmRs3dIJlhgGrg7Ju_Z39MjnDKH95Dsev4YN2tTPIdUwOIbQJvsM4WoDthg5pYGHNZA5eUwo3JPhrMoEv2nXU2nSyA4aK4lZkCZRLIxmFoOxubmuSr9-bxy9r-f_Mn8gKLzQ95Oztk1He_wmeAJH29m767P6AB3wM
  priority: 102
  providerName: ProQuest
Title Detection of Male and Female Litchi Flowers Using YOLO-HPFD Multi-Teacher Feature Distillation and FPGA-Embedded Platform
URI https://www.proquest.com/docview/2806455291
https://doaj.org/article/b999fe2f02974353ae87aea56b10453c
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS9xAEF7EvtiHYrWlV3-wD4L4sFyym43Zx9O7eIh3HsXC9WmZ7G5E0FjO-ND_vjObKEdB-iJ5CUlYhpnM7HzszDeMHckiMZWXRlRoYZFJ0KLwSSIwe9WOEmDlCCjO5vn0Z3a51Mu1UV9UE9bRA3eKG1aYwdRB1jRkCbd2BaE4hQA6rxBIaOVi9E3MGpiKMdikxKTenUsqxPVDuF3FLgGM2QhpqIJubR-KdP1vBeW405Tb7FOfIvJRJ9pnthGaHfZxdLvqaTLCLvszDm2soWr4Y81nuB6HxvMyPNDt1R2a4o6X93ECGo9VAfzX9dW1mC7KMY89t6KncuaUA-KafEzOft9VxnWLLS5GYvJQBQxNni_wDeW3X9hNObk5n4p-iIJwWVq0wsgcXQ6cyWUN1OaaQgKUl2itUI0SoPbG-KzO8yJN1SmC69oUJk-9Aucz9ZVtNo9N-MZ46pQsaocYyBji5CmAyOC8wq8Br3zATl40an93VBkWIQZp3_6r_QE7I5W_fkck1_EBmt72prf_M_2AHZPBLLliuwIHfUcBikukVnaEUEkRCkfR9l9sansffbJ0ppxpLU36_T2k2WNbNIq-q-rZZ5vt6jkcYMLSVofsw9lkvvhxGP_Rv6jH540
link.rule.ids 315,783,787,867,2109,21400,27936,27937,33756,43817,74630
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Pb9MwFLZgOwAHNH5pZT_wAQlxsJbEcWqfUEcbCrRdhYo0TpZjO9WkLd2ycOC_5z3HHRMSKJcojizLL-_l--zn7xHyNpOJqlymWAUWZnlmBJMuSRigV2ERAHOLRHG-KKbf8y_n4jwuuN3GtMptTAyB2m0srpGf4A5gLkSm0g_XNwyrRuHuaiyh8ZDsolQVkK_d08li-e1ulQVVL2Uy7PcnOfD7E7Nuw2kBiN1AbTCT7t7_KMj2_ys4hz9OuUeeRqhIR71tn5EHvnlOnozWbZTL8C_Ir7HvQi5VQzc1nUN_1DSOlv4Kb2cXYJILWl6GSmg0ZAfQH2ezMzZdlmMazt6yKOlMEQtCn3SMTn_ZZ8j1nS0_jdjkqvIQohxdQgvi3JdkVU5WH6csFlNgNk9lx1RWgOsZq4qsNnjcNTWJQXwiBPdGZMbUTimX10Uh05QPgWTXSqoiddxYl_NXZKfZNH6f0NTyTNYWuJBSqM0jDYrCOQ5vG7iKAXm_nVF93UtmaKAaOPv679kfkFOc8rv3UOw6PNi0ax19R1cAYmuf1VhnC9AdN14ODYy5qIBLCm4H5B0aTKNLdq2xJp4sgOGiuJUeAWXiyMZhaIdbm-roq7f6z5f1-v_Nb8ij6Wo-07PPi68H5DEWnu9zeA7JTtf-9EcAT7rqOH6DvwFdK-H9
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Pb9MwFLagkxAcED-1sgE-ICEOVhM7ceMT6mhDga6L0JDGyXJsp5q0pVsWDvz3vOe4AyGBcoliy7L87Jfvs5-_R8gbXiSqdlyxGizMMm5yVrgkYYBec4sAWFgkisdrufyWfT7Lz2L8000Mq9z5xOCo3dbiHvkETwCzPOcqnTQxLKKal--vrhlmkMKT1phO4y7Zm2ZSJCOyd7RYV19vd1xQAbNIpsNZpQCuPzGbLtwcAD8ONAej6v74NwUJ_3856vD3KR-RhxE20tlg58fkjm-fkAezTRelM_xT8nPu-xBX1dJtQ4-hPWpaR0t_ia-rczDPOS0vQlY0GiIF6PeT1QlbVuWchnu4LMo7U8SF0CadowO4GKLlhsaqjzO2uKw9uCtHKyhBzPuMnJaL0w9LFhMrMJulRc8Ul7AMjVWSNwavvqYmMYhV8lx4k3NjGqeUyxopizQVUyDcjSqUTJ0w1mXiORm129bvE5pawYvGAi9SCnV6CoMCcU5AbQOPHJN3uxHVV4N8hgbagaOv_x79MTnCIb-th8LX4cO22-i4jnQNgLbxvMGcW4D0hPHF1ECfZQ28Mhd2TN6iwTQuz74z1sRbBtBdFLrSM6BPApk5dO1wZ1Md1-2N_j3LXvy_-DW5B9NPrz6tvxyQ-5iDfgjnOSSjvvvhXwJS6etXcQr-Atkz5is
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+Male+and+Female+Litchi+Flowers+Using+YOLO-HPFD+Multi-Teacher+Feature+Distillation+and+FPGA-Embedded+Platform&rft.jtitle=Agronomy+%28Basel%29&rft.au=Lyu%2C+Shilei&rft.au=Zhao%2C+Yawen&rft.au=Liu%2C+Xueya&rft.au=Li%2C+Zhen&rft.date=2023-04-01&rft.issn=2073-4395&rft.eissn=2073-4395&rft.volume=13&rft.issue=4&rft.spage=987&rft_id=info:doi/10.3390%2Fagronomy13040987&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_agronomy13040987
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4395&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4395&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4395&client=summon