Detection of Male and Female Litchi Flowers Using YOLO-HPFD Multi-Teacher Feature Distillation and FPGA-Embedded Platform
Litchi florescence has large flower spikes and volume; reasonable control of the ratio of male to female litchi flowers is the key operational aspect of litchi orchards for preserving quality and increasing production. To achieve the rapid detection of male and female litchi flowers, reduce manual s...
Saved in:
Published in | Agronomy (Basel) Vol. 13; no. 4; p. 987 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.04.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Litchi florescence has large flower spikes and volume; reasonable control of the ratio of male to female litchi flowers is the key operational aspect of litchi orchards for preserving quality and increasing production. To achieve the rapid detection of male and female litchi flowers, reduce manual statistical errors, and meet the demand for accurate fertilizer regulation, an intelligent detection method for male and female litchi flowers suitable for deployment to low-power embedded platforms is proposed. The method uses multi-teacher pre-activation feature distillation (MPFD) and chooses the relatively complex YOLOv4 and YOLOv5-l as the teacher models and the relatively simple YOLOv4-Tiny as the student model. By dynamically learning the intermediate feature knowledge of the different teacher models, the student model can improve its detection performance by meeting the embedded platform application requirements such as low power consumption and real-time performance. The main objectives of this study are as follows: optimize the distillation position before the activation function (pre-activation) to reduce the feature distillation loss; use the LogCosh-Squared function as the distillation distance loss function to improve distillation performance; adopt the margin-activation method to improve the features of the teacher model passed to the student model; and propose to adopt the Convolution and Group Normalization (Conv-GN) structure for the feature transformation of the student model to prevent effective information loss. Moreover, the distilled student model is quantified and ported for deployment to a field-programmable gate array (FPGA)-embedded platform to design and implement a fast, intelligent detection system for male and female litchi flowers. The experimental results show that compared with an undistilled student model, the mAP of the student model obtained after MPFD feature distillation is improved by 4.42 to 94.21%; the size of the detection model ported and deployed to the FPGA-embedded platform is 5.91 MB, and the power consumption is only 10 W, which is 73.85% and 94.54% lower than that of the detection models on the server and PC platforms, respectively, and it can better meet the application requirements of rapid detection and accurate statistics of male and female litchi flowers. |
---|---|
AbstractList | Litchi florescence has large flower spikes and volume; reasonable control of the ratio of male to female litchi flowers is the key operational aspect of litchi orchards for preserving quality and increasing production. To achieve the rapid detection of male and female litchi flowers, reduce manual statistical errors, and meet the demand for accurate fertilizer regulation, an intelligent detection method for male and female litchi flowers suitable for deployment to low-power embedded platforms is proposed. The method uses multi-teacher pre-activation feature distillation (MPFD) and chooses the relatively complex YOLOv4 and YOLOv5-l as the teacher models and the relatively simple YOLOv4-Tiny as the student model. By dynamically learning the intermediate feature knowledge of the different teacher models, the student model can improve its detection performance by meeting the embedded platform application requirements such as low power consumption and real-time performance. The main objectives of this study are as follows: optimize the distillation position before the activation function (pre-activation) to reduce the feature distillation loss; use the LogCosh-Squared function as the distillation distance loss function to improve distillation performance; adopt the margin-activation method to improve the features of the teacher model passed to the student model; and propose to adopt the Convolution and Group Normalization (Conv-GN) structure for the feature transformation of the student model to prevent effective information loss. Moreover, the distilled student model is quantified and ported for deployment to a field-programmable gate array (FPGA)-embedded platform to design and implement a fast, intelligent detection system for male and female litchi flowers. The experimental results show that compared with an undistilled student model, the mAP of the student model obtained after MPFD feature distillation is improved by 4.42 to 94.21%; the size of the detection model ported and deployed to the FPGA-embedded platform is 5.91 MB, and the power consumption is only 10 W, which is 73.85% and 94.54% lower than that of the detection models on the server and PC platforms, respectively, and it can better meet the application requirements of rapid detection and accurate statistics of male and female litchi flowers. |
Audience | Academic |
Author | Liu, Xueya Lyu, Shilei Li, Zhen Wang, Chao Zhao, Yawen Shen, Jiyuan |
Author_xml | – sequence: 1 givenname: Shilei surname: Lyu fullname: Lyu, Shilei – sequence: 2 givenname: Yawen surname: Zhao fullname: Zhao, Yawen – sequence: 3 givenname: Xueya surname: Liu fullname: Liu, Xueya – sequence: 4 givenname: Zhen surname: Li fullname: Li, Zhen – sequence: 5 givenname: Chao surname: Wang fullname: Wang, Chao – sequence: 6 givenname: Jiyuan surname: Shen fullname: Shen, Jiyuan |
BookMark | eNpdkUFvGyEQhVGVSk3d3HtcqedNYWFhOVpxnERyZB_cQ09oDIODtbukLFblfx9iV1VVODAaeN8M8z6TqzGOSMhXRm851_Q77FMc43BinAqqO_WBXDdU8Vpw3V79E38iN9N0oGVpxjuqrslpgRltDnGsoq-eoccKRlctcXgPVyHbl1At-_gb01T9mMK4r36uV-v6cbNcVM_HPod6i2BfMBUN5GPCahGmHPoeztAzbPMwr--HHTqHrtqUGx_T8IV89NBPePPnnJHt8n5791iv1g9Pd_NVbQXrcq0bqbQAq2XjQVCpGVCgsnym5QhtA-Cd1k54KTvGuMId97rTkjkO1gk-I08XrItwMK8pDJBOJkIw50RMewMpB9uj2WmtPTaeNloJ3nLATkGpIXeMipbbwvp2Yb2m-OuIUzaHeExj6d40HZWibZsy1xm5vbzalxGaMPqYE9iyHQ7BFuN8KPm5EopTxbgsAnoR2BSnKaH_2yaj5t1f87-__A2UQZnJ |
CitedBy_id | crossref_primary_10_34133_plantphenomics_0172 crossref_primary_10_3390_app14051907 crossref_primary_10_3390_agronomy13112721 crossref_primary_10_1109_LSP_2024_3359573 |
Cites_doi | 10.1007/s11119-022-09882-7 10.3390/electronics8030295 10.1016/j.compag.2021.106150 10.1109/TVLSI.2019.2905242 10.1186/s12870-021-03309-7 10.1109/CVPR.2017.754 10.1145/3402937 10.3390/s22031255 10.1016/j.foodchem.2008.09.088 10.1016/j.compag.2021.106398 10.3390/su12010271 10.1007/978-3-030-01261-8_1 10.3390/s19194091 10.1016/j.patrec.2021.03.014 10.1007/978-3-030-58555-6_19 10.1142/S0218001413540074 10.1186/1471-2229-13-55 10.1016/j.neucom.2020.07.048 10.1088/1742-6596/2171/1/012041 10.1016/j.compag.2020.105742 10.3390/electronics9050832 10.1016/j.jff.2013.02.002 10.1371/journal.pone.0176053 10.1109/ICCVW54120.2021.00312 10.1111/1541-4337.12590 10.3389/fpls.2022.966639 10.1038/s41598-021-02225-y 10.1109/LRA.2018.2849498 10.1016/j.jep.2015.08.054 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SN 7SS 7ST 7T7 7TM 7X2 8FD 8FE 8FH 8FK ABUWG AFKRA ATCPS AZQEC BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ M0K P64 PATMY PIMPY PQEST PQQKQ PQUKI PYCSY SOI DOA |
DOI | 10.3390/agronomy13040987 |
DatabaseName | CrossRef ProQuest Central (Corporate) Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Agriculture & Environmental Science Database ProQuest Central Essentials ProQuest Central ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection (Proquest) (PQ_SDU_P3) Agriculture Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection Environment Abstracts Directory of Open Access Journals |
DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest Central Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest Central (Alumni) |
DatabaseTitleList | Agricultural Science Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 2073-4395 |
ExternalDocumentID | oai_doaj_org_article_b999fe2f02974353ae87aea56b10453c A747307136 10_3390_agronomy13040987 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 2XV 5VS 7X2 7XC 8FE 8FH AADQD AAFWJ AAHBH AAYXX ABDBF ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI CCPQU CITATION ECGQY GROUPED_DOAJ HCIFZ IAO ITC KQ8 M0K MODMG M~E OK1 OZF PATMY PIMPY PROAC PYCSY 3V. 7SN 7SS 7ST 7T7 7TM 8FD 8FK ABUWG AZQEC C1K DWQXO FR3 GNUQQ P64 PQEST PQQKQ PQUKI SOI |
ID | FETCH-LOGICAL-c418t-926794ac962fa40691a0a0639553ea52aafd99d4f6681137eb3f98961d3acd43 |
IEDL.DBID | DOA |
ISSN | 2073-4395 |
IngestDate | Tue Oct 22 15:16:16 EDT 2024 Mon Nov 04 14:29:33 EST 2024 Tue Nov 12 22:49:56 EST 2024 Fri Aug 23 03:46:04 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c418t-926794ac962fa40691a0a0639553ea52aafd99d4f6681137eb3f98961d3acd43 |
OpenAccessLink | https://doaj.org/article/b999fe2f02974353ae87aea56b10453c |
PQID | 2806455291 |
PQPubID | 2032440 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b999fe2f02974353ae87aea56b10453c proquest_journals_2806455291 gale_infotracacademiconefile_A747307136 crossref_primary_10_3390_agronomy13040987 |
PublicationCentury | 2000 |
PublicationDate | 2023-04-01 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Agronomy (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Wu (ref_19) 2013; 5 ref_36 ref_13 ref_35 La (ref_41) 2020; 13 Lin (ref_7) 2022; 23 ref_32 ref_31 ref_30 Nguyen (ref_24) 2019; 27 Xiong (ref_16) 2017; 3 Zhong (ref_14) 2021; 189 Guo (ref_34) 2021; 11 Dorj (ref_12) 2013; 27 ref_17 ref_39 ref_38 ref_15 ref_37 Zaras (ref_33) 2021; 146 Liu (ref_21) 2020; 415 Liu (ref_4) 2009; 114 Zhao (ref_2) 2020; 19 Ibrahim (ref_18) 2015; 174 ref_25 Sun (ref_10) 2021; 185 ref_23 ref_45 ref_22 ref_44 ref_43 ref_20 ref_42 Ye (ref_8) 2022; 2171 ref_40 ref_1 Lin (ref_6) 2022; 13 ref_3 Dias (ref_9) 2018; 3 ref_29 ref_28 Xiong (ref_5) 2021; 52 Wu (ref_11) 2020; 178 ref_27 ref_26 |
References_xml | – ident: ref_28 – ident: ref_30 – volume: 23 start-page: 1226 year: 2022 ident: ref_7 article-title: Estimating litchi flower number using a multicolumn convolutional neural network based on a density map publication-title: Precis. Agric. doi: 10.1007/s11119-022-09882-7 contributor: fullname: Lin – ident: ref_22 doi: 10.3390/electronics8030295 – ident: ref_26 – volume: 185 start-page: 106150 year: 2021 ident: ref_10 article-title: Apple, peach, and pear flower detection using semantic segmentation network and shape constraint level set publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106150 contributor: fullname: Sun – volume: 27 start-page: 1861 year: 2019 ident: ref_24 article-title: A high-throughput and power-efficient FPGA implementation of YOLO CNN for object detection publication-title: IEEE Trans. Very Large Scale Integr. (VLSI) Syst. doi: 10.1109/TVLSI.2019.2905242 contributor: fullname: Nguyen – ident: ref_3 doi: 10.1186/s12870-021-03309-7 – ident: ref_39 – ident: ref_32 doi: 10.1109/CVPR.2017.754 – ident: ref_37 – ident: ref_42 – volume: 52 start-page: 252 year: 2021 ident: ref_5 article-title: Litchi flower and leaf segmentation and recognition based on deep semantic segmentation publication-title: Trans. Chin. Soc. Agric. Mach. contributor: fullname: Xiong – ident: ref_35 – ident: ref_44 – volume: 13 start-page: 1 year: 2020 ident: ref_41 article-title: Fpgadefender: Malicious self-oscillator scanning for xilinx ultrascale+ fpgas publication-title: ACM Trans. Reconfigurable Technol. Syst. (TRETS) doi: 10.1145/3402937 contributor: fullname: La – ident: ref_13 doi: 10.3390/s22031255 – volume: 114 start-page: 577 year: 2009 ident: ref_4 article-title: Antioxidant properties of various solvent extracts from lychee (Litchi chinenesis Sonn.) flowers publication-title: Food Chem. doi: 10.1016/j.foodchem.2008.09.088 contributor: fullname: Liu – volume: 189 start-page: 106398 year: 2021 ident: ref_14 article-title: A method for litchi picking points calculation in natural environment based on main fruit bearing branch detection publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106398 contributor: fullname: Zhong – ident: ref_1 doi: 10.3390/su12010271 – ident: ref_40 doi: 10.1007/978-3-030-01261-8_1 – ident: ref_15 doi: 10.3390/s19194091 – volume: 3 start-page: 4 year: 2017 ident: ref_16 article-title: A Method for Identification and Matching of the Picking Point for Mature Litchi under Structural Environment publication-title: J. Appl. Biotechnol. Bioeng. contributor: fullname: Xiong – ident: ref_25 – volume: 146 start-page: 215 year: 2021 ident: ref_33 article-title: Improving knowledge distillation using unified ensembles of specialized teachers publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2021.03.014 contributor: fullname: Zaras – ident: ref_36 doi: 10.1007/978-3-030-58555-6_19 – ident: ref_29 – ident: ref_27 – volume: 27 start-page: 1354007 year: 2013 ident: ref_12 article-title: A novel technique for tangerine yield prediction using flower detection algorithm publication-title: Int. J. Pattern Recognit. Artif. Intell. doi: 10.1142/S0218001413540074 contributor: fullname: Dorj – ident: ref_17 doi: 10.1186/1471-2229-13-55 – volume: 415 start-page: 106 year: 2020 ident: ref_21 article-title: Adaptive multi-teacher multi-level knowledge distillation publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.07.048 contributor: fullname: Liu – volume: 2171 start-page: 012041 year: 2022 ident: ref_8 article-title: Polyphyletic Loss: Litchi Flower Detection with Occlusion publication-title: Proc. J. Phys. Conf. Ser. doi: 10.1088/1742-6596/2171/1/012041 contributor: fullname: Ye – volume: 178 start-page: 105742 year: 2020 ident: ref_11 article-title: Using channel pruning-based YOLO v4 deep learning algorithm for the real-time and accurate detection of apple flowers in natural environments publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105742 contributor: fullname: Wu – ident: ref_38 – ident: ref_45 – ident: ref_23 doi: 10.3390/electronics9050832 – ident: ref_43 – volume: 5 start-page: 923 year: 2013 ident: ref_19 article-title: Inhibitory effects of litchi (Litchi chinensis Sonn.) flower-water extracts on lipase activity and diet-induced obesity publication-title: J. Funct. Foods doi: 10.1016/j.jff.2013.02.002 contributor: fullname: Wu – ident: ref_20 doi: 10.1371/journal.pone.0176053 – ident: ref_31 doi: 10.1109/ICCVW54120.2021.00312 – volume: 19 start-page: 2139 year: 2020 ident: ref_2 article-title: Nutrient components, health benefits, and safety of litchi (Litchi chinensis Sonn.): A review publication-title: Compr. Rev. Food Sci. Food Saf. doi: 10.1111/1541-4337.12590 contributor: fullname: Zhao – volume: 13 start-page: 3001 year: 2022 ident: ref_6 article-title: A novel approach for estimating the flowering rate of litchi based on deep learning and UAV images publication-title: Front. Plant Sci. doi: 10.3389/fpls.2022.966639 contributor: fullname: Lin – volume: 11 start-page: 22744 year: 2021 ident: ref_34 article-title: Improved YOLOv4-tiny network for real-time electronic component detection publication-title: Sci. Rep. doi: 10.1038/s41598-021-02225-y contributor: fullname: Guo – volume: 3 start-page: 3003 year: 2018 ident: ref_9 article-title: Multispecies fruit flower detection using a refined semantic segmentation network publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2018.2849498 contributor: fullname: Dias – volume: 174 start-page: 492 year: 2015 ident: ref_18 article-title: Litchi chinensis: Medicinal uses, phytochemistry, and pharmacology publication-title: J. Ethnopharmacol. doi: 10.1016/j.jep.2015.08.054 contributor: fullname: Ibrahim |
SSID | ssj0000913807 |
Score | 2.3039684 |
Snippet | Litchi florescence has large flower spikes and volume; reasonable control of the ratio of male to female litchi flowers is the key operational aspect of litchi... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database |
StartPage | 987 |
SubjectTerms | Design Detectors Digital integrated circuits Distillation Embedded systems Females Field programmable gate arrays florescence information monitoring Flowers FPGA Fruits Learning Litchi litchi flowers Males Methods Object recognition Orchards Platforms Power consumption Power management Semantics sep feature distillation Software Students Teachers YOLO |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Na9wwEBXt5tIeSj_ppmnQIRByELElyyudyqa77hLysZQE0pOQJXkJJN7UcQ_9952RtUkotPhiLCOExjN-Txq9IWSPq0zXnmtWg4VZwa1kymcZA_QqHQJg4ZAonp6Vi8vi-EpepQW3-5RWuYmJMVD7tcM18kPcASyk5Dr_cveTYdUo3F1NJTSeky0OTCEbka2j-dny-8MqC6peqmwy7E8K4PeHdtXF0wIQu4HaYCbdk_9RlO3_V3COf5zqNXmVoCKdDrZ9Q56F9i15OV11SS4jvCO_Z6GPuVQtXTf0FPqjtvW0Crd4e3INJrmm1U2shEZjdgD9cX5yzhbLakbj2VuWJJ0pYkHok87Q6W-GDLmhs-W3KZvf1gFClKdLaEGc-55cVPOLrwuWiikwV-SqZ5qX4HrW6ZI3Fo-75jaziE-kFMFKbm3jtfZFU5Yqz8UESHajlS5zL6zzhfhARu26DR8JzZ3gqnHAhbRGbR5lURTOC3jbwlWOycFmRs3dIJlhgGrg7Ju_Z39MjnDKH95Dsev4YN2tTPIdUwOIbQJvsM4WoDthg5pYGHNZA5eUwo3JPhrMoEv2nXU2nSyA4aK4lZkCZRLIxmFoOxubmuSr9-bxy9r-f_Mn8gKLzQ95Oztk1He_wmeAJH29m767P6AB3wM priority: 102 providerName: ProQuest |
Title | Detection of Male and Female Litchi Flowers Using YOLO-HPFD Multi-Teacher Feature Distillation and FPGA-Embedded Platform |
URI | https://www.proquest.com/docview/2806455291 https://doaj.org/article/b999fe2f02974353ae87aea56b10453c |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS9xAEF7EvtiHYrWlV3-wD4L4sFyym43Zx9O7eIh3HsXC9WmZ7G5E0FjO-ND_vjObKEdB-iJ5CUlYhpnM7HzszDeMHckiMZWXRlRoYZFJ0KLwSSIwe9WOEmDlCCjO5vn0Z3a51Mu1UV9UE9bRA3eKG1aYwdRB1jRkCbd2BaE4hQA6rxBIaOVi9E3MGpiKMdikxKTenUsqxPVDuF3FLgGM2QhpqIJubR-KdP1vBeW405Tb7FOfIvJRJ9pnthGaHfZxdLvqaTLCLvszDm2soWr4Y81nuB6HxvMyPNDt1R2a4o6X93ECGo9VAfzX9dW1mC7KMY89t6KncuaUA-KafEzOft9VxnWLLS5GYvJQBQxNni_wDeW3X9hNObk5n4p-iIJwWVq0wsgcXQ6cyWUN1OaaQgKUl2itUI0SoPbG-KzO8yJN1SmC69oUJk-9Aucz9ZVtNo9N-MZ46pQsaocYyBji5CmAyOC8wq8Br3zATl40an93VBkWIQZp3_6r_QE7I5W_fkck1_EBmt72prf_M_2AHZPBLLliuwIHfUcBikukVnaEUEkRCkfR9l9sansffbJ0ppxpLU36_T2k2WNbNIq-q-rZZ5vt6jkcYMLSVofsw9lkvvhxGP_Rv6jH540 |
link.rule.ids | 315,783,787,867,2109,21400,27936,27937,33756,43817,74630 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Pb9MwFLZgOwAHNH5pZT_wAQlxsJbEcWqfUEcbCrRdhYo0TpZjO9WkLd2ycOC_5z3HHRMSKJcojizLL-_l--zn7xHyNpOJqlymWAUWZnlmBJMuSRigV2ERAHOLRHG-KKbf8y_n4jwuuN3GtMptTAyB2m0srpGf4A5gLkSm0g_XNwyrRuHuaiyh8ZDsolQVkK_d08li-e1ulQVVL2Uy7PcnOfD7E7Nuw2kBiN1AbTCT7t7_KMj2_ys4hz9OuUeeRqhIR71tn5EHvnlOnozWbZTL8C_Ir7HvQi5VQzc1nUN_1DSOlv4Kb2cXYJILWl6GSmg0ZAfQH2ezMzZdlmMazt6yKOlMEQtCn3SMTn_ZZ8j1nS0_jdjkqvIQohxdQgvi3JdkVU5WH6csFlNgNk9lx1RWgOsZq4qsNnjcNTWJQXwiBPdGZMbUTimX10Uh05QPgWTXSqoiddxYl_NXZKfZNH6f0NTyTNYWuJBSqM0jDYrCOQ5vG7iKAXm_nVF93UtmaKAaOPv679kfkFOc8rv3UOw6PNi0ax19R1cAYmuf1VhnC9AdN14ODYy5qIBLCm4H5B0aTKNLdq2xJp4sgOGiuJUeAWXiyMZhaIdbm-roq7f6z5f1-v_Nb8ij6Wo-07PPi68H5DEWnu9zeA7JTtf-9EcAT7rqOH6DvwFdK-H9 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Pb9MwFLagkxAcED-1sgE-ICEOVhM7ceMT6mhDga6L0JDGyXJsp5q0pVsWDvz3vOe4AyGBcoliy7L87Jfvs5-_R8gbXiSqdlyxGizMMm5yVrgkYYBec4sAWFgkisdrufyWfT7Lz2L8000Mq9z5xOCo3dbiHvkETwCzPOcqnTQxLKKal--vrhlmkMKT1phO4y7Zm2ZSJCOyd7RYV19vd1xQAbNIpsNZpQCuPzGbLtwcAD8ONAej6v74NwUJ_3856vD3KR-RhxE20tlg58fkjm-fkAezTRelM_xT8nPu-xBX1dJtQ4-hPWpaR0t_ia-rczDPOS0vQlY0GiIF6PeT1QlbVuWchnu4LMo7U8SF0CadowO4GKLlhsaqjzO2uKw9uCtHKyhBzPuMnJaL0w9LFhMrMJulRc8Ul7AMjVWSNwavvqYmMYhV8lx4k3NjGqeUyxopizQVUyDcjSqUTJ0w1mXiORm129bvE5pawYvGAi9SCnV6CoMCcU5AbQOPHJN3uxHVV4N8hgbagaOv_x79MTnCIb-th8LX4cO22-i4jnQNgLbxvMGcW4D0hPHF1ECfZQ28Mhd2TN6iwTQuz74z1sRbBtBdFLrSM6BPApk5dO1wZ1Md1-2N_j3LXvy_-DW5B9NPrz6tvxyQ-5iDfgjnOSSjvvvhXwJS6etXcQr-Atkz5is |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+Male+and+Female+Litchi+Flowers+Using+YOLO-HPFD+Multi-Teacher+Feature+Distillation+and+FPGA-Embedded+Platform&rft.jtitle=Agronomy+%28Basel%29&rft.au=Lyu%2C+Shilei&rft.au=Zhao%2C+Yawen&rft.au=Liu%2C+Xueya&rft.au=Li%2C+Zhen&rft.date=2023-04-01&rft.issn=2073-4395&rft.eissn=2073-4395&rft.volume=13&rft.issue=4&rft.spage=987&rft_id=info:doi/10.3390%2Fagronomy13040987&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_agronomy13040987 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4395&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4395&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4395&client=summon |