MXene-Based Materials for Multivalent Metal-Ion Batteries
Multivalent metal ion (Mg2+, Zn2+, Ca2+, and Al3+) batteries (MMIBs) emerged as promising technologies for large-scale energy storage systems in recent years due to the abundant metal reserves in the Earth’s crust and potentially low cost. However, the lack of high-performance electrode materials is...
Saved in:
Published in | Batteries (Basel) Vol. 9; no. 3; p. 174 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.03.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Multivalent metal ion (Mg2+, Zn2+, Ca2+, and Al3+) batteries (MMIBs) emerged as promising technologies for large-scale energy storage systems in recent years due to the abundant metal reserves in the Earth’s crust and potentially low cost. However, the lack of high-performance electrode materials is still the main obstacle to the development of MMIBs. As a newly large family of two-dimensional transition metal carbides, nitrides, and carbonitrides, MXenes have attracted growing focus in the energy storage field because of their large specific surface area, excellent conductivity, tunable interlayer spaces, and compositional diversity. In particular, the multifunctional chemistry and superior hydrophilicity enable MXenes to serve not only as electrode materials but also as important functional components for heterojunction composite electrodes. Herein, the advances of MXene-based materials since its discovery for MMIBs are summarized, with an emphasis on the rational design and controllable synthesis of MXenes. More importantly, the fundamental understanding of the relationship between the morphology, structure, and function of MXenes is highlighted. Finally, the existing challenges and future research directions on MXene-based materials toward MMIBs application are critically discussed and prospected. |
---|---|
AbstractList | Multivalent metal ion (Mg[sup.2+] , Zn[sup.2+] , Ca[sup.2+] , and Al[sup.3+] ) batteries (MMIBs) emerged as promising technologies for large-scale energy storage systems in recent years due to the abundant metal reserves in the Earth's crust and potentially low cost. However, the lack of high-performance electrode materials is still the main obstacle to the development of MMIBs. As a newly large family of two-dimensional transition metal carbides, nitrides, and carbonitrides, MXenes have attracted growing focus in the energy storage field because of their large specific surface area, excellent conductivity, tunable interlayer spaces, and compositional diversity. In particular, the multifunctional chemistry and superior hydrophilicity enable MXenes to serve not only as electrode materials but also as important functional components for heterojunction composite electrodes. Herein, the advances of MXene-based materials since its discovery for MMIBs are summarized, with an emphasis on the rational design and controllable synthesis of MXenes. More importantly, the fundamental understanding of the relationship between the morphology, structure, and function of MXenes is highlighted. Finally, the existing challenges and future research directions on MXene-based materials toward MMIBs application are critically discussed and prospected. Multivalent metal ion (Mg2+, Zn2+, Ca2+, and Al3+) batteries (MMIBs) emerged as promising technologies for large-scale energy storage systems in recent years due to the abundant metal reserves in the Earth’s crust and potentially low cost. However, the lack of high-performance electrode materials is still the main obstacle to the development of MMIBs. As a newly large family of two-dimensional transition metal carbides, nitrides, and carbonitrides, MXenes have attracted growing focus in the energy storage field because of their large specific surface area, excellent conductivity, tunable interlayer spaces, and compositional diversity. In particular, the multifunctional chemistry and superior hydrophilicity enable MXenes to serve not only as electrode materials but also as important functional components for heterojunction composite electrodes. Herein, the advances of MXene-based materials since its discovery for MMIBs are summarized, with an emphasis on the rational design and controllable synthesis of MXenes. More importantly, the fundamental understanding of the relationship between the morphology, structure, and function of MXenes is highlighted. Finally, the existing challenges and future research directions on MXene-based materials toward MMIBs application are critically discussed and prospected. |
Audience | Academic |
Author | Pan, Zibing Chen, Zhongxue Pu, Xiangjun Wang, Chunlei Chen, Huaqi |
Author_xml | – sequence: 1 givenname: Chunlei surname: Wang fullname: Wang, Chunlei – sequence: 2 givenname: Zibing surname: Pan fullname: Pan, Zibing – sequence: 3 givenname: Huaqi surname: Chen fullname: Chen, Huaqi – sequence: 4 givenname: Xiangjun surname: Pu fullname: Pu, Xiangjun – sequence: 5 givenname: Zhongxue orcidid: 0000-0002-1526-7336 surname: Chen fullname: Chen, Zhongxue |
BookMark | eNp1UU1rHDEMNSWFpmnuPQ70PKn87TkmoR8LWXJpoTejteXgZTJOPd5C_32dbltKIPggI7339CS9ZidLWYixtxwupJzg_Q5bo5ppnUACt-oFOxWSyxE46JP__q_Y-bruAYA7a4Wwp2zafqOFxitcKQ5bfFTBeR1SqcP2MLf8A2da2rClhvO4Kctw9bfVG_YydSid_4ln7OvHD1-uP483t58215c3Y1DctdGlAIgSotyZSVCIToW02xHIbiGCNCB4n4FkL0VtjU1CYlI0pWC0c0mesc1RNxbc-4ea77H-9AWz_50o9c5jbTnM5IWOqIFrQ9oopaWTSiVDSCJostF2rXdHrYdavh9obX5fDnXp9r2wE9cTcGE66uKIuuvD-7yk0iqG_iLd59A3n3LPX1ollRFOu06AIyHUsq6V0j-bHPzjgfzTA3WKeUIJuWHLZem98vw88Rf92Jf7 |
CitedBy_id | crossref_primary_10_1007_s42247_024_00916_6 crossref_primary_10_1016_j_jallcom_2025_179761 crossref_primary_10_1016_j_jcis_2024_03_159 crossref_primary_10_1016_j_ccr_2024_215778 crossref_primary_10_1016_j_mtchem_2024_102200 crossref_primary_10_1088_1361_6528_ad690b crossref_primary_10_1016_j_est_2024_110514 crossref_primary_10_1002_adsu_202400844 crossref_primary_10_20517_energymater_2024_48 crossref_primary_10_3390_batteries10040121 crossref_primary_10_1016_j_cej_2024_156272 crossref_primary_10_1016_j_est_2024_110757 crossref_primary_10_1016_j_matchemphys_2023_128745 crossref_primary_10_1016_j_enrev_2023_100066 crossref_primary_10_21926_rpm_2302020 crossref_primary_10_1016_j_est_2024_111751 crossref_primary_10_1021_acsaem_4c02919 crossref_primary_10_1016_j_est_2024_112176 crossref_primary_10_1080_10408347_2023_2298339 crossref_primary_10_1021_acsbiomaterials_3c01394 crossref_primary_10_1002_sstr_202300255 crossref_primary_10_1021_acsami_4c01311 crossref_primary_10_1016_j_flatc_2024_100631 |
Cites_doi | 10.1016/j.jpowsour.2019.227345 10.1016/j.apsusc.2017.04.239 10.1149/1.2085455 10.1039/C5CP00775E 10.1039/C6FD00251J 10.1002/adfm.201901336 10.1016/j.cej.2022.140313 10.1016/j.trechm.2019.04.006 10.1002/celc.202100036 10.1002/anie.201710616 10.1021/acsnano.7b05350 10.1021/ar500311w 10.1021/acsnano.9b07708 10.1002/adfm.201908528 10.1002/adfm.201202502 10.1021/acsnano.0c09205 10.1016/j.cej.2020.126737 10.1039/D1EE00409C 10.1021/acsaem.0c00309 10.1038/nmat4462 10.1002/smll.201904293 10.1209/0295-5075/111/26007 10.1016/j.cej.2020.125679 10.1021/acs.chemmater.5b04250 10.1016/j.jpowsour.2021.230197 10.1002/adma.201804779 10.1039/C6NR02253G 10.1021/acsnano.2c04968 10.1002/adma.201102306 10.1016/j.cej.2021.132992 10.1149/2.0641704jes 10.1016/j.coco.2023.101493 10.1021/acs.chemmater.7b02847 10.1126/science.aac9439 10.1557/mrc.2012.25 10.1002/anie.201800887 10.1016/j.apsusc.2018.05.200 10.1016/S0008-6223(02)00424-4 10.1016/j.mtener.2020.100598 10.1039/C7EE02304A 10.1103/PhysRevB.94.104103 10.1021/acs.langmuir.1c03370 10.1016/j.jcis.2004.05.028 10.1021/acsnano.9b05599 10.1016/j.ensm.2021.06.019 10.1103/PhysRevB.94.125152 10.1002/sstr.202100082 10.1002/smtd.201900495 10.1002/adma.201304138 10.1039/C5DT01247C 10.1016/j.jechem.2019.08.022 10.1007/s40820-021-00612-8 10.1021/acsnano.0c07041 10.1021/acsnano.1c02215 10.1039/C5CS00517E 10.1021/acsnano.9b06866 10.1016/j.cap.2022.06.001 10.1021/acsaem.8b02253 10.20964/2019.12.49 10.1021/nn503921j 10.1021/acs.chemmater.0c00787 10.1002/aelm.202000967 10.1002/adma.202106897 10.1016/j.cej.2020.125627 10.1016/j.cej.2022.140539 10.1021/acsnano.0c07972 10.1016/j.elecom.2012.07.021 10.1002/adfm.202103210 10.1002/adfm.201600357 10.1002/adma.201800865 10.1021/acs.jpclett.8b03056 10.1016/j.jpowsour.2021.230731 10.1016/j.nanoen.2017.02.043 10.1002/aelm.201900537 10.1016/j.jcrysgro.2018.05.015 10.1021/nn204153h 10.1021/acsnano.5b03591 10.1016/j.jcis.2021.10.175 10.1088/1361-648X/abe267 10.1002/adfm.202008033 10.1016/j.nanoen.2019.05.059 10.1021/acsnano.1c05934 10.1016/j.ensm.2021.12.002 10.1016/j.cej.2017.12.155 10.1039/C6CP00330C 10.1088/2053-1583/aa89cd 10.1039/D0TA09085A 10.1002/anie.201814031 10.3866/PKU.WHXB202210027 10.1002/sstr.202100001 10.1038/ncomms14949 10.1126/science.aag2421 10.1021/ja501520b 10.1021/acsnano.0c09646 10.1002/adma.201500604 10.1021/nl902623y 10.1021/acs.chemmater.7b00745 10.1021/acsnano.1c08358 10.1016/j.ensm.2017.10.001 10.1021/acsami.6b04198 10.1021/jacs.9b00574 10.1016/j.esci.2021.12.004 10.1016/j.jcis.2021.02.090 10.1002/nano.202000007 10.1021/acsmaterialslett.1c00043 10.1002/anie.201801265 10.1016/j.joule.2018.11.002 10.1039/D0CC01802C 10.1016/j.nanoen.2021.106651 10.1016/j.jallcom.2016.10.127 10.1021/acsnano.9b03650 10.1016/j.ccr.2017.09.012 10.1021/acsami.2c03646 10.1021/ja405735d 10.1038/ncomms2664 10.1021/acsmaterialslett.9b00390 10.3389/fchem.2019.00079 10.1149/1.2115436 10.1021/acsenergylett.8b01426 10.1016/j.jma.2020.09.017 10.1002/adma.202004039 10.1038/nature13970 10.1002/adfm.202100793 10.1002/batt.201900165 10.20964/2020.11.25 10.1016/j.cej.2022.140394 10.1002/anie.201809662 10.1016/j.jssc.2013.09.010 10.1016/j.electacta.2020.136061 10.1002/aenm.202001791 10.1016/j.cclet.2018.04.023 10.1007/s40820-019-0301-1 10.1021/acs.nanolett.6b03118 10.1021/acs.chemrev.6b00614 10.1126/science.aba8311 10.1002/anie.202012322 10.1007/s40820-020-00426-0 10.1002/adma.202102026 10.1039/C9NR09944A 10.1016/j.jpowsour.2021.230076 10.1002/smll.201906076 10.1038/s41598-019-43639-z 10.1021/acsami.1c15539 10.1063/1.5010101 10.1016/j.joule.2021.09.006 10.1016/j.commatsci.2018.10.033 10.1016/j.cej.2021.130747 10.1016/j.cej.2021.134277 10.1021/cm500641a 10.1002/aenm.201200028 10.1016/j.ceramint.2019.08.071 10.1016/j.cej.2019.05.037 10.1039/C9TA02212K 10.1021/acsnano.1c09639 10.1016/j.elecom.2020.106898 10.1039/C9NR08906C 10.1039/D1TA05526G 10.1039/C5NR06513E 10.1002/celc.201600059 10.1039/C9NR02354B 10.1038/natrevmats.2016.98 10.1021/acsnano.1c04354 10.1016/j.matchemphys.2013.01.008 10.1038/s41563-020-0657-0 10.1039/C9EE02526J 10.1002/pssr.201409543 10.1021/acs.jpclett.9b00736 10.1021/acsnano.8b00959 10.1016/j.scriptamat.2015.07.003 10.1016/j.nanoen.2022.107520 10.1016/j.ensm.2022.08.014 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.3390/batteries9030174 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC Proquest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2313-0105 |
ExternalDocumentID | oai_doaj_org_article_25da50156e5644538344f6eae2c5e7d7 A743462858 10_3390_batteries9030174 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 5VS 8FE 8FG AADQD AAFWJ AAYXX ABJCF ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IAO ITC KQ8 L6V M7S MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC PTHSS PMFND ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c418t-8fc0aa30d3b692ecd84cfbbe03877d036021339e3ecdd5767f23af4e9fc6588f3 |
IEDL.DBID | DOA |
ISSN | 2313-0105 |
IngestDate | Wed Aug 27 01:27:17 EDT 2025 Fri Jul 25 12:00:51 EDT 2025 Tue Jun 10 20:41:40 EDT 2025 Tue Jul 01 01:23:42 EDT 2025 Thu Apr 24 23:06:07 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c418t-8fc0aa30d3b692ecd84cfbbe03877d036021339e3ecdd5767f23af4e9fc6588f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1526-7336 |
OpenAccessLink | https://doaj.org/article/25da50156e5644538344f6eae2c5e7d7 |
PQID | 2791590126 |
PQPubID | 2055442 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_25da50156e5644538344f6eae2c5e7d7 proquest_journals_2791590126 gale_infotracacademiconefile_A743462858 crossref_primary_10_3390_batteries9030174 crossref_citationtrail_10_3390_batteries9030174 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-01 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Batteries (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Zhang (ref_61) 2021; 31 Yu (ref_105) 2004; 278 Novoselov (ref_11) 2016; 353 Yang (ref_43) 2018; 57 Zhang (ref_130) 2021; 60 Yufit (ref_123) 2019; 3 Persson (ref_78) 2018; 5 Xie (ref_55) 2014; 8 Liu (ref_88) 2019; 7 Hussain (ref_2) 2023; 454 Shi (ref_141) 2020; 446 Li (ref_166) 2020; 10 Li (ref_74) 2009; 9 Sha (ref_97) 2022; 16 Zhang (ref_107) 2012; 23 Naguib (ref_14) 2011; 23 Aurbach (ref_116) 1991; 138 Mashtalir (ref_36) 2013; 4 Li (ref_45) 2019; 141 Du (ref_106) 2017; 10 Li (ref_81) 2020; 8 Wang (ref_140) 2019; 11 Si (ref_67) 2016; 16 Xu (ref_40) 2018; 12 Narayanasamy (ref_160) 2020; 56 VahidMohammadi (ref_111) 2017; 11 Zhao (ref_137) 2021; 504 Greaves (ref_16) 2020; 3 Chen (ref_96) 2018; 57 Wang (ref_122) 2020; 14 Tang (ref_129) 2019; 12 Halim (ref_33) 2014; 26 Xie (ref_75) 2014; 136 Zhou (ref_126) 2022; 34 Monti (ref_115) 2019; 7 Guan (ref_1) 2020; 43 Mateen (ref_13) 2023; 38 Zhou (ref_58) 2019; 373 Naguib (ref_18) 2012; 6 Li (ref_148) 2021; 506 Ghidiu (ref_30) 2014; 516 Guo (ref_62) 2015; 17 Mohandas (ref_109) 2003; 41 Tian (ref_135) 2021; 41 Wang (ref_136) 2021; 31 Sun (ref_57) 2020; 12 Shi (ref_151) 2020; 399 Demiroglu (ref_119) 2019; 10 Cui (ref_27) 2019; 45 Long (ref_167) 2022; 455 Liu (ref_31) 2017; 164 Shi (ref_168) 2022; 91 Lai (ref_69) 2015; 7 Deysher (ref_19) 2020; 14 Mashtalir (ref_32) 2013; 139 Liu (ref_155) 2021; 405 Khazaei (ref_72) 2013; 23 Zhu (ref_164) 2022; 45 Wang (ref_56) 2016; 28 Xu (ref_89) 2018; 29 Urbankowski (ref_34) 2016; 8 Zhao (ref_59) 2019; 15 Plummer (ref_66) 2019; 157 Liu (ref_76) 2018; 455 Li (ref_172) 2021; 15 Zhao (ref_99) 2022; 100 Liu (ref_28) 2017; 416 Fan (ref_147) 2021; 15 Yang (ref_25) 2018; 57 Meshkian (ref_50) 2015; 9 Liu (ref_91) 2021; 426 Li (ref_158) 2020; 14 Jin (ref_143) 2021; 19 Ren (ref_60) 2016; 3 Wang (ref_145) 2019; 3 Zhu (ref_92) 2022; 518 Chen (ref_83) 2021; 2 Geng (ref_9) 2018; 30 Kim (ref_3) 2012; 2 Naguib (ref_23) 2014; 26 Zhao (ref_86) 2019; 2 Sun (ref_44) 2019; 1 Zha (ref_64) 2015; 111 Gao (ref_87) 2017; 199 Cheng (ref_17) 2019; 10 Zhu (ref_163) 2021; 9 Yang (ref_110) 2019; 58 Liu (ref_127) 2023; 39 Li (ref_42) 2018; 57 Ma (ref_121) 2021; 122 Chaitoglou (ref_48) 2018; 495 Khazaei (ref_71) 2016; 94 Anasori (ref_53) 2015; 9 Wei (ref_84) 2022; 52 Li (ref_113) 2020; 398 Sun (ref_132) 2023; 454 Fang (ref_6) 2018; 3 Kamysbayev (ref_47) 2020; 369 Lee (ref_112) 2020; 12 Li (ref_124) 2019; 62 Zhao (ref_49) 2018; 123 Li (ref_171) 2021; 5 Ma (ref_39) 2015; 48 Luo (ref_150) 2019; 29 Hope (ref_77) 2016; 18 Dymek (ref_8) 1984; 131 Anasori (ref_24) 2017; 2 Zhang (ref_54) 2017; 29 Kurtoglu (ref_65) 2012; 2 Huang (ref_154) 2021; 37 Kravchyk (ref_7) 2019; 9 An (ref_133) 2021; 15 Meshkian (ref_51) 2015; 108 Li (ref_10) 2016; 45 Shahzad (ref_35) 2016; 353 Huo (ref_114) 2020; 12 Naguib (ref_26) 2013; 135 Dillon (ref_68) 2016; 26 Ahmed (ref_101) 2017; 34 Mashtalir (ref_38) 2015; 27 Tao (ref_20) 2017; 8 Sun (ref_12) 2018; 338 Zhang (ref_108) 2018; 11 Canepa (ref_85) 2017; 117 Maughan (ref_146) 2020; 341 Xu (ref_15) 2021; 7 Verger (ref_52) 2019; 1 Byeon (ref_102) 2017; 9 Halim (ref_21) 2019; 11 Li (ref_46) 2020; 19 Alhabeb (ref_41) 2017; 29 Li (ref_104) 2022; 608 Yang (ref_149) 2019; 13 Tang (ref_79) 2021; 1 Wang (ref_144) 2019; 5 Tian (ref_161) 2020; 32 Gao (ref_98) 2021; 13 Sun (ref_138) 2021; 13 Zhang (ref_29) 2017; 695 Huang (ref_142) 2022; 38 Shi (ref_156) 2021; 8 Hantanasirisakul (ref_70) 2018; 30 Chen (ref_139) 2021; 14 Dong (ref_165) 2021; 2 Zhu (ref_22) 2017; 352 Fu (ref_63) 2016; 94 Enyashin (ref_73) 2013; 207 Liu (ref_103) 2020; 16 Wang (ref_120) 2022; 41 Liu (ref_159) 2021; 31 Zhang (ref_169) 2022; 430 Wang (ref_4) 2021; 3 Shi (ref_100) 2020; 8 Jiang (ref_80) 2022; 34 Li (ref_94) 2020; 15 Liu (ref_157) 2022; 16 Li (ref_131) 2022; 16 Zhu (ref_152) 2021; 15 Yang (ref_93) 2020; 1 Naguib (ref_37) 2015; 44 Ming (ref_5) 2021; 33 Chen (ref_95) 2022; 14 Li (ref_128) 2021; 15 Ponrouch (ref_117) 2016; 15 Venkatkarthick (ref_162) 2020; 3 Tian (ref_125) 2019; 13 Li (ref_90) 2019; 14 Dinda (ref_118) 2021; 33 Tan (ref_134) 2022; 431 Liang (ref_82) 2020; 30 Xu (ref_153) 2021; 593 Liu (ref_170) 2021; 15 |
References_xml | – volume: 446 start-page: 227345 year: 2020 ident: ref_141 article-title: A new flexible zinc-ion capacitor based on δ-MnO2@Carbon cloth battery-type cathode and MXene@Cotton cloth capacitor-type anode publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.227345 – volume: 416 start-page: 781 year: 2017 ident: ref_28 article-title: Preparation of Ti3C2 and Ti2C MXenes by fluoride salts etching and methane adsorptive properties publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.04.239 – volume: 138 start-page: 3536 year: 1991 ident: ref_116 article-title: The Electrochemical Behavior of Calcium Electrodes in a Few Organic Electrolytes publication-title: J. Electrochem. Soc. doi: 10.1149/1.2085455 – volume: 17 start-page: 15348 year: 2015 ident: ref_62 article-title: Flexible two-dimensional Tin+1Cn (n = 1, 2 and 3) and their functionalized MXenes predicted by density functional theories publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C5CP00775E – volume: 199 start-page: 393 year: 2017 ident: ref_87 article-title: Synergetic effects of K+ and Mg2+ ion intercalation on the electrochemical and actuation properties of the two-dimensional Ti3C2 MXene publication-title: Faraday Discuss. doi: 10.1039/C6FD00251J – volume: 29 start-page: 1901336 year: 2019 ident: ref_150 article-title: Nanoscale Parallel Circuitry Based on Interpenetrating Conductive Assembly for Flexible and High-Power Zinc Ion Battery publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201901336 – volume: 454 start-page: 140313 year: 2023 ident: ref_2 article-title: Earth- and marine-life-resembling nanostructures for electrochemical energy storage publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.140313 – volume: 1 start-page: 656 year: 2019 ident: ref_52 article-title: MXenes: An Introduction of Their Synthesis, Select Properties, and Applications publication-title: Trends Chem. doi: 10.1016/j.trechm.2019.04.006 – volume: 8 start-page: 1091 year: 2021 ident: ref_156 article-title: Flexible Free-Standing VO2/MXene Conductive Films as Cathodes for Quasi-Solid-State Zinc-Ion Batteries publication-title: ChemElectroChem doi: 10.1002/celc.202100036 – volume: 57 start-page: 1846 year: 2018 ident: ref_96 article-title: MoS2-on-MXene Heterostructures as Highly Reversible Anode Materials for Lithium-Ion Batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201710616 – volume: 11 start-page: 11135 year: 2017 ident: ref_111 article-title: Two-Dimensional Vanadium Carbide (MXene) as a High-Capacity Cathode Material for Rechargeable Aluminum Batteries publication-title: ACS Nano doi: 10.1021/acsnano.7b05350 – volume: 48 start-page: 136 year: 2015 ident: ref_39 article-title: Two-Dimensional Oxide and Hydroxide Nanosheets: Controllable High-Quality Exfoliation, Molecular Assembly, and Exploration of Functionality publication-title: Acc. Chem. Res. doi: 10.1021/ar500311w – volume: 14 start-page: 204 year: 2020 ident: ref_19 article-title: Synthesis of Mo4VAlC4 MAX Phase and Two-Dimensional Mo4VC4 MXene with Five Atomic Layers of Transition Metals publication-title: ACS Nano doi: 10.1021/acsnano.9b07708 – volume: 30 start-page: 1908528 year: 2020 ident: ref_82 article-title: Highly Reversible Zn Anode Enabled by Controllable Formation of Nucleation Sites for Zn-Based Batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201908528 – volume: 23 start-page: 2185 year: 2013 ident: ref_72 article-title: Novel Electronic and Magnetic Properties of Two-Dimensional Transition Metal Carbides and Nitrides publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201202502 – volume: 15 start-page: 2971 year: 2021 ident: ref_152 article-title: Superior-Performance Aqueous Zinc-Ion Batteries Based on the In Situ Growth of MnO2 Nanosheets on V2CTX MXene publication-title: ACS Nano doi: 10.1021/acsnano.0c09205 – volume: 405 start-page: 126737 year: 2021 ident: ref_155 article-title: Highly stable H2V3O8/Mxene cathode for Zn-ion batteries with superior rate performance and long lifespan publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126737 – volume: 14 start-page: 3492 year: 2021 ident: ref_139 article-title: Grafted MXene/polymer electrolyte for high performance solid zinc batteries with enhanced shelf life at low/high temperatures publication-title: Energy Environ. Sci. doi: 10.1039/D1EE00409C – volume: 3 start-page: 4677 year: 2020 ident: ref_162 article-title: Vanadium-Based Oxide on Two-Dimensional Vanadium Carbide MXene (V2Ox@V2CTx) as Cathode for Rechargeable Aqueous Zinc-Ion Batteries publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c00309 – volume: 15 start-page: 169 year: 2016 ident: ref_117 article-title: Towards a calcium-based rechargeable battery publication-title: Nat. Mater. doi: 10.1038/nmat4462 – volume: 15 start-page: 1904293 year: 2019 ident: ref_59 article-title: Flexible 3D Porous MXene Foam for High-Performance Lithium-Ion Batteries publication-title: Small doi: 10.1002/smll.201904293 – volume: 111 start-page: 26007 year: 2015 ident: ref_64 article-title: Role of the surface effect on the structural, electronic and mechanical properties of the carbide MXenes publication-title: Europhys. Lett. doi: 10.1209/0295-5075/111/26007 – volume: 398 start-page: 125679 year: 2020 ident: ref_113 article-title: Two-dimensional Ti3C2@CTAB-Se (MXene) composite cathode material for high-performance rechargeable aluminum batteries publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125679 – volume: 28 start-page: 349 year: 2016 ident: ref_56 article-title: Resolving the Structure of Ti3C2Tx MXenes through Multilevel Structural Modeling of the Atomic Pair Distribution Function publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b04250 – volume: 506 start-page: 230197 year: 2021 ident: ref_148 article-title: Exploration of Metal/Ti3C2 MXene-derived composites as anode for high-performance zinc-ion supercapacitor publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2021.230197 – volume: 30 start-page: 1804779 year: 2018 ident: ref_70 article-title: Electronic and Optical Properties of 2D Transition Metal Carbides and Nitrides (MXenes) publication-title: Adv. Mater. doi: 10.1002/adma.201804779 – volume: 8 start-page: 11385 year: 2016 ident: ref_34 article-title: Synthesis of two-dimensional titanium nitride Ti4N3 (MXene) publication-title: Nanoscale doi: 10.1039/C6NR02253G – volume: 16 start-page: 14539 year: 2022 ident: ref_157 article-title: Van der Waals Interaction-Driven Self-Assembly of V2O5 Nanoplates and MXene for High-Performing Zinc-Ion Batteries by Suppressing Vanadium Dissolution publication-title: ACS Nano doi: 10.1021/acsnano.2c04968 – volume: 23 start-page: 4248 year: 2011 ident: ref_14 article-title: Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2 publication-title: Adv. Mater. doi: 10.1002/adma.201102306 – volume: 430 start-page: 132992 year: 2022 ident: ref_169 article-title: Self-assembled Cobalt-doped NiMn-layered double hydroxide (LDH)/V2CTx MXene hybrids for advanced aqueous electrochemical energy storage properties publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.132992 – volume: 164 start-page: A709 year: 2017 ident: ref_31 article-title: Preparation of High-Purity V2C MXene and Electrochemical Properties as Li-Ion Batteries publication-title: J. Electrochem. Soc. doi: 10.1149/2.0641704jes – volume: 38 start-page: 101493 year: 2023 ident: ref_13 article-title: Ti2CTx–MXene aerogel based ultra–stable Zn–ion supercapacitor publication-title: Compos. Commun. doi: 10.1016/j.coco.2023.101493 – volume: 29 start-page: 7633 year: 2017 ident: ref_41 article-title: Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene) publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b02847 – volume: 353 start-page: aac9439 year: 2016 ident: ref_11 article-title: 2D materials and van der Waals heterostructures publication-title: Science doi: 10.1126/science.aac9439 – volume: 2 start-page: 133 year: 2012 ident: ref_65 article-title: First principles study of two-dimensional early transition metal carbides publication-title: MRS Commun. doi: 10.1557/mrc.2012.25 – volume: 57 start-page: 6115 year: 2018 ident: ref_42 article-title: Fluorine-Free Synthesis of High-Purity Ti3C2Tx (T=OH, O) via Alkali Treatment publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201800887 – volume: 455 start-page: 522 year: 2018 ident: ref_76 article-title: Anchoring effects of S-terminated Ti2C MXene for lithium-sulfur batteries: A first-principles study publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.05.200 – volume: 41 start-page: 927 year: 2003 ident: ref_109 article-title: Electrochemical intercalation of aluminium chloride in graphite in the molten sodium chloroaluminate medium publication-title: Carbon doi: 10.1016/S0008-6223(02)00424-4 – volume: 19 start-page: 100598 year: 2021 ident: ref_143 article-title: A High-rate, Long Life, and Anti-self-discharge Aqueous N-doped Ti3C2/Zn Hybrid Capacitor publication-title: Mater. Today Energy doi: 10.1016/j.mtener.2020.100598 – volume: 10 start-page: 2616 year: 2017 ident: ref_106 article-title: An efficient organic magnesium borate-based electrolyte with non-nucleophilic characteristics for magnesium–sulfur battery publication-title: Energy Environ. Sci. doi: 10.1039/C7EE02304A – volume: 94 start-page: 104103 year: 2016 ident: ref_63 article-title: Stabilization and strengthening effects of functional groups in two-dimensional titanium carbide publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.104103 – volume: 38 start-page: 5968 year: 2022 ident: ref_142 article-title: Highly Transparent and Flexible Zn-Ti3C2Tx MXene Hybrid Capacitors publication-title: Langmuir doi: 10.1021/acs.langmuir.1c03370 – volume: 278 start-page: 160 year: 2004 ident: ref_105 article-title: Electrochemical insertion of magnesium ions into V2O5 from aprotic electrolytes with varied water content publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2004.05.028 – volume: 13 start-page: 11676 year: 2019 ident: ref_125 article-title: Flexible and Free-Standing Ti3C2Tx MXene@Zn Paper for Dendrite-Free Aqueous Zinc Metal Batteries and Nonaqueous Lithium Metal Batteries publication-title: ACS Nano doi: 10.1021/acsnano.9b05599 – volume: 41 start-page: 343 year: 2021 ident: ref_135 article-title: Reversible zinc-based anodes enabled by zincophilic antimony engineered MXene for stable and dendrite-free aqueous zinc batteries publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2021.06.019 – volume: 94 start-page: 125152 year: 2016 ident: ref_71 article-title: Topological insulators in the ordered double transition metals M′2M″C2 MXenes (M′ = Mo, W; M″ = Ti, Zr, Hf) publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.125152 – volume: 2 start-page: 2100082 year: 2021 ident: ref_83 article-title: Emerging Intercalation Cathode Materials for Multivalent Metal-Ion Batteries: Status and Challenges publication-title: Small Struct. doi: 10.1002/sstr.202100082 – volume: 3 start-page: 1900495 year: 2019 ident: ref_145 article-title: Delaminating Vanadium Carbides for Zinc-Ion Storage: Hydrate Precipitation and H+/Zn2+ Co-Action Mechanism publication-title: Small Methods doi: 10.1002/smtd.201900495 – volume: 26 start-page: 992 year: 2014 ident: ref_23 article-title: 25th Anniversary Article: MXenes: A New Family of Two-Dimensional Materials publication-title: Adv. Mater. doi: 10.1002/adma.201304138 – volume: 44 start-page: 9353 year: 2015 ident: ref_37 article-title: Large-scale delamination of multi-layers transition metal carbides and carbonitrides “MXenes” publication-title: Dalton Trans. doi: 10.1039/C5DT01247C – volume: 43 start-page: 220 year: 2020 ident: ref_1 article-title: Recent progress of surface coating on cathode materials for high-performance lithium-ion batteries publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2019.08.022 – volume: 13 start-page: 89 year: 2021 ident: ref_138 article-title: Interface Engineering via Ti3C2Tx MXene Electrolyte Additive toward Dendrite-Free Zinc Deposition publication-title: Nano-Micro Lett. doi: 10.1007/s40820-021-00612-8 – volume: 14 start-page: 16321 year: 2020 ident: ref_122 article-title: Anode Materials for Aqueous Zinc Ion Batteries: Mechanisms, Properties, and Perspectives publication-title: ACS Nano doi: 10.1021/acsnano.0c07041 – volume: 15 start-page: 9065 year: 2021 ident: ref_170 article-title: Sulfonic-Group-Grafted Ti3C2Tx MXene: A Silver Bullet to Settle the Instability of Polyaniline toward High-Performance Zn-Ion Batteries publication-title: ACS Nano doi: 10.1021/acsnano.1c02215 – volume: 45 start-page: 118 year: 2016 ident: ref_10 article-title: Charge transport and mobility engineering in two-dimensional transition metal chalcogenide semiconductors publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00517E – volume: 14 start-page: 541 year: 2020 ident: ref_158 article-title: Phase Transition Induced Unusual Electrochemical Performance of V2CTX MXene for Aqueous Zinc Hybrid-Ion Battery publication-title: ACS Nano doi: 10.1021/acsnano.9b06866 – volume: 41 start-page: 7 year: 2022 ident: ref_120 article-title: First-principles investigation of V2CSe2 MXene as a potential anode material for non-lithium metal ion batteries publication-title: Curr. Appl. Phys. doi: 10.1016/j.cap.2022.06.001 – volume: 2 start-page: 1572 year: 2019 ident: ref_86 article-title: Magnesium-Ion Storage Capability of MXenes publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b02253 – volume: 14 start-page: 11102 year: 2019 ident: ref_90 article-title: Study on MXene-supported Layered TiS2 as Cathode Materials for Magnesium Batteries publication-title: Int. J. Electrochem. Sci. doi: 10.20964/2019.12.49 – volume: 8 start-page: 9606 year: 2014 ident: ref_55 article-title: Prediction and Characterization of MXene Nanosheet Anodes for Non-Lithium-Ion Batteries publication-title: ACS Nano doi: 10.1021/nn503921j – volume: 32 start-page: 4054 year: 2020 ident: ref_161 article-title: Micron-Sized Nanoporous Vanadium Pentoxide Arrays for High-Performance Gel Zinc-Ion Batteries and Potassium Batteries publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.0c00787 – volume: 7 start-page: 2000967 year: 2021 ident: ref_15 article-title: Progress and Perspective: MXene and MXene-Based Nanomaterials for High-Performance Energy Storage Devices publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.202000967 – volume: 34 start-page: 2106897 year: 2022 ident: ref_126 article-title: Encapsulation of Metallic Zn in a Hybrid MXene/Graphene Aerogel as a Stable Zn Anode for Foldable Zn-Ion Batteries publication-title: Adv. Mater. doi: 10.1002/adma.202106897 – volume: 399 start-page: 125627 year: 2020 ident: ref_151 article-title: 3D assembly of MXene-stabilized spinel ZnMn2O4 for highly durable aqueous zinc-ion batteries publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125627 – volume: 455 start-page: 140539 year: 2022 ident: ref_167 article-title: Ultrastable and ultrafast 3D charge–discharge network of robust chemically coupled 1 T-MoS2/Ti3C2 MXene heterostructure for aqueous Zn-ion batteries publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.140539 – volume: 15 start-page: 1077 year: 2021 ident: ref_172 article-title: Halogenated Ti3C2 MXenes with Electrochemically Active Terminals for High-Performance Zinc Ion Batteries publication-title: ACS Nano doi: 10.1021/acsnano.0c07972 – volume: 23 start-page: 110 year: 2012 ident: ref_107 article-title: α-MnO2 as a cathode material for rechargeable Mg batteries publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2012.07.021 – volume: 31 start-page: 2103210 year: 2021 ident: ref_136 article-title: Tailoring Ultrahigh Energy Density and Stable Dendrite-Free Flexible Anode with Ti3C2Tx MXene Nanosheets and Hydrated Ammonium Vanadate Nanobelts for Aqueous Rocking-Chair Zinc Ion Batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202103210 – volume: 26 start-page: 4162 year: 2016 ident: ref_68 article-title: Highly Conductive Optical Quality Solution-Processed Films of 2D Titanium Carbide publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201600357 – volume: 30 start-page: 1800865 year: 2018 ident: ref_9 article-title: Recent Advances in Growth of Novel 2D Materials: Beyond Graphene and Transition Metal Dichalcogenides publication-title: Adv. Mater. doi: 10.1002/adma.201800865 – volume: 10 start-page: 727 year: 2019 ident: ref_119 article-title: Alkali Metal Intercalation in MXene/Graphene Heterostructures: A New Platform for Ion Battery Applications publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.8b03056 – volume: 518 start-page: 230731 year: 2022 ident: ref_92 article-title: VS4 anchored on Ti3C2 MXene as a high-performance cathode material for magnesium ion battery publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2021.230731 – volume: 34 start-page: 249 year: 2017 ident: ref_101 article-title: Atomic layer deposition of SnO2 on MXene for Li-ion battery anodes publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.02.043 – volume: 5 start-page: 1900537 year: 2019 ident: ref_144 article-title: MXene-Reduced Graphene Oxide Aerogel for Aqueous Zinc-Ion Hybrid Supercapacitor with Ultralong Cycle Life publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201900537 – volume: 495 start-page: 46 year: 2018 ident: ref_48 article-title: Insight and control of the chemical vapor deposition growth parameters and morphological characteristics of graphene/Mo2C heterostructures over liquid catalyst publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2018.05.015 – volume: 6 start-page: 1322 year: 2012 ident: ref_18 article-title: Two-Dimensional Transition Metal Carbides publication-title: ACS Nano doi: 10.1021/nn204153h – volume: 9 start-page: 9507 year: 2015 ident: ref_53 article-title: Two-Dimensional, Ordered, Double Transition Metals Carbides (MXenes) publication-title: ACS Nano doi: 10.1021/acsnano.5b03591 – volume: 608 start-page: 2455 year: 2022 ident: ref_104 article-title: Ti3C2 MXene with pillared structure for hybrid magnesium-lithium batteries cathode material with long cycle life and high rate capability publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.10.175 – volume: 33 start-page: 175001 year: 2021 ident: ref_118 article-title: A V3C2 MXene/graphene heterostructure as a sustainable electrode material for metal ion batteries publication-title: J. Phys. Condens. Matter doi: 10.1088/1361-648X/abe267 – volume: 31 start-page: 2008033 year: 2021 ident: ref_159 article-title: In-Situ Electrochemically Activated Surface Vanadium Valence in V2C MXene to Achieve High Capacity and Superior Rate Performance for Zn-Ion Batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202008033 – volume: 62 start-page: 550 year: 2019 ident: ref_124 article-title: Advanced rechargeable zinc-based batteries: Recent progress and future perspectives publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.05.059 – volume: 15 start-page: 15259 year: 2021 ident: ref_133 article-title: Rational Design of Sulfur-Doped Three-Dimensional Ti3C2Tx MXene/ZnS Heterostructure as Multifunctional Protective Layer for Dendrite-Free Zinc-Ion Batteries publication-title: ACS Nano doi: 10.1021/acsnano.1c05934 – volume: 45 start-page: 568 year: 2022 ident: ref_164 article-title: Ion-intercalation regulation of MXene-derived hydrated vanadates for high-rate and long-life Zn-Ion batteries publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2021.12.002 – volume: 338 start-page: 27 year: 2018 ident: ref_12 article-title: Two-dimensional MXenes for energy storage publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.12.155 – volume: 18 start-page: 5099 year: 2016 ident: ref_77 article-title: NMR reveals the surface functionalisation of Ti3C2 MXene publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP00330C – volume: 37 start-page: 2005020 year: 2021 ident: ref_154 article-title: Guest pre-intercalation strategy to boost the electrochemical performance of aqueous zinc-ion battery cathodes publication-title: Acta Phys. Chim. Sin. – volume: 5 start-page: 015002 year: 2018 ident: ref_78 article-title: On the organization and thermal behavior of functional groups on Ti3C2 MXene surfaces in vacuum publication-title: 2D Mater. doi: 10.1088/2053-1583/aa89cd – volume: 8 start-page: 24635 year: 2020 ident: ref_100 article-title: 3D high-density MXene@MnO2 microflowers for advanced aqueous zinc-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/D0TA09085A – volume: 58 start-page: 11978 year: 2019 ident: ref_110 article-title: The Rechargeable Aluminum Battery: Opportunities and Challenges publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201814031 – volume: 39 start-page: 2210027 year: 2023 ident: ref_127 article-title: Recent Progress of MXenes in Aqueous Zinc-Ion Batteries publication-title: Acta Phys. Chim. Sin. doi: 10.3866/PKU.WHXB202210027 – volume: 2 start-page: 2100001 year: 2021 ident: ref_165 article-title: Design Strategies for High-Voltage Aqueous Batteries publication-title: Small Struct. doi: 10.1002/sstr.202100001 – volume: 8 start-page: 14949 year: 2017 ident: ref_20 article-title: Two-dimensional Mo1.33C MXene with divacancy ordering prepared from parent 3D laminate with in-plane chemical ordering publication-title: Nat. Commun. doi: 10.1038/ncomms14949 – volume: 353 start-page: 1137 year: 2016 ident: ref_35 article-title: Electromagnetic interference shielding with 2D transition metal carbides (MXenes) publication-title: Science doi: 10.1126/science.aag2421 – volume: 136 start-page: 6385 year: 2014 ident: ref_75 article-title: Role of Surface Structure on Li-Ion Energy Storage Capacity of Two-Dimensional Transition-Metal Carbides publication-title: J. Am. Chem. Soc. doi: 10.1021/ja501520b – volume: 15 start-page: 3098 year: 2021 ident: ref_147 article-title: 3D-Printed Zn-Ion Hybrid Capacitor Enabled by Universal Divalent Cation-Gelated Additive-Free Ti3C2 MXene Ink publication-title: ACS Nano doi: 10.1021/acsnano.0c09646 – volume: 27 start-page: 3501 year: 2015 ident: ref_38 article-title: Amine-Assisted Delamination of Nb2C MXene for Li-Ion Energy Storage Devices publication-title: Adv. Mater. doi: 10.1002/adma.201500604 – volume: 9 start-page: 4359 year: 2009 ident: ref_74 article-title: Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes publication-title: Nano Lett. doi: 10.1021/nl902623y – volume: 29 start-page: 4848 year: 2017 ident: ref_54 article-title: Oxidation Stability of Colloidal Two-Dimensional Titanium Carbides (MXenes) publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b00745 – volume: 16 start-page: 813 year: 2022 ident: ref_131 article-title: Lattice Matching and Halogen Regulation for Synergistically Induced Uniform Zinc Electrodeposition by Halogenated Ti3C2 MXenes publication-title: ACS Nano doi: 10.1021/acsnano.1c08358 – volume: 11 start-page: 91 year: 2018 ident: ref_108 article-title: A novel aluminum dual-ion battery publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2017.10.001 – volume: 9 start-page: 4296 year: 2017 ident: ref_102 article-title: Two-Dimensional Titanium Carbide MXene As a Cathode Material for Hybrid Magnesium/Lithium-Ion Batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b04198 – volume: 141 start-page: 4730 year: 2019 ident: ref_45 article-title: Element Replacement Approach by Reaction with Lewis Acidic Molten Salts to Synthesize Nanolaminated MAX Phases and MXenes publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b00574 – volume: 1 start-page: 203 year: 2021 ident: ref_79 article-title: Confining ultrafine tin monophosphide in Ti3C2Tx interlayers for rapid and stable sodium ion storage publication-title: eScience doi: 10.1016/j.esci.2021.12.004 – volume: 593 start-page: 417 year: 2021 ident: ref_153 article-title: Three-dimensional hydrated vanadium pentoxide/MXene composite for high-rate zinc-ion batteries publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.02.090 – volume: 1 start-page: 1 year: 2020 ident: ref_93 article-title: Alternate-stacked Li4Ti5O12 nanosheets/d-Ti3C2 flexible film as a current collector-free, high-capacity and robust cathode for rechargeable Mg batteries publication-title: Nano Sel. doi: 10.1002/nano.202000007 – volume: 3 start-page: 956 year: 2021 ident: ref_4 article-title: Recent Advances in Conversion-Type Electrode Materials for Post Lithium-Ion Batteries publication-title: ACS Mater. Lett. doi: 10.1021/acsmaterialslett.1c00043 – volume: 57 start-page: 4677 year: 2018 ident: ref_25 article-title: A Delamination Strategy for Thinly Layered Defect-Free High-Mobility Black Phosphorus Flakes publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201801265 – volume: 3 start-page: 485 year: 2019 ident: ref_123 article-title: Operando Visualization and Multi-scale Tomography Studies of Dendrite Formation and Dissolution in Zinc Batteries publication-title: Joule doi: 10.1016/j.joule.2018.11.002 – volume: 56 start-page: 6412 year: 2020 ident: ref_160 article-title: Morphology restrained growth of V2O5 by the oxidation of V-MXenes as a fast diffusion controlled cathode material for aqueous zinc ion batteries publication-title: Chem. Commun. doi: 10.1039/D0CC01802C – volume: 91 start-page: 106651 year: 2022 ident: ref_168 article-title: The high-performance MoO3−x/MXene cathodes for zinc-ion batteries based on oxygen vacancies and electrolyte engineering publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106651 – volume: 695 start-page: 818 year: 2017 ident: ref_29 article-title: Synthesis of two-dimensional Ti3C2Tx MXene using HCl plus LiF etchant: Enhanced exfoliation and delamination publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2016.10.127 – volume: 13 start-page: 8275 year: 2019 ident: ref_149 article-title: A Wholly Degradable, Rechargeable Zn–Ti3C2 MXene Capacitor with Superior Anti-Self-Discharge Function publication-title: ACS Nano doi: 10.1021/acsnano.9b03650 – volume: 352 start-page: 306 year: 2017 ident: ref_22 article-title: Recent advance in MXenes: A promising 2D material for catalysis, sensor and chemical adsorption publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2017.09.012 – volume: 14 start-page: 28760 year: 2022 ident: ref_95 article-title: Construction Strategy of VO2@V2C 1D/2D Heterostructure and Improvement of Zinc-Ion Diffusion Ability in VO2 (B) publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c03646 – volume: 135 start-page: 15966 year: 2013 ident: ref_26 article-title: New Two-Dimensional Niobium and Vanadium Carbides as Promising Materials for Li-Ion Batteries publication-title: J. Am. Chem. Soc. doi: 10.1021/ja405735d – volume: 4 start-page: 1716 year: 2013 ident: ref_36 article-title: Intercalation and delamination of layered carbides and carbonitrides publication-title: Nat. Commun. doi: 10.1038/ncomms2664 – volume: 1 start-page: 628 year: 2019 ident: ref_44 article-title: Selective Lithiation–Expansion–Microexplosion Synthesis of Two-Dimensional Fluoride-Free Mxene publication-title: ACS Mater. Lett. doi: 10.1021/acsmaterialslett.9b00390 – volume: 7 start-page: 79 year: 2019 ident: ref_115 article-title: Multivalent Batteries—Prospects for High Energy Density: Ca Batteries publication-title: Front. Chem. doi: 10.3389/fchem.2019.00079 – volume: 131 start-page: 2887 year: 1984 ident: ref_8 article-title: An Aluminum Acid-Base Concentration Cell Using Room Temperature Chloroaluminate Ionic Liquids publication-title: J. Electrochem. Soc. doi: 10.1149/1.2115436 – volume: 3 start-page: 2480 year: 2018 ident: ref_6 article-title: Recent Advances in Aqueous Zinc-Ion Batteries publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b01426 – volume: 8 start-page: 963 year: 2020 ident: ref_81 article-title: A review on current anode materials for rechargeable Mg batteries publication-title: J. Magnes. Alloys doi: 10.1016/j.jma.2020.09.017 – volume: 33 start-page: 2004039 year: 2021 ident: ref_5 article-title: MXenes for Rechargeable Batteries Beyond the Lithium-Ion publication-title: Adv. Mater. doi: 10.1002/adma.202004039 – volume: 516 start-page: 78 year: 2014 ident: ref_30 article-title: Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance publication-title: Nature doi: 10.1038/nature13970 – volume: 31 start-page: 2100793 year: 2021 ident: ref_61 article-title: Lamellar MXene Composite Aerogels with Sandwiched Carbon Nanotubes Enable Stable Lithium–Sulfur Batteries with a High Sulfur Loading publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202100793 – volume: 3 start-page: 214 year: 2020 ident: ref_16 article-title: MXene-Based Anodes for Metal-Ion Batteries publication-title: Batter. Supercaps doi: 10.1002/batt.201900165 – volume: 15 start-page: 11227 year: 2020 ident: ref_94 article-title: Study on MnO2/MXene-V2C composite as cathode for magnesium ion battery publication-title: Int. J. Electrochem. Sci. doi: 10.20964/2020.11.25 – volume: 454 start-page: 140394 year: 2023 ident: ref_132 article-title: MOF-derived Zn/Co co-doped MnO/C microspheres as cathode and Ti3C2@Zn as anode for aqueous zinc-ion full battery publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.140394 – volume: 57 start-page: 15491 year: 2018 ident: ref_43 article-title: Fluoride-Free Synthesis of Two-Dimensional Titanium Carbide (MXene) Using A Binary Aqueous System publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201809662 – volume: 207 start-page: 42 year: 2013 ident: ref_73 article-title: Two-dimensional titanium carbonitrides and their hydroxylated derivatives: Structural, electronic properties and stability of MXenes Ti3C2−xNx(OH)2 from DFTB calculations publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2013.09.010 – volume: 341 start-page: 136061 year: 2020 ident: ref_146 article-title: In-situ pillared MXene as a viable zinc-ion hybrid capacitor publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2020.136061 – volume: 10 start-page: 2001791 year: 2020 ident: ref_166 article-title: In Situ Electrochemical Synthesis of MXenes without Acid/Alkali Usage in/for an Aqueous Zinc Ion Battery publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202001791 – volume: 29 start-page: 1313 year: 2018 ident: ref_89 article-title: Synthesis of MXene-supported layered MoS2 with enhanced electrochemical performance for Mg batteries publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2018.04.023 – volume: 11 start-page: 70 year: 2019 ident: ref_140 article-title: A New Free-Standing Aqueous Zinc-Ion Capacitor Based on MnO2–CNTs Cathode and MXene Anode publication-title: Nano-Micro Lett. doi: 10.1007/s40820-019-0301-1 – volume: 16 start-page: 6584 year: 2016 ident: ref_67 article-title: Large-Gap Quantum Spin Hall State in MXenes: D-Band Topological Order in a Triangular Lattice publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b03118 – volume: 117 start-page: 4287 year: 2017 ident: ref_85 article-title: Odyssey of Multivalent Cathode Materials: Open Questions and Future Challenges publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00614 – volume: 369 start-page: 979 year: 2020 ident: ref_47 article-title: Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes publication-title: Science doi: 10.1126/science.aba8311 – volume: 60 start-page: 2861 year: 2021 ident: ref_130 article-title: Direct Self-Assembly of MXene on Zn Anodes for Dendrite-Free Aqueous Zinc-Ion Batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202012322 – volume: 12 start-page: 89 year: 2020 ident: ref_57 article-title: Enhanced Ionic Accessibility of Flexible MXene Electrodes Produced by Natural Sedimentation publication-title: Nano-Micro Lett. doi: 10.1007/s40820-020-00426-0 – volume: 34 start-page: 2102026 year: 2022 ident: ref_80 article-title: Challenges and Strategies of Low-Cost Aluminum Anodes for High-Performance Al-Based Batteries publication-title: Adv. Mater. doi: 10.1002/adma.202102026 – volume: 12 start-page: 3387 year: 2020 ident: ref_114 article-title: Two-dimensional composite of D-Ti3C2Tx@S@TiO2 (MXene) as the cathode material for aluminum-ion batteries publication-title: Nanoscale doi: 10.1039/C9NR09944A – volume: 504 start-page: 230076 year: 2021 ident: ref_137 article-title: A flexible, heat-resistant and self-healable “rocking-chair” zinc ion microbattery based on MXene-TiS2 (de)intercalation anode publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2021.230076 – volume: 16 start-page: 1906076 year: 2020 ident: ref_103 article-title: Prelithiated V2C MXene: A High-Performance Electrode for Hybrid Magnesium/Lithium-Ion Batteries by Ion Cointercalation publication-title: Small doi: 10.1002/smll.201906076 – volume: 9 start-page: 7988 year: 2019 ident: ref_7 article-title: Copper sulfide nanoparticles as high-performance cathode materials for Mg-ion batteries publication-title: Sci. Rep. doi: 10.1038/s41598-019-43639-z – volume: 13 start-page: 51028 year: 2021 ident: ref_98 article-title: MXene/TiO2 Heterostructure-Decorated Hard Carbon with Stable Ti–O–C Bonding for Enhanced Sodium-Ion Storage publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c15539 – volume: 123 start-page: 053301 year: 2018 ident: ref_49 article-title: Synthesis of molybdenum carbide superconducting compounds by microwave-plasma chemical vapor deposition publication-title: J. Appl. Phys. doi: 10.1063/1.5010101 – volume: 5 start-page: 2993 year: 2021 ident: ref_171 article-title: Intrinsic voltage plateau of a Nb2CTx MXene cathode in an aqueous electrolyte induced by high-voltage scanning publication-title: Joule doi: 10.1016/j.joule.2021.09.006 – volume: 157 start-page: 168 year: 2019 ident: ref_66 article-title: Nanoindentation of monolayer Tin+1CnTx MXenes via atomistic simulations: The role of composition and defects on strength publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2018.10.033 – volume: 426 start-page: 130747 year: 2021 ident: ref_91 article-title: High-performance heterojunction Ti3C2/CoSe2 with both intercalation and conversion storage mechanisms for magnesium batteries publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.130747 – volume: 431 start-page: 134277 year: 2022 ident: ref_134 article-title: Long-life and dendrite-free zinc metal anode enabled by a flexible, green and self-assembled zincophilic biomass engineered MXene based interface publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.134277 – volume: 26 start-page: 2374 year: 2014 ident: ref_33 article-title: Transparent Conductive Two-Dimensional Titanium Carbide Epitaxial Thin Films publication-title: Chem. Mater. doi: 10.1021/cm500641a – volume: 2 start-page: 860 year: 2012 ident: ref_3 article-title: The Current Move of Lithium Ion Batteries Towards the Next Phase publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201200028 – volume: 45 start-page: 23600 year: 2019 ident: ref_27 article-title: Synthesis and microwave absorption of Ti3C2Tx MXene with diverse reactant concentration, reaction time, and reaction temperature publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.08.071 – volume: 373 start-page: 203 year: 2019 ident: ref_58 article-title: Synthesis and lithium ion storage performance of two-dimensional V4C3 MXene publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.05.037 – volume: 7 start-page: 16712 year: 2019 ident: ref_88 article-title: Pursuit of a high-capacity and long-life Mg-storage cathode by tailoring sandwich-structured MXene@carbon nanosphere composites publication-title: J. Mater. Chem. A doi: 10.1039/C9TA02212K – volume: 16 start-page: 2711 year: 2022 ident: ref_97 article-title: Surface Selenization Strategy for V2CTx MXene toward Superior Zn-Ion Storage publication-title: ACS Nano doi: 10.1021/acsnano.1c09639 – volume: 122 start-page: 106898 year: 2021 ident: ref_121 article-title: Zn electrode/electrolyte interfaces of Zn batteries: A mini review publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2020.106898 – volume: 12 start-page: 5324 year: 2020 ident: ref_112 article-title: Fe2CS2 MXene: A promising electrode for Al-ion batteries publication-title: Nanoscale doi: 10.1039/C9NR08906C – volume: 9 start-page: 17994 year: 2021 ident: ref_163 article-title: Zn2+-Intercalated V2O5·nH2O derived from V2CTx MXene for hyper-stable zinc-ion storage publication-title: J. Mater. Chem. A doi: 10.1039/D1TA05526G – volume: 7 start-page: 19390 year: 2015 ident: ref_69 article-title: Surface group modification and carrier transport properties of layered transition metal carbides (Ti2CTx, T: -OH, -F and -O) publication-title: Nanoscale doi: 10.1039/C5NR06513E – volume: 3 start-page: 689 year: 2016 ident: ref_60 article-title: Porous Two-Dimensional Transition Metal Carbide (MXene) Flakes for High-Performance Li-Ion Storage publication-title: ChemElectroChem doi: 10.1002/celc.201600059 – volume: 11 start-page: 14720 year: 2019 ident: ref_21 article-title: Synthesis of (V2/3Sc1/3)2AlC i-MAX phase and V2−xC MXene scrolls publication-title: Nanoscale doi: 10.1039/C9NR02354B – volume: 2 start-page: 16098 year: 2017 ident: ref_24 article-title: 2D metal carbides and nitrides (MXenes) for energy storage publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.98 – volume: 15 start-page: 14631 year: 2021 ident: ref_128 article-title: Toward a Practical Zn Powder Anode: Ti3C2Tx MXene as a Lattice-Match Electrons/Ions Redistributor publication-title: ACS Nano doi: 10.1021/acsnano.1c04354 – volume: 139 start-page: 147 year: 2013 ident: ref_32 article-title: Kinetics of aluminum extraction from Ti3AlC2 in hydrofluoric acid publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2013.01.008 – volume: 19 start-page: 894 year: 2020 ident: ref_46 article-title: A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte publication-title: Nat. Mater. doi: 10.1038/s41563-020-0657-0 – volume: 12 start-page: 3288 year: 2019 ident: ref_129 article-title: Issues and opportunities facing aqueous zinc-ion batteries publication-title: Energy Environ. Sci. doi: 10.1039/C9EE02526J – volume: 9 start-page: 197 year: 2015 ident: ref_50 article-title: Theoretical stability, thin film synthesis and transport properties of the Mon +1GaCn MAX phase publication-title: Phys. Status Solidi (RRL) Rapid Res. Lett. doi: 10.1002/pssr.201409543 – volume: 10 start-page: 3488 year: 2019 ident: ref_17 article-title: Two-Dimensional Transition Metal MXene-Based Photocatalysts for Solar Fuel Generation publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b00736 – volume: 12 start-page: 3733 year: 2018 ident: ref_40 article-title: Opening Magnesium Storage Capability of Two-Dimensional MXene by Intercalation of Cationic Surfactant publication-title: ACS Nano doi: 10.1021/acsnano.8b00959 – volume: 108 start-page: 147 year: 2015 ident: ref_51 article-title: Synthesis of two-dimensional molybdenum carbide, Mo2C, from the gallium based atomic laminate Mo2Ga2C publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2015.07.003 – volume: 100 start-page: 107520 year: 2022 ident: ref_99 article-title: A stable “rocking-chair” zinc-ion battery boosted by low-strain Zn3V4(PO4)6 cathode publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107520 – volume: 52 start-page: 299 year: 2022 ident: ref_84 article-title: Towards better Mg metal anodes in rechargeable Mg batteries: Challenges, strategies, and perspectives publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2022.08.014 |
SSID | ssj0001877227 |
Score | 2.3520083 |
SecondaryResourceType | review_article |
Snippet | Multivalent metal ion (Mg2+, Zn2+, Ca2+, and Al3+) batteries (MMIBs) emerged as promising technologies for large-scale energy storage systems in recent years... Multivalent metal ion (Mg[sup.2+] , Zn[sup.2+] , Ca[sup.2+] , and Al[sup.3+] ) batteries (MMIBs) emerged as promising technologies for large-scale energy... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 174 |
SubjectTerms | Acids Alternative energy sources Aluminum Batteries Calcium ions Carbon nitride composite materials Controllability Design and construction Earth crust Electricity distribution Electrode materials Electrodes Energy storage Etching Fluorides Fluorine Heterojunctions Interlayers Lithium Materials Metal carbides Metal ions Methods multivalent metal-ion batteries MXenes Renewable resources Storage systems Transition metals |
SummonAdditionalLinks | – databaseName: Proquest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60XvQgPrG-2IMgHkLbTXaTnKSVigoVEYXeQjYPL9JWrf_fmd3UF-h1k4U8JjPfTDLfAJxwWWmLOIDpbk2qXXaZ0rFgFHLLY3BCNq8tbsurR3EzLsYp4PaWnlUudGKtqP3UUYy8k0vdozzJvDyfvTCqGkW3q6mExjKsoApWqgUrg-Ht3f1XlEUhesxlcz_J0b_vVDVtJXqhmpwBKX7Yo5q2_y_lXFucyw1YT1Ax6zd7uwlLYbIFa98IBLdBj8aoq9gATZHPRnbeiFOGQDSrM2tRjNCoZKOAEJtdTyfZYDGuHXi8HD5cXLFUDIE50VNzpqLrWsu7nlelzoPzSrhYVYGun6VHO4TGGicYODZ5dCJkzLmNIujoEGSoyHehNZlOwh5kkVvvQlToDUbRc6XyLiKwET1ZaoU2rQ2dxZIYl5jCqWDFs0GPgRbR_F7ENpx9_jFrWDL-6TugVf7sR_zW9Yfp65NJx8XkhbcFZXmHAgEbKmUuRCyDDbkrgvSyDae0R4ZOIQ7N2ZRMgBMkPivTR2BEWbeFasPhYhtNOp5v5kuY9v9vPoBVqi_fPDo7hNb89T0cIQqZV8dJ1D4ANkXcTw priority: 102 providerName: ProQuest |
Title | MXene-Based Materials for Multivalent Metal-Ion Batteries |
URI | https://www.proquest.com/docview/2791590126 https://doaj.org/article/25da50156e5644538344f6eae2c5e7d7 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEB60XvQgPnG1lj0I4mHpdpPdJMeutFahRcRCbyGbx0la0fr_nWS3pQrqxes-IJlJ8n2TZL4BuCKsEgp5QCLSIKpdpAkXLk_8llvmrKasvm0xKUZT-jDLZxulvvydsFoeuDZcN8uNyn2-r80RunF6EkpdYZXNdG6ZCXnkiHkbwVTYXeHIGjNWn0sSjOu7VZCrxOhT-CCA0S84FOT6f1qUA9IMD2C_oYhxv27aIWzZ-RHsbQgHHoMYz3CNSkqEIBOP1bIeRjES0Dhk1OLwQTCJxxapdXK_mMflql0nMB0Onm9HSVMEIdG0x5cJdzpViqSGVIXIrDacaldV1h87M4P4gyCNHbQEXxkMHpjLiHLUCqeRXHBHTqE1X8ztGcSOKKOt4xgFOtrTBTfaIaGhPVYIjlgWQXdlEqkbhXBfqOJFYqTgjSi_GzGCm_Ufr7U6xi_flt7K6--8rnV4gN6WjbflX96O4Nr7SPrZh03TqkkiwA56HSvZR0Lks21zHkF75UbZTMt3mTHR88m2WXH-H625gF1ffb6-ktaG1vLtw14iR1lWHdjmw7sO7JSDyeNTJwzOT58s5U0 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB5Remg5VH2qobTsAYQ4WNnY3rV9qCrSEpJCOIGUm-v1oxeU8AhC_VP9jZ3ZB7RI5cZ17bV2x-P5vrE9MwBbQlXGIQ9gJq-Tapc50yYVjLbceIpequa2xXE5PpXfZ8VsBX53sTB0rbKzibWhDgtPe-R9rsyA4iR5-eX8glHVKDpd7UpoNGpxGH_doMt29XnyDed3m_PR_snXMWurCjAvB3rJdPK5cyIPoioNjz5o6VNVRTrHVQENOqKeECYKbArIxlXiwiUZTfKI1joJHPcJPJXYh5w9PTq429PBEThXzWkotuf9qk6SiT6vIddDyX_Qry4S8D8oqPFt9BJetMQ022s06RWsxPlrWPsrXeEbMNMZWkY2ROAL2dQtG-XNkPZmdRwvKi1CWDaNSOjZZDHPht13vYXTRxHSO1idL-bxPWRJuOBj0uh7JjnwpQ4-IY2SA1UajQjag34nEuvbvORUHuPMon9CQrT3hdiD3ds3zpucHA_0HZKUb_tRNu36weLyp20Xp-VFcAXFlMcC6SFCgJAyldFF7ouogurBDs2RpTWPn-ZdG7qAP0jZs-we0jCK8S10Dza6abStMbiyd6q7_nDzJjwbn0yP7NHk-PADPKfK9s11tw1YXV5ex4_If5bVp1rpMvjx2Fr-B8hPGN4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVEJwQDzVQKF7oKo4WNnY3rV9qKqGNmpoE1WISrkZrx9cUFLaIMRf49cxs4-2ILW3Xtdeyzuene8b2zMD8F6oyjjkAczkdVLtMmfapILRlhtP0UvV3LaYlUdn8tO8mK_Bny4Whq5VdjaxNtRh6WmPfMCVGVKcJC8Hqb0WcXow3jv_waiCFJ20duU0GhU5jr9_oft2uTs5wLXe5nx8-OXjEWsrDDAvh3rFdPK5cyIPoioNjz5o6VNVRTrTVQGNOyKgECYKbArIzFXiwiUZTfKI3DoJHPcBrCvyinqwPjqcnX6-3uHBMThXzdkojpIPqjplJnrAhhwRJf_BwrpkwG3AUKPd-Ck8aWlqtt_o1TNYi4vn8PhG8sIXYKZztJNshDAYsqlbNaqcIQnO6qheVGEEtGwakd6zyXKRjbp5vYSzexHTK-gtlou4AVkSLviYNHqiSQ59qYNPSKrkUJVGI572YdCJxPo2SzkVy_hu0VshIdr_hdiHD1dvnDcZOu7oOyIpX_Wj3Nr1g-XFN9v-qpYXwRUUYR4LJIsICELKVEYXuS-iCqoPO7RGliwATs27NpABP5Byadl9JGUU8VvoPmx2y2hb03BprxX59d3NW_AQNdyeTGbHb-ARlblv7r5tQm918TO-RTK0qt61WpfB1_tW9L9RKx5w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MXene-Based+Materials+for+Multivalent+Metal-Ion+Batteries&rft.jtitle=Batteries+%28Basel%29&rft.au=Chunlei+Wang&rft.au=Zibing+Pan&rft.au=Huaqi+Chen&rft.au=Xiangjun+Pu&rft.date=2023-03-01&rft.pub=MDPI+AG&rft.eissn=2313-0105&rft.volume=9&rft.issue=3&rft.spage=174&rft_id=info:doi/10.3390%2Fbatteries9030174&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_25da50156e5644538344f6eae2c5e7d7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2313-0105&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2313-0105&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2313-0105&client=summon |