MXene-Based Materials for Multivalent Metal-Ion Batteries

Multivalent metal ion (Mg2+, Zn2+, Ca2+, and Al3+) batteries (MMIBs) emerged as promising technologies for large-scale energy storage systems in recent years due to the abundant metal reserves in the Earth’s crust and potentially low cost. However, the lack of high-performance electrode materials is...

Full description

Saved in:
Bibliographic Details
Published inBatteries (Basel) Vol. 9; no. 3; p. 174
Main Authors Wang, Chunlei, Pan, Zibing, Chen, Huaqi, Pu, Xiangjun, Chen, Zhongxue
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Multivalent metal ion (Mg2+, Zn2+, Ca2+, and Al3+) batteries (MMIBs) emerged as promising technologies for large-scale energy storage systems in recent years due to the abundant metal reserves in the Earth’s crust and potentially low cost. However, the lack of high-performance electrode materials is still the main obstacle to the development of MMIBs. As a newly large family of two-dimensional transition metal carbides, nitrides, and carbonitrides, MXenes have attracted growing focus in the energy storage field because of their large specific surface area, excellent conductivity, tunable interlayer spaces, and compositional diversity. In particular, the multifunctional chemistry and superior hydrophilicity enable MXenes to serve not only as electrode materials but also as important functional components for heterojunction composite electrodes. Herein, the advances of MXene-based materials since its discovery for MMIBs are summarized, with an emphasis on the rational design and controllable synthesis of MXenes. More importantly, the fundamental understanding of the relationship between the morphology, structure, and function of MXenes is highlighted. Finally, the existing challenges and future research directions on MXene-based materials toward MMIBs application are critically discussed and prospected.
AbstractList Multivalent metal ion (Mg[sup.2+] , Zn[sup.2+] , Ca[sup.2+] , and Al[sup.3+] ) batteries (MMIBs) emerged as promising technologies for large-scale energy storage systems in recent years due to the abundant metal reserves in the Earth's crust and potentially low cost. However, the lack of high-performance electrode materials is still the main obstacle to the development of MMIBs. As a newly large family of two-dimensional transition metal carbides, nitrides, and carbonitrides, MXenes have attracted growing focus in the energy storage field because of their large specific surface area, excellent conductivity, tunable interlayer spaces, and compositional diversity. In particular, the multifunctional chemistry and superior hydrophilicity enable MXenes to serve not only as electrode materials but also as important functional components for heterojunction composite electrodes. Herein, the advances of MXene-based materials since its discovery for MMIBs are summarized, with an emphasis on the rational design and controllable synthesis of MXenes. More importantly, the fundamental understanding of the relationship between the morphology, structure, and function of MXenes is highlighted. Finally, the existing challenges and future research directions on MXene-based materials toward MMIBs application are critically discussed and prospected.
Multivalent metal ion (Mg2+, Zn2+, Ca2+, and Al3+) batteries (MMIBs) emerged as promising technologies for large-scale energy storage systems in recent years due to the abundant metal reserves in the Earth’s crust and potentially low cost. However, the lack of high-performance electrode materials is still the main obstacle to the development of MMIBs. As a newly large family of two-dimensional transition metal carbides, nitrides, and carbonitrides, MXenes have attracted growing focus in the energy storage field because of their large specific surface area, excellent conductivity, tunable interlayer spaces, and compositional diversity. In particular, the multifunctional chemistry and superior hydrophilicity enable MXenes to serve not only as electrode materials but also as important functional components for heterojunction composite electrodes. Herein, the advances of MXene-based materials since its discovery for MMIBs are summarized, with an emphasis on the rational design and controllable synthesis of MXenes. More importantly, the fundamental understanding of the relationship between the morphology, structure, and function of MXenes is highlighted. Finally, the existing challenges and future research directions on MXene-based materials toward MMIBs application are critically discussed and prospected.
Audience Academic
Author Pan, Zibing
Chen, Zhongxue
Pu, Xiangjun
Wang, Chunlei
Chen, Huaqi
Author_xml – sequence: 1
  givenname: Chunlei
  surname: Wang
  fullname: Wang, Chunlei
– sequence: 2
  givenname: Zibing
  surname: Pan
  fullname: Pan, Zibing
– sequence: 3
  givenname: Huaqi
  surname: Chen
  fullname: Chen, Huaqi
– sequence: 4
  givenname: Xiangjun
  surname: Pu
  fullname: Pu, Xiangjun
– sequence: 5
  givenname: Zhongxue
  orcidid: 0000-0002-1526-7336
  surname: Chen
  fullname: Chen, Zhongxue
BookMark eNp1UU1rHDEMNSWFpmnuPQ70PKn87TkmoR8LWXJpoTejteXgZTJOPd5C_32dbltKIPggI7339CS9ZidLWYixtxwupJzg_Q5bo5ppnUACt-oFOxWSyxE46JP__q_Y-bruAYA7a4Wwp2zafqOFxitcKQ5bfFTBeR1SqcP2MLf8A2da2rClhvO4Kctw9bfVG_YydSid_4ln7OvHD1-uP483t58215c3Y1DctdGlAIgSotyZSVCIToW02xHIbiGCNCB4n4FkL0VtjU1CYlI0pWC0c0mesc1RNxbc-4ea77H-9AWz_50o9c5jbTnM5IWOqIFrQ9oopaWTSiVDSCJostF2rXdHrYdavh9obX5fDnXp9r2wE9cTcGE66uKIuuvD-7yk0iqG_iLd59A3n3LPX1ollRFOu06AIyHUsq6V0j-bHPzjgfzTA3WKeUIJuWHLZem98vw88Rf92Jf7
CitedBy_id crossref_primary_10_1007_s42247_024_00916_6
crossref_primary_10_1016_j_jallcom_2025_179761
crossref_primary_10_1016_j_jcis_2024_03_159
crossref_primary_10_1016_j_ccr_2024_215778
crossref_primary_10_1016_j_mtchem_2024_102200
crossref_primary_10_1088_1361_6528_ad690b
crossref_primary_10_1016_j_est_2024_110514
crossref_primary_10_1002_adsu_202400844
crossref_primary_10_20517_energymater_2024_48
crossref_primary_10_3390_batteries10040121
crossref_primary_10_1016_j_cej_2024_156272
crossref_primary_10_1016_j_est_2024_110757
crossref_primary_10_1016_j_matchemphys_2023_128745
crossref_primary_10_1016_j_enrev_2023_100066
crossref_primary_10_21926_rpm_2302020
crossref_primary_10_1016_j_est_2024_111751
crossref_primary_10_1021_acsaem_4c02919
crossref_primary_10_1016_j_est_2024_112176
crossref_primary_10_1080_10408347_2023_2298339
crossref_primary_10_1021_acsbiomaterials_3c01394
crossref_primary_10_1002_sstr_202300255
crossref_primary_10_1021_acsami_4c01311
crossref_primary_10_1016_j_flatc_2024_100631
Cites_doi 10.1016/j.jpowsour.2019.227345
10.1016/j.apsusc.2017.04.239
10.1149/1.2085455
10.1039/C5CP00775E
10.1039/C6FD00251J
10.1002/adfm.201901336
10.1016/j.cej.2022.140313
10.1016/j.trechm.2019.04.006
10.1002/celc.202100036
10.1002/anie.201710616
10.1021/acsnano.7b05350
10.1021/ar500311w
10.1021/acsnano.9b07708
10.1002/adfm.201908528
10.1002/adfm.201202502
10.1021/acsnano.0c09205
10.1016/j.cej.2020.126737
10.1039/D1EE00409C
10.1021/acsaem.0c00309
10.1038/nmat4462
10.1002/smll.201904293
10.1209/0295-5075/111/26007
10.1016/j.cej.2020.125679
10.1021/acs.chemmater.5b04250
10.1016/j.jpowsour.2021.230197
10.1002/adma.201804779
10.1039/C6NR02253G
10.1021/acsnano.2c04968
10.1002/adma.201102306
10.1016/j.cej.2021.132992
10.1149/2.0641704jes
10.1016/j.coco.2023.101493
10.1021/acs.chemmater.7b02847
10.1126/science.aac9439
10.1557/mrc.2012.25
10.1002/anie.201800887
10.1016/j.apsusc.2018.05.200
10.1016/S0008-6223(02)00424-4
10.1016/j.mtener.2020.100598
10.1039/C7EE02304A
10.1103/PhysRevB.94.104103
10.1021/acs.langmuir.1c03370
10.1016/j.jcis.2004.05.028
10.1021/acsnano.9b05599
10.1016/j.ensm.2021.06.019
10.1103/PhysRevB.94.125152
10.1002/sstr.202100082
10.1002/smtd.201900495
10.1002/adma.201304138
10.1039/C5DT01247C
10.1016/j.jechem.2019.08.022
10.1007/s40820-021-00612-8
10.1021/acsnano.0c07041
10.1021/acsnano.1c02215
10.1039/C5CS00517E
10.1021/acsnano.9b06866
10.1016/j.cap.2022.06.001
10.1021/acsaem.8b02253
10.20964/2019.12.49
10.1021/nn503921j
10.1021/acs.chemmater.0c00787
10.1002/aelm.202000967
10.1002/adma.202106897
10.1016/j.cej.2020.125627
10.1016/j.cej.2022.140539
10.1021/acsnano.0c07972
10.1016/j.elecom.2012.07.021
10.1002/adfm.202103210
10.1002/adfm.201600357
10.1002/adma.201800865
10.1021/acs.jpclett.8b03056
10.1016/j.jpowsour.2021.230731
10.1016/j.nanoen.2017.02.043
10.1002/aelm.201900537
10.1016/j.jcrysgro.2018.05.015
10.1021/nn204153h
10.1021/acsnano.5b03591
10.1016/j.jcis.2021.10.175
10.1088/1361-648X/abe267
10.1002/adfm.202008033
10.1016/j.nanoen.2019.05.059
10.1021/acsnano.1c05934
10.1016/j.ensm.2021.12.002
10.1016/j.cej.2017.12.155
10.1039/C6CP00330C
10.1088/2053-1583/aa89cd
10.1039/D0TA09085A
10.1002/anie.201814031
10.3866/PKU.WHXB202210027
10.1002/sstr.202100001
10.1038/ncomms14949
10.1126/science.aag2421
10.1021/ja501520b
10.1021/acsnano.0c09646
10.1002/adma.201500604
10.1021/nl902623y
10.1021/acs.chemmater.7b00745
10.1021/acsnano.1c08358
10.1016/j.ensm.2017.10.001
10.1021/acsami.6b04198
10.1021/jacs.9b00574
10.1016/j.esci.2021.12.004
10.1016/j.jcis.2021.02.090
10.1002/nano.202000007
10.1021/acsmaterialslett.1c00043
10.1002/anie.201801265
10.1016/j.joule.2018.11.002
10.1039/D0CC01802C
10.1016/j.nanoen.2021.106651
10.1016/j.jallcom.2016.10.127
10.1021/acsnano.9b03650
10.1016/j.ccr.2017.09.012
10.1021/acsami.2c03646
10.1021/ja405735d
10.1038/ncomms2664
10.1021/acsmaterialslett.9b00390
10.3389/fchem.2019.00079
10.1149/1.2115436
10.1021/acsenergylett.8b01426
10.1016/j.jma.2020.09.017
10.1002/adma.202004039
10.1038/nature13970
10.1002/adfm.202100793
10.1002/batt.201900165
10.20964/2020.11.25
10.1016/j.cej.2022.140394
10.1002/anie.201809662
10.1016/j.jssc.2013.09.010
10.1016/j.electacta.2020.136061
10.1002/aenm.202001791
10.1016/j.cclet.2018.04.023
10.1007/s40820-019-0301-1
10.1021/acs.nanolett.6b03118
10.1021/acs.chemrev.6b00614
10.1126/science.aba8311
10.1002/anie.202012322
10.1007/s40820-020-00426-0
10.1002/adma.202102026
10.1039/C9NR09944A
10.1016/j.jpowsour.2021.230076
10.1002/smll.201906076
10.1038/s41598-019-43639-z
10.1021/acsami.1c15539
10.1063/1.5010101
10.1016/j.joule.2021.09.006
10.1016/j.commatsci.2018.10.033
10.1016/j.cej.2021.130747
10.1016/j.cej.2021.134277
10.1021/cm500641a
10.1002/aenm.201200028
10.1016/j.ceramint.2019.08.071
10.1016/j.cej.2019.05.037
10.1039/C9TA02212K
10.1021/acsnano.1c09639
10.1016/j.elecom.2020.106898
10.1039/C9NR08906C
10.1039/D1TA05526G
10.1039/C5NR06513E
10.1002/celc.201600059
10.1039/C9NR02354B
10.1038/natrevmats.2016.98
10.1021/acsnano.1c04354
10.1016/j.matchemphys.2013.01.008
10.1038/s41563-020-0657-0
10.1039/C9EE02526J
10.1002/pssr.201409543
10.1021/acs.jpclett.9b00736
10.1021/acsnano.8b00959
10.1016/j.scriptamat.2015.07.003
10.1016/j.nanoen.2022.107520
10.1016/j.ensm.2022.08.014
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.3390/batteries9030174
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
Proquest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2313-0105
ExternalDocumentID oai_doaj_org_article_25da50156e5644538344f6eae2c5e7d7
A743462858
10_3390_batteries9030174
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
ITC
KQ8
L6V
M7S
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
PMFND
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c418t-8fc0aa30d3b692ecd84cfbbe03877d036021339e3ecdd5767f23af4e9fc6588f3
IEDL.DBID DOA
ISSN 2313-0105
IngestDate Wed Aug 27 01:27:17 EDT 2025
Fri Jul 25 12:00:51 EDT 2025
Tue Jun 10 20:41:40 EDT 2025
Tue Jul 01 01:23:42 EDT 2025
Thu Apr 24 23:06:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-8fc0aa30d3b692ecd84cfbbe03877d036021339e3ecdd5767f23af4e9fc6588f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1526-7336
OpenAccessLink https://doaj.org/article/25da50156e5644538344f6eae2c5e7d7
PQID 2791590126
PQPubID 2055442
ParticipantIDs doaj_primary_oai_doaj_org_article_25da50156e5644538344f6eae2c5e7d7
proquest_journals_2791590126
gale_infotracacademiconefile_A743462858
crossref_primary_10_3390_batteries9030174
crossref_citationtrail_10_3390_batteries9030174
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Batteries (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Zhang (ref_61) 2021; 31
Yu (ref_105) 2004; 278
Novoselov (ref_11) 2016; 353
Yang (ref_43) 2018; 57
Zhang (ref_130) 2021; 60
Yufit (ref_123) 2019; 3
Persson (ref_78) 2018; 5
Xie (ref_55) 2014; 8
Liu (ref_88) 2019; 7
Hussain (ref_2) 2023; 454
Shi (ref_141) 2020; 446
Li (ref_166) 2020; 10
Li (ref_74) 2009; 9
Sha (ref_97) 2022; 16
Zhang (ref_107) 2012; 23
Naguib (ref_14) 2011; 23
Aurbach (ref_116) 1991; 138
Mashtalir (ref_36) 2013; 4
Li (ref_45) 2019; 141
Du (ref_106) 2017; 10
Li (ref_81) 2020; 8
Wang (ref_140) 2019; 11
Si (ref_67) 2016; 16
Xu (ref_40) 2018; 12
Narayanasamy (ref_160) 2020; 56
VahidMohammadi (ref_111) 2017; 11
Zhao (ref_137) 2021; 504
Greaves (ref_16) 2020; 3
Chen (ref_96) 2018; 57
Wang (ref_122) 2020; 14
Tang (ref_129) 2019; 12
Halim (ref_33) 2014; 26
Xie (ref_75) 2014; 136
Zhou (ref_126) 2022; 34
Monti (ref_115) 2019; 7
Guan (ref_1) 2020; 43
Mateen (ref_13) 2023; 38
Zhou (ref_58) 2019; 373
Naguib (ref_18) 2012; 6
Li (ref_148) 2021; 506
Ghidiu (ref_30) 2014; 516
Guo (ref_62) 2015; 17
Mohandas (ref_109) 2003; 41
Tian (ref_135) 2021; 41
Wang (ref_136) 2021; 31
Sun (ref_57) 2020; 12
Shi (ref_151) 2020; 399
Demiroglu (ref_119) 2019; 10
Cui (ref_27) 2019; 45
Long (ref_167) 2022; 455
Liu (ref_31) 2017; 164
Shi (ref_168) 2022; 91
Lai (ref_69) 2015; 7
Deysher (ref_19) 2020; 14
Mashtalir (ref_32) 2013; 139
Liu (ref_155) 2021; 405
Khazaei (ref_72) 2013; 23
Zhu (ref_164) 2022; 45
Wang (ref_56) 2016; 28
Xu (ref_89) 2018; 29
Urbankowski (ref_34) 2016; 8
Zhao (ref_59) 2019; 15
Plummer (ref_66) 2019; 157
Liu (ref_76) 2018; 455
Li (ref_172) 2021; 15
Zhao (ref_99) 2022; 100
Liu (ref_28) 2017; 416
Fan (ref_147) 2021; 15
Yang (ref_25) 2018; 57
Meshkian (ref_50) 2015; 9
Liu (ref_91) 2021; 426
Li (ref_158) 2020; 14
Jin (ref_143) 2021; 19
Ren (ref_60) 2016; 3
Wang (ref_145) 2019; 3
Zhu (ref_92) 2022; 518
Chen (ref_83) 2021; 2
Geng (ref_9) 2018; 30
Kim (ref_3) 2012; 2
Naguib (ref_23) 2014; 26
Zhao (ref_86) 2019; 2
Sun (ref_44) 2019; 1
Zha (ref_64) 2015; 111
Gao (ref_87) 2017; 199
Cheng (ref_17) 2019; 10
Zhu (ref_163) 2021; 9
Yang (ref_110) 2019; 58
Liu (ref_127) 2023; 39
Li (ref_42) 2018; 57
Ma (ref_121) 2021; 122
Chaitoglou (ref_48) 2018; 495
Khazaei (ref_71) 2016; 94
Anasori (ref_53) 2015; 9
Wei (ref_84) 2022; 52
Li (ref_113) 2020; 398
Sun (ref_132) 2023; 454
Fang (ref_6) 2018; 3
Kamysbayev (ref_47) 2020; 369
Lee (ref_112) 2020; 12
Li (ref_124) 2019; 62
Zhao (ref_49) 2018; 123
Li (ref_171) 2021; 5
Ma (ref_39) 2015; 48
Luo (ref_150) 2019; 29
Hope (ref_77) 2016; 18
Dymek (ref_8) 1984; 131
Anasori (ref_24) 2017; 2
Zhang (ref_54) 2017; 29
Kurtoglu (ref_65) 2012; 2
Huang (ref_154) 2021; 37
Kravchyk (ref_7) 2019; 9
An (ref_133) 2021; 15
Meshkian (ref_51) 2015; 108
Li (ref_10) 2016; 45
Shahzad (ref_35) 2016; 353
Huo (ref_114) 2020; 12
Naguib (ref_26) 2013; 135
Dillon (ref_68) 2016; 26
Ahmed (ref_101) 2017; 34
Mashtalir (ref_38) 2015; 27
Tao (ref_20) 2017; 8
Sun (ref_12) 2018; 338
Zhang (ref_108) 2018; 11
Canepa (ref_85) 2017; 117
Maughan (ref_146) 2020; 341
Xu (ref_15) 2021; 7
Verger (ref_52) 2019; 1
Byeon (ref_102) 2017; 9
Halim (ref_21) 2019; 11
Li (ref_46) 2020; 19
Alhabeb (ref_41) 2017; 29
Li (ref_104) 2022; 608
Yang (ref_149) 2019; 13
Tang (ref_79) 2021; 1
Wang (ref_144) 2019; 5
Tian (ref_161) 2020; 32
Gao (ref_98) 2021; 13
Sun (ref_138) 2021; 13
Zhang (ref_29) 2017; 695
Huang (ref_142) 2022; 38
Shi (ref_156) 2021; 8
Hantanasirisakul (ref_70) 2018; 30
Chen (ref_139) 2021; 14
Dong (ref_165) 2021; 2
Zhu (ref_22) 2017; 352
Fu (ref_63) 2016; 94
Enyashin (ref_73) 2013; 207
Liu (ref_103) 2020; 16
Wang (ref_120) 2022; 41
Liu (ref_159) 2021; 31
Zhang (ref_169) 2022; 430
Wang (ref_4) 2021; 3
Shi (ref_100) 2020; 8
Jiang (ref_80) 2022; 34
Li (ref_94) 2020; 15
Liu (ref_157) 2022; 16
Li (ref_131) 2022; 16
Zhu (ref_152) 2021; 15
Yang (ref_93) 2020; 1
Naguib (ref_37) 2015; 44
Ming (ref_5) 2021; 33
Chen (ref_95) 2022; 14
Li (ref_128) 2021; 15
Ponrouch (ref_117) 2016; 15
Venkatkarthick (ref_162) 2020; 3
Tian (ref_125) 2019; 13
Li (ref_90) 2019; 14
Dinda (ref_118) 2021; 33
Tan (ref_134) 2022; 431
Liang (ref_82) 2020; 30
Xu (ref_153) 2021; 593
Liu (ref_170) 2021; 15
References_xml – volume: 446
  start-page: 227345
  year: 2020
  ident: ref_141
  article-title: A new flexible zinc-ion capacitor based on δ-MnO2@Carbon cloth battery-type cathode and MXene@Cotton cloth capacitor-type anode
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.227345
– volume: 416
  start-page: 781
  year: 2017
  ident: ref_28
  article-title: Preparation of Ti3C2 and Ti2C MXenes by fluoride salts etching and methane adsorptive properties
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.04.239
– volume: 138
  start-page: 3536
  year: 1991
  ident: ref_116
  article-title: The Electrochemical Behavior of Calcium Electrodes in a Few Organic Electrolytes
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2085455
– volume: 17
  start-page: 15348
  year: 2015
  ident: ref_62
  article-title: Flexible two-dimensional Tin+1Cn (n = 1, 2 and 3) and their functionalized MXenes predicted by density functional theories
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP00775E
– volume: 199
  start-page: 393
  year: 2017
  ident: ref_87
  article-title: Synergetic effects of K+ and Mg2+ ion intercalation on the electrochemical and actuation properties of the two-dimensional Ti3C2 MXene
  publication-title: Faraday Discuss.
  doi: 10.1039/C6FD00251J
– volume: 29
  start-page: 1901336
  year: 2019
  ident: ref_150
  article-title: Nanoscale Parallel Circuitry Based on Interpenetrating Conductive Assembly for Flexible and High-Power Zinc Ion Battery
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201901336
– volume: 454
  start-page: 140313
  year: 2023
  ident: ref_2
  article-title: Earth- and marine-life-resembling nanostructures for electrochemical energy storage
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.140313
– volume: 1
  start-page: 656
  year: 2019
  ident: ref_52
  article-title: MXenes: An Introduction of Their Synthesis, Select Properties, and Applications
  publication-title: Trends Chem.
  doi: 10.1016/j.trechm.2019.04.006
– volume: 8
  start-page: 1091
  year: 2021
  ident: ref_156
  article-title: Flexible Free-Standing VO2/MXene Conductive Films as Cathodes for Quasi-Solid-State Zinc-Ion Batteries
  publication-title: ChemElectroChem
  doi: 10.1002/celc.202100036
– volume: 57
  start-page: 1846
  year: 2018
  ident: ref_96
  article-title: MoS2-on-MXene Heterostructures as Highly Reversible Anode Materials for Lithium-Ion Batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201710616
– volume: 11
  start-page: 11135
  year: 2017
  ident: ref_111
  article-title: Two-Dimensional Vanadium Carbide (MXene) as a High-Capacity Cathode Material for Rechargeable Aluminum Batteries
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b05350
– volume: 48
  start-page: 136
  year: 2015
  ident: ref_39
  article-title: Two-Dimensional Oxide and Hydroxide Nanosheets: Controllable High-Quality Exfoliation, Molecular Assembly, and Exploration of Functionality
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar500311w
– volume: 14
  start-page: 204
  year: 2020
  ident: ref_19
  article-title: Synthesis of Mo4VAlC4 MAX Phase and Two-Dimensional Mo4VC4 MXene with Five Atomic Layers of Transition Metals
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b07708
– volume: 30
  start-page: 1908528
  year: 2020
  ident: ref_82
  article-title: Highly Reversible Zn Anode Enabled by Controllable Formation of Nucleation Sites for Zn-Based Batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201908528
– volume: 23
  start-page: 2185
  year: 2013
  ident: ref_72
  article-title: Novel Electronic and Magnetic Properties of Two-Dimensional Transition Metal Carbides and Nitrides
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201202502
– volume: 15
  start-page: 2971
  year: 2021
  ident: ref_152
  article-title: Superior-Performance Aqueous Zinc-Ion Batteries Based on the In Situ Growth of MnO2 Nanosheets on V2CTX MXene
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c09205
– volume: 405
  start-page: 126737
  year: 2021
  ident: ref_155
  article-title: Highly stable H2V3O8/Mxene cathode for Zn-ion batteries with superior rate performance and long lifespan
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126737
– volume: 14
  start-page: 3492
  year: 2021
  ident: ref_139
  article-title: Grafted MXene/polymer electrolyte for high performance solid zinc batteries with enhanced shelf life at low/high temperatures
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE00409C
– volume: 3
  start-page: 4677
  year: 2020
  ident: ref_162
  article-title: Vanadium-Based Oxide on Two-Dimensional Vanadium Carbide MXene (V2Ox@V2CTx) as Cathode for Rechargeable Aqueous Zinc-Ion Batteries
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.0c00309
– volume: 15
  start-page: 169
  year: 2016
  ident: ref_117
  article-title: Towards a calcium-based rechargeable battery
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4462
– volume: 15
  start-page: 1904293
  year: 2019
  ident: ref_59
  article-title: Flexible 3D Porous MXene Foam for High-Performance Lithium-Ion Batteries
  publication-title: Small
  doi: 10.1002/smll.201904293
– volume: 111
  start-page: 26007
  year: 2015
  ident: ref_64
  article-title: Role of the surface effect on the structural, electronic and mechanical properties of the carbide MXenes
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/111/26007
– volume: 398
  start-page: 125679
  year: 2020
  ident: ref_113
  article-title: Two-dimensional Ti3C2@CTAB-Se (MXene) composite cathode material for high-performance rechargeable aluminum batteries
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.125679
– volume: 28
  start-page: 349
  year: 2016
  ident: ref_56
  article-title: Resolving the Structure of Ti3C2Tx MXenes through Multilevel Structural Modeling of the Atomic Pair Distribution Function
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b04250
– volume: 506
  start-page: 230197
  year: 2021
  ident: ref_148
  article-title: Exploration of Metal/Ti3C2 MXene-derived composites as anode for high-performance zinc-ion supercapacitor
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2021.230197
– volume: 30
  start-page: 1804779
  year: 2018
  ident: ref_70
  article-title: Electronic and Optical Properties of 2D Transition Metal Carbides and Nitrides (MXenes)
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201804779
– volume: 8
  start-page: 11385
  year: 2016
  ident: ref_34
  article-title: Synthesis of two-dimensional titanium nitride Ti4N3 (MXene)
  publication-title: Nanoscale
  doi: 10.1039/C6NR02253G
– volume: 16
  start-page: 14539
  year: 2022
  ident: ref_157
  article-title: Van der Waals Interaction-Driven Self-Assembly of V2O5 Nanoplates and MXene for High-Performing Zinc-Ion Batteries by Suppressing Vanadium Dissolution
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c04968
– volume: 23
  start-page: 4248
  year: 2011
  ident: ref_14
  article-title: Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201102306
– volume: 430
  start-page: 132992
  year: 2022
  ident: ref_169
  article-title: Self-assembled Cobalt-doped NiMn-layered double hydroxide (LDH)/V2CTx MXene hybrids for advanced aqueous electrochemical energy storage properties
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.132992
– volume: 164
  start-page: A709
  year: 2017
  ident: ref_31
  article-title: Preparation of High-Purity V2C MXene and Electrochemical Properties as Li-Ion Batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0641704jes
– volume: 38
  start-page: 101493
  year: 2023
  ident: ref_13
  article-title: Ti2CTx–MXene aerogel based ultra–stable Zn–ion supercapacitor
  publication-title: Compos. Commun.
  doi: 10.1016/j.coco.2023.101493
– volume: 29
  start-page: 7633
  year: 2017
  ident: ref_41
  article-title: Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene)
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b02847
– volume: 353
  start-page: aac9439
  year: 2016
  ident: ref_11
  article-title: 2D materials and van der Waals heterostructures
  publication-title: Science
  doi: 10.1126/science.aac9439
– volume: 2
  start-page: 133
  year: 2012
  ident: ref_65
  article-title: First principles study of two-dimensional early transition metal carbides
  publication-title: MRS Commun.
  doi: 10.1557/mrc.2012.25
– volume: 57
  start-page: 6115
  year: 2018
  ident: ref_42
  article-title: Fluorine-Free Synthesis of High-Purity Ti3C2Tx (T=OH, O) via Alkali Treatment
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201800887
– volume: 455
  start-page: 522
  year: 2018
  ident: ref_76
  article-title: Anchoring effects of S-terminated Ti2C MXene for lithium-sulfur batteries: A first-principles study
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.05.200
– volume: 41
  start-page: 927
  year: 2003
  ident: ref_109
  article-title: Electrochemical intercalation of aluminium chloride in graphite in the molten sodium chloroaluminate medium
  publication-title: Carbon
  doi: 10.1016/S0008-6223(02)00424-4
– volume: 19
  start-page: 100598
  year: 2021
  ident: ref_143
  article-title: A High-rate, Long Life, and Anti-self-discharge Aqueous N-doped Ti3C2/Zn Hybrid Capacitor
  publication-title: Mater. Today Energy
  doi: 10.1016/j.mtener.2020.100598
– volume: 10
  start-page: 2616
  year: 2017
  ident: ref_106
  article-title: An efficient organic magnesium borate-based electrolyte with non-nucleophilic characteristics for magnesium–sulfur battery
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE02304A
– volume: 94
  start-page: 104103
  year: 2016
  ident: ref_63
  article-title: Stabilization and strengthening effects of functional groups in two-dimensional titanium carbide
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.94.104103
– volume: 38
  start-page: 5968
  year: 2022
  ident: ref_142
  article-title: Highly Transparent and Flexible Zn-Ti3C2Tx MXene Hybrid Capacitors
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.1c03370
– volume: 278
  start-page: 160
  year: 2004
  ident: ref_105
  article-title: Electrochemical insertion of magnesium ions into V2O5 from aprotic electrolytes with varied water content
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2004.05.028
– volume: 13
  start-page: 11676
  year: 2019
  ident: ref_125
  article-title: Flexible and Free-Standing Ti3C2Tx MXene@Zn Paper for Dendrite-Free Aqueous Zinc Metal Batteries and Nonaqueous Lithium Metal Batteries
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b05599
– volume: 41
  start-page: 343
  year: 2021
  ident: ref_135
  article-title: Reversible zinc-based anodes enabled by zincophilic antimony engineered MXene for stable and dendrite-free aqueous zinc batteries
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2021.06.019
– volume: 94
  start-page: 125152
  year: 2016
  ident: ref_71
  article-title: Topological insulators in the ordered double transition metals M′2M″C2 MXenes (M′ = Mo, W; M″ = Ti, Zr, Hf)
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.94.125152
– volume: 2
  start-page: 2100082
  year: 2021
  ident: ref_83
  article-title: Emerging Intercalation Cathode Materials for Multivalent Metal-Ion Batteries: Status and Challenges
  publication-title: Small Struct.
  doi: 10.1002/sstr.202100082
– volume: 3
  start-page: 1900495
  year: 2019
  ident: ref_145
  article-title: Delaminating Vanadium Carbides for Zinc-Ion Storage: Hydrate Precipitation and H+/Zn2+ Co-Action Mechanism
  publication-title: Small Methods
  doi: 10.1002/smtd.201900495
– volume: 26
  start-page: 992
  year: 2014
  ident: ref_23
  article-title: 25th Anniversary Article: MXenes: A New Family of Two-Dimensional Materials
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201304138
– volume: 44
  start-page: 9353
  year: 2015
  ident: ref_37
  article-title: Large-scale delamination of multi-layers transition metal carbides and carbonitrides “MXenes”
  publication-title: Dalton Trans.
  doi: 10.1039/C5DT01247C
– volume: 43
  start-page: 220
  year: 2020
  ident: ref_1
  article-title: Recent progress of surface coating on cathode materials for high-performance lithium-ion batteries
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2019.08.022
– volume: 13
  start-page: 89
  year: 2021
  ident: ref_138
  article-title: Interface Engineering via Ti3C2Tx MXene Electrolyte Additive toward Dendrite-Free Zinc Deposition
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-021-00612-8
– volume: 14
  start-page: 16321
  year: 2020
  ident: ref_122
  article-title: Anode Materials for Aqueous Zinc Ion Batteries: Mechanisms, Properties, and Perspectives
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c07041
– volume: 15
  start-page: 9065
  year: 2021
  ident: ref_170
  article-title: Sulfonic-Group-Grafted Ti3C2Tx MXene: A Silver Bullet to Settle the Instability of Polyaniline toward High-Performance Zn-Ion Batteries
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c02215
– volume: 45
  start-page: 118
  year: 2016
  ident: ref_10
  article-title: Charge transport and mobility engineering in two-dimensional transition metal chalcogenide semiconductors
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00517E
– volume: 14
  start-page: 541
  year: 2020
  ident: ref_158
  article-title: Phase Transition Induced Unusual Electrochemical Performance of V2CTX MXene for Aqueous Zinc Hybrid-Ion Battery
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b06866
– volume: 41
  start-page: 7
  year: 2022
  ident: ref_120
  article-title: First-principles investigation of V2CSe2 MXene as a potential anode material for non-lithium metal ion batteries
  publication-title: Curr. Appl. Phys.
  doi: 10.1016/j.cap.2022.06.001
– volume: 2
  start-page: 1572
  year: 2019
  ident: ref_86
  article-title: Magnesium-Ion Storage Capability of MXenes
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.8b02253
– volume: 14
  start-page: 11102
  year: 2019
  ident: ref_90
  article-title: Study on MXene-supported Layered TiS2 as Cathode Materials for Magnesium Batteries
  publication-title: Int. J. Electrochem. Sci.
  doi: 10.20964/2019.12.49
– volume: 8
  start-page: 9606
  year: 2014
  ident: ref_55
  article-title: Prediction and Characterization of MXene Nanosheet Anodes for Non-Lithium-Ion Batteries
  publication-title: ACS Nano
  doi: 10.1021/nn503921j
– volume: 32
  start-page: 4054
  year: 2020
  ident: ref_161
  article-title: Micron-Sized Nanoporous Vanadium Pentoxide Arrays for High-Performance Gel Zinc-Ion Batteries and Potassium Batteries
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.0c00787
– volume: 7
  start-page: 2000967
  year: 2021
  ident: ref_15
  article-title: Progress and Perspective: MXene and MXene-Based Nanomaterials for High-Performance Energy Storage Devices
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.202000967
– volume: 34
  start-page: 2106897
  year: 2022
  ident: ref_126
  article-title: Encapsulation of Metallic Zn in a Hybrid MXene/Graphene Aerogel as a Stable Zn Anode for Foldable Zn-Ion Batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202106897
– volume: 399
  start-page: 125627
  year: 2020
  ident: ref_151
  article-title: 3D assembly of MXene-stabilized spinel ZnMn2O4 for highly durable aqueous zinc-ion batteries
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.125627
– volume: 455
  start-page: 140539
  year: 2022
  ident: ref_167
  article-title: Ultrastable and ultrafast 3D charge–discharge network of robust chemically coupled 1 T-MoS2/Ti3C2 MXene heterostructure for aqueous Zn-ion batteries
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.140539
– volume: 15
  start-page: 1077
  year: 2021
  ident: ref_172
  article-title: Halogenated Ti3C2 MXenes with Electrochemically Active Terminals for High-Performance Zinc Ion Batteries
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c07972
– volume: 23
  start-page: 110
  year: 2012
  ident: ref_107
  article-title: α-MnO2 as a cathode material for rechargeable Mg batteries
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2012.07.021
– volume: 31
  start-page: 2103210
  year: 2021
  ident: ref_136
  article-title: Tailoring Ultrahigh Energy Density and Stable Dendrite-Free Flexible Anode with Ti3C2Tx MXene Nanosheets and Hydrated Ammonium Vanadate Nanobelts for Aqueous Rocking-Chair Zinc Ion Batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202103210
– volume: 26
  start-page: 4162
  year: 2016
  ident: ref_68
  article-title: Highly Conductive Optical Quality Solution-Processed Films of 2D Titanium Carbide
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201600357
– volume: 30
  start-page: 1800865
  year: 2018
  ident: ref_9
  article-title: Recent Advances in Growth of Novel 2D Materials: Beyond Graphene and Transition Metal Dichalcogenides
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800865
– volume: 10
  start-page: 727
  year: 2019
  ident: ref_119
  article-title: Alkali Metal Intercalation in MXene/Graphene Heterostructures: A New Platform for Ion Battery Applications
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.8b03056
– volume: 518
  start-page: 230731
  year: 2022
  ident: ref_92
  article-title: VS4 anchored on Ti3C2 MXene as a high-performance cathode material for magnesium ion battery
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2021.230731
– volume: 34
  start-page: 249
  year: 2017
  ident: ref_101
  article-title: Atomic layer deposition of SnO2 on MXene for Li-ion battery anodes
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.02.043
– volume: 5
  start-page: 1900537
  year: 2019
  ident: ref_144
  article-title: MXene-Reduced Graphene Oxide Aerogel for Aqueous Zinc-Ion Hybrid Supercapacitor with Ultralong Cycle Life
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201900537
– volume: 495
  start-page: 46
  year: 2018
  ident: ref_48
  article-title: Insight and control of the chemical vapor deposition growth parameters and morphological characteristics of graphene/Mo2C heterostructures over liquid catalyst
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2018.05.015
– volume: 6
  start-page: 1322
  year: 2012
  ident: ref_18
  article-title: Two-Dimensional Transition Metal Carbides
  publication-title: ACS Nano
  doi: 10.1021/nn204153h
– volume: 9
  start-page: 9507
  year: 2015
  ident: ref_53
  article-title: Two-Dimensional, Ordered, Double Transition Metals Carbides (MXenes)
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b03591
– volume: 608
  start-page: 2455
  year: 2022
  ident: ref_104
  article-title: Ti3C2 MXene with pillared structure for hybrid magnesium-lithium batteries cathode material with long cycle life and high rate capability
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.10.175
– volume: 33
  start-page: 175001
  year: 2021
  ident: ref_118
  article-title: A V3C2 MXene/graphene heterostructure as a sustainable electrode material for metal ion batteries
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/1361-648X/abe267
– volume: 31
  start-page: 2008033
  year: 2021
  ident: ref_159
  article-title: In-Situ Electrochemically Activated Surface Vanadium Valence in V2C MXene to Achieve High Capacity and Superior Rate Performance for Zn-Ion Batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202008033
– volume: 62
  start-page: 550
  year: 2019
  ident: ref_124
  article-title: Advanced rechargeable zinc-based batteries: Recent progress and future perspectives
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.05.059
– volume: 15
  start-page: 15259
  year: 2021
  ident: ref_133
  article-title: Rational Design of Sulfur-Doped Three-Dimensional Ti3C2Tx MXene/ZnS Heterostructure as Multifunctional Protective Layer for Dendrite-Free Zinc-Ion Batteries
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c05934
– volume: 45
  start-page: 568
  year: 2022
  ident: ref_164
  article-title: Ion-intercalation regulation of MXene-derived hydrated vanadates for high-rate and long-life Zn-Ion batteries
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2021.12.002
– volume: 338
  start-page: 27
  year: 2018
  ident: ref_12
  article-title: Two-dimensional MXenes for energy storage
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.12.155
– volume: 18
  start-page: 5099
  year: 2016
  ident: ref_77
  article-title: NMR reveals the surface functionalisation of Ti3C2 MXene
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP00330C
– volume: 37
  start-page: 2005020
  year: 2021
  ident: ref_154
  article-title: Guest pre-intercalation strategy to boost the electrochemical performance of aqueous zinc-ion battery cathodes
  publication-title: Acta Phys. Chim. Sin.
– volume: 5
  start-page: 015002
  year: 2018
  ident: ref_78
  article-title: On the organization and thermal behavior of functional groups on Ti3C2 MXene surfaces in vacuum
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/aa89cd
– volume: 8
  start-page: 24635
  year: 2020
  ident: ref_100
  article-title: 3D high-density MXene@MnO2 microflowers for advanced aqueous zinc-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA09085A
– volume: 58
  start-page: 11978
  year: 2019
  ident: ref_110
  article-title: The Rechargeable Aluminum Battery: Opportunities and Challenges
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201814031
– volume: 39
  start-page: 2210027
  year: 2023
  ident: ref_127
  article-title: Recent Progress of MXenes in Aqueous Zinc-Ion Batteries
  publication-title: Acta Phys. Chim. Sin.
  doi: 10.3866/PKU.WHXB202210027
– volume: 2
  start-page: 2100001
  year: 2021
  ident: ref_165
  article-title: Design Strategies for High-Voltage Aqueous Batteries
  publication-title: Small Struct.
  doi: 10.1002/sstr.202100001
– volume: 8
  start-page: 14949
  year: 2017
  ident: ref_20
  article-title: Two-dimensional Mo1.33C MXene with divacancy ordering prepared from parent 3D laminate with in-plane chemical ordering
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14949
– volume: 353
  start-page: 1137
  year: 2016
  ident: ref_35
  article-title: Electromagnetic interference shielding with 2D transition metal carbides (MXenes)
  publication-title: Science
  doi: 10.1126/science.aag2421
– volume: 136
  start-page: 6385
  year: 2014
  ident: ref_75
  article-title: Role of Surface Structure on Li-Ion Energy Storage Capacity of Two-Dimensional Transition-Metal Carbides
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja501520b
– volume: 15
  start-page: 3098
  year: 2021
  ident: ref_147
  article-title: 3D-Printed Zn-Ion Hybrid Capacitor Enabled by Universal Divalent Cation-Gelated Additive-Free Ti3C2 MXene Ink
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c09646
– volume: 27
  start-page: 3501
  year: 2015
  ident: ref_38
  article-title: Amine-Assisted Delamination of Nb2C MXene for Li-Ion Energy Storage Devices
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201500604
– volume: 9
  start-page: 4359
  year: 2009
  ident: ref_74
  article-title: Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes
  publication-title: Nano Lett.
  doi: 10.1021/nl902623y
– volume: 29
  start-page: 4848
  year: 2017
  ident: ref_54
  article-title: Oxidation Stability of Colloidal Two-Dimensional Titanium Carbides (MXenes)
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b00745
– volume: 16
  start-page: 813
  year: 2022
  ident: ref_131
  article-title: Lattice Matching and Halogen Regulation for Synergistically Induced Uniform Zinc Electrodeposition by Halogenated Ti3C2 MXenes
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c08358
– volume: 11
  start-page: 91
  year: 2018
  ident: ref_108
  article-title: A novel aluminum dual-ion battery
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2017.10.001
– volume: 9
  start-page: 4296
  year: 2017
  ident: ref_102
  article-title: Two-Dimensional Titanium Carbide MXene As a Cathode Material for Hybrid Magnesium/Lithium-Ion Batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b04198
– volume: 141
  start-page: 4730
  year: 2019
  ident: ref_45
  article-title: Element Replacement Approach by Reaction with Lewis Acidic Molten Salts to Synthesize Nanolaminated MAX Phases and MXenes
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b00574
– volume: 1
  start-page: 203
  year: 2021
  ident: ref_79
  article-title: Confining ultrafine tin monophosphide in Ti3C2Tx interlayers for rapid and stable sodium ion storage
  publication-title: eScience
  doi: 10.1016/j.esci.2021.12.004
– volume: 593
  start-page: 417
  year: 2021
  ident: ref_153
  article-title: Three-dimensional hydrated vanadium pentoxide/MXene composite for high-rate zinc-ion batteries
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.02.090
– volume: 1
  start-page: 1
  year: 2020
  ident: ref_93
  article-title: Alternate-stacked Li4Ti5O12 nanosheets/d-Ti3C2 flexible film as a current collector-free, high-capacity and robust cathode for rechargeable Mg batteries
  publication-title: Nano Sel.
  doi: 10.1002/nano.202000007
– volume: 3
  start-page: 956
  year: 2021
  ident: ref_4
  article-title: Recent Advances in Conversion-Type Electrode Materials for Post Lithium-Ion Batteries
  publication-title: ACS Mater. Lett.
  doi: 10.1021/acsmaterialslett.1c00043
– volume: 57
  start-page: 4677
  year: 2018
  ident: ref_25
  article-title: A Delamination Strategy for Thinly Layered Defect-Free High-Mobility Black Phosphorus Flakes
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201801265
– volume: 3
  start-page: 485
  year: 2019
  ident: ref_123
  article-title: Operando Visualization and Multi-scale Tomography Studies of Dendrite Formation and Dissolution in Zinc Batteries
  publication-title: Joule
  doi: 10.1016/j.joule.2018.11.002
– volume: 56
  start-page: 6412
  year: 2020
  ident: ref_160
  article-title: Morphology restrained growth of V2O5 by the oxidation of V-MXenes as a fast diffusion controlled cathode material for aqueous zinc ion batteries
  publication-title: Chem. Commun.
  doi: 10.1039/D0CC01802C
– volume: 91
  start-page: 106651
  year: 2022
  ident: ref_168
  article-title: The high-performance MoO3−x/MXene cathodes for zinc-ion batteries based on oxygen vacancies and electrolyte engineering
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106651
– volume: 695
  start-page: 818
  year: 2017
  ident: ref_29
  article-title: Synthesis of two-dimensional Ti3C2Tx MXene using HCl plus LiF etchant: Enhanced exfoliation and delamination
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2016.10.127
– volume: 13
  start-page: 8275
  year: 2019
  ident: ref_149
  article-title: A Wholly Degradable, Rechargeable Zn–Ti3C2 MXene Capacitor with Superior Anti-Self-Discharge Function
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b03650
– volume: 352
  start-page: 306
  year: 2017
  ident: ref_22
  article-title: Recent advance in MXenes: A promising 2D material for catalysis, sensor and chemical adsorption
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2017.09.012
– volume: 14
  start-page: 28760
  year: 2022
  ident: ref_95
  article-title: Construction Strategy of VO2@V2C 1D/2D Heterostructure and Improvement of Zinc-Ion Diffusion Ability in VO2 (B)
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c03646
– volume: 135
  start-page: 15966
  year: 2013
  ident: ref_26
  article-title: New Two-Dimensional Niobium and Vanadium Carbides as Promising Materials for Li-Ion Batteries
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja405735d
– volume: 4
  start-page: 1716
  year: 2013
  ident: ref_36
  article-title: Intercalation and delamination of layered carbides and carbonitrides
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2664
– volume: 1
  start-page: 628
  year: 2019
  ident: ref_44
  article-title: Selective Lithiation–Expansion–Microexplosion Synthesis of Two-Dimensional Fluoride-Free Mxene
  publication-title: ACS Mater. Lett.
  doi: 10.1021/acsmaterialslett.9b00390
– volume: 7
  start-page: 79
  year: 2019
  ident: ref_115
  article-title: Multivalent Batteries—Prospects for High Energy Density: Ca Batteries
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2019.00079
– volume: 131
  start-page: 2887
  year: 1984
  ident: ref_8
  article-title: An Aluminum Acid-Base Concentration Cell Using Room Temperature Chloroaluminate Ionic Liquids
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2115436
– volume: 3
  start-page: 2480
  year: 2018
  ident: ref_6
  article-title: Recent Advances in Aqueous Zinc-Ion Batteries
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b01426
– volume: 8
  start-page: 963
  year: 2020
  ident: ref_81
  article-title: A review on current anode materials for rechargeable Mg batteries
  publication-title: J. Magnes. Alloys
  doi: 10.1016/j.jma.2020.09.017
– volume: 33
  start-page: 2004039
  year: 2021
  ident: ref_5
  article-title: MXenes for Rechargeable Batteries Beyond the Lithium-Ion
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202004039
– volume: 516
  start-page: 78
  year: 2014
  ident: ref_30
  article-title: Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance
  publication-title: Nature
  doi: 10.1038/nature13970
– volume: 31
  start-page: 2100793
  year: 2021
  ident: ref_61
  article-title: Lamellar MXene Composite Aerogels with Sandwiched Carbon Nanotubes Enable Stable Lithium–Sulfur Batteries with a High Sulfur Loading
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202100793
– volume: 3
  start-page: 214
  year: 2020
  ident: ref_16
  article-title: MXene-Based Anodes for Metal-Ion Batteries
  publication-title: Batter. Supercaps
  doi: 10.1002/batt.201900165
– volume: 15
  start-page: 11227
  year: 2020
  ident: ref_94
  article-title: Study on MnO2/MXene-V2C composite as cathode for magnesium ion battery
  publication-title: Int. J. Electrochem. Sci.
  doi: 10.20964/2020.11.25
– volume: 454
  start-page: 140394
  year: 2023
  ident: ref_132
  article-title: MOF-derived Zn/Co co-doped MnO/C microspheres as cathode and Ti3C2@Zn as anode for aqueous zinc-ion full battery
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.140394
– volume: 57
  start-page: 15491
  year: 2018
  ident: ref_43
  article-title: Fluoride-Free Synthesis of Two-Dimensional Titanium Carbide (MXene) Using A Binary Aqueous System
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201809662
– volume: 207
  start-page: 42
  year: 2013
  ident: ref_73
  article-title: Two-dimensional titanium carbonitrides and their hydroxylated derivatives: Structural, electronic properties and stability of MXenes Ti3C2−xNx(OH)2 from DFTB calculations
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2013.09.010
– volume: 341
  start-page: 136061
  year: 2020
  ident: ref_146
  article-title: In-situ pillared MXene as a viable zinc-ion hybrid capacitor
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2020.136061
– volume: 10
  start-page: 2001791
  year: 2020
  ident: ref_166
  article-title: In Situ Electrochemical Synthesis of MXenes without Acid/Alkali Usage in/for an Aqueous Zinc Ion Battery
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202001791
– volume: 29
  start-page: 1313
  year: 2018
  ident: ref_89
  article-title: Synthesis of MXene-supported layered MoS2 with enhanced electrochemical performance for Mg batteries
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2018.04.023
– volume: 11
  start-page: 70
  year: 2019
  ident: ref_140
  article-title: A New Free-Standing Aqueous Zinc-Ion Capacitor Based on MnO2–CNTs Cathode and MXene Anode
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-019-0301-1
– volume: 16
  start-page: 6584
  year: 2016
  ident: ref_67
  article-title: Large-Gap Quantum Spin Hall State in MXenes: D-Band Topological Order in a Triangular Lattice
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b03118
– volume: 117
  start-page: 4287
  year: 2017
  ident: ref_85
  article-title: Odyssey of Multivalent Cathode Materials: Open Questions and Future Challenges
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00614
– volume: 369
  start-page: 979
  year: 2020
  ident: ref_47
  article-title: Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes
  publication-title: Science
  doi: 10.1126/science.aba8311
– volume: 60
  start-page: 2861
  year: 2021
  ident: ref_130
  article-title: Direct Self-Assembly of MXene on Zn Anodes for Dendrite-Free Aqueous Zinc-Ion Batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202012322
– volume: 12
  start-page: 89
  year: 2020
  ident: ref_57
  article-title: Enhanced Ionic Accessibility of Flexible MXene Electrodes Produced by Natural Sedimentation
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-020-00426-0
– volume: 34
  start-page: 2102026
  year: 2022
  ident: ref_80
  article-title: Challenges and Strategies of Low-Cost Aluminum Anodes for High-Performance Al-Based Batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202102026
– volume: 12
  start-page: 3387
  year: 2020
  ident: ref_114
  article-title: Two-dimensional composite of D-Ti3C2Tx@S@TiO2 (MXene) as the cathode material for aluminum-ion batteries
  publication-title: Nanoscale
  doi: 10.1039/C9NR09944A
– volume: 504
  start-page: 230076
  year: 2021
  ident: ref_137
  article-title: A flexible, heat-resistant and self-healable “rocking-chair” zinc ion microbattery based on MXene-TiS2 (de)intercalation anode
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2021.230076
– volume: 16
  start-page: 1906076
  year: 2020
  ident: ref_103
  article-title: Prelithiated V2C MXene: A High-Performance Electrode for Hybrid Magnesium/Lithium-Ion Batteries by Ion Cointercalation
  publication-title: Small
  doi: 10.1002/smll.201906076
– volume: 9
  start-page: 7988
  year: 2019
  ident: ref_7
  article-title: Copper sulfide nanoparticles as high-performance cathode materials for Mg-ion batteries
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-43639-z
– volume: 13
  start-page: 51028
  year: 2021
  ident: ref_98
  article-title: MXene/TiO2 Heterostructure-Decorated Hard Carbon with Stable Ti–O–C Bonding for Enhanced Sodium-Ion Storage
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c15539
– volume: 123
  start-page: 053301
  year: 2018
  ident: ref_49
  article-title: Synthesis of molybdenum carbide superconducting compounds by microwave-plasma chemical vapor deposition
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5010101
– volume: 5
  start-page: 2993
  year: 2021
  ident: ref_171
  article-title: Intrinsic voltage plateau of a Nb2CTx MXene cathode in an aqueous electrolyte induced by high-voltage scanning
  publication-title: Joule
  doi: 10.1016/j.joule.2021.09.006
– volume: 157
  start-page: 168
  year: 2019
  ident: ref_66
  article-title: Nanoindentation of monolayer Tin+1CnTx MXenes via atomistic simulations: The role of composition and defects on strength
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2018.10.033
– volume: 426
  start-page: 130747
  year: 2021
  ident: ref_91
  article-title: High-performance heterojunction Ti3C2/CoSe2 with both intercalation and conversion storage mechanisms for magnesium batteries
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.130747
– volume: 431
  start-page: 134277
  year: 2022
  ident: ref_134
  article-title: Long-life and dendrite-free zinc metal anode enabled by a flexible, green and self-assembled zincophilic biomass engineered MXene based interface
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.134277
– volume: 26
  start-page: 2374
  year: 2014
  ident: ref_33
  article-title: Transparent Conductive Two-Dimensional Titanium Carbide Epitaxial Thin Films
  publication-title: Chem. Mater.
  doi: 10.1021/cm500641a
– volume: 2
  start-page: 860
  year: 2012
  ident: ref_3
  article-title: The Current Move of Lithium Ion Batteries Towards the Next Phase
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201200028
– volume: 45
  start-page: 23600
  year: 2019
  ident: ref_27
  article-title: Synthesis and microwave absorption of Ti3C2Tx MXene with diverse reactant concentration, reaction time, and reaction temperature
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2019.08.071
– volume: 373
  start-page: 203
  year: 2019
  ident: ref_58
  article-title: Synthesis and lithium ion storage performance of two-dimensional V4C3 MXene
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.05.037
– volume: 7
  start-page: 16712
  year: 2019
  ident: ref_88
  article-title: Pursuit of a high-capacity and long-life Mg-storage cathode by tailoring sandwich-structured MXene@carbon nanosphere composites
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA02212K
– volume: 16
  start-page: 2711
  year: 2022
  ident: ref_97
  article-title: Surface Selenization Strategy for V2CTx MXene toward Superior Zn-Ion Storage
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c09639
– volume: 122
  start-page: 106898
  year: 2021
  ident: ref_121
  article-title: Zn electrode/electrolyte interfaces of Zn batteries: A mini review
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2020.106898
– volume: 12
  start-page: 5324
  year: 2020
  ident: ref_112
  article-title: Fe2CS2 MXene: A promising electrode for Al-ion batteries
  publication-title: Nanoscale
  doi: 10.1039/C9NR08906C
– volume: 9
  start-page: 17994
  year: 2021
  ident: ref_163
  article-title: Zn2+-Intercalated V2O5·nH2O derived from V2CTx MXene for hyper-stable zinc-ion storage
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA05526G
– volume: 7
  start-page: 19390
  year: 2015
  ident: ref_69
  article-title: Surface group modification and carrier transport properties of layered transition metal carbides (Ti2CTx, T: -OH, -F and -O)
  publication-title: Nanoscale
  doi: 10.1039/C5NR06513E
– volume: 3
  start-page: 689
  year: 2016
  ident: ref_60
  article-title: Porous Two-Dimensional Transition Metal Carbide (MXene) Flakes for High-Performance Li-Ion Storage
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201600059
– volume: 11
  start-page: 14720
  year: 2019
  ident: ref_21
  article-title: Synthesis of (V2/3Sc1/3)2AlC i-MAX phase and V2−xC MXene scrolls
  publication-title: Nanoscale
  doi: 10.1039/C9NR02354B
– volume: 2
  start-page: 16098
  year: 2017
  ident: ref_24
  article-title: 2D metal carbides and nitrides (MXenes) for energy storage
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.98
– volume: 15
  start-page: 14631
  year: 2021
  ident: ref_128
  article-title: Toward a Practical Zn Powder Anode: Ti3C2Tx MXene as a Lattice-Match Electrons/Ions Redistributor
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c04354
– volume: 139
  start-page: 147
  year: 2013
  ident: ref_32
  article-title: Kinetics of aluminum extraction from Ti3AlC2 in hydrofluoric acid
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2013.01.008
– volume: 19
  start-page: 894
  year: 2020
  ident: ref_46
  article-title: A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-020-0657-0
– volume: 12
  start-page: 3288
  year: 2019
  ident: ref_129
  article-title: Issues and opportunities facing aqueous zinc-ion batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE02526J
– volume: 9
  start-page: 197
  year: 2015
  ident: ref_50
  article-title: Theoretical stability, thin film synthesis and transport properties of the Mon +1GaCn MAX phase
  publication-title: Phys. Status Solidi (RRL) Rapid Res. Lett.
  doi: 10.1002/pssr.201409543
– volume: 10
  start-page: 3488
  year: 2019
  ident: ref_17
  article-title: Two-Dimensional Transition Metal MXene-Based Photocatalysts for Solar Fuel Generation
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.9b00736
– volume: 12
  start-page: 3733
  year: 2018
  ident: ref_40
  article-title: Opening Magnesium Storage Capability of Two-Dimensional MXene by Intercalation of Cationic Surfactant
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b00959
– volume: 108
  start-page: 147
  year: 2015
  ident: ref_51
  article-title: Synthesis of two-dimensional molybdenum carbide, Mo2C, from the gallium based atomic laminate Mo2Ga2C
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2015.07.003
– volume: 100
  start-page: 107520
  year: 2022
  ident: ref_99
  article-title: A stable “rocking-chair” zinc-ion battery boosted by low-strain Zn3V4(PO4)6 cathode
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107520
– volume: 52
  start-page: 299
  year: 2022
  ident: ref_84
  article-title: Towards better Mg metal anodes in rechargeable Mg batteries: Challenges, strategies, and perspectives
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2022.08.014
SSID ssj0001877227
Score 2.3520083
SecondaryResourceType review_article
Snippet Multivalent metal ion (Mg2+, Zn2+, Ca2+, and Al3+) batteries (MMIBs) emerged as promising technologies for large-scale energy storage systems in recent years...
Multivalent metal ion (Mg[sup.2+] , Zn[sup.2+] , Ca[sup.2+] , and Al[sup.3+] ) batteries (MMIBs) emerged as promising technologies for large-scale energy...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 174
SubjectTerms Acids
Alternative energy sources
Aluminum
Batteries
Calcium ions
Carbon nitride
composite materials
Controllability
Design and construction
Earth crust
Electricity distribution
Electrode materials
Electrodes
Energy storage
Etching
Fluorides
Fluorine
Heterojunctions
Interlayers
Lithium
Materials
Metal carbides
Metal ions
Methods
multivalent metal-ion batteries
MXenes
Renewable resources
Storage systems
Transition metals
SummonAdditionalLinks – databaseName: Proquest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60XvQgPrG-2IMgHkLbTXaTnKSVigoVEYXeQjYPL9JWrf_fmd3UF-h1k4U8JjPfTDLfAJxwWWmLOIDpbk2qXXaZ0rFgFHLLY3BCNq8tbsurR3EzLsYp4PaWnlUudGKtqP3UUYy8k0vdozzJvDyfvTCqGkW3q6mExjKsoApWqgUrg-Ht3f1XlEUhesxlcz_J0b_vVDVtJXqhmpwBKX7Yo5q2_y_lXFucyw1YT1Ax6zd7uwlLYbIFa98IBLdBj8aoq9gATZHPRnbeiFOGQDSrM2tRjNCoZKOAEJtdTyfZYDGuHXi8HD5cXLFUDIE50VNzpqLrWsu7nlelzoPzSrhYVYGun6VHO4TGGicYODZ5dCJkzLmNIujoEGSoyHehNZlOwh5kkVvvQlToDUbRc6XyLiKwET1ZaoU2rQ2dxZIYl5jCqWDFs0GPgRbR_F7ENpx9_jFrWDL-6TugVf7sR_zW9Yfp65NJx8XkhbcFZXmHAgEbKmUuRCyDDbkrgvSyDae0R4ZOIQ7N2ZRMgBMkPivTR2BEWbeFasPhYhtNOp5v5kuY9v9vPoBVqi_fPDo7hNb89T0cIQqZV8dJ1D4ANkXcTw
  priority: 102
  providerName: ProQuest
Title MXene-Based Materials for Multivalent Metal-Ion Batteries
URI https://www.proquest.com/docview/2791590126
https://doaj.org/article/25da50156e5644538344f6eae2c5e7d7
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEB60XvQgPnG1lj0I4mHpdpPdJMeutFahRcRCbyGbx0la0fr_nWS3pQrqxes-IJlJ8n2TZL4BuCKsEgp5QCLSIKpdpAkXLk_8llvmrKasvm0xKUZT-jDLZxulvvydsFoeuDZcN8uNyn2-r80RunF6EkpdYZXNdG6ZCXnkiHkbwVTYXeHIGjNWn0sSjOu7VZCrxOhT-CCA0S84FOT6f1qUA9IMD2C_oYhxv27aIWzZ-RHsbQgHHoMYz3CNSkqEIBOP1bIeRjES0Dhk1OLwQTCJxxapdXK_mMflql0nMB0Onm9HSVMEIdG0x5cJdzpViqSGVIXIrDacaldV1h87M4P4gyCNHbQEXxkMHpjLiHLUCqeRXHBHTqE1X8ztGcSOKKOt4xgFOtrTBTfaIaGhPVYIjlgWQXdlEqkbhXBfqOJFYqTgjSi_GzGCm_Ufr7U6xi_flt7K6--8rnV4gN6WjbflX96O4Nr7SPrZh03TqkkiwA56HSvZR0Lks21zHkF75UbZTMt3mTHR88m2WXH-H625gF1ffb6-ktaG1vLtw14iR1lWHdjmw7sO7JSDyeNTJwzOT58s5U0
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB5Remg5VH2qobTsAYQ4WNnY3rV9qCrSEpJCOIGUm-v1oxeU8AhC_VP9jZ3ZB7RI5cZ17bV2x-P5vrE9MwBbQlXGIQ9gJq-Tapc50yYVjLbceIpequa2xXE5PpXfZ8VsBX53sTB0rbKzibWhDgtPe-R9rsyA4iR5-eX8glHVKDpd7UpoNGpxGH_doMt29XnyDed3m_PR_snXMWurCjAvB3rJdPK5cyIPoioNjz5o6VNVRTrHVQENOqKeECYKbArIxlXiwiUZTfKI1joJHPcJPJXYh5w9PTq429PBEThXzWkotuf9qk6SiT6vIddDyX_Qry4S8D8oqPFt9BJetMQ022s06RWsxPlrWPsrXeEbMNMZWkY2ROAL2dQtG-XNkPZmdRwvKi1CWDaNSOjZZDHPht13vYXTRxHSO1idL-bxPWRJuOBj0uh7JjnwpQ4-IY2SA1UajQjag34nEuvbvORUHuPMon9CQrT3hdiD3ds3zpucHA_0HZKUb_tRNu36weLyp20Xp-VFcAXFlMcC6SFCgJAyldFF7ouogurBDs2RpTWPn-ZdG7qAP0jZs-we0jCK8S10Dza6abStMbiyd6q7_nDzJjwbn0yP7NHk-PADPKfK9s11tw1YXV5ex4_If5bVp1rpMvjx2Fr-B8hPGN4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVEJwQDzVQKF7oKo4WNnY3rV9qKqGNmpoE1WISrkZrx9cUFLaIMRf49cxs4-2ILW3Xtdeyzuene8b2zMD8F6oyjjkAczkdVLtMmfapILRlhtP0UvV3LaYlUdn8tO8mK_Bny4Whq5VdjaxNtRh6WmPfMCVGVKcJC8Hqb0WcXow3jv_waiCFJ20duU0GhU5jr9_oft2uTs5wLXe5nx8-OXjEWsrDDAvh3rFdPK5cyIPoioNjz5o6VNVRTrTVQGNOyKgECYKbArIzFXiwiUZTfKI3DoJHPcBrCvyinqwPjqcnX6-3uHBMThXzdkojpIPqjplJnrAhhwRJf_BwrpkwG3AUKPd-Ck8aWlqtt_o1TNYi4vn8PhG8sIXYKZztJNshDAYsqlbNaqcIQnO6qheVGEEtGwakd6zyXKRjbp5vYSzexHTK-gtlou4AVkSLviYNHqiSQ59qYNPSKrkUJVGI572YdCJxPo2SzkVy_hu0VshIdr_hdiHD1dvnDcZOu7oOyIpX_Wj3Nr1g-XFN9v-qpYXwRUUYR4LJIsICELKVEYXuS-iCqoPO7RGliwATs27NpABP5Byadl9JGUU8VvoPmx2y2hb03BprxX59d3NW_AQNdyeTGbHb-ARlblv7r5tQm918TO-RTK0qt61WpfB1_tW9L9RKx5w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MXene-Based+Materials+for+Multivalent+Metal-Ion+Batteries&rft.jtitle=Batteries+%28Basel%29&rft.au=Chunlei+Wang&rft.au=Zibing+Pan&rft.au=Huaqi+Chen&rft.au=Xiangjun+Pu&rft.date=2023-03-01&rft.pub=MDPI+AG&rft.eissn=2313-0105&rft.volume=9&rft.issue=3&rft.spage=174&rft_id=info:doi/10.3390%2Fbatteries9030174&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_25da50156e5644538344f6eae2c5e7d7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2313-0105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2313-0105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2313-0105&client=summon