The fatigue effects in red emissive CdSe based QLED operated around turn-on voltage
The operational stability is a current bottleneck facing the quantum dot light-emitting diodes (QLEDs). In particular, the device working around turn-on voltage suffers from unbalanced charge injection and heavy power loss. Here, we investigate the operational stability of red emissive CdSe QLEDs op...
Saved in:
Published in | The Journal of chemical physics Vol. 158; no. 13; pp. 131101 - 131106 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Institute of Physics
07.04.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0021-9606 1089-7690 1089-7690 |
DOI | 10.1063/5.0145471 |
Cover
Loading…
Abstract | The operational stability is a current bottleneck facing the quantum dot light-emitting diodes (QLEDs). In particular, the device working around turn-on voltage suffers from unbalanced charge injection and heavy power loss. Here, we investigate the operational stability of red emissive CdSe QLEDs operated at different applied voltages. Compared to the rising luminance at higher voltages, the device luminance quickly decreases when loaded around the turn-on voltage, but recovers after unloading or slight heat treatment, which is termed fatigue effects of operational QLED. The electroluminescence and photoluminescence spectra before and after a period of operation at low voltages show that the abrupt decrease in device luminance derives from the reduction of quantum yield in quantum dots. Combined with transient photoluminescence and electroluminescence measurements, as well as equivalent circuit model analysis, the electron accumulation in quantum dots mainly accounts for the observed fatigue effects of a QLED during the operation around turn-on voltage. The underlying mechanisms at the low-voltage working regime will be very helpful for the industrialization of QLED. |
---|---|
AbstractList | The operational stability is a current bottleneck facing the quantum dot light-emitting diodes (QLEDs). In particular, the device working around turn-on voltage suffers from unbalanced charge injection and heavy power loss. Here, we investigate the operational stability of red emissive CdSe QLEDs operated at different applied voltages. Compared to the rising luminance at higher voltages, the device luminance quickly decreases when loaded around the turn-on voltage, but recovers after unloading or slight heat treatment, which is termed fatigue effects of operational QLED. The electroluminescence and photoluminescence spectra before and after a period of operation at low voltages show that the abrupt decrease in device luminance derives from the reduction of quantum yield in quantum dots. Combined with transient photoluminescence and electroluminescence measurements, as well as equivalent circuit model analysis, the electron accumulation in quantum dots mainly accounts for the observed fatigue effects of a QLED during the operation around turn-on voltage. The underlying mechanisms at the low-voltage working regime will be very helpful for the industrialization of QLED.The operational stability is a current bottleneck facing the quantum dot light-emitting diodes (QLEDs). In particular, the device working around turn-on voltage suffers from unbalanced charge injection and heavy power loss. Here, we investigate the operational stability of red emissive CdSe QLEDs operated at different applied voltages. Compared to the rising luminance at higher voltages, the device luminance quickly decreases when loaded around the turn-on voltage, but recovers after unloading or slight heat treatment, which is termed fatigue effects of operational QLED. The electroluminescence and photoluminescence spectra before and after a period of operation at low voltages show that the abrupt decrease in device luminance derives from the reduction of quantum yield in quantum dots. Combined with transient photoluminescence and electroluminescence measurements, as well as equivalent circuit model analysis, the electron accumulation in quantum dots mainly accounts for the observed fatigue effects of a QLED during the operation around turn-on voltage. The underlying mechanisms at the low-voltage working regime will be very helpful for the industrialization of QLED. The operational stability is a current bottleneck facing the quantum dot light-emitting diodes (QLEDs). In particular, the device working around turn-on voltage suffers from unbalanced charge injection and heavy power loss. Here, we investigate the operational stability of red emissive CdSe QLEDs operated at different applied voltages. Compared to the rising luminance at higher voltages, the device luminance quickly decreases when loaded around the turn-on voltage, but recovers after unloading or slight heat treatment, which is termed fatigue effects of operational QLED. The electroluminescence and photoluminescence spectra before and after a period of operation at low voltages show that the abrupt decrease in device luminance derives from the reduction of quantum yield in quantum dots. Combined with transient photoluminescence and electroluminescence measurements, as well as equivalent circuit model analysis, the electron accumulation in quantum dots mainly accounts for the observed fatigue effects of a QLED during the operation around turn-on voltage. The underlying mechanisms at the low-voltage working regime will be very helpful for the industrialization of QLED. |
Author | Zhang, Xin Wu, Xian-gang Ji, Wenyu Chen, Cuili Bao, Hui Zhong, Haizheng Li, Menglin Wang, Shuangpeng |
Author_xml | – sequence: 1 givenname: Xin surname: Zhang fullname: Zhang, Xin organization: MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Science and Engineering, Beijing Institute of Technology – sequence: 2 givenname: Hui surname: Bao fullname: Bao, Hui organization: MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Science and Engineering, Beijing Institute of Technology – sequence: 3 givenname: Cuili surname: Chen fullname: Chen, Cuili organization: MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Science and Engineering, Beijing Institute of Technology – sequence: 4 givenname: Xian-gang surname: Wu fullname: Wu, Xian-gang organization: MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Science and Engineering, Beijing Institute of Technology – sequence: 5 givenname: Menglin surname: Li fullname: Li, Menglin organization: MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Science and Engineering, Beijing Institute of Technology – sequence: 6 givenname: Wenyu surname: Ji fullname: Ji, Wenyu organization: Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University – sequence: 7 givenname: Shuangpeng surname: Wang fullname: Wang, Shuangpeng organization: Institute of Applied Physics and Materials Engineering – sequence: 8 givenname: Haizheng surname: Zhong fullname: Zhong, Haizheng organization: MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Science and Engineering, Beijing Institute of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37031138$$D View this record in MEDLINE/PubMed |
BookMark | eNp90d9rFDEQB_AgFXutPvgPSMAXK2w7-bH58VjO1hYORFqfl-zupG7Z25xJ9sD_3pS7KpTWpzDhM8OXmSNyMIUJCXnP4JSBEmf1KTBZS81ekQUDYyutLByQBQBnlVWgDslRSvcAwDSXb8ih0CAYE2ZBbm5_IvUuD3czUvQeu5zoMNGIPcX1kNKwRbrsb5C2LpW_76uLLzRsMLpcKhfDPPU0z3GqwkS3YczuDt-S196NCd_t32Py4_LidnlVrb59vV6er6pOMpMr0zonNGPKKNlZaUCBl5bXkndC8dYa5UFrjb0SRnDDtJPW89oIj6Llyohj8mk3dxPDrxlTbkrgDsfRTRjm1HBtjWZC2LrQj0_ofSihS7oHVYPkmumiPuzV3K6xbzZxWLv4u3lcVwEnO9DFkFJE_5cwaB5O0dTN_hTFnj2x3ZDLosOUoxvGZzs-7zrSo_zv-BfxNsR_sNn0XvwBaDWh2g |
CODEN | JCPSA6 |
CitedBy_id | crossref_primary_10_1109_TED_2024_3384137 crossref_primary_10_1088_1361_6528_acc871 crossref_primary_10_1038_s41467_023_43340_w crossref_primary_10_1038_s41467_024_52521_0 crossref_primary_10_1021_acsami_4c12250 crossref_primary_10_35848_1347_4065_ad85b6 crossref_primary_10_1021_acs_jpclett_5c00223 crossref_primary_10_1063_5_0185626 crossref_primary_10_1021_acs_jpclett_4c02446 |
Cites_doi | 10.1103/physrevapplied.19.024010 10.1063/5.0041689 10.1038/s41467-019-12597-5 10.1021/acs.jpclett.1c01560 10.1021/acsnano.9b03507 10.1038/s41467-018-04986-z 10.1038/s41467-020-14756-5 10.1038/s41467-022-28037-w 10.1038/s41467-020-15944-z 10.1038/s41565-022-01163-8 10.1021/nn5023473 10.1038/s41566-018-0283-4 10.1002/jsid.393 10.1038/s41566-019-0364-z 10.1126/science.aaz8541 10.1039/c9tc04107a 10.1021/acs.chemrev.6b00169 10.1002/advs.201800549 10.1021/acs.jpclett.2c00604 10.1039/d0nh00556h 10.1038/s41467-023-35954-x 10.1002/adfm.201808377 10.1038/nphoton.2007.226 10.1016/j.nantod.2010.08.010 10.1063/5.0019140 10.1002/aenm.202101693 10.1039/c7nr05472f 10.1038/s41566-022-00999-9 10.1021/acs.jpclett.0c00836 10.1002/adma.202006178 10.1021/acs.nanolett.8b03457 10.1021/acs.jpclett.3c00070 10.1021/acs.nanolett.2c03564 10.1103/physrevlett.110.217403 10.1038/s41467-019-08749-2 10.1038/nature13829 10.1038/s41467-018-08075-z 10.1038/nphoton.2013.70 10.1021/acsnano.8b03386 10.1038/s41565-021-01016-w 10.1038/nphoton.2015.36 10.1038/nphoton.2016.185 10.1038/370354a0 10.1038/s41467-022-31478-y 10.1038/s41528-018-0023-3 10.1002/adma.200701052 10.1002/adfm.202207974 |
ContentType | Journal Article |
Copyright | Author(s) 2023 Author(s). Published under an exclusive license by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2023 Author(s). Published under an exclusive license by AIP Publishing. |
DBID | AAYXX CITATION NPM 8FD H8D L7M 7X8 |
DOI | 10.1063/5.0145471 |
DatabaseName | CrossRef PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Technology Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1089-7690 |
ExternalDocumentID | 37031138 10_1063_5_0145471 jcp |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61735004 funderid: https://doi.org/10.13039/501100001809 |
GroupedDBID | --- -DZ -ET -~X 123 1UP 2-P 29K 4.4 5VS 85S AAAAW AABDS AAEUA AAPUP AAYIH ABPPZ ABZEH ACBRY ACLYJ ACNCT ACZLF ADCTM AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D-I DU5 EBS ESX F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS TN5 TWZ UPT WH7 YQT YZZ ~02 53G AAGWI AAYXX ABJGX ADMLS BDMKI CITATION NPM 8FD H8D L7M 7X8 |
ID | FETCH-LOGICAL-c418t-8baa37116864c948060f492542c362b986f0777ed63832817a49f2583fe3b2683 |
ISSN | 0021-9606 1089-7690 |
IngestDate | Thu Jul 10 18:07:49 EDT 2025 Sun Jun 29 15:06:50 EDT 2025 Thu Apr 03 07:00:48 EDT 2025 Tue Jul 01 01:12:30 EDT 2025 Thu Apr 24 23:03:49 EDT 2025 Fri Jun 21 00:19:01 EDT 2024 Tue Jul 04 19:17:50 EDT 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
License | Published under an exclusive license by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c418t-8baa37116864c948060f492542c362b986f0777ed63832817a49f2583fe3b2683 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2662-7472 0000-0002-8063-5764 0000-0003-2932-5119 0000-0001-8464-4994 |
OpenAccessLink | https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0145471/16823016/131101_1_5.0145471.pdf |
PMID | 37031138 |
PQID | 2795042717 |
PQPubID | 2050685 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2798713395 crossref_primary_10_1063_5_0145471 crossref_citationtrail_10_1063_5_0145471 pubmed_primary_37031138 proquest_journals_2795042717 scitation_primary_10_1063_5_0145471 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230407 2023-04-07 2023-Apr-07 |
PublicationDateYYYYMMDD | 2023-04-07 |
PublicationDate_xml | – month: 04 year: 2023 text: 20230407 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Melville |
PublicationTitle | The Journal of chemical physics |
PublicationTitleAlternate | J Chem Phys |
PublicationYear | 2023 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Deng, Peng, Lu, Zhu, Jin, Qiu, Dong, Hao, Di, Gao, Sun, Zhang, Liu, Wang, Ying, Huang, Jin (c9) 2022; 16 Liu, Cao, Wang, Wang, Dai, Zou, Zhao, Wang (c11) 2020; 11 Chang, Park, Jung, Jeong, Hahm, Nagamine, Ko, Cho, Padilha, Lee, Lee, Char, Bae (c17) 2018; 12 Pu, Dai, Shu, Zhu, Deng, Jin, Peng (c21) 2020; 11 Deng, Lin, Fang, Di, Wang, Friend, Peng, Jin (c40) 2020; 11 Manders, Qian, Titov, Hyvonen, Tokarz-Scott, Acharya, Yang, Cao, Zheng, Xue, Holloway (c13) 2015; 23 Chen, Cao, Liu, Tsang, Yang, Yan, Qian (c18) 2019; 10 Qian, Zheng, Choudhury, Bera, So, Xue, Holloway (c33) 2010; 5 Bang, Suh, Fan, Shin, Lee, Choi, Lee, Yang, Zhan, Harden-Chaters, Samarakoon, Occhipinti, Han, Jung, Kim (c15) 2021; 6 Shen, Gao, Zhang, Lin, Lin, Li, Chen, Zeng, Li, Jia, Wang, Du, Li, Zhang (c6) 2019; 13 Wang, Cheng, Ge, Zhang, Miao, Zou, Yi, Sun, Cao, Yang, Wei, Guo, Ke, Yu, Jin, Liu, Ding, Di, Yang, Xing, Tian, Jin, Gao, Friend, Wang, Huang (c35) 2016; 10 Zhao, Bai, Kim, Lamboll, Shivanna, Auras, Richter, Yang, Dai, Alsari, She, Liang, Zhang, Lilliu, Gao, Snaith, Wang, Greenham, Friend, Di (c36) 2018; 12 Sun, Wang, Li, Wang, Zhu, Xu, Yang, Li (c2) 2007; 1 Acharya, Titov, Hyvonen, Wang, Tokarz, Holloway (c22) 2017; 9 Pietryga, Park, Lim, Fidler, Bae, Brovelli, Klimov (c5) 2016; 116 Shirasaki, Supran, Tisdale, Bulović (c24) 2013; 110 Engmann, Barito, Bittle, Giebink, Richter, Gundlach (c31) 2019; 10 Cheng, Gui, Qiao, Fang, Ba, Liang, Wan, Zhang, Liu, Ma, Hong, Fan, Liu, Shen (c10) 2022; 32 Cao, Xiang, Yang, Chen, Chen, Yan, Qian (c37) 2018; 9 Song, Wang, Shen, Lin, Li, Wang, Zhang, Li (c8) 2019; 29 Doe, Kitano, Yamamoto, Yamamoto, Goto, Sakakibara, Kobashi, Yamada, Ueda, Ryowa, Izumi, Arakawa (c43) 2021; 118 Lian, Lan, Xing, Guo, Ren, Lai, Zou, Zhao, Friend, Di (c30) 2022; 13 Qiao, Ma (c32) 2019; 10 Wu, Ji, Yan, Zhong (c16) 2022; 17 Zhu, Wang, Ji (c27) 2023; 19 Chen, Chen, Dai, Zhang, Lin, Deng, Hao, Zhang, Zhu, Gao, Jin (c20) 2020; 32 Li, Wei, Wang, Tang, Li, Guo, Huang, Brovelli, Shen, Li (c42) 2021; 11 Chen, Lin, Zhou, Sun, Li, Chen, Yang, Hou, Wu, Cao, Zhang, Yan, Chen (c12) 2023; 14 Ding, Wu, Qu, Tang, Wang, Xu, Sun (c38) 2020; 117 Mashford, Stevenson, Popovic, Hamilton, Zhou, Breen, Steckel, Bulovic, Bawendi, Coe-Sullivan, Kazlas (c3) 2013; 7 Choi, Yang, Hyeon, Kim (c14) 2018; 2 Pandey, Nunzi (c34) 2007; 19 Shen, Hao, Ma, Wang (c44) 2021; 12 Colvin, Schlamp, Alivisatos (c1) 1994; 370 Xue, Dong, Wang, Zhang, Zhang, Zhao, Ji (c23) 2020; 8 Yu, Yuan, Zhao, Zhang, Ji (c46) 2022; 13 Keating, Lee, Rogers, Huang, Shim (c45) 2022; 22 Bao, Chen, Cao, Chang, Wang, Zhong (c47) 2023; 14 García de Arquer, Talapin, Klimov, Arakawa, Bayer, Sargent (c7) 2021; 373 Luo, Zhang, Li, Yang, Guo, Tsang, Chen (c28) 2019; 13 Su, Chen (c29) 2022; 13 Dai, Zhang, Jin, Niu, Cao, Liang, Chen, Wang, Peng (c4) 2014; 515 Shi, Sun, Utzat, Farahvash, Gao, Zhang, Barotov, Willard, Nelson, Bawendi (c41) 2021; 16 Yang, Zheng, Cao, Titov, Hyvonen, Manders, Xue, Holloway, Qian (c26) 2015; 9 Park, Bae, Pietryga, Klimov (c39) 2014; 8 Su, Sun, Zhang, Chen (c19) 2018; 5 Lim, Park, Wu, Yun, Klimov (c25) 2018; 18 (2023081106395048100_c3) 2013; 7 (2023081106395048100_c38) 2020; 117 (2023081106395048100_c28) 2019; 13 (2023081106395048100_c36) 2018; 12 (2023081106395048100_c17) 2018; 12 (2023081106395048100_c42) 2021; 11 (2023081106395048100_c1) 1994; 370 (2023081106395048100_c5) 2016; 116 (2023081106395048100_c20) 2020; 32 (2023081106395048100_c40) 2020; 11 (2023081106395048100_c13) 2015; 23 (2023081106395048100_c21) 2020; 11 (2023081106395048100_c39) 2014; 8 (2023081106395048100_c19) 2018; 5 (2023081106395048100_c6) 2019; 13 (2023081106395048100_c8) 2019; 29 (2023081106395048100_c26) 2015; 9 (2023081106395048100_c25) 2018; 18 (2023081106395048100_c30) 2022; 13 (2023081106395048100_c15) 2021; 6 (2023081106395048100_c12) 2023; 14 (2023081106395048100_c29) 2022; 13 (2023081106395048100_c23) 2020; 8 (2023081106395048100_c34) 2007; 19 (2023081106395048100_c14) 2018; 2 (2023081106395048100_c37) 2018; 9 (2023081106395048100_c46) 2022; 13 (2023081106395048100_c11) 2020; 11 (2023081106395048100_c41) 2021; 16 (2023081106395048100_c45) 2022; 22 (2023081106395048100_c31) 2019; 10 (2023081106395048100_c16) 2022; 17 (2023081106395048100_c27) 2023; 19 (2023081106395048100_c7) 2021; 373 (2023081106395048100_c33) 2010; 5 (2023081106395048100_c47) 2023; 14 (2023081106395048100_c2) 2007; 1 (2023081106395048100_c9) 2022; 16 (2023081106395048100_c44) 2021; 12 (2023081106395048100_c32) 2019; 10 (2023081106395048100_c22) 2017; 9 (2023081106395048100_c4) 2014; 515 (2023081106395048100_c10) 2022; 32 (2023081106395048100_c35) 2016; 10 (2023081106395048100_c24) 2013; 110 (2023081106395048100_c18) 2019; 10 (2023081106395048100_c43) 2021; 118 |
References_xml | – volume: 118 start-page: 203503 year: 2021 ident: c43 publication-title: Appl. Phys. Lett. – volume: 17 start-page: 813 year: 2022 ident: c16 publication-title: Nat. Nanotechnol. – volume: 12 start-page: 10231 year: 2018 ident: c17 publication-title: ACS Nano – volume: 29 start-page: 1808377 year: 2019 ident: c8 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 2101693 year: 2021 ident: c42 publication-title: Adv. Energy Mater. – volume: 9 start-page: 14451 year: 2017 ident: c22 publication-title: Nanoscale – volume: 22 start-page: 9500 year: 2022 ident: c45 publication-title: Nano Lett. – volume: 13 start-page: 369 year: 2022 ident: c29 publication-title: Nat. Commun. – volume: 10 start-page: 4683 year: 2019 ident: c32 publication-title: Nat. Commun. – volume: 18 start-page: 6645 year: 2018 ident: c25 publication-title: Nano Lett. – volume: 116 start-page: 10513 year: 2016 ident: c5 publication-title: Chem. Rev. – volume: 2 start-page: 10 year: 2018 ident: c14 publication-title: npj Flexible Electron. – volume: 13 start-page: 8229 year: 2019 ident: c28 publication-title: ACS Nano – volume: 9 start-page: 2608 year: 2018 ident: c37 publication-title: Nat. Commun. – volume: 373 start-page: eaaz8541 year: 2021 ident: c7 publication-title: Science – volume: 32 start-page: 2006178 year: 2020 ident: c20 publication-title: Adv. Mater. – volume: 11 start-page: 937 year: 2020 ident: c21 publication-title: Nat. Commun. – volume: 10 start-page: 765 year: 2019 ident: c18 publication-title: Nat. Commun. – volume: 12 start-page: 7019 year: 2021 ident: c44 publication-title: J. Phys. Chem. Lett. – volume: 8 start-page: 2014 year: 2020 ident: c23 publication-title: J. Mater. Chem. C – volume: 23 start-page: 523 year: 2015 ident: c13 publication-title: J. Soc. Inf. Disp. – volume: 10 start-page: 699 year: 2016 ident: c35 publication-title: Nat. Photonics – volume: 16 start-page: 1355 year: 2021 ident: c41 publication-title: Nat. Nanotechnol. – volume: 10 start-page: 227 year: 2019 ident: c31 publication-title: Nat. Commun. – volume: 515 start-page: 96 year: 2014 ident: c4 publication-title: Nature – volume: 19 start-page: 024010 year: 2023 ident: c27 publication-title: Phys. Rev. Appl. – volume: 117 start-page: 093501 year: 2020 ident: c38 publication-title: Appl. Phys. Lett. – volume: 13 start-page: 2878 year: 2022 ident: c46 publication-title: J. Phys. Chem. Lett. – volume: 14 start-page: 284 year: 2023 ident: c12 publication-title: Nat. Commun. – volume: 6 start-page: 68 year: 2021 ident: c15 publication-title: Nanoscale Horiz. – volume: 110 start-page: 217403 year: 2013 ident: c24 publication-title: Phys. Rev. Lett. – volume: 9 start-page: 259 year: 2015 ident: c26 publication-title: Nat. Photonics – volume: 8 start-page: 7288 year: 2014 ident: c39 publication-title: ACS Nano – volume: 370 start-page: 354 year: 1994 ident: c1 publication-title: Nature – volume: 16 start-page: 505 year: 2022 ident: c9 publication-title: Nat. Photonics – volume: 5 start-page: 1800549 year: 2018 ident: c19 publication-title: Adv. Sci. – volume: 32 start-page: 2207974 year: 2022 ident: c10 publication-title: Adv. Funct. Mater. – volume: 12 start-page: 783 year: 2018 ident: c36 publication-title: Nat. Photonics – volume: 11 start-page: 3111 year: 2020 ident: c11 publication-title: J. Phys. Chem. Lett. – volume: 11 start-page: 2309 year: 2020 ident: c40 publication-title: Nat. Commun. – volume: 7 start-page: 407 year: 2013 ident: c3 publication-title: Nat. Photonics – volume: 19 start-page: 3613 year: 2007 ident: c34 publication-title: Adv. Mater. – volume: 1 start-page: 717 year: 2007 ident: c2 publication-title: Nat. Photonics – volume: 13 start-page: 192 year: 2019 ident: c6 publication-title: Nat. Photonics – volume: 14 start-page: 1777 year: 2023 ident: c47 publication-title: J. Phys. Chem. Lett. – volume: 13 start-page: 3845 year: 2022 ident: c30 publication-title: Nat. Commun. – volume: 5 start-page: 384 year: 2010 ident: c33 publication-title: Nano Today – volume: 19 start-page: 024010 year: 2023 ident: 2023081106395048100_c27 publication-title: Phys. Rev. Appl. doi: 10.1103/physrevapplied.19.024010 – volume: 118 start-page: 203503 year: 2021 ident: 2023081106395048100_c43 publication-title: Appl. Phys. Lett. doi: 10.1063/5.0041689 – volume: 10 start-page: 4683 year: 2019 ident: 2023081106395048100_c32 publication-title: Nat. Commun. doi: 10.1038/s41467-019-12597-5 – volume: 12 start-page: 7019 year: 2021 ident: 2023081106395048100_c44 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.1c01560 – volume: 13 start-page: 8229 year: 2019 ident: 2023081106395048100_c28 publication-title: ACS Nano doi: 10.1021/acsnano.9b03507 – volume: 9 start-page: 2608 year: 2018 ident: 2023081106395048100_c37 publication-title: Nat. Commun. doi: 10.1038/s41467-018-04986-z – volume: 11 start-page: 937 year: 2020 ident: 2023081106395048100_c21 publication-title: Nat. Commun. doi: 10.1038/s41467-020-14756-5 – volume: 13 start-page: 369 year: 2022 ident: 2023081106395048100_c29 publication-title: Nat. Commun. doi: 10.1038/s41467-022-28037-w – volume: 11 start-page: 2309 year: 2020 ident: 2023081106395048100_c40 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15944-z – volume: 17 start-page: 813 year: 2022 ident: 2023081106395048100_c16 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-022-01163-8 – volume: 8 start-page: 7288 year: 2014 ident: 2023081106395048100_c39 publication-title: ACS Nano doi: 10.1021/nn5023473 – volume: 12 start-page: 783 year: 2018 ident: 2023081106395048100_c36 publication-title: Nat. Photonics doi: 10.1038/s41566-018-0283-4 – volume: 23 start-page: 523 year: 2015 ident: 2023081106395048100_c13 publication-title: J. Soc. Inf. Disp. doi: 10.1002/jsid.393 – volume: 13 start-page: 192 year: 2019 ident: 2023081106395048100_c6 publication-title: Nat. Photonics doi: 10.1038/s41566-019-0364-z – volume: 373 start-page: eaaz8541 year: 2021 ident: 2023081106395048100_c7 publication-title: Science doi: 10.1126/science.aaz8541 – volume: 8 start-page: 2014 year: 2020 ident: 2023081106395048100_c23 publication-title: J. Mater. Chem. C doi: 10.1039/c9tc04107a – volume: 116 start-page: 10513 year: 2016 ident: 2023081106395048100_c5 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00169 – volume: 5 start-page: 1800549 year: 2018 ident: 2023081106395048100_c19 publication-title: Adv. Sci. doi: 10.1002/advs.201800549 – volume: 13 start-page: 2878 year: 2022 ident: 2023081106395048100_c46 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.2c00604 – volume: 6 start-page: 68 year: 2021 ident: 2023081106395048100_c15 publication-title: Nanoscale Horiz. doi: 10.1039/d0nh00556h – volume: 14 start-page: 284 year: 2023 ident: 2023081106395048100_c12 publication-title: Nat. Commun. doi: 10.1038/s41467-023-35954-x – volume: 29 start-page: 1808377 year: 2019 ident: 2023081106395048100_c8 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201808377 – volume: 1 start-page: 717 year: 2007 ident: 2023081106395048100_c2 publication-title: Nat. Photonics doi: 10.1038/nphoton.2007.226 – volume: 5 start-page: 384 year: 2010 ident: 2023081106395048100_c33 publication-title: Nano Today doi: 10.1016/j.nantod.2010.08.010 – volume: 117 start-page: 093501 year: 2020 ident: 2023081106395048100_c38 publication-title: Appl. Phys. Lett. doi: 10.1063/5.0019140 – volume: 11 start-page: 2101693 year: 2021 ident: 2023081106395048100_c42 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202101693 – volume: 9 start-page: 14451 year: 2017 ident: 2023081106395048100_c22 publication-title: Nanoscale doi: 10.1039/c7nr05472f – volume: 16 start-page: 505 year: 2022 ident: 2023081106395048100_c9 publication-title: Nat. Photonics doi: 10.1038/s41566-022-00999-9 – volume: 11 start-page: 3111 year: 2020 ident: 2023081106395048100_c11 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.0c00836 – volume: 32 start-page: 2006178 year: 2020 ident: 2023081106395048100_c20 publication-title: Adv. Mater. doi: 10.1002/adma.202006178 – volume: 18 start-page: 6645 year: 2018 ident: 2023081106395048100_c25 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b03457 – volume: 14 start-page: 1777 year: 2023 ident: 2023081106395048100_c47 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.3c00070 – volume: 22 start-page: 9500 year: 2022 ident: 2023081106395048100_c45 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.2c03564 – volume: 110 start-page: 217403 year: 2013 ident: 2023081106395048100_c24 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.110.217403 – volume: 10 start-page: 765 year: 2019 ident: 2023081106395048100_c18 publication-title: Nat. Commun. doi: 10.1038/s41467-019-08749-2 – volume: 515 start-page: 96 year: 2014 ident: 2023081106395048100_c4 publication-title: Nature doi: 10.1038/nature13829 – volume: 10 start-page: 227 year: 2019 ident: 2023081106395048100_c31 publication-title: Nat. Commun. doi: 10.1038/s41467-018-08075-z – volume: 7 start-page: 407 year: 2013 ident: 2023081106395048100_c3 publication-title: Nat. Photonics doi: 10.1038/nphoton.2013.70 – volume: 12 start-page: 10231 year: 2018 ident: 2023081106395048100_c17 publication-title: ACS Nano doi: 10.1021/acsnano.8b03386 – volume: 16 start-page: 1355 year: 2021 ident: 2023081106395048100_c41 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-021-01016-w – volume: 9 start-page: 259 year: 2015 ident: 2023081106395048100_c26 publication-title: Nat. Photonics doi: 10.1038/nphoton.2015.36 – volume: 10 start-page: 699 year: 2016 ident: 2023081106395048100_c35 publication-title: Nat. Photonics doi: 10.1038/nphoton.2016.185 – volume: 370 start-page: 354 year: 1994 ident: 2023081106395048100_c1 publication-title: Nature doi: 10.1038/370354a0 – volume: 13 start-page: 3845 year: 2022 ident: 2023081106395048100_c30 publication-title: Nat. Commun. doi: 10.1038/s41467-022-31478-y – volume: 2 start-page: 10 year: 2018 ident: 2023081106395048100_c14 publication-title: npj Flexible Electron. doi: 10.1038/s41528-018-0023-3 – volume: 19 start-page: 3613 year: 2007 ident: 2023081106395048100_c34 publication-title: Adv. Mater. doi: 10.1002/adma.200701052 – volume: 32 start-page: 2207974 year: 2022 ident: 2023081106395048100_c10 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202207974 |
SSID | ssj0001724 |
Score | 2.4747434 |
Snippet | The operational stability is a current bottleneck facing the quantum dot light-emitting diodes (QLEDs). In particular, the device working around turn-on... |
SourceID | proquest pubmed crossref scitation |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 131101 |
SubjectTerms | Charge injection Electric potential Electroluminescence Equivalent circuits Heat treatment Light emitting diodes Luminance Photoluminescence Quantum dots Stability Voltage |
Title | The fatigue effects in red emissive CdSe based QLED operated around turn-on voltage |
URI | http://dx.doi.org/10.1063/5.0145471 https://www.ncbi.nlm.nih.gov/pubmed/37031138 https://www.proquest.com/docview/2795042717 https://www.proquest.com/docview/2798713395 |
Volume | 158 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagExo8IBiXFQYylwekKCOOHdt5HF2nCpUBaiv6Fjm3qdKUVl3DA7-e48R2WlFNwEuUuE5q-fvsc2yfC0LvA5IFaQrjO5aZ8BlTxFepCn2WFyEpWaj9S7S1xSUfzdjneTTv7Ocb75JNepr92utX8j-oQhngqr1k_wFZ91EogHvAF66AMFz_GuMS7q_qzjCj8U_JPZ3GrbFMH-STwtOyKve-j4fn3nKlwyjDk1rrjEoeiJzKBwrANLVRu4ZBndtYo7BmNrZAuxvilHG35zxfOKZ9Us0W7KhedPYDReUN6sW1K5kDM_0r8-6Penv_IaSN2YroGGMPlnaMG75tNcR6DRBfr5ZaudNOtoGMfcHbdKFuNo7kNu3o3mke9CrARgdc1fHISCfL7Pn95dfkYjYeJ9PhfHoXHYSwhgh66ODs_Mt44gQ16G4mSHfbNBt4itOP7tO76sofa5AH6BA0ldZoYksvmT5CDw0--Kxlx2N0p6iO0OHA5vE7QvdMLz1BEwAUG75gwxe8qDDwBVu-YM0X3PAFa75gyxfc8gUbvmDDl6dodjGcDka-SarhZ4zIjS9TpagghEvOspjJgAelDlDJwgx0mTSWvAyEEEUOEzMNJRGKxWUYSVoWNA25pM9Qr1pWxTHCEWc56PsqD2BRSqNScZKVknMl8jQOorKPPti-S2wn6cQn10lj-cBpEiWmm_vorau6asOs7Kt0YgFIzCi8SUIRRzpfDBF99Mb9DH2mD75UVSzrpo7UmzFx1EfPW-Dcv1CdwIFQ2UfvHJK3NWFPrZ_LdVcjWeXli9sb-hLd7wbSCept1nXxClTbTfraUPQ3lNShEA |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+fatigue+effects+in+red+emissive+CdSe+based+QLED+operated+around+turn-on+voltage&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Zhang%2C+Xin&rft.au=Bao%2C+Hui&rft.au=Chen+Cuili&rft.au=Xian-gang%2C+Wu&rft.date=2023-04-07&rft.pub=American+Institute+of+Physics&rft.issn=0021-9606&rft.eissn=1089-7690&rft.volume=158&rft.issue=13&rft_id=info:doi/10.1063%2F5.0145471&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon |