The fatigue effects in red emissive CdSe based QLED operated around turn-on voltage

The operational stability is a current bottleneck facing the quantum dot light-emitting diodes (QLEDs). In particular, the device working around turn-on voltage suffers from unbalanced charge injection and heavy power loss. Here, we investigate the operational stability of red emissive CdSe QLEDs op...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical physics Vol. 158; no. 13; pp. 131101 - 131106
Main Authors Zhang, Xin, Bao, Hui, Chen, Cuili, Wu, Xian-gang, Li, Menglin, Ji, Wenyu, Wang, Shuangpeng, Zhong, Haizheng
Format Journal Article
LanguageEnglish
Published United States American Institute of Physics 07.04.2023
Subjects
Online AccessGet full text
ISSN0021-9606
1089-7690
1089-7690
DOI10.1063/5.0145471

Cover

Loading…
Abstract The operational stability is a current bottleneck facing the quantum dot light-emitting diodes (QLEDs). In particular, the device working around turn-on voltage suffers from unbalanced charge injection and heavy power loss. Here, we investigate the operational stability of red emissive CdSe QLEDs operated at different applied voltages. Compared to the rising luminance at higher voltages, the device luminance quickly decreases when loaded around the turn-on voltage, but recovers after unloading or slight heat treatment, which is termed fatigue effects of operational QLED. The electroluminescence and photoluminescence spectra before and after a period of operation at low voltages show that the abrupt decrease in device luminance derives from the reduction of quantum yield in quantum dots. Combined with transient photoluminescence and electroluminescence measurements, as well as equivalent circuit model analysis, the electron accumulation in quantum dots mainly accounts for the observed fatigue effects of a QLED during the operation around turn-on voltage. The underlying mechanisms at the low-voltage working regime will be very helpful for the industrialization of QLED.
AbstractList The operational stability is a current bottleneck facing the quantum dot light-emitting diodes (QLEDs). In particular, the device working around turn-on voltage suffers from unbalanced charge injection and heavy power loss. Here, we investigate the operational stability of red emissive CdSe QLEDs operated at different applied voltages. Compared to the rising luminance at higher voltages, the device luminance quickly decreases when loaded around the turn-on voltage, but recovers after unloading or slight heat treatment, which is termed fatigue effects of operational QLED. The electroluminescence and photoluminescence spectra before and after a period of operation at low voltages show that the abrupt decrease in device luminance derives from the reduction of quantum yield in quantum dots. Combined with transient photoluminescence and electroluminescence measurements, as well as equivalent circuit model analysis, the electron accumulation in quantum dots mainly accounts for the observed fatigue effects of a QLED during the operation around turn-on voltage. The underlying mechanisms at the low-voltage working regime will be very helpful for the industrialization of QLED.The operational stability is a current bottleneck facing the quantum dot light-emitting diodes (QLEDs). In particular, the device working around turn-on voltage suffers from unbalanced charge injection and heavy power loss. Here, we investigate the operational stability of red emissive CdSe QLEDs operated at different applied voltages. Compared to the rising luminance at higher voltages, the device luminance quickly decreases when loaded around the turn-on voltage, but recovers after unloading or slight heat treatment, which is termed fatigue effects of operational QLED. The electroluminescence and photoluminescence spectra before and after a period of operation at low voltages show that the abrupt decrease in device luminance derives from the reduction of quantum yield in quantum dots. Combined with transient photoluminescence and electroluminescence measurements, as well as equivalent circuit model analysis, the electron accumulation in quantum dots mainly accounts for the observed fatigue effects of a QLED during the operation around turn-on voltage. The underlying mechanisms at the low-voltage working regime will be very helpful for the industrialization of QLED.
The operational stability is a current bottleneck facing the quantum dot light-emitting diodes (QLEDs). In particular, the device working around turn-on voltage suffers from unbalanced charge injection and heavy power loss. Here, we investigate the operational stability of red emissive CdSe QLEDs operated at different applied voltages. Compared to the rising luminance at higher voltages, the device luminance quickly decreases when loaded around the turn-on voltage, but recovers after unloading or slight heat treatment, which is termed fatigue effects of operational QLED. The electroluminescence and photoluminescence spectra before and after a period of operation at low voltages show that the abrupt decrease in device luminance derives from the reduction of quantum yield in quantum dots. Combined with transient photoluminescence and electroluminescence measurements, as well as equivalent circuit model analysis, the electron accumulation in quantum dots mainly accounts for the observed fatigue effects of a QLED during the operation around turn-on voltage. The underlying mechanisms at the low-voltage working regime will be very helpful for the industrialization of QLED.
Author Zhang, Xin
Wu, Xian-gang
Ji, Wenyu
Chen, Cuili
Bao, Hui
Zhong, Haizheng
Li, Menglin
Wang, Shuangpeng
Author_xml – sequence: 1
  givenname: Xin
  surname: Zhang
  fullname: Zhang, Xin
  organization: MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Science and Engineering, Beijing Institute of Technology
– sequence: 2
  givenname: Hui
  surname: Bao
  fullname: Bao, Hui
  organization: MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Science and Engineering, Beijing Institute of Technology
– sequence: 3
  givenname: Cuili
  surname: Chen
  fullname: Chen, Cuili
  organization: MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Science and Engineering, Beijing Institute of Technology
– sequence: 4
  givenname: Xian-gang
  surname: Wu
  fullname: Wu, Xian-gang
  organization: MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Science and Engineering, Beijing Institute of Technology
– sequence: 5
  givenname: Menglin
  surname: Li
  fullname: Li, Menglin
  organization: MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Science and Engineering, Beijing Institute of Technology
– sequence: 6
  givenname: Wenyu
  surname: Ji
  fullname: Ji, Wenyu
  organization: Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University
– sequence: 7
  givenname: Shuangpeng
  surname: Wang
  fullname: Wang, Shuangpeng
  organization: Institute of Applied Physics and Materials Engineering
– sequence: 8
  givenname: Haizheng
  surname: Zhong
  fullname: Zhong, Haizheng
  organization: MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Science and Engineering, Beijing Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37031138$$D View this record in MEDLINE/PubMed
BookMark eNp90d9rFDEQB_AgFXutPvgPSMAXK2w7-bH58VjO1hYORFqfl-zupG7Z25xJ9sD_3pS7KpTWpzDhM8OXmSNyMIUJCXnP4JSBEmf1KTBZS81ekQUDYyutLByQBQBnlVWgDslRSvcAwDSXb8ih0CAYE2ZBbm5_IvUuD3czUvQeu5zoMNGIPcX1kNKwRbrsb5C2LpW_76uLLzRsMLpcKhfDPPU0z3GqwkS3YczuDt-S196NCd_t32Py4_LidnlVrb59vV6er6pOMpMr0zonNGPKKNlZaUCBl5bXkndC8dYa5UFrjb0SRnDDtJPW89oIj6Llyohj8mk3dxPDrxlTbkrgDsfRTRjm1HBtjWZC2LrQj0_ofSihS7oHVYPkmumiPuzV3K6xbzZxWLv4u3lcVwEnO9DFkFJE_5cwaB5O0dTN_hTFnj2x3ZDLosOUoxvGZzs-7zrSo_zv-BfxNsR_sNn0XvwBaDWh2g
CODEN JCPSA6
CitedBy_id crossref_primary_10_1109_TED_2024_3384137
crossref_primary_10_1088_1361_6528_acc871
crossref_primary_10_1038_s41467_023_43340_w
crossref_primary_10_1038_s41467_024_52521_0
crossref_primary_10_1021_acsami_4c12250
crossref_primary_10_35848_1347_4065_ad85b6
crossref_primary_10_1021_acs_jpclett_5c00223
crossref_primary_10_1063_5_0185626
crossref_primary_10_1021_acs_jpclett_4c02446
Cites_doi 10.1103/physrevapplied.19.024010
10.1063/5.0041689
10.1038/s41467-019-12597-5
10.1021/acs.jpclett.1c01560
10.1021/acsnano.9b03507
10.1038/s41467-018-04986-z
10.1038/s41467-020-14756-5
10.1038/s41467-022-28037-w
10.1038/s41467-020-15944-z
10.1038/s41565-022-01163-8
10.1021/nn5023473
10.1038/s41566-018-0283-4
10.1002/jsid.393
10.1038/s41566-019-0364-z
10.1126/science.aaz8541
10.1039/c9tc04107a
10.1021/acs.chemrev.6b00169
10.1002/advs.201800549
10.1021/acs.jpclett.2c00604
10.1039/d0nh00556h
10.1038/s41467-023-35954-x
10.1002/adfm.201808377
10.1038/nphoton.2007.226
10.1016/j.nantod.2010.08.010
10.1063/5.0019140
10.1002/aenm.202101693
10.1039/c7nr05472f
10.1038/s41566-022-00999-9
10.1021/acs.jpclett.0c00836
10.1002/adma.202006178
10.1021/acs.nanolett.8b03457
10.1021/acs.jpclett.3c00070
10.1021/acs.nanolett.2c03564
10.1103/physrevlett.110.217403
10.1038/s41467-019-08749-2
10.1038/nature13829
10.1038/s41467-018-08075-z
10.1038/nphoton.2013.70
10.1021/acsnano.8b03386
10.1038/s41565-021-01016-w
10.1038/nphoton.2015.36
10.1038/nphoton.2016.185
10.1038/370354a0
10.1038/s41467-022-31478-y
10.1038/s41528-018-0023-3
10.1002/adma.200701052
10.1002/adfm.202207974
ContentType Journal Article
Copyright Author(s)
2023 Author(s). Published under an exclusive license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2023 Author(s). Published under an exclusive license by AIP Publishing.
DBID AAYXX
CITATION
NPM
8FD
H8D
L7M
7X8
DOI 10.1063/5.0145471
DatabaseName CrossRef
PubMed
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

Technology Research Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1089-7690
ExternalDocumentID 37031138
10_1063_5_0145471
jcp
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61735004
  funderid: https://doi.org/10.13039/501100001809
GroupedDBID ---
-DZ
-ET
-~X
123
1UP
2-P
29K
4.4
5VS
85S
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABPPZ
ABZEH
ACBRY
ACLYJ
ACNCT
ACZLF
ADCTM
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D-I
DU5
EBS
ESX
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
TN5
TWZ
UPT
WH7
YQT
YZZ
~02
53G
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
NPM
8FD
H8D
L7M
7X8
ID FETCH-LOGICAL-c418t-8baa37116864c948060f492542c362b986f0777ed63832817a49f2583fe3b2683
ISSN 0021-9606
1089-7690
IngestDate Thu Jul 10 18:07:49 EDT 2025
Sun Jun 29 15:06:50 EDT 2025
Thu Apr 03 07:00:48 EDT 2025
Tue Jul 01 01:12:30 EDT 2025
Thu Apr 24 23:03:49 EDT 2025
Fri Jun 21 00:19:01 EDT 2024
Tue Jul 04 19:17:50 EDT 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License Published under an exclusive license by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c418t-8baa37116864c948060f492542c362b986f0777ed63832817a49f2583fe3b2683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2662-7472
0000-0002-8063-5764
0000-0003-2932-5119
0000-0001-8464-4994
OpenAccessLink https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0145471/16823016/131101_1_5.0145471.pdf
PMID 37031138
PQID 2795042717
PQPubID 2050685
PageCount 6
ParticipantIDs proquest_miscellaneous_2798713395
crossref_primary_10_1063_5_0145471
crossref_citationtrail_10_1063_5_0145471
pubmed_primary_37031138
proquest_journals_2795042717
scitation_primary_10_1063_5_0145471
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230407
2023-04-07
2023-Apr-07
PublicationDateYYYYMMDD 2023-04-07
PublicationDate_xml – month: 04
  year: 2023
  text: 20230407
  day: 07
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Melville
PublicationTitle The Journal of chemical physics
PublicationTitleAlternate J Chem Phys
PublicationYear 2023
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Deng, Peng, Lu, Zhu, Jin, Qiu, Dong, Hao, Di, Gao, Sun, Zhang, Liu, Wang, Ying, Huang, Jin (c9) 2022; 16
Liu, Cao, Wang, Wang, Dai, Zou, Zhao, Wang (c11) 2020; 11
Chang, Park, Jung, Jeong, Hahm, Nagamine, Ko, Cho, Padilha, Lee, Lee, Char, Bae (c17) 2018; 12
Pu, Dai, Shu, Zhu, Deng, Jin, Peng (c21) 2020; 11
Deng, Lin, Fang, Di, Wang, Friend, Peng, Jin (c40) 2020; 11
Manders, Qian, Titov, Hyvonen, Tokarz-Scott, Acharya, Yang, Cao, Zheng, Xue, Holloway (c13) 2015; 23
Chen, Cao, Liu, Tsang, Yang, Yan, Qian (c18) 2019; 10
Qian, Zheng, Choudhury, Bera, So, Xue, Holloway (c33) 2010; 5
Bang, Suh, Fan, Shin, Lee, Choi, Lee, Yang, Zhan, Harden-Chaters, Samarakoon, Occhipinti, Han, Jung, Kim (c15) 2021; 6
Shen, Gao, Zhang, Lin, Lin, Li, Chen, Zeng, Li, Jia, Wang, Du, Li, Zhang (c6) 2019; 13
Wang, Cheng, Ge, Zhang, Miao, Zou, Yi, Sun, Cao, Yang, Wei, Guo, Ke, Yu, Jin, Liu, Ding, Di, Yang, Xing, Tian, Jin, Gao, Friend, Wang, Huang (c35) 2016; 10
Zhao, Bai, Kim, Lamboll, Shivanna, Auras, Richter, Yang, Dai, Alsari, She, Liang, Zhang, Lilliu, Gao, Snaith, Wang, Greenham, Friend, Di (c36) 2018; 12
Sun, Wang, Li, Wang, Zhu, Xu, Yang, Li (c2) 2007; 1
Acharya, Titov, Hyvonen, Wang, Tokarz, Holloway (c22) 2017; 9
Pietryga, Park, Lim, Fidler, Bae, Brovelli, Klimov (c5) 2016; 116
Shirasaki, Supran, Tisdale, Bulović (c24) 2013; 110
Engmann, Barito, Bittle, Giebink, Richter, Gundlach (c31) 2019; 10
Cheng, Gui, Qiao, Fang, Ba, Liang, Wan, Zhang, Liu, Ma, Hong, Fan, Liu, Shen (c10) 2022; 32
Cao, Xiang, Yang, Chen, Chen, Yan, Qian (c37) 2018; 9
Song, Wang, Shen, Lin, Li, Wang, Zhang, Li (c8) 2019; 29
Doe, Kitano, Yamamoto, Yamamoto, Goto, Sakakibara, Kobashi, Yamada, Ueda, Ryowa, Izumi, Arakawa (c43) 2021; 118
Lian, Lan, Xing, Guo, Ren, Lai, Zou, Zhao, Friend, Di (c30) 2022; 13
Qiao, Ma (c32) 2019; 10
Wu, Ji, Yan, Zhong (c16) 2022; 17
Zhu, Wang, Ji (c27) 2023; 19
Chen, Chen, Dai, Zhang, Lin, Deng, Hao, Zhang, Zhu, Gao, Jin (c20) 2020; 32
Li, Wei, Wang, Tang, Li, Guo, Huang, Brovelli, Shen, Li (c42) 2021; 11
Chen, Lin, Zhou, Sun, Li, Chen, Yang, Hou, Wu, Cao, Zhang, Yan, Chen (c12) 2023; 14
Ding, Wu, Qu, Tang, Wang, Xu, Sun (c38) 2020; 117
Mashford, Stevenson, Popovic, Hamilton, Zhou, Breen, Steckel, Bulovic, Bawendi, Coe-Sullivan, Kazlas (c3) 2013; 7
Choi, Yang, Hyeon, Kim (c14) 2018; 2
Pandey, Nunzi (c34) 2007; 19
Shen, Hao, Ma, Wang (c44) 2021; 12
Colvin, Schlamp, Alivisatos (c1) 1994; 370
Xue, Dong, Wang, Zhang, Zhang, Zhao, Ji (c23) 2020; 8
Yu, Yuan, Zhao, Zhang, Ji (c46) 2022; 13
Keating, Lee, Rogers, Huang, Shim (c45) 2022; 22
Bao, Chen, Cao, Chang, Wang, Zhong (c47) 2023; 14
García de Arquer, Talapin, Klimov, Arakawa, Bayer, Sargent (c7) 2021; 373
Luo, Zhang, Li, Yang, Guo, Tsang, Chen (c28) 2019; 13
Su, Chen (c29) 2022; 13
Dai, Zhang, Jin, Niu, Cao, Liang, Chen, Wang, Peng (c4) 2014; 515
Shi, Sun, Utzat, Farahvash, Gao, Zhang, Barotov, Willard, Nelson, Bawendi (c41) 2021; 16
Yang, Zheng, Cao, Titov, Hyvonen, Manders, Xue, Holloway, Qian (c26) 2015; 9
Park, Bae, Pietryga, Klimov (c39) 2014; 8
Su, Sun, Zhang, Chen (c19) 2018; 5
Lim, Park, Wu, Yun, Klimov (c25) 2018; 18
(2023081106395048100_c3) 2013; 7
(2023081106395048100_c38) 2020; 117
(2023081106395048100_c28) 2019; 13
(2023081106395048100_c36) 2018; 12
(2023081106395048100_c17) 2018; 12
(2023081106395048100_c42) 2021; 11
(2023081106395048100_c1) 1994; 370
(2023081106395048100_c5) 2016; 116
(2023081106395048100_c20) 2020; 32
(2023081106395048100_c40) 2020; 11
(2023081106395048100_c13) 2015; 23
(2023081106395048100_c21) 2020; 11
(2023081106395048100_c39) 2014; 8
(2023081106395048100_c19) 2018; 5
(2023081106395048100_c6) 2019; 13
(2023081106395048100_c8) 2019; 29
(2023081106395048100_c26) 2015; 9
(2023081106395048100_c25) 2018; 18
(2023081106395048100_c30) 2022; 13
(2023081106395048100_c15) 2021; 6
(2023081106395048100_c12) 2023; 14
(2023081106395048100_c29) 2022; 13
(2023081106395048100_c23) 2020; 8
(2023081106395048100_c34) 2007; 19
(2023081106395048100_c14) 2018; 2
(2023081106395048100_c37) 2018; 9
(2023081106395048100_c46) 2022; 13
(2023081106395048100_c11) 2020; 11
(2023081106395048100_c41) 2021; 16
(2023081106395048100_c45) 2022; 22
(2023081106395048100_c31) 2019; 10
(2023081106395048100_c16) 2022; 17
(2023081106395048100_c27) 2023; 19
(2023081106395048100_c7) 2021; 373
(2023081106395048100_c33) 2010; 5
(2023081106395048100_c47) 2023; 14
(2023081106395048100_c2) 2007; 1
(2023081106395048100_c9) 2022; 16
(2023081106395048100_c44) 2021; 12
(2023081106395048100_c32) 2019; 10
(2023081106395048100_c22) 2017; 9
(2023081106395048100_c4) 2014; 515
(2023081106395048100_c10) 2022; 32
(2023081106395048100_c35) 2016; 10
(2023081106395048100_c24) 2013; 110
(2023081106395048100_c18) 2019; 10
(2023081106395048100_c43) 2021; 118
References_xml – volume: 118
  start-page: 203503
  year: 2021
  ident: c43
  publication-title: Appl. Phys. Lett.
– volume: 17
  start-page: 813
  year: 2022
  ident: c16
  publication-title: Nat. Nanotechnol.
– volume: 12
  start-page: 10231
  year: 2018
  ident: c17
  publication-title: ACS Nano
– volume: 29
  start-page: 1808377
  year: 2019
  ident: c8
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 2101693
  year: 2021
  ident: c42
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 14451
  year: 2017
  ident: c22
  publication-title: Nanoscale
– volume: 22
  start-page: 9500
  year: 2022
  ident: c45
  publication-title: Nano Lett.
– volume: 13
  start-page: 369
  year: 2022
  ident: c29
  publication-title: Nat. Commun.
– volume: 10
  start-page: 4683
  year: 2019
  ident: c32
  publication-title: Nat. Commun.
– volume: 18
  start-page: 6645
  year: 2018
  ident: c25
  publication-title: Nano Lett.
– volume: 116
  start-page: 10513
  year: 2016
  ident: c5
  publication-title: Chem. Rev.
– volume: 2
  start-page: 10
  year: 2018
  ident: c14
  publication-title: npj Flexible Electron.
– volume: 13
  start-page: 8229
  year: 2019
  ident: c28
  publication-title: ACS Nano
– volume: 9
  start-page: 2608
  year: 2018
  ident: c37
  publication-title: Nat. Commun.
– volume: 373
  start-page: eaaz8541
  year: 2021
  ident: c7
  publication-title: Science
– volume: 32
  start-page: 2006178
  year: 2020
  ident: c20
  publication-title: Adv. Mater.
– volume: 11
  start-page: 937
  year: 2020
  ident: c21
  publication-title: Nat. Commun.
– volume: 10
  start-page: 765
  year: 2019
  ident: c18
  publication-title: Nat. Commun.
– volume: 12
  start-page: 7019
  year: 2021
  ident: c44
  publication-title: J. Phys. Chem. Lett.
– volume: 8
  start-page: 2014
  year: 2020
  ident: c23
  publication-title: J. Mater. Chem. C
– volume: 23
  start-page: 523
  year: 2015
  ident: c13
  publication-title: J. Soc. Inf. Disp.
– volume: 10
  start-page: 699
  year: 2016
  ident: c35
  publication-title: Nat. Photonics
– volume: 16
  start-page: 1355
  year: 2021
  ident: c41
  publication-title: Nat. Nanotechnol.
– volume: 10
  start-page: 227
  year: 2019
  ident: c31
  publication-title: Nat. Commun.
– volume: 515
  start-page: 96
  year: 2014
  ident: c4
  publication-title: Nature
– volume: 19
  start-page: 024010
  year: 2023
  ident: c27
  publication-title: Phys. Rev. Appl.
– volume: 117
  start-page: 093501
  year: 2020
  ident: c38
  publication-title: Appl. Phys. Lett.
– volume: 13
  start-page: 2878
  year: 2022
  ident: c46
  publication-title: J. Phys. Chem. Lett.
– volume: 14
  start-page: 284
  year: 2023
  ident: c12
  publication-title: Nat. Commun.
– volume: 6
  start-page: 68
  year: 2021
  ident: c15
  publication-title: Nanoscale Horiz.
– volume: 110
  start-page: 217403
  year: 2013
  ident: c24
  publication-title: Phys. Rev. Lett.
– volume: 9
  start-page: 259
  year: 2015
  ident: c26
  publication-title: Nat. Photonics
– volume: 8
  start-page: 7288
  year: 2014
  ident: c39
  publication-title: ACS Nano
– volume: 370
  start-page: 354
  year: 1994
  ident: c1
  publication-title: Nature
– volume: 16
  start-page: 505
  year: 2022
  ident: c9
  publication-title: Nat. Photonics
– volume: 5
  start-page: 1800549
  year: 2018
  ident: c19
  publication-title: Adv. Sci.
– volume: 32
  start-page: 2207974
  year: 2022
  ident: c10
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 783
  year: 2018
  ident: c36
  publication-title: Nat. Photonics
– volume: 11
  start-page: 3111
  year: 2020
  ident: c11
  publication-title: J. Phys. Chem. Lett.
– volume: 11
  start-page: 2309
  year: 2020
  ident: c40
  publication-title: Nat. Commun.
– volume: 7
  start-page: 407
  year: 2013
  ident: c3
  publication-title: Nat. Photonics
– volume: 19
  start-page: 3613
  year: 2007
  ident: c34
  publication-title: Adv. Mater.
– volume: 1
  start-page: 717
  year: 2007
  ident: c2
  publication-title: Nat. Photonics
– volume: 13
  start-page: 192
  year: 2019
  ident: c6
  publication-title: Nat. Photonics
– volume: 14
  start-page: 1777
  year: 2023
  ident: c47
  publication-title: J. Phys. Chem. Lett.
– volume: 13
  start-page: 3845
  year: 2022
  ident: c30
  publication-title: Nat. Commun.
– volume: 5
  start-page: 384
  year: 2010
  ident: c33
  publication-title: Nano Today
– volume: 19
  start-page: 024010
  year: 2023
  ident: 2023081106395048100_c27
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/physrevapplied.19.024010
– volume: 118
  start-page: 203503
  year: 2021
  ident: 2023081106395048100_c43
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0041689
– volume: 10
  start-page: 4683
  year: 2019
  ident: 2023081106395048100_c32
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12597-5
– volume: 12
  start-page: 7019
  year: 2021
  ident: 2023081106395048100_c44
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.1c01560
– volume: 13
  start-page: 8229
  year: 2019
  ident: 2023081106395048100_c28
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b03507
– volume: 9
  start-page: 2608
  year: 2018
  ident: 2023081106395048100_c37
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04986-z
– volume: 11
  start-page: 937
  year: 2020
  ident: 2023081106395048100_c21
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-14756-5
– volume: 13
  start-page: 369
  year: 2022
  ident: 2023081106395048100_c29
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-28037-w
– volume: 11
  start-page: 2309
  year: 2020
  ident: 2023081106395048100_c40
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15944-z
– volume: 17
  start-page: 813
  year: 2022
  ident: 2023081106395048100_c16
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-022-01163-8
– volume: 8
  start-page: 7288
  year: 2014
  ident: 2023081106395048100_c39
  publication-title: ACS Nano
  doi: 10.1021/nn5023473
– volume: 12
  start-page: 783
  year: 2018
  ident: 2023081106395048100_c36
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-018-0283-4
– volume: 23
  start-page: 523
  year: 2015
  ident: 2023081106395048100_c13
  publication-title: J. Soc. Inf. Disp.
  doi: 10.1002/jsid.393
– volume: 13
  start-page: 192
  year: 2019
  ident: 2023081106395048100_c6
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-019-0364-z
– volume: 373
  start-page: eaaz8541
  year: 2021
  ident: 2023081106395048100_c7
  publication-title: Science
  doi: 10.1126/science.aaz8541
– volume: 8
  start-page: 2014
  year: 2020
  ident: 2023081106395048100_c23
  publication-title: J. Mater. Chem. C
  doi: 10.1039/c9tc04107a
– volume: 116
  start-page: 10513
  year: 2016
  ident: 2023081106395048100_c5
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00169
– volume: 5
  start-page: 1800549
  year: 2018
  ident: 2023081106395048100_c19
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201800549
– volume: 13
  start-page: 2878
  year: 2022
  ident: 2023081106395048100_c46
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.2c00604
– volume: 6
  start-page: 68
  year: 2021
  ident: 2023081106395048100_c15
  publication-title: Nanoscale Horiz.
  doi: 10.1039/d0nh00556h
– volume: 14
  start-page: 284
  year: 2023
  ident: 2023081106395048100_c12
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-35954-x
– volume: 29
  start-page: 1808377
  year: 2019
  ident: 2023081106395048100_c8
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201808377
– volume: 1
  start-page: 717
  year: 2007
  ident: 2023081106395048100_c2
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2007.226
– volume: 5
  start-page: 384
  year: 2010
  ident: 2023081106395048100_c33
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2010.08.010
– volume: 117
  start-page: 093501
  year: 2020
  ident: 2023081106395048100_c38
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0019140
– volume: 11
  start-page: 2101693
  year: 2021
  ident: 2023081106395048100_c42
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202101693
– volume: 9
  start-page: 14451
  year: 2017
  ident: 2023081106395048100_c22
  publication-title: Nanoscale
  doi: 10.1039/c7nr05472f
– volume: 16
  start-page: 505
  year: 2022
  ident: 2023081106395048100_c9
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-022-00999-9
– volume: 11
  start-page: 3111
  year: 2020
  ident: 2023081106395048100_c11
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.0c00836
– volume: 32
  start-page: 2006178
  year: 2020
  ident: 2023081106395048100_c20
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202006178
– volume: 18
  start-page: 6645
  year: 2018
  ident: 2023081106395048100_c25
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b03457
– volume: 14
  start-page: 1777
  year: 2023
  ident: 2023081106395048100_c47
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.3c00070
– volume: 22
  start-page: 9500
  year: 2022
  ident: 2023081106395048100_c45
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.2c03564
– volume: 110
  start-page: 217403
  year: 2013
  ident: 2023081106395048100_c24
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.110.217403
– volume: 10
  start-page: 765
  year: 2019
  ident: 2023081106395048100_c18
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08749-2
– volume: 515
  start-page: 96
  year: 2014
  ident: 2023081106395048100_c4
  publication-title: Nature
  doi: 10.1038/nature13829
– volume: 10
  start-page: 227
  year: 2019
  ident: 2023081106395048100_c31
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-08075-z
– volume: 7
  start-page: 407
  year: 2013
  ident: 2023081106395048100_c3
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2013.70
– volume: 12
  start-page: 10231
  year: 2018
  ident: 2023081106395048100_c17
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b03386
– volume: 16
  start-page: 1355
  year: 2021
  ident: 2023081106395048100_c41
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-021-01016-w
– volume: 9
  start-page: 259
  year: 2015
  ident: 2023081106395048100_c26
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2015.36
– volume: 10
  start-page: 699
  year: 2016
  ident: 2023081106395048100_c35
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2016.185
– volume: 370
  start-page: 354
  year: 1994
  ident: 2023081106395048100_c1
  publication-title: Nature
  doi: 10.1038/370354a0
– volume: 13
  start-page: 3845
  year: 2022
  ident: 2023081106395048100_c30
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-31478-y
– volume: 2
  start-page: 10
  year: 2018
  ident: 2023081106395048100_c14
  publication-title: npj Flexible Electron.
  doi: 10.1038/s41528-018-0023-3
– volume: 19
  start-page: 3613
  year: 2007
  ident: 2023081106395048100_c34
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200701052
– volume: 32
  start-page: 2207974
  year: 2022
  ident: 2023081106395048100_c10
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202207974
SSID ssj0001724
Score 2.4747434
Snippet The operational stability is a current bottleneck facing the quantum dot light-emitting diodes (QLEDs). In particular, the device working around turn-on...
SourceID proquest
pubmed
crossref
scitation
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 131101
SubjectTerms Charge injection
Electric potential
Electroluminescence
Equivalent circuits
Heat treatment
Light emitting diodes
Luminance
Photoluminescence
Quantum dots
Stability
Voltage
Title The fatigue effects in red emissive CdSe based QLED operated around turn-on voltage
URI http://dx.doi.org/10.1063/5.0145471
https://www.ncbi.nlm.nih.gov/pubmed/37031138
https://www.proquest.com/docview/2795042717
https://www.proquest.com/docview/2798713395
Volume 158
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagExo8IBiXFQYylwekKCOOHdt5HF2nCpUBaiv6Fjm3qdKUVl3DA7-e48R2WlFNwEuUuE5q-fvsc2yfC0LvA5IFaQrjO5aZ8BlTxFepCn2WFyEpWaj9S7S1xSUfzdjneTTv7Ocb75JNepr92utX8j-oQhngqr1k_wFZ91EogHvAF66AMFz_GuMS7q_qzjCj8U_JPZ3GrbFMH-STwtOyKve-j4fn3nKlwyjDk1rrjEoeiJzKBwrANLVRu4ZBndtYo7BmNrZAuxvilHG35zxfOKZ9Us0W7KhedPYDReUN6sW1K5kDM_0r8-6Penv_IaSN2YroGGMPlnaMG75tNcR6DRBfr5ZaudNOtoGMfcHbdKFuNo7kNu3o3mke9CrARgdc1fHISCfL7Pn95dfkYjYeJ9PhfHoXHYSwhgh66ODs_Mt44gQ16G4mSHfbNBt4itOP7tO76sofa5AH6BA0ldZoYksvmT5CDw0--Kxlx2N0p6iO0OHA5vE7QvdMLz1BEwAUG75gwxe8qDDwBVu-YM0X3PAFa75gyxfc8gUbvmDDl6dodjGcDka-SarhZ4zIjS9TpagghEvOspjJgAelDlDJwgx0mTSWvAyEEEUOEzMNJRGKxWUYSVoWNA25pM9Qr1pWxTHCEWc56PsqD2BRSqNScZKVknMl8jQOorKPPti-S2wn6cQn10lj-cBpEiWmm_vorau6asOs7Kt0YgFIzCi8SUIRRzpfDBF99Mb9DH2mD75UVSzrpo7UmzFx1EfPW-Dcv1CdwIFQ2UfvHJK3NWFPrZ_LdVcjWeXli9sb-hLd7wbSCept1nXxClTbTfraUPQ3lNShEA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+fatigue+effects+in+red+emissive+CdSe+based+QLED+operated+around+turn-on+voltage&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Zhang%2C+Xin&rft.au=Bao%2C+Hui&rft.au=Chen+Cuili&rft.au=Xian-gang%2C+Wu&rft.date=2023-04-07&rft.pub=American+Institute+of+Physics&rft.issn=0021-9606&rft.eissn=1089-7690&rft.volume=158&rft.issue=13&rft_id=info:doi/10.1063%2F5.0145471&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon