ISVD-Based Advanced Simultaneous Localization and Mapping (SLAM) Algorithm for Mobile Robots
In the case of simultaneous localization and mapping, route planning and navigation are based on data captured by multiple sensors, including built-in cameras. Nowadays, mobile devices frequently have more than one camera with overlapping fields of view, leading to solutions where depth information...
Saved in:
Published in | Machines (Basel) Vol. 10; no. 7; p. 519 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.07.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the case of simultaneous localization and mapping, route planning and navigation are based on data captured by multiple sensors, including built-in cameras. Nowadays, mobile devices frequently have more than one camera with overlapping fields of view, leading to solutions where depth information can also be gathered along with ordinary RGB color data. Using these RGB-D sensors, two- and three-dimensional point clouds can be recorded from the mobile devices, which provide additional information for localization and mapping. The method of matching point clouds during the movement of the device is essential: reducing noise while having an acceptable processing time is crucial for a real-life application. In this paper, we present a novel ISVD-based method for displacement estimation, using key points detected by SURF and ORB feature detectors. The ISVD algorithm is a fitting procedure based on SVD resolution, which removes outliers from the point clouds to be fitted in several steps. The developed method removes these outlying points in several steps, in each iteration examining the relative error of the point pairs and then progressively reducing the maximum error for the next matching step. An advantage over relevant methods is that this method always gives the same result, as no random steps are included. |
---|---|
AbstractList | In the case of simultaneous localization and mapping, route planning and navigation are based on data captured by multiple sensors, including built-in cameras. Nowadays, mobile devices frequently have more than one camera with overlapping fields of view, leading to solutions where depth information can also be gathered along with ordinary RGB color data. Using these RGB-D sensors, two- and three-dimensional point clouds can be recorded from the mobile devices, which provide additional information for localization and mapping. The method of matching point clouds during the movement of the device is essential: reducing noise while having an acceptable processing time is crucial for a real-life application. In this paper, we present a novel ISVD-based method for displacement estimation, using key points detected by SURF and ORB feature detectors. The ISVD algorithm is a fitting procedure based on SVD resolution, which removes outliers from the point clouds to be fitted in several steps. The developed method removes these outlying points in several steps, in each iteration examining the relative error of the point pairs and then progressively reducing the maximum error for the next matching step. An advantage over relevant methods is that this method always gives the same result, as no random steps are included. |
Audience | Academic |
Author | Somlyai, László Vámossy, Zoltán |
Author_xml | – sequence: 1 givenname: László surname: Somlyai fullname: Somlyai, László – sequence: 2 givenname: Zoltán orcidid: 0000-0002-6040-9954 surname: Vámossy fullname: Vámossy, Zoltán |
BookMark | eNpdUU1rFEEQHSQBY5K7xwEvepjYX9MfxzEaXdhFcNWT0NT0x6aXme61e1Ywv96OKyJWHaoo3ntU1XvWnMUUXdM8x-iGUoVez2DuQ3QFIyRQj9WT5oIg0XdYIHL2T_-0uS5lj2ooTCWTF8231fbr2-4NFGfbwf6AaGqzDfNxWiC6dCztOhmYwgMsIcUWom03cDiEuGtfbtfD5lU7TLuUw3I_tz7ldpPGMLn2UxrTUq6acw9Tcdd_6mXz5e7d59sP3frj-9XtsO4Mw3LppLAMe2-5wcIz46UajZIGOOs5do5jy5lgTCkE40jAYcuEGQm3rt5kek4vm9VJ1ybY60MOM-SfOkHQvwcp7zTkJZjJaUsxh95LSjBi3EjZwyhGRB0hFEkjqtaLk9Yhp-9HVxa9T8cc6_qacEWVxAQ_om5OqB1U0RB9WjKYmtbNwVRzfP2CHgSh1Q_eq0pAJ4LJqZTs_N81MdKPHur_PaS_ACK-kEQ |
CitedBy_id | crossref_primary_10_3390_machines10111028 |
Cites_doi | 10.3390/s21051684 10.1016/j.robot.2006.04.016 10.1109/MRA.2011.943233 10.1109/IROS.2012.6385773 10.1016/j.jvcir.2013.02.008 10.1016/j.cviu.2007.09.014 10.1007/978-3-642-28572-1_33 10.1109/TPAMI.1987.4767965 10.1109/JSEN.2019.2920976 10.1023/B:VISI.0000029664.99615.94 10.1109/ICCV.2011.6126544 10.1007/s41095-020-0199-z 10.1007/11744023_34 10.1007/978-3-319-02895-8_29 10.1177/0278364914551008 10.1109/ECMR.2013.6698831 10.23919/ChiCC.2019.8866265 10.1109/INES.2012.6249883 10.1109/TRO.2021.3062252 10.1007/s40430-020-02645-3 10.3390/app10010146 10.1109/TRO.2013.2279412 10.3390/app10175782 10.5772/62099 10.1109/ICRA.2012.6225199 10.1007/s10462-012-9365-8 10.12700/APH.17.8.2020.8.7 10.1109/ICSENS.2017.8234267 10.1016/j.robot.2013.07.008 10.5244/C.20.95 10.12700/APH.18.6.2021.6.11 10.1109/IS.2018.8710464 10.1109/CEEC.2016.7835881 10.1109/SAMI.2018.8324000 10.1109/IROS.2017.8206591 10.1109/ICRA.2015.7139411 10.15607/RSS.2020.XVI.009 10.1109/MetroAeroSpace48742.2020.9160183 10.1109/SAMI.2012.6208934 10.1016/j.inffus.2020.11.002 10.1007/978-3-319-29363-9_14 10.3390/machines10030183 10.1109/WACV.2016.7477636 10.3390/s21041243 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 HCIFZ L6V M7S PIMPY PQEST PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.3390/machines10070519 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Engineering Research Database SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Engineering Collection Engineering Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Engineering Database Technology Collection Technology Research Database Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic Engineering Collection |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2075-1702 |
ExternalDocumentID | oai_doaj_org_article_d316a5f8321046c885ab7b03e22308c7 A723705659 10_3390_machines10070519 |
GeographicLocations | Hungary |
GeographicLocations_xml | – name: Hungary |
GroupedDBID | 5VS 8FE 8FG AADQD AAFWJ AAYXX ABJCF ACIWK ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IAO ITC KQ8 L6V M7S MODMG M~E OK1 PIMPY PROAC PTHSS RIG RNS 7TB 8FD ABUWG AZQEC DWQXO FR3 PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c418t-87d41ffd6c17f4cf89bc98ca64561ee61d64744990abb2ae1d47cb26de170c563 |
IEDL.DBID | DOA |
ISSN | 2075-1702 |
IngestDate | Tue Oct 22 15:04:13 EDT 2024 Thu Oct 10 15:52:23 EDT 2024 Tue Nov 12 23:53:48 EST 2024 Thu Sep 26 20:44:39 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c418t-87d41ffd6c17f4cf89bc98ca64561ee61d64744990abb2ae1d47cb26de170c563 |
ORCID | 0000-0002-6040-9954 |
OpenAccessLink | https://doaj.org/article/d316a5f8321046c885ab7b03e22308c7 |
PQID | 2693981217 |
PQPubID | 2032370 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d316a5f8321046c885ab7b03e22308c7 proquest_journals_2693981217 gale_infotracacademiconefile_A723705659 crossref_primary_10_3390_machines10070519 |
PublicationCentury | 2000 |
PublicationDate | 2022-07-01 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Machines (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_14 Fernandes (ref_28) 2021; 68 ref_11 ref_10 ref_52 ref_18 ref_17 Mac (ref_24) 2021; 18 Vokhmintcev (ref_19) 2020; 17 Zhou (ref_13) 2021; 7 Kostavelis (ref_16) 2016; 13 ref_25 Goyal (ref_9) 2021; 8 ref_21 ref_20 Ho (ref_31) 2006; 54 ref_27 ref_26 (ref_23) 2015; 43 Endres (ref_50) 2013; 30 ref_36 ref_35 ref_34 ref_33 ref_32 Yildiz (ref_8) 2020; 42 ref_30 Kuan (ref_12) 2019; 19 Arun (ref_43) 1987; 9 Behnke (ref_51) 2014; 25 ref_39 Juan (ref_40) 2009; 3 ref_38 ref_37 Elayaraja (ref_7) 2017; 76 Whelan (ref_48) 2015; 34 Scaramuzza (ref_2) 2011; 18 Felde (ref_4) 2021; 21 Kostavelis (ref_22) 2013; 61 Zhou (ref_15) 2021; 37 ref_47 ref_46 ref_45 ref_44 Bay (ref_42) 2008; 110 ref_41 ref_1 ref_3 ref_49 ref_5 Lowe (ref_29) 2004; 60 ref_6 |
References_xml | – ident: ref_27 doi: 10.3390/s21051684 – ident: ref_32 – volume: 54 start-page: 740 year: 2006 ident: ref_31 article-title: Loop closure detection in SLAM by combining visual and spatial appearance publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2006.04.016 contributor: fullname: Ho – volume: 18 start-page: 80 year: 2011 ident: ref_2 article-title: Visual odometry [tutorial] publication-title: IEEE Robot. Autom. Mag. doi: 10.1109/MRA.2011.943233 contributor: fullname: Scaramuzza – ident: ref_46 doi: 10.1109/IROS.2012.6385773 – volume: 25 start-page: 137 year: 2014 ident: ref_51 article-title: Multi-resolution surfel maps for efficient dense 3D modeling and tracking publication-title: J. Vis. Commun. Image Represent. doi: 10.1016/j.jvcir.2013.02.008 contributor: fullname: Behnke – volume: 110 start-page: 346 year: 2008 ident: ref_42 article-title: Speeded-up robust features (SURF) publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2007.09.014 contributor: fullname: Bay – ident: ref_30 doi: 10.1007/978-3-642-28572-1_33 – volume: 9 start-page: 698 year: 1987 ident: ref_43 article-title: Least-squares fitting of two 3-D point sets publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.1987.4767965 contributor: fullname: Arun – volume: 19 start-page: 8741 year: 2019 ident: ref_12 article-title: Comparative study of intel R200, Kinect v2, and primesense RGB-D sensors performance outdoors publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2019.2920976 contributor: fullname: Kuan – volume: 60 start-page: 91 year: 2004 ident: ref_29 article-title: Distinctive image features from scale-invariant keypoints publication-title: Int. J. Comput. Vis. doi: 10.1023/B:VISI.0000029664.99615.94 contributor: fullname: Lowe – volume: 21 start-page: 85 year: 2021 ident: ref_4 article-title: Statistical accident analysis supporting the control of autonomous vehicles publication-title: J. Comput. Methods Sci. Eng. contributor: fullname: Felde – ident: ref_41 doi: 10.1109/ICCV.2011.6126544 – volume: 7 start-page: 37 year: 2021 ident: ref_13 article-title: RGB-D salient object detection: A survey publication-title: Comput. Vis. Media doi: 10.1007/s41095-020-0199-z contributor: fullname: Zhou – ident: ref_34 doi: 10.1007/11744023_34 – ident: ref_45 doi: 10.1007/978-3-319-02895-8_29 – volume: 34 start-page: 598 year: 2015 ident: ref_48 article-title: Real-time large-scale dense RGB-D SLAM with volumetric fusion publication-title: Int. J. Robot. Res. doi: 10.1177/0278364914551008 contributor: fullname: Whelan – ident: ref_35 doi: 10.1109/ECMR.2013.6698831 – ident: ref_38 doi: 10.23919/ChiCC.2019.8866265 – ident: ref_39 doi: 10.1109/INES.2012.6249883 – volume: 37 start-page: 1433 year: 2021 ident: ref_15 article-title: Event-based stereo visual odometry publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2021.3062252 contributor: fullname: Zhou – volume: 42 start-page: 1 year: 2020 ident: ref_8 article-title: Sliding mode control of a line following robot publication-title: J. Braz. Soc. Mech. Sci. Eng. doi: 10.1007/s40430-020-02645-3 contributor: fullname: Yildiz – volume: 3 start-page: 143 year: 2009 ident: ref_40 article-title: A comparison of sift, pca-sift and surf publication-title: Int. J. Image Process. (IJIP) contributor: fullname: Juan – ident: ref_3 doi: 10.3390/app10010146 – volume: 30 start-page: 177 year: 2013 ident: ref_50 article-title: 3-D mapping with an RGB-D camera publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2013.2279412 contributor: fullname: Endres – ident: ref_18 doi: 10.3390/app10175782 – volume: 13 start-page: 21 year: 2016 ident: ref_16 article-title: Stereo-based visual odometry for autonomous robot navigation publication-title: Int. J. Adv. Robot. Syst. doi: 10.5772/62099 contributor: fullname: Kostavelis – ident: ref_36 doi: 10.1109/ICRA.2012.6225199 – volume: 43 start-page: 55 year: 2015 ident: ref_23 article-title: Visual simultaneous localization and mapping: A survey publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-012-9365-8 – volume: 17 start-page: 95 year: 2020 ident: ref_19 article-title: The new combined method of the generation of a 3d dense map of evironment based on history of camera positions and the robot’s movements publication-title: Acta Polytech. Hung. doi: 10.12700/APH.17.8.2020.8.7 contributor: fullname: Vokhmintcev – ident: ref_17 doi: 10.1109/ICSENS.2017.8234267 – volume: 61 start-page: 1460 year: 2013 ident: ref_22 article-title: Learning spatially semantic representations for cognitive robot navigation publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2013.07.008 contributor: fullname: Kostavelis – ident: ref_5 doi: 10.5244/C.20.95 – ident: ref_44 – volume: 18 start-page: 197 year: 2021 ident: ref_24 article-title: Hybrid SLAM-based exploration of a mobile robot for 3D scenario reconstruction and autonomous navigation publication-title: Acta Polytech. Hung doi: 10.12700/APH.18.6.2021.6.11 contributor: fullname: Mac – ident: ref_1 doi: 10.1109/IS.2018.8710464 – ident: ref_49 doi: 10.1109/CEEC.2016.7835881 – ident: ref_47 doi: 10.1109/SAMI.2018.8324000 – ident: ref_37 doi: 10.1109/IROS.2017.8206591 – volume: 76 start-page: 212 year: 2017 ident: ref_7 article-title: Investigation in autonomous line follower robot publication-title: J. Sci. Ind. Res. contributor: fullname: Elayaraja – ident: ref_6 – ident: ref_20 doi: 10.1109/ICRA.2015.7139411 – ident: ref_21 doi: 10.15607/RSS.2020.XVI.009 – ident: ref_25 – ident: ref_26 doi: 10.1109/MetroAeroSpace48742.2020.9160183 – ident: ref_10 doi: 10.1109/SAMI.2012.6208934 – volume: 68 start-page: 161 year: 2021 ident: ref_28 article-title: Point-cloud based 3D object detection and classification methods for self-driving applications: A survey and taxonomy publication-title: Inf. Fusion doi: 10.1016/j.inffus.2020.11.002 contributor: fullname: Fernandes – volume: 8 start-page: 1 year: 2021 ident: ref_9 article-title: Line Follower Cargo-Bot For Warehouse Automation publication-title: Int. Res. J. Eng. Technol. contributor: fullname: Goyal – ident: ref_33 doi: 10.1007/978-3-319-29363-9_14 – ident: ref_14 doi: 10.3390/machines10030183 – ident: ref_11 doi: 10.1109/WACV.2016.7477636 – ident: ref_52 doi: 10.3390/s21041243 |
SSID | ssj0000913848 |
Score | 2.2654364 |
Snippet | In the case of simultaneous localization and mapping, route planning and navigation are based on data captured by multiple sensors, including built-in cameras.... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database |
StartPage | 519 |
SubjectTerms | Acceptable noise levels Accuracy Algorithms Cameras Electronic devices Global positioning systems GPS ISVD Localization Location-based systems Mapping Matching Methods mobile robot Mobile robots Outliers (statistics) Point pairs robot navigation Robots Route planning Sensors Simultaneous localization and mapping SVD Unmanned aerial vehicles |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAeIrSgnxAgh6ixoljOyeUAktBXQ4sRT0gWbbHXpBoUnbT_89M1lseElyTSHZmPO_xN4w9S8a1CuqmaMsAhQQQhWkhFU7LZMrQmDih7c8_qONT-f6sOcsJt3Vuq9zqxElRwxAoR35YqbZu0RoJ_fLiR0FTo6i6mkdoXGc3RKU1BV9m9vYqx0KYl0aaTXWyxuj-8HzqUIxr6g0g5-UPazSB9v9LNU_2ZnaH3c6OIu82nL3LrsX-Hrv1G3zgffbl3eLz6-II7RDwLtfy-eIb9Qi6PmJIz0_IUuWbltz1wOeO8BiW_MXipJsf8O77Ev9x_HrO0Xfl88GjjuAfBz-M6wfsdPbm06vjIk9LKIIUZkS1BlKkBCoInWRIpvWhNcEpcpFiVAKU1BIDnNJ5X7koQOrgKwVRaGSKqh-ynX7o4yPGRWgIqN15U0UZFfikfQ0ACZkKwelddrClmr3YgGJYDCaIwvZvCu-yIyLr1XcEZz09GFZLm6XDQi2UaxJNTcJ4PRjTOK99WUd0XkoTcMHnxBRLQjeuXHD57gBul-CrbKerGldTDS63v-WbzdK4tr_OzuP_v95jNyu63jC14-6znXF1GZ-g0zH6p9PJ-gnbD9c3 priority: 102 providerName: ProQuest |
Title | ISVD-Based Advanced Simultaneous Localization and Mapping (SLAM) Algorithm for Mobile Robots |
URI | https://www.proquest.com/docview/2693981217 https://doaj.org/article/d316a5f8321046c885ab7b03e22308c7 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgXOBQUT7EQln5gAQ9RI1jxx_HLHRbULdCXYp6QIpsj91Wokm1G_4_4yRFSyXUC9fIkkfz4pl58swzIe-itkYCLzOTe8gEAMu0gZhZJaLOfalDr7a_OJFHZ-LLeXm-8dRX6gkb5IEHx-0DZ9KWMT2og1TOa11ap1zOA-a1XPthjjw3G2Sqj8GGcS30cC_JkdfvX_e9iWGdugJS2fJXHurl-v8VlPtMM39KtscSkVaDaTvkQWiekScbwoHPyY_Py--fshlmIKDVeItPl1epO9A2Ack8PU45apyxpLYBurBJieGCflgeV4s9Wv28aFdX3eU1xaqVLlqH0YGetq7t1i_I2fzg28ejbHwnIfOC6Q4DGggWI0jPVBQ-auO80d7KVByFIBlIoQRSm9w6V9jAQCjvCgmBKYRD8pdkq2mb8IpQ5ssk0W6dLoIIElxUjgNARDjBWzUhe7deq28GOYwaaUTycH3XwxMyS279sy4JWfcfEN56hLe-D94JeZ9AqdNx61bW23FqAM1NwlV1pQqOu8kSt9u9xa0ez-G6LqThBmsYpl7_D2vekMdFGn_o23V3yVa3-hXeYlHSuSl5qOeHU_JodnDy9XTa_42_AbAx4Qw |
link.rule.ids | 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,43612,43817,74363,74630 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagPQAHxFNtKeADEvQQdZ04tnNCWWi1hc0KdVvUA5Ll54JEk3Y3_H9mst7ykOCaRLIz43mPvyHkVVSmEr4os2rkfMa9Z5mqfMyM5FGNXKnCgLbfzMTknH-4KC9Swm2V2io3OnFQ1L5zmCM_zEVVVGCNmHx7dZ3h1CisrqYRGrfJNkJVQfC1PT6afTq9ybIg6qXial2fLCC-P7wcehTDCrsD0H35wx4NsP3_Us6DxTl-QO4nV5HWa94-JLdC-4jc-w1A8DH5cjL__D4bgyXytE7VfDr_hl2Cpg0Q1NMp2qp015Ka1tPGICLDgr6ZT-vmgNbfF_CX_ddLCt4rbToLWoKedrbrV0_I-fHR2btJluYlZI4z1YNi85zF6IVjMnIXVWVdpZwR6CSFIJgXXHIIcUbG2twE5rl0Nhc-MAlsEcVTstV2bdghlLkSodqNVXngQXgbpS289xHY6p2Ru-RgQzV9tYbF0BBOIIX13xTeJWMk6813CGg9POiWC53kQ_uCCVNGnJsEEbtTqjRW2lERwH0ZKQcLvkamaBS7fmmcSbcHYLsIYKVrmRewmihhuf0N33SSx5X-dXr2_v_6JbkzOWumenoy-_iM3M3xssPQnLtPtvrlj_AcXJDevkjn7CfEGduI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELegkxA8ID7FxgA_IMEeosaJYztPqGWrNmiraWVoD0iW7bML0paMNvz_nFN3fEjwmkSyc2ffh-_n3xHyOihTCyirrM4dZByAZaqGkBnJg8pdpXzPtj-bi-Nz_uGiukj4p3WCVW5tYm-ooXXxjHxYiLqs0RsxOQwJFnF6OHl3_T2LHaRipTW107hNdiQXZT4gO-Oj-enZzYlLZMBUXG1qlSXm-sOrHq_o1xEpEEOZP3xTT-H_L0Pde5_JA3I_hY10tNHzQ3LLN4_Ivd_IBB-TLyeLz4fZGL0S0FGq7NPFt4gYNI3HBJ9Oo99K9y6paYDOTGRnWNK3i-lodkBHl0v8y-7rFcVIls5aixaDnrW27dZPyPnk6NP74yz1TsgcZ6pDIwechQDCMRm4C6q2rlbOiBgweS8YCC45pju5sbYwngGXzhYCPJOoIlE-JYOmbfwzQpmrIm27sarw3AuwQdoSAAKqGJyRu-RgKzV9vaHI0JhaRAnrvyW8S8ZRrDffRXLr_kG7Wuq0VzSUTJgqxB5KmL07pSpjpc1Lj6FMrhwO-CYqRcct2K2MM-kmAU43klnpkSxKHE1UONz-Vm867c21_rWS9v7_-hW5g0tMT0_mH5-Tu0W899DjdPfJoFv98C8wGunsy7TMfgLWvN-2 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ISVD-Based+Advanced+Simultaneous+Localization+and+Mapping+%28SLAM%29+Algorithm+for+Mobile+Robots&rft.jtitle=Machines+%28Basel%29&rft.au=L%C3%A1szl%C3%B3+Somlyai&rft.au=Zolt%C3%A1n+V%C3%A1mossy&rft.date=2022-07-01&rft.pub=MDPI+AG&rft.eissn=2075-1702&rft.volume=10&rft.issue=7&rft.spage=519&rft_id=info:doi/10.3390%2Fmachines10070519&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d316a5f8321046c885ab7b03e22308c7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-1702&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-1702&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-1702&client=summon |