Vascular endothelial growth factor (VEGF) in cartilage neovascularization and chondrocyte differentiation: auto-paracrine role during endochondral bone formation

Vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) induces endothelial cell migration and proliferation in culture and is strongly angiogenic in vivo. VEGF synthesis has been shown to occur in both normal and transformed cells. The receptors for the factor have been shown to...

Full description

Saved in:
Bibliographic Details
Published inJournal of cell science Vol. 113 ( Pt 1); no. 1; pp. 59 - 69
Main Authors Carlevaro, M F, Cermelli, S, Cancedda, R, Descalzi Cancedda, F
Format Journal Article
LanguageEnglish
Published England 01.01.2000
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) induces endothelial cell migration and proliferation in culture and is strongly angiogenic in vivo. VEGF synthesis has been shown to occur in both normal and transformed cells. The receptors for the factor have been shown to be localized mainly in endothelial cells, however, the presence of VEGF synthesis and the VEGF receptor in cells other than endothelial cells has been demonstrated. Neoangiogenesis in cartilage growth plate plays a fundamental role in endochondral ossification. We have shown that, in an avian in vitro system for chondrocyte differentiation, VEGF was produced and localized in cell clusters totally resembling in vivo cartilage. The factor was synthesized by hypertrophic chondrocytes and was released into their conditioned medium, which is highly chemotactic for endothelial cells. Antibodies against VEGF inhibited endothelial cell migration induced by chondrocyte conditioned media. Similarly, endothelial cell migration was inhibited also by antibodies directed against the VEGF receptor 2/Flk1 (VEGFR2). In avian and mammalian embryo long bones, immediately before vascular invasion, VEGF was distinctly localized in growth plate hypertrophic chondrocytes. In contrast, VEGF was not observed in quiescent and proliferating chondrocytes earlier in development. VEGF receptor 2 colocalized with the factor both in hypertrophic cartilage in vivo and hypertrophic cartilage engineered in vitro, suggesting an autocrine loop in chondrocytes at the time of their maturation to hypertrophic cells and of cartilage erosion. Regardless of cell exposure to exogenous VEGF, VEGFR-2 phosphorylation was recognized in cultured hypertrophic chondrocytes, supporting the idea of an autocrine functional activation of signal transduction in this non-endothelial cell type as a consequence of the endogenous VEGF production. In summary we propose that VEGF is actively responsible for hypertrophic cartilage neovascularization through a paracrine release by chondrocytes, with invading endothelial cells as a target. Furthermore, VEGF receptor localization and signal transduction in chondrocytes strongly support the hypothesis of a VEGF autocrine activity also in morphogenesis and differentiation of a mesoderm derived cell.
AbstractList Vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) induces endothelial cell migration and proliferation in culture and is strongly angiogenic in vivo. VEGF synthesis has been shown to occur in both normal and transformed cells. The receptors for the factor have been shown to be localized mainly in endothelial cells, however, the presence of VEGF synthesis and the VEGF receptor in cells other than endothelial cells has been demonstrated. Neoangiogenesis in cartilage growth plate plays a fundamental role in endochondral ossification. We have shown that, in an avian in vitro system for chondrocyte differentiation, VEGF was produced and localized in cell clusters totally resembling in vivo cartilage. The factor was synthesized by hypertrophic chondrocytes and was released into their conditioned medium, which is highly chemotactic for endothelial cells. Antibodies against VEGF inhibited endothelial cell migration induced by chondrocyte conditioned media. Similarly, endothelial cell migration was inhibited also by antibodies directed against the VEGF receptor 2/Flk1 (VEGFR2). In avian and mammalian embryo long bones, immediately before vascular invasion, VEGF was distinctly localized in growth plate hypertrophic chondrocytes. In contrast, VEGF was not observed in quiescent and proliferating chondrocytes earlier in development. VEGF receptor 2 colocalized with the factor both in hypertrophic cartilage in vivo and hypertrophic cartilage engineered in vitro, suggesting an autocrine loop in chondrocytes at the time of their maturation to hypertrophic cells and of cartilage erosion. Regardless of cell exposure to exogenous VEGF, VEGFR-2 phosphorylation was recognized in cultured hypertrophic chondrocytes, supporting the idea of an autocrine functional activation of signal transduction in this non-endothelial cell type as a consequence of the endogenous VEGF production. In summary we propose that VEGF is actively responsible for hypertrophic cartilage neovascularization through a paracrine release by chondrocytes, with invading endothelial cells as a target. Furthermore, VEGF receptor localization and signal transduction in chondrocytes strongly support the hypothesis of a VEGF autocrine activity also in morphogenesis and differentiation of a mesoderm derived cell.
ABSTRACT Vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) induces endothelial cell migration and proliferation in culture and is strongly angiogenic in vivo. VEGF synthesis has been shown to occur in both normal and transformed cells. The receptors for the factor have been shown to be localized mainly in endothelial cells, however, the presence of VEGF synthesis and the VEGF receptor in cells other than endothelial cells has been demonstrated. Neoangiogenesis in cartilage growth plate plays a fundamental role in endochondral ossification. We have shown that, in an avian in vitro system for chondrocyte differentiation, VEGF was produced and localized in cell clusters totally resembling in vivo cartilage. The factor was synthesized by hypertrophic chondrocytes and was released into their conditioned medium, which is highly chemotactic for endothelial cells. Antibodies against VEGF inhibited endothelial cell migration induced by chondrocyte conditioned media. Similarly, endothelial cell migration was inhibited also by antibodies directed against the VEGF receptor 2/Flk1 (VEGFR2). In avian and mammalian embryo long bones, immediately before vascular invasion, VEGF was distinctly localized in growth plate hypertrophic chondrocytes. In contrast, VEGF was not observed in quiescent and proliferating chondrocytes earlier in development. VEGF receptor 2 colocalized with the factor both in hypertrophic cartilage in vivo and hypertrophic cartilage engineered in vitro, suggesting an autocrine loop in chondrocytes at the time of their maturation to hypertrophic cells and of cartilage erosion. Regardless of cell exposure to exogenous VEGF, VEGFR-2 phosphorylation was recognized in cultured hypertrophic chondrocytes, supporting the idea of an autocrine functional activation of signal transduction in this non-endothelial cell type as a consequence of the endogenous VEGF production. In summary we propose that VEGF is actively responsible for hypertrophic cartilage neovascularization through a paracrine release by chondrocytes, with invading endothelial cells as a target. Furthermore, VEGF receptor localization and signal transduction in chondrocytes strongly support the hypothesis of a VEGF autocrine activity also in morphogenesis and differentiation of a mesoderm derived cell.
Author Carlevaro, M F
Descalzi Cancedda, F
Cancedda, R
Cermelli, S
Author_xml – sequence: 1
  givenname: M F
  surname: Carlevaro
  fullname: Carlevaro, M F
  email: descalzi@ermes.cba.unige.it
  organization: Istituto Nazionale per la Ricerca sul Cancro, Centro di Biotecnologie Avanzate, Genova, Italy. descalzi@ermes.cba.unige.it
– sequence: 2
  givenname: S
  surname: Cermelli
  fullname: Cermelli, S
– sequence: 3
  givenname: R
  surname: Cancedda
  fullname: Cancedda, R
– sequence: 4
  givenname: F
  surname: Descalzi Cancedda
  fullname: Descalzi Cancedda, F
BackLink https://www.ncbi.nlm.nih.gov/pubmed/10591625$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtrWzEQhUVJaZy0u66LVqWBXlcP3yspuxKStBDoJslWjPWwFa4lV9JtSf5N_mkU24vuupqB-c4ZDucEHcUUHUIfKZlTtmDfHkyZU8rndN6rN2hGF0J0inJxhGaEMNqpnvNjdFLKAyFEMCXeoWNKekUH1s_Q8z0UM42QsYs21bUbA4x4ldPfusYeTE0Zf7m_vL46wyFiA7mGEVYOR5f-HJThCWpIEUO02KxTtDmZx-qwDd677GINu_s5hqmmbgsZTA7R4ZzGBk1tX-2e77Xt-7IFxD7lzU73Hr31MBb34TBP0d3V5e3Fj-7m1_XPi-83nVlQWTspBsOWlA3COCCSMAaguOctcK-kGywVynulrGBmIYUQr1fDJTgHdugtP0Wf977bnH5PrlS9CcW4cYSWdSpaEKEGJsV_QSopV5zKBn7dgyanUrLzepvDBvKjpkS_dqdbd7p1p6nuVcM_HXyn5cbZf-B9WfwF3lCa-w
CitedBy_id crossref_primary_10_1016_j_mehy_2015_01_012
crossref_primary_10_2460_ajvr_74_4_542
crossref_primary_10_1097_00006534_200206000_00033
crossref_primary_10_1078_0171_9335_00280
crossref_primary_10_1002_ar_23537
crossref_primary_10_1016_j_anl_2010_07_002
crossref_primary_10_1016_j_bone_2003_10_009
crossref_primary_10_1007_s00405_011_1821_6
crossref_primary_10_1016_S0303_7207_02_00276_9
crossref_primary_10_1016_j_matbio_2019_08_001
crossref_primary_10_1002_1529_0131_200105_44_5_1082__AID_ANR188_3_0_CO_2_X
crossref_primary_10_1016_j_ydbio_2009_02_024
crossref_primary_10_1016_S0482_5985_05_74383_2
crossref_primary_10_2220_biomedres_34_119
crossref_primary_10_1152_japplphysiol_00839_2010
crossref_primary_10_1016_j_tibtech_2013_04_001
crossref_primary_10_3390_jfb15040084
crossref_primary_10_1002_ajhb_22983
crossref_primary_10_1089_ten_tea_2011_0371
crossref_primary_10_1002_jor_23592
crossref_primary_10_1007_s00776_003_0717_8
crossref_primary_10_1016_j_joca_2004_02_003
crossref_primary_10_1016_j_bone_2005_10_019
crossref_primary_10_1002_art_24153
crossref_primary_10_1016_j_ejwf_2022_08_002
crossref_primary_10_1016_j_tice_2007_01_001
crossref_primary_10_1067_mod_2002_125713
crossref_primary_10_1177_154405910708601006
crossref_primary_10_1002_jgm_392
crossref_primary_10_1007_s11010_011_1209_3
crossref_primary_10_1007_BF02390838
crossref_primary_10_1111_j_1469_7580_2010_01223_x
crossref_primary_10_1016_j_bone_2017_03_001
crossref_primary_10_1016_j_archoralbio_2004_05_012
crossref_primary_10_1053_joca_2001_0450
crossref_primary_10_2478_aoj_2013_0002
crossref_primary_10_1002_ptr_4959
crossref_primary_10_1007_s00109_009_0477_9
crossref_primary_10_1007_s00198_023_06736_4
crossref_primary_10_1242_dev_127142
crossref_primary_10_3390_biomedicines11072011
crossref_primary_10_1089_ten_tea_2008_0214
crossref_primary_10_1210_er_2003_0027
crossref_primary_10_1186_s13075_018_1594_z
crossref_primary_10_1359_jbmr_070115
crossref_primary_10_4331_wjbc_v1_i5_109
crossref_primary_10_1002_jbm_a_35626
crossref_primary_10_1097_BOT_0b013e3181ed2ad5
crossref_primary_10_1111_joa_12391
crossref_primary_10_1080_03008207_2020_1865939
crossref_primary_10_1161_01_RES_0000163634_51301_0d
crossref_primary_10_1016_j_ygcen_2010_10_023
crossref_primary_10_1359_JBMR_041226
crossref_primary_10_3390_ani12162059
crossref_primary_10_1002_jbmr_3937
crossref_primary_10_1016_j_biopha_2018_06_119
crossref_primary_10_1158_0008_5472_CAN_06_0459
crossref_primary_10_1242_dev_01138
crossref_primary_10_1002_jor_20658
crossref_primary_10_1186_scrt72
crossref_primary_10_1016_j_aanat_2008_02_004
crossref_primary_10_1111_j_1469_7580_2005_00404_x
crossref_primary_10_1016_j_bone_2018_02_009
crossref_primary_10_1016_j_jcpa_2005_01_005
crossref_primary_10_1096_fj_02_0514fje
crossref_primary_10_1002_jcb_1079
crossref_primary_10_1177_0022034517735094
crossref_primary_10_1007_s00292_014_1988_x
crossref_primary_10_1007_s40520_015_0422_4
crossref_primary_10_1007_s10143_013_0495_5
crossref_primary_10_1097_00003086_200506000_00010
crossref_primary_10_1002_dvdy_1212
crossref_primary_10_3389_fbioe_2017_00068
crossref_primary_10_1016_j_gendis_2015_09_003
crossref_primary_10_1177_1947603519833146
crossref_primary_10_3390_biom12121738
crossref_primary_10_3389_fbioe_2020_572356
crossref_primary_10_1177_1947603519833149
crossref_primary_10_1590_1678_4162_9175
crossref_primary_10_1016_j_bone_2013_08_026
crossref_primary_10_1111_joa_12950
crossref_primary_10_1007_s00418_012_1062_9
crossref_primary_10_1016_j_cytogfr_2013_03_008
crossref_primary_10_1097_BOT_0b013e318266eb7e
crossref_primary_10_1186_ar_2000_66786
crossref_primary_10_3389_fbioe_2021_661989
crossref_primary_10_1006_dbio_2002_0802
crossref_primary_10_1242_dev_00505
crossref_primary_10_1016_j_cell_2014_12_002
crossref_primary_10_1067_mod_2002_125991
crossref_primary_10_5939_sjws_08005
crossref_primary_10_1007_s00223_004_0161_6
crossref_primary_10_1679_aohc_66_221
crossref_primary_10_1002_jcp_22846
crossref_primary_10_1080_03079450701591387
crossref_primary_10_1242_dev_127_7_1445
crossref_primary_10_2220_biomedres_25_219
crossref_primary_10_1016_j_intimp_2024_112549
crossref_primary_10_1002_biof_46
crossref_primary_10_1016_S0925_4773_01_00601_3
crossref_primary_10_1177_1947603516684587
crossref_primary_10_1186_s13287_018_0847_8
crossref_primary_10_1152_japplphysiol_01212_2013
crossref_primary_10_3389_fcell_2020_00821
crossref_primary_10_1074_jbc_M110_187633
crossref_primary_10_1089_scd_2008_0266
crossref_primary_10_1359_jbmr_2002_17_9_1604
crossref_primary_10_3389_fgene_2020_569314
crossref_primary_10_1016_S0002_9440_10_63109_4
crossref_primary_10_1007_s13346_015_0236_0
crossref_primary_10_1016_j_ajodo_2002_12_002
crossref_primary_10_1016_j_bone_2014_12_015
crossref_primary_10_1016_j_actbio_2021_08_032
crossref_primary_10_5966_sctm_2015_0321
crossref_primary_10_1074_jbc_M309193200
crossref_primary_10_4015_S1016237209001209
crossref_primary_10_1016_j_biopha_2017_12_075
crossref_primary_10_1046_j_1440_1827_2001_01271_x
crossref_primary_10_1002_ar_21092
crossref_primary_10_1080_08977190802106154
crossref_primary_10_1158_1078_0432_CCR_10_2943
crossref_primary_10_1016_j_jcms_2005_02_004
crossref_primary_10_3390_app13074370
crossref_primary_10_1371_journal_pone_0156296
crossref_primary_10_1152_ajpcell_2001_280_6_C1358
crossref_primary_10_3390_genes12040463
crossref_primary_10_1007_s12015_011_9328_5
crossref_primary_10_1016_S0925_4773_01_00428_2
crossref_primary_10_1155_2012_748302
crossref_primary_10_1016_j_bone_2003_12_026
crossref_primary_10_1002_dvdy_24463
crossref_primary_10_1046_j_1469_7580_2002_00085_x
crossref_primary_10_1016_j_ydbio_2006_08_071
crossref_primary_10_1016_j_biomaterials_2008_01_021
crossref_primary_10_1016_j_joca_2004_05_009
crossref_primary_10_1155_2019_8171897
crossref_primary_10_12677_ACM_2022_1281102
crossref_primary_10_1002_jcp_24684
crossref_primary_10_1111_j_1469_7580_2007_00790_x
crossref_primary_10_1002_jor_24819
crossref_primary_10_1097_BRS_0b013e31822ba535
crossref_primary_10_1016_S0958_1669_00_00153_1
crossref_primary_10_1016_S1479_666X_07_80008_4
crossref_primary_10_1042_BSR20203258
crossref_primary_10_1111_j_1469_7580_2011_01377_x
crossref_primary_10_4155_fmc_11_161
crossref_primary_10_1002_path_1527
crossref_primary_10_7759_cureus_32204
crossref_primary_10_1002_jor_20251
crossref_primary_10_1002_jor_20010
crossref_primary_10_1016_j_omtn_2022_04_015
crossref_primary_10_1186_1749_799X_5_91
crossref_primary_10_1016_j_semcdb_2016_05_007
crossref_primary_10_1359_jbmr_2002_17_1_56
crossref_primary_10_1182_blood_2021011480
crossref_primary_10_3892_ijmm_2014_1808
crossref_primary_10_1002_term_1708
crossref_primary_10_1007_s12282_011_0255_8
crossref_primary_10_1016_j_ydbio_2009_07_003
crossref_primary_10_22603_ssrr_2023_0079
crossref_primary_10_1007_s12011_018_1564_y
crossref_primary_10_3390_cells10040932
crossref_primary_10_1016_S1010_5182_03_00040_4
crossref_primary_10_1016_j_bbrc_2004_11_074
crossref_primary_10_3382_ps_2007_00219
crossref_primary_10_1002_ptr_2705
crossref_primary_10_1074_jbc_M116_763342
crossref_primary_10_1016_j_amjoto_2011_01_005
crossref_primary_10_1089_dna_2013_2198
crossref_primary_10_2106_00004623_200304000_00021
crossref_primary_10_1111_jcmm_12378
crossref_primary_10_1097_PAS_0b013e318243555b
crossref_primary_10_1002_jor_23636
crossref_primary_10_1089_ten_teb_2015_0300
crossref_primary_10_3390_jdb10020015
crossref_primary_10_1182_blood_2003_04_1272
crossref_primary_10_1016_j_yexcr_2020_112436
crossref_primary_10_1111_dgd_12136
crossref_primary_10_3892_or_2013_2280
crossref_primary_10_1002_dvdy_24316
crossref_primary_10_1242_dev_129_8_1893
crossref_primary_10_1359_jbmr_080103
crossref_primary_10_1002_ar_a_20016
crossref_primary_10_1016_S1359_6446_03_02866_6
crossref_primary_10_1111_joa_13875
crossref_primary_10_1016_j_biomaterials_2010_02_071
crossref_primary_10_1007_s12015_023_10554_w
crossref_primary_10_3389_fcell_2023_1244372
crossref_primary_10_1002_jbmr_2343
crossref_primary_10_1242_jcs_114_8_1473
crossref_primary_10_1088_1748_6041_6_1_015013
crossref_primary_10_1097_01_blo_0000150115_57607_6e
crossref_primary_10_1302_2058_5241_3_180005
crossref_primary_10_1002_bies_20427
crossref_primary_10_1007_s00580_009_0910_z
crossref_primary_10_3390_ma14174857
crossref_primary_10_1016_j_orthres_2003_10_005
crossref_primary_10_1530_JOE_13_0539
crossref_primary_10_1016_j_joca_2020_03_015
crossref_primary_10_1002_jcb_20462
crossref_primary_10_3390_ijms21072358
crossref_primary_10_1359_jbmr_090801
crossref_primary_10_1007_s12178_018_9516_x
crossref_primary_10_1016_j_exphem_2013_01_009
crossref_primary_10_1016_j_bone_2004_02_026
crossref_primary_10_1089_107632703768247296
crossref_primary_10_1089_ten_tea_2014_0249
crossref_primary_10_1016_j_archoralbio_2008_03_002
crossref_primary_10_1177_0192623308326151
crossref_primary_10_1002_1097_4644_20010401_81_1_82__AID_JCB1025_3_0_CO_2_P
crossref_primary_10_1017_S0007114518001605
crossref_primary_10_1002_term_192
crossref_primary_10_1016_j_aanat_2021_151704
crossref_primary_10_1093_hmg_ddaa145
crossref_primary_10_1002_ijc_1441
crossref_primary_10_1007_s00223_006_0275_0
crossref_primary_10_2460_ajvr_73_4_498
crossref_primary_10_3390_bioengineering8040046
crossref_primary_10_1177_154405910508400802
crossref_primary_10_1016_j_mehy_2012_04_021
crossref_primary_10_1089_scd_2006_0108
crossref_primary_10_1007_s00223_004_0068_2
crossref_primary_10_1039_D3RA03080F
crossref_primary_10_3109_10520290903297510
crossref_primary_10_1016_j_bone_2016_06_013
crossref_primary_10_1210_endo_143_4_8719
crossref_primary_10_1007_s00142_002_0199_2
crossref_primary_10_1016_j_bone_2017_04_002
crossref_primary_10_1111_j_1469_7580_2009_01089_x
crossref_primary_10_1242_jcs_00385
crossref_primary_10_1053_joca_2001_0482
crossref_primary_10_3390_polym13091521
crossref_primary_10_3390_ijms241310912
crossref_primary_10_1002_jor_23670
crossref_primary_10_1007_s00223_020_00729_9
crossref_primary_10_1016_j_lfs_2006_06_033
crossref_primary_10_1186_s12861_014_0036_7
crossref_primary_10_7554_eLife_51581
crossref_primary_10_1016_j_bone_2003_08_009
crossref_primary_10_1038_ncprheum0838
crossref_primary_10_1002_ar_20616
crossref_primary_10_1007_s11420_009_9129_4
crossref_primary_10_1089_ten_teb_2016_0197
crossref_primary_10_1002_jor_20842
crossref_primary_10_1016_j_ymgme_2018_04_014
crossref_primary_10_1155_2011_867576
crossref_primary_10_1002_dvdy_1160
crossref_primary_10_1016_S1888_4415_05_76272_X
crossref_primary_10_1007_s00167_022_07045_9
crossref_primary_10_1016_j_matbio_2004_02_002
crossref_primary_10_1002_ar_a_20058
crossref_primary_10_1016_S1349_0079_05_80018_0
crossref_primary_10_1097_01_blo_0000156001_78631_e9
crossref_primary_10_2174_1386207323666200428120310
crossref_primary_10_3389_fneur_2018_00115
crossref_primary_10_1002_bdrc_10014
crossref_primary_10_1111_j_0105_2896_2005_00333_x
crossref_primary_10_1242_dev_045203
crossref_primary_10_1002_jor_20076
crossref_primary_10_1016_S0003_9969_02_00207_8
crossref_primary_10_1359_jbmr_2002_17_2_284
crossref_primary_10_1269_jrr_42_273
crossref_primary_10_1369_jhc_5A6789_2006
crossref_primary_10_1074_jbc_M300539200
crossref_primary_10_1007_s10439_014_0987_7
crossref_primary_10_1046_j_1469_7580_2003_00185_x
crossref_primary_10_2217_17460816_3_2_183
crossref_primary_10_1016_j_archoralbio_2007_05_009
crossref_primary_10_3390_metabo12040292
crossref_primary_10_1007_s00223_017_0385_x
crossref_primary_10_1002_bdrc_10016
crossref_primary_10_1016_j_bone_2006_09_024
crossref_primary_10_1111_j_1469_7580_2008_00958_x
crossref_primary_10_1080_01926230600611836
crossref_primary_10_3382_ps_2013_03420
crossref_primary_10_1016_j_biomaterials_2017_05_042
crossref_primary_10_1038_s41598_021_02637_w
crossref_primary_10_1016_S0304_3835_00_00653_4
crossref_primary_10_1016_j_oooo_2012_01_025
crossref_primary_10_1096_fj_01_0332fje
crossref_primary_10_1002_jcp_20481
crossref_primary_10_1186_s13287_015_0210_2
crossref_primary_10_1186_s12891_018_2208_2
crossref_primary_10_1002_jcp_25255
crossref_primary_10_1371_journal_pone_0018795
crossref_primary_10_1371_journal_pone_0240642
crossref_primary_10_2106_JBJS_RVW_21_00024
crossref_primary_10_3389_fphys_2017_00161
Cites_doi 10.1002/(SICI)1097-0177(199805)212:1<1::AID-AJA1>3.0.CO;2-L
10.1038/386671a0
10.1210/endo.133.2.7688292
10.1210/endo.135.6.7988472
10.1016/0169-6009(92)90709-M
10.1126/science.1694043
10.4049/jimmunol.152.8.4149
10.3109/08977199809002116
10.1172/JCI117258
10.1172/JCI115568
10.1083/jcb.119.2.475
10.1038/nm0195-27
10.1111/1523-1747.ep12613748
10.1016/0378-1119(96)00159-X
10.1083/jcb.136.6.1375
10.1002/jbmr.5650110408
10.1002/jbmr.5650091110
10.1083/jcb.117.2.427
10.1021/bi00350a005
10.1016/S0021-9258(19)39448-7
10.1210/endo.138.7.5275
10.1111/1523-1747.ep12286453
10.1210/edrv-13-1-18
10.1083/jcb.102.6.2310
10.1126/science.1312256
10.1006/excr.1998.4098
10.1016/S0945-053X(98)90057-9
10.1006/dbio.1995.1291
10.1016/S0092-8674(00)81169-1
10.1006/dbio.1996.9989
10.1016/0092-8674(93)90573-9
10.1002/jcp.1041460122
10.1016/S0021-9258(18)42003-0
10.1091/mbc.4.12.1317
10.1002/(SICI)1097-4644(199609)62:3<372::AID-JCB7>3.0.CO;2-O
10.1006/bbrc.1994.1240
10.1038/380439a0
10.1177/019262339902700115
10.1038/sj.onc.1201456
10.1038/9467
10.1073/pnas.96.6.2645
10.1016/0006-291X(92)90483-2
10.1084/jem.180.1.341
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7X8
DOI 10.1242/jcs.113.1.59
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
Calcium & Calcified Tissue Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-9137
EndPage 69
ExternalDocumentID 10_1242_jcs_113_1_59
10591625
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
18M
2WC
34G
39C
3O-
4.4
4R4
53G
5GY
5RE
5VS
85S
AAJMC
ABDNZ
ABEFU
ABJNI
ABPPZ
ABTAH
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ACYGS
ADBBV
ADCOW
AEILP
AENEX
AFFNX
AFRAH
AGGIJ
AI.
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
C1A
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
F9R
GX1
H13
HZ~
IH2
INIJC
KQ8
MVM
NPM
O9-
OHT
OK1
P2P
R.V
RCB
RHF
RHI
RNS
SJN
TN5
TR2
UPT
VH1
W2D
W8F
WH7
WOQ
X7M
XOL
YQI
YQT
ZGI
ZXP
ZY4
~02
~KM
AAYXX
CITATION
7QP
7X8
ID FETCH-LOGICAL-c418t-876c2b1267cea08022aa93f3297598e6d179ff99d72c48777a93fc38aeead65d3
ISSN 0021-9533
IngestDate Thu Oct 24 22:35:22 EDT 2024
Fri Oct 25 09:52:51 EDT 2024
Thu Sep 12 21:28:15 EDT 2024
Sat Sep 28 08:29:16 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c418t-876c2b1267cea08022aa93f3297598e6d179ff99d72c48777a93fc38aeead65d3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 10591625
PQID 18139318
PQPubID 23462
PageCount 11
ParticipantIDs proquest_miscellaneous_70796287
proquest_miscellaneous_18139318
crossref_primary_10_1242_jcs_113_1_59
pubmed_primary_10591625
PublicationCentury 2000
PublicationDate 2000-Jan
2000-01-01
20000101
PublicationDateYYYYMMDD 2000-01-01
PublicationDate_xml – month: 01
  year: 2000
  text: 2000-Jan
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of cell science
PublicationTitleAlternate J Cell Sci
PublicationYear 2000
References Bianco (2024071015111375100_JOCES_113_1_59C7) 1998; 17
Ferrara (2024071015111375100_JOCES_113_1_59C21) 1996; 380
Risau (2024071015111375100_JOCES_113_1_59C40) 1997; 386
Koch (2024071015111375100_JOCES_113_1_59C31) 1994; 152
Jakeman (2024071015111375100_JOCES_113_1_59C28) 1993; 133
Park (2024071015111375100_JOCES_113_1_59C38) 1993; 4
Twal (2024071015111375100_JOCES_113_1_59C45) 1994; 9
Wang (2024071015111375100_JOCES_113_1_59C49) 1996; 11
Eichmann (2024071015111375100_JOCES_113_1_59C18) 1996; 174
Fava (2024071015111375100_JOCES_113_1_59C19) 1994; 180
Claffey (2024071015111375100_JOCES_113_1_59C12) 1992; 267
Midy (2024071015111375100_JOCES_113_1_59C33) 1994; 199
Brown (2024071015111375100_JOCES_113_1_59C8) 1997; 76
Luan (2024071015111375100_JOCES_113_1_59C32) 1996; 62
Carlevaro (2024071015111375100_JOCES_113_1_59C10) 1997; 136
Gerber (2024071015111375100_JOCES_113_1_59C25) 1999; 5
Vu (2024071015111375100_JOCES_113_1_59C48) 1998; 93
Moses (2024071015111375100_JOCES_113_1_59C35) 1990; 243
Ryan (2024071015111375100_JOCES_113_1_59C41) 1999; 27
Dvorak (2024071015111375100_JOCES_113_1_59C17) 1995; 146
Folkman (2024071015111375100_JOCES_113_1_59C23) 1997; 1
Descalzi Cancedda (2024071015111375100_JOCES_113_1_59C15) 1995; 66
Jakeman (2024071015111375100_JOCES_113_1_59C27) 1992; 89
Ferrara (2024071015111375100_JOCES_113_1_59C20) 1992; 13
Moses (2024071015111375100_JOCES_113_1_59C36) 1992; 119
Ades (2024071015111375100_JOCES_113_1_59C1) 1992; 99
Terman (2024071015111375100_JOCES_113_1_59C43) 1992; 187
Aitkenhead (2024071015111375100_JOCES_113_1_59C3) 1998; 212
Flamme (2024071015111375100_JOCES_113_1_59C22) 1995; 171
Kato (2024071015111375100_JOCES_113_1_59C29) 1990; 265
Descalzi Cancedda (2024071015111375100_JOCES_113_1_59C14) 1992; 117
Wang (2024071015111375100_JOCES_113_1_59C50) 1997; 138
Viglietto (2024071015111375100_JOCES_113_1_59C47) 1997; 15
Baron (2024071015111375100_JOCES_113_1_59C6) 1994; 135
Viglietto (2024071015111375100_JOCES_113_1_59C46) 1996; 13
Alini (2024071015111375100_JOCES_113_1_59C5) 1996; 176
Millauer (2024071015111375100_JOCES_113_1_59C34) 1993; 72
Castagnola (2024071015111375100_JOCES_113_1_59C11) 1986; 102
De Vries (2024071015111375100_JOCES_113_1_59C13) 1992; 255
Towbin (2024071015111375100_JOCES_113_1_59C44) 1979; 78
Albini (2024071015111375100_JOCES_113_1_59C4) 1987; 4
Pepper (2024071015111375100_JOCES_113_1_59C39) 1991; 146
Harada (2024071015111375100_JOCES_113_1_59C26) 1994; 93
Gentili (2024071015111375100_JOCES_113_1_59C24) 1998; 242
Kleinman (2024071015111375100_JOCES_113_1_59C30) 1986; 25
Ahmed (2024071015111375100_JOCES_113_1_59C2) 1997; 76
Detmar (2024071015111375100_JOCES_113_1_59C16) 1997; 108
Moses (2024071015111375100_JOCES_113_1_59C37) 1999; 96
Schmidt (2024071015111375100_JOCES_113_1_59C42) 1998; 15
Brown (2024071015111375100_JOCES_113_1_59C9) 1992; 17
References_xml – volume: 76
  start-page: 245
  year: 1997
  ident: 2024071015111375100_JOCES_113_1_59C8
  article-title: Uterine smooth muscle cells express functional receptors (flt-1 and KDR) for vascular permeability factor/vascular endothelial growth factor
  publication-title: Lab. Invest
  contributor:
    fullname: Brown
– volume: 212
  start-page: 1
  year: 1998
  ident: 2024071015111375100_JOCES_113_1_59C3
  article-title: Paracrine and autocrine regulation of vascular endothelial growth factor during tissue differentiation in the quail
  publication-title: Dev. Dynam
  doi: 10.1002/(SICI)1097-0177(199805)212:1<1::AID-AJA1>3.0.CO;2-L
  contributor:
    fullname: Aitkenhead
– volume: 386
  start-page: 671
  year: 1997
  ident: 2024071015111375100_JOCES_113_1_59C40
  article-title: Mechanism of angiogenesis
  publication-title: Nature
  doi: 10.1038/386671a0
  contributor:
    fullname: Risau
– volume: 133
  start-page: 848
  year: 1993
  ident: 2024071015111375100_JOCES_113_1_59C28
  article-title: Developmental expression of binding sites and messenger ribonucleic acid for vascular endothelial growth factor VEGF suggests a role for this protein in vasculogenesis and angiogenesis
  publication-title: Endocrinology
  doi: 10.1210/endo.133.2.7688292
  contributor:
    fullname: Jakeman
– volume: 135
  start-page: 2790
  year: 1994
  ident: 2024071015111375100_JOCES_113_1_59C6
  article-title: Induction of growth plate cartilage ossification by basic fibroblast growth factor
  publication-title: Endocrinology
  doi: 10.1210/endo.135.6.7988472
  contributor:
    fullname: Baron
– volume: 4
  start-page: 3239
  year: 1987
  ident: 2024071015111375100_JOCES_113_1_59C4
  article-title: A rapid in vitro assay for quantitating the invasive potential of tumor cells
  publication-title: Cancer Res
  contributor:
    fullname: Albini
– volume: 17
  start-page: 49
  year: 1992
  ident: 2024071015111375100_JOCES_113_1_59C9
  article-title: Regulation of growth plate cartilage degradation in vitro: effects of calcification and a low molecular mass angiogenic factor (ESAF)
  publication-title: Bone
  doi: 10.1016/0169-6009(92)90709-M
  contributor:
    fullname: Brown
– volume: 243
  start-page: 1408
  year: 1990
  ident: 2024071015111375100_JOCES_113_1_59C35
  article-title: Identification of an inhibitor of neovascularization from cartilage
  publication-title: Science
  doi: 10.1126/science.1694043
  contributor:
    fullname: Moses
– volume: 152
  start-page: 4149
  year: 1994
  ident: 2024071015111375100_JOCES_113_1_59C31
  article-title: Vascular endothelial growth factor a cytokine modulating endothelial cell function in rheumatoid arthritis
  publication-title: J. Immunol
  doi: 10.4049/jimmunol.152.8.4149
  contributor:
    fullname: Koch
– volume: 15
  start-page: 183
  year: 1998
  ident: 2024071015111375100_JOCES_113_1_59C42
  article-title: The in vivo activity of vascular endothelial growth factor isoforms in the avian embryo
  publication-title: Growth Factors
  doi: 10.3109/08977199809002116
  contributor:
    fullname: Schmidt
– volume: 93
  start-page: 2490
  year: 1994
  ident: 2024071015111375100_JOCES_113_1_59C26
  article-title: Induction of vascular endothelial growth factor expression by prostaglandin E2 and E1 in osteoblasts
  publication-title: J. Clin. Invest
  doi: 10.1172/JCI117258
  contributor:
    fullname: Harada
– volume: 89
  start-page: 244
  year: 1992
  ident: 2024071015111375100_JOCES_113_1_59C27
  article-title: Binding sites for vascular endothelial growth factor are localized on endothelial cells in adult rat tissues
  publication-title: J. Clin. Invest
  doi: 10.1172/JCI115568
  contributor:
    fullname: Jakeman
– volume: 119
  start-page: 475
  year: 1992
  ident: 2024071015111375100_JOCES_113_1_59C36
  article-title: Isolation and characterization of an inhibitor of neovascularization from scapular chondrocytes
  publication-title: J. Cell Biol
  doi: 10.1083/jcb.119.2.475
  contributor:
    fullname: Moses
– volume: 1
  start-page: 27
  year: 1997
  ident: 2024071015111375100_JOCES_113_1_59C23
  article-title: Angiogenesis in cancer, vascular, rheumatoid and other diseases
  publication-title: Nature Med
  doi: 10.1038/nm0195-27
  contributor:
    fullname: Folkman
– volume: 99
  start-page: 683
  year: 1992
  ident: 2024071015111375100_JOCES_113_1_59C1
  article-title: HMEC-1: establishment of an immortalized human microvascular endothelial cell line
  publication-title: J. Invest. Dermatol
  doi: 10.1111/1523-1747.ep12613748
  contributor:
    fullname: Ades
– volume: 174
  start-page: 3
  year: 1996
  ident: 2024071015111375100_JOCES_113_1_59C18
  article-title: Molecular cloning of Quek 1 and 2, two quail vascular endothelial growth factor (VEGF) receptor-like molecules
  publication-title: Gene
  doi: 10.1016/0378-1119(96)00159-X
  contributor:
    fullname: Eichmann
– volume: 136
  start-page: 1375
  year: 1997
  ident: 2024071015111375100_JOCES_113_1_59C10
  article-title: Transferrin promotes endothelial cell migration and invasion: implication in cartilage neovascularization
  publication-title: J. Cell Biol
  doi: 10.1083/jcb.136.6.1375
  contributor:
    fullname: Carlevaro
– volume: 11
  start-page: 472
  year: 1996
  ident: 2024071015111375100_JOCES_113_1_59C49
  article-title: Increase of vascular endothelial growth factor mRNA expression by 1, 25-dihydroxyvitamin D3 in human osteoblast like cells
  publication-title: J. Bone Miner. Res
  doi: 10.1002/jbmr.5650110408
  contributor:
    fullname: Wang
– volume: 9
  start-page: 1737
  year: 1994
  ident: 2024071015111375100_JOCES_113_1_59C45
  article-title: Isolation and localization of basic fibroblast growth factor immunoreactive substance in the epiphyseal growth plate
  publication-title: J. Bone Miner. Res
  doi: 10.1002/jbmr.5650091110
  contributor:
    fullname: Twal
– volume: 117
  start-page: 427
  year: 1992
  ident: 2024071015111375100_JOCES_113_1_59C14
  article-title: Hypertrophic chondrocytes undergo further differentiation in culture
  publication-title: J. Cell Biol
  doi: 10.1083/jcb.117.2.427
  contributor:
    fullname: Descalzi Cancedda
– volume: 146
  start-page: 1029
  year: 1995
  ident: 2024071015111375100_JOCES_113_1_59C17
  article-title: Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis
  publication-title: Am. J. Pathol
  contributor:
    fullname: Dvorak
– volume: 25
  start-page: 312
  year: 1986
  ident: 2024071015111375100_JOCES_113_1_59C30
  article-title: Basement membrane complexes with biological activity
  publication-title: Biochemistry
  doi: 10.1021/bi00350a005
  contributor:
    fullname: Kleinman
– volume: 265
  start-page: 5903
  year: 1990
  ident: 2024071015111375100_JOCES_113_1_59C29
  article-title: Fibroblast growth factor is an inhibitor of chondrocyte terminal differentation
  publication-title: J. Biol. Chem
  doi: 10.1016/S0021-9258(19)39448-7
  contributor:
    fullname: Kato
– volume: 76
  start-page: 779
  year: 1997
  ident: 2024071015111375100_JOCES_113_1_59C2
  article-title: Role of VEGF receptor-1 (Flt-1) in mediating calcium dependent nitric oxide release and limiting DNA synthesis in human trophoblast cells
  publication-title: Lab. Invest
  contributor:
    fullname: Ahmed
– volume: 138
  start-page: 2953
  year: 1997
  ident: 2024071015111375100_JOCES_113_1_59C50
  article-title: Anabolic effects of 1, 25-dihydroxyvitamin D3 on osteoblasts are enhanced by vascular endothelial growth factor produced by osteoblasts and by growth factors produced by endothelial cells
  publication-title: Endocrinology
  doi: 10.1210/endo.138.7.5275
  contributor:
    fullname: Wang
– volume: 78
  start-page: 3039
  year: 1979
  ident: 2024071015111375100_JOCES_113_1_59C44
  article-title: Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications
  publication-title: Proc. Nat. Acad. Sci. USA
  contributor:
    fullname: Towbin
– volume: 108
  start-page: 263
  year: 1997
  ident: 2024071015111375100_JOCES_113_1_59C16
  article-title: Hypoxia regulates the expression of vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) and its receptors in human skin
  publication-title: J. Invest. Dermatol
  doi: 10.1111/1523-1747.ep12286453
  contributor:
    fullname: Detmar
– volume: 13
  start-page: 18
  year: 1992
  ident: 2024071015111375100_JOCES_113_1_59C20
  article-title: Molecular and biological properties of the vascular endothelial growth factor family of proteins
  publication-title: Endocrine Rev
  doi: 10.1210/edrv-13-1-18
  contributor:
    fullname: Ferrara
– volume: 102
  start-page: 2310
  year: 1986
  ident: 2024071015111375100_JOCES_113_1_59C11
  article-title: Type X collagen synthesis during in vitro development of chick embryo tibial chondrocytes
  publication-title: J. Cell Biol
  doi: 10.1083/jcb.102.6.2310
  contributor:
    fullname: Castagnola
– volume: 255
  start-page: 989
  year: 1992
  ident: 2024071015111375100_JOCES_113_1_59C13
  article-title: The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor
  publication-title: Science
  doi: 10.1126/science.1312256
  contributor:
    fullname: De Vries
– volume: 242
  start-page: 410
  year: 1998
  ident: 2024071015111375100_JOCES_113_1_59C24
  article-title: Expression of the extracellular fatty acid binding protein (Ex-FABP) during muscle fiber formation in vivo and in vitro
  publication-title: Exp. Cell Res
  doi: 10.1006/excr.1998.4098
  contributor:
    fullname: Gentili
– volume: 66
  start-page: 60
  year: 1995
  ident: 2024071015111375100_JOCES_113_1_59C15
  article-title: Production of angiogenesis inhibitors and stimulators is modulated by cultured growth plate chondrocytes during in vitro differentiation: dependence on extracellular matrix assembly
  publication-title: Eur. J. Cell Biol
  contributor:
    fullname: Descalzi Cancedda
– volume: 17
  start-page: 185
  year: 1998
  ident: 2024071015111375100_JOCES_113_1_59C7
  article-title: Bone formation via cartilage models: the ‘borderline’ chondrocyte
  publication-title: Matrix Biol
  doi: 10.1016/S0945-053X(98)90057-9
  contributor:
    fullname: Bianco
– volume: 171
  start-page: 399
  year: 1995
  ident: 2024071015111375100_JOCES_113_1_59C22
  article-title: Overexpression of vascular endothelial growth factor in the avian embryo induces hypervascularization and increased vascular permeability without alterations of embryonic pattern formation
  publication-title: Dev. Biol
  doi: 10.1006/dbio.1995.1291
  contributor:
    fullname: Flamme
– volume: 93
  start-page: 411
  year: 1998
  ident: 2024071015111375100_JOCES_113_1_59C48
  article-title: MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81169-1
  contributor:
    fullname: Vu
– volume: 176
  start-page: 124
  year: 1996
  ident: 2024071015111375100_JOCES_113_1_59C5
  article-title: A novel angiogenic molecule produced at the time of chondrocyte hypertrophy during endochondral bone formation
  publication-title: Dev. Biol
  doi: 10.1006/dbio.1996.9989
  contributor:
    fullname: Alini
– volume: 72
  start-page: 835
  year: 1993
  ident: 2024071015111375100_JOCES_113_1_59C34
  article-title: High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis
  publication-title: Cell
  doi: 10.1016/0092-8674(93)90573-9
  contributor:
    fullname: Millauer
– volume: 146
  start-page: 170
  year: 1991
  ident: 2024071015111375100_JOCES_113_1_59C39
  article-title: Chondrocytes inhibit endothelial sprout formation in vitro: evidence for involvement of a transforming growth factor-beta
  publication-title: J. Cell. Physiol
  doi: 10.1002/jcp.1041460122
  contributor:
    fullname: Pepper
– volume: 267
  start-page: 16317
  year: 1992
  ident: 2024071015111375100_JOCES_113_1_59C12
  article-title: Vascular endothelial growth factor regulation by cell differentiation and activated second messenger pathways
  publication-title: J. Biol. Chem
  doi: 10.1016/S0021-9258(18)42003-0
  contributor:
    fullname: Claffey
– volume: 4
  start-page: 1317
  year: 1993
  ident: 2024071015111375100_JOCES_113_1_59C38
  article-title: The vascular endothelial growth factor (VEGF) isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.4.12.1317
  contributor:
    fullname: Park
– volume: 62
  start-page: 372
  year: 1996
  ident: 2024071015111375100_JOCES_113_1_59C32
  article-title: Basic fibroblast growth factor: an autocrine growth factor for epiphyseal growth plate chondrocytes
  publication-title: J. Cell. Biochem
  doi: 10.1002/(SICI)1097-4644(199609)62:3<372::AID-JCB7>3.0.CO;2-O
  contributor:
    fullname: Luan
– volume: 199
  start-page: 380
  year: 1994
  ident: 2024071015111375100_JOCES_113_1_59C33
  article-title: Vasculotropin/vascular endothelial growth factor induces differentiation in cultured osteoblasts
  publication-title: Biochem. Biophys. Res. Commun
  doi: 10.1006/bbrc.1994.1240
  contributor:
    fullname: Midy
– volume: 13
  start-page: 577
  year: 1996
  ident: 2024071015111375100_JOCES_113_1_59C46
  article-title: Neovascularization in human germ cell tumors correlates with a marked increase in the expression of the vascular endothelial growth factor but not the placenta-derived growth factor
  publication-title: Oncogene
  contributor:
    fullname: Viglietto
– volume: 380
  start-page: 439
  year: 1996
  ident: 2024071015111375100_JOCES_113_1_59C21
  article-title: Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene
  publication-title: Nature
  doi: 10.1038/380439a0
  contributor:
    fullname: Ferrara
– volume: 27
  start-page: 78
  year: 1999
  ident: 2024071015111375100_JOCES_113_1_59C41
  article-title: Preclinical safety evaluation of rhuMAbVEGF, an antiangiogenic humanized monoclonal antibody
  publication-title: Toxicologic Pathol
  doi: 10.1177/019262339902700115
  contributor:
    fullname: Ryan
– volume: 15
  start-page: 2687
  year: 1997
  ident: 2024071015111375100_JOCES_113_1_59C47
  article-title: Upregulation of the angiogenic factors PlGF, VEGF and their receptors (Flt-1, Flk-1/KDR) by TSH in cultured thyrocytes and in the thyroid gland of thiouracil-fed rats suggest a TSH-dependent paracrine mechanism for goiter hypervascularization
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1201456
  contributor:
    fullname: Viglietto
– volume: 5
  start-page: 623
  year: 1999
  ident: 2024071015111375100_JOCES_113_1_59C25
  article-title: VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation
  publication-title: Nature Med
  doi: 10.1038/9467
  contributor:
    fullname: Gerber
– volume: 96
  start-page: 2645
  year: 1999
  ident: 2024071015111375100_JOCES_113_1_59C37
  article-title: Troponin I is present in human cartilage and inhibits angiogenesis
  publication-title: Proc. Nat. Acad. Sci. USA
  doi: 10.1073/pnas.96.6.2645
  contributor:
    fullname: Moses
– volume: 187
  start-page: 1579
  year: 1992
  ident: 2024071015111375100_JOCES_113_1_59C43
  article-title: Identification of the KDR tyrosine kinase as a receptor for vascular endothelial growth factor
  publication-title: Biochem. Biophys. Res. Commun
  doi: 10.1016/0006-291X(92)90483-2
  contributor:
    fullname: Terman
– volume: 180
  start-page: 341
  year: 1994
  ident: 2024071015111375100_JOCES_113_1_59C19
  article-title: Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF): accumulation and expression in human synovial fluids and rheumatoid synovial tissues
  publication-title: J. Exp. Med
  doi: 10.1084/jem.180.1.341
  contributor:
    fullname: Fava
SSID ssj0007297
Score 2.21679
Snippet Vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) induces endothelial cell migration and proliferation in culture and is strongly...
ABSTRACT Vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) induces endothelial cell migration and proliferation in culture and is...
SourceID proquest
crossref
pubmed
SourceType Aggregation Database
Index Database
StartPage 59
SubjectTerms Animals
Ascorbic Acid - metabolism
Autocrine Communication
Bone Development - drug effects
Bone Development - physiology
Cartilage - blood supply
Cartilage - cytology
Cartilage - embryology
Cartilage - metabolism
Cell Differentiation - drug effects
Cells, Cultured
Chemotaxis - drug effects
Chick Embryo
Chondrocytes - cytology
Chondrocytes - drug effects
Chondrocytes - metabolism
Conalbumin - pharmacology
Culture Media, Conditioned - pharmacology
Endothelial Growth Factors - antagonists & inhibitors
Endothelial Growth Factors - chemistry
Endothelial Growth Factors - metabolism
Endothelial Growth Factors - pharmacology
Lymphokines - antagonists & inhibitors
Lymphokines - chemistry
Lymphokines - metabolism
Lymphokines - pharmacology
Mice
Molecular Weight
Neovascularization, Physiologic - drug effects
Paracrine Communication
Phosphorylation - drug effects
Receptor Protein-Tyrosine Kinases - antagonists & inhibitors
Receptor Protein-Tyrosine Kinases - chemistry
Receptor Protein-Tyrosine Kinases - metabolism
Receptors, Growth Factor - antagonists & inhibitors
Receptors, Growth Factor - chemistry
Receptors, Growth Factor - metabolism
Receptors, Vascular Endothelial Growth Factor
Tibia - cytology
Tibia - drug effects
Tibia - embryology
Tibia - metabolism
Vascular Endothelial Growth Factor A
Vascular Endothelial Growth Factors
Title Vascular endothelial growth factor (VEGF) in cartilage neovascularization and chondrocyte differentiation: auto-paracrine role during endochondral bone formation
URI https://www.ncbi.nlm.nih.gov/pubmed/10591625
https://search.proquest.com/docview/18139318
https://search.proquest.com/docview/70796287
Volume 113 ( Pt 1)
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3battAEF3clEJfQnrNpZd9aKElyLWklbTqWylxQ0sKhSTkTWgvbgRGLq4cSP4mf9fP6IxGWsmJDWlfhJG02rXmaC67c2YZe2OESkxstBdGSnlCavikpDFeFGolpVUqSZGcfPQ9PjwRX8-is8HgTy9raVGpob5aySv5H6nCOZArsmT_QbLuoXACfoN84QgShuOdZHzappHa0iCTaorT3z8hsK7Om4100IE8PfgyxuAfM87xIVNM0ymtS0JtmJjEcDufYQUDfVlZt3dKVbgMkHxRzTysFq6RNEipiQ3REYdArWEMalbajhe5xgHGNYP9xgJ3SyHzqb3IiXxzhHE8wHR_PHTXwZBgCdF60raYXhRdolGdymDIF0be_LxYdWlczOb1MyHgBnheFUvTHqPetEdLQ_Bx7Zm0oyXtLXA92qcqMk69E9d1CcekrJtS5GT2acOYWwYFPBg0KPo3bn4z9Idtm37d7hv21GU5YnwF7TNoDYFWmPlZlN5j9wNQiZh8-O1HV9ceQpxmc2H6Uw1FA1p_6Pe97DytiYhqz-h4i202EuWfCJ-P2MCWj9kD2uT08gm7blHKeyjlhFJOKOXvEKPveVFyh1B-G6EcEMp7COU3EPqRL-OTIz454ZP38ckRn9zh8yk7GR8cfz70mo1BPC18WaEF14HygzjRNq_J4nmehpMQWeKptLEBKzOZpKlJAi2w4CVe1aHMLejNODLhM7ZRQkfbjIsw12IiEwmevQD_FXSTVHEgklFgRqFOdtjb9o1nv6j-S7ZKrjvsdSuODBQ0fkE5vKcF3CEhyALLuf4OLFIZBxL6ek5y7PUUQfgWRLt3HMUee9h9Ky_YRjVf2JfgNFfqVY23vwrKzEI
link.rule.ids 315,783,787,27938,27939
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vascular+endothelial+growth+factor+%28VEGF%29+in+cartilage+neovascularization+and+chondrocyte+differentiation%3A+auto-paracrine+role+during+endochondral+bone+formation&rft.jtitle=Journal+of+cell+science&rft.au=Carlevaro%2C+Mariella+F.&rft.au=Cermelli%2C+Silvia&rft.au=Cancedda%2C+Ranieri&rft.au=Cancedda%2C+Fiorella+Descalzi&rft.date=2000-01-01&rft.issn=0021-9533&rft.eissn=1477-9137&rft.volume=113&rft.issue=1&rft.spage=59&rft.epage=69&rft_id=info:doi/10.1242%2Fjcs.113.1.59&rft.externalDBID=n%2Fa&rft.externalDocID=10_1242_jcs_113_1_59
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9533&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9533&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9533&client=summon