van der Waals potential: an important complement to molecular electrostatic potential in studying intermolecular interactions

Electrostatics and van der Waals (vdW) interactions are two major components of intermolecular weak interactions. Electrostatic potential has been a very popular function in revealing electrostatic interaction between the system under study and other species, while the role of vdW potential was less...

Full description

Saved in:
Bibliographic Details
Published inJournal of molecular modeling Vol. 26; no. 11; p. 315
Main Authors Lu, Tian, Chen, Qinxue
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1610-2940
0948-5023
0948-5023
DOI10.1007/s00894-020-04577-0

Cover

Loading…
Abstract Electrostatics and van der Waals (vdW) interactions are two major components of intermolecular weak interactions. Electrostatic potential has been a very popular function in revealing electrostatic interaction between the system under study and other species, while the role of vdW potential was less recognized and has long been ignored. In this paper, we explicitly present definition of vdW potential, describe its implementation details, and demonstrate its important practical values by several examples. We hope this work can arouse researchers’ attention to the vdW potential and promote its application in the studies of weak interactions. Calculation, visualization, and quantitative analysis of the vdW potential have been supported by our freely available code Multiwfn ( http://sobereva.com/multiwfn ).
AbstractList Electrostatics and van der Waals (vdW) interactions are two major components of intermolecular weak interactions. Electrostatic potential has been a very popular function in revealing electrostatic interaction between the system under study and other species, while the role of vdW potential was less recognized and has long been ignored. In this paper, we explicitly present definition of vdW potential, describe its implementation details, and demonstrate its important practical values by several examples. We hope this work can arouse researchers’ attention to the vdW potential and promote its application in the studies of weak interactions. Calculation, visualization, and quantitative analysis of the vdW potential have been supported by our freely available code Multiwfn ( http://sobereva.com/multiwfn ).
Electrostatics and van der Waals (vdW) interactions are two major components of intermolecular weak interactions. Electrostatic potential has been a very popular function in revealing electrostatic interaction between the system under study and other species, while the role of vdW potential was less recognized and has long been ignored. In this paper, we explicitly present definition of vdW potential, describe its implementation details, and demonstrate its important practical values by several examples. We hope this work can arouse researchers' attention to the vdW potential and promote its application in the studies of weak interactions. Calculation, visualization, and quantitative analysis of the vdW potential have been supported by our freely available code Multiwfn ( http://sobereva.com/multiwfn ).Electrostatics and van der Waals (vdW) interactions are two major components of intermolecular weak interactions. Electrostatic potential has been a very popular function in revealing electrostatic interaction between the system under study and other species, while the role of vdW potential was less recognized and has long been ignored. In this paper, we explicitly present definition of vdW potential, describe its implementation details, and demonstrate its important practical values by several examples. We hope this work can arouse researchers' attention to the vdW potential and promote its application in the studies of weak interactions. Calculation, visualization, and quantitative analysis of the vdW potential have been supported by our freely available code Multiwfn ( http://sobereva.com/multiwfn ).
Electrostatics and van der Waals (vdW) interactions are two major components of intermolecular weak interactions. Electrostatic potential has been a very popular function in revealing electrostatic interaction between the system under study and other species, while the role of vdW potential was less recognized and has long been ignored. In this paper, we explicitly present definition of vdW potential, describe its implementation details, and demonstrate its important practical values by several examples. We hope this work can arouse researchers’ attention to the vdW potential and promote its application in the studies of weak interactions. Calculation, visualization, and quantitative analysis of the vdW potential have been supported by our freely available code Multiwfn (http://sobereva.com/multiwfn).
ArticleNumber 315
Author Lu, Tian
Chen, Qinxue
Author_xml – sequence: 1
  givenname: Tian
  orcidid: 0000-0002-1822-1229
  surname: Lu
  fullname: Lu, Tian
  email: sobereva@sina.com
  organization: Beijing Kein Research Center for Natural Sciences
– sequence: 2
  givenname: Qinxue
  orcidid: 0000-0003-0155-2387
  surname: Chen
  fullname: Chen, Qinxue
  organization: Beijing Kein Research Center for Natural Sciences
BookMark eNp9kU1LHTEUhkOx0Kv1D3QV6MbNtCcfM8l0J6K2ILixdBkymTMSmUmmSUZw4X9v9BYuuHCVk5z3yfl4j8lRiAEJ-cLgGwNQ3zOA7mUDHBqQrVINfCA76KVuWuDiiOxYx6DhvYRP5DTnBwBgvO1aznfk-dEGOmKif6ydM11jwVC8nX_Q-u6XNaZiQ6EuLuuMS83REukSZ3TbbBPFGpQUc7HFuwNNfaC5bOOTD_c1LpgOyOvVuuJjyJ_Jx6mWxdP_5wn5fXV5d_Gzubm9_nVxftM4yXRptFSDHh3vAAY72dF1uu20xKkTvZy4rtOjZgMKLTjqQbFuUNpNTlg9tkpzcULO9v-uKf7dMBez-Oxwnm3AuGXDZSsZ051kVfr1jfQhbinU7qpKCaUliL6q-F7l6vA54WTW5BebngwD82KK2Ztiqinm1RQDFdJvIOdfFhdDSdbP76Nij-ZaJ9xjOnT1DvUPzHmlYw
CitedBy_id crossref_primary_10_1021_acs_iecr_2c03056
crossref_primary_10_1002_asia_202500247
crossref_primary_10_1016_j_corsci_2023_111288
crossref_primary_10_1016_j_molliq_2021_117190
crossref_primary_10_1016_j_molliq_2023_121211
crossref_primary_10_1016_j_envpol_2020_116192
crossref_primary_10_1016_j_envpol_2023_121017
crossref_primary_10_1016_j_cej_2024_155479
crossref_primary_10_1016_j_chphi_2023_100283
crossref_primary_10_1016_j_envres_2024_120701
crossref_primary_10_1016_j_ijtst_2024_01_007
crossref_primary_10_1021_acsomega_2c02461
crossref_primary_10_1016_j_desal_2024_117382
crossref_primary_10_1016_j_cej_2024_153164
crossref_primary_10_1021_acsami_4c13504
crossref_primary_10_1021_acs_jafc_1c07119
crossref_primary_10_1016_j_matchemphys_2024_129176
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124113
crossref_primary_10_1016_j_ces_2024_120233
crossref_primary_10_1016_j_surfin_2024_103948
crossref_primary_10_3390_c11010017
crossref_primary_10_3390_catal12050561
crossref_primary_10_1016_j_poly_2024_116997
crossref_primary_10_1007_s10450_023_00426_7
crossref_primary_10_1016_j_molliq_2023_123405
crossref_primary_10_1016_j_chemosphere_2023_139351
crossref_primary_10_1016_j_watres_2022_119147
crossref_primary_10_1021_acs_jpclett_4c00860
crossref_primary_10_1016_j_est_2024_113798
crossref_primary_10_1007_s11082_023_05427_y
crossref_primary_10_1016_j_cej_2023_146562
crossref_primary_10_1016_j_mtcomm_2025_112121
crossref_primary_10_1016_j_sna_2024_115637
crossref_primary_10_1021_acs_jchemed_3c00101
crossref_primary_10_1016_j_apsusc_2024_161940
crossref_primary_10_1021_acs_joc_4c02102
crossref_primary_10_1016_j_ces_2024_120730
crossref_primary_10_1016_j_jhazmat_2023_132046
crossref_primary_10_1016_j_seppur_2024_129557
crossref_primary_10_1016_j_comptc_2024_114583
crossref_primary_10_1016_j_jcis_2024_07_016
crossref_primary_10_3390_catal13050799
crossref_primary_10_1016_j_chroma_2023_464149
crossref_primary_10_1016_j_cej_2022_140452
crossref_primary_10_1016_j_foodchem_2024_141435
crossref_primary_10_1016_j_cplett_2021_139204
crossref_primary_10_1021_acscatal_5c00619
crossref_primary_10_1002_slct_202404498
crossref_primary_10_15541_jim20240176
crossref_primary_10_1016_j_chroma_2024_465084
crossref_primary_10_1016_j_cej_2022_137175
crossref_primary_10_1016_j_scitotenv_2022_160632
crossref_primary_10_1080_00387010_2024_2423793
crossref_primary_10_1016_j_jclepro_2022_130566
crossref_primary_10_1016_j_inoche_2022_110243
crossref_primary_10_1016_j_corsci_2025_112798
crossref_primary_10_1016_j_cej_2023_142730
crossref_primary_10_1039_D1GC02812J
crossref_primary_10_1039_D4SC03039G
crossref_primary_10_1016_j_seppur_2024_130527
crossref_primary_10_1016_j_chemphys_2022_111676
crossref_primary_10_1016_j_electacta_2023_143345
crossref_primary_10_1021_acssuschemeng_1c07613
crossref_primary_10_1016_j_ces_2022_118034
crossref_primary_10_1016_j_chphi_2024_100700
crossref_primary_10_1002_cphc_202000903
crossref_primary_10_1016_j_indcrop_2024_119414
crossref_primary_10_1016_j_molliq_2023_123607
crossref_primary_10_1016_j_polymer_2024_126855
crossref_primary_10_1007_s00706_022_02979_9
crossref_primary_10_1016_j_ijhydene_2023_07_233
crossref_primary_10_1016_j_seppur_2021_119622
crossref_primary_10_1039_D3RA00786C
crossref_primary_10_1007_s11082_023_05795_5
crossref_primary_10_1016_j_combustflame_2021_111768
crossref_primary_10_1007_s00894_022_05205_9
crossref_primary_10_1016_j_molstruc_2024_141220
crossref_primary_10_1016_j_seppur_2023_125664
crossref_primary_10_1007_s12274_022_4999_6
crossref_primary_10_1016_j_envres_2024_118356
crossref_primary_10_1016_j_seppur_2024_130504
crossref_primary_10_1016_j_molliq_2024_125378
crossref_primary_10_1080_00268976_2025_2456108
crossref_primary_10_1016_j_jhazmat_2024_133734
crossref_primary_10_1016_j_ces_2021_116792
crossref_primary_10_1016_j_molliq_2024_125380
crossref_primary_10_1021_acsami_2c20364
crossref_primary_10_1016_j_microc_2024_110300
crossref_primary_10_3390_molecules27092686
crossref_primary_10_1016_j_scitotenv_2023_164470
crossref_primary_10_1002_adts_202400906
crossref_primary_10_1016_j_heliyon_2023_e19965
crossref_primary_10_1016_j_molliq_2023_122813
crossref_primary_10_1016_j_watres_2025_123324
crossref_primary_10_1016_j_saa_2022_121674
crossref_primary_10_1016_j_colsurfa_2022_130030
crossref_primary_10_1016_j_memsci_2024_123208
crossref_primary_10_1016_j_jhazmat_2025_137143
crossref_primary_10_1002_chem_202402227
crossref_primary_10_1021_acssuschemeng_4c04620
crossref_primary_10_1016_j_cej_2024_156832
crossref_primary_10_1016_j_cej_2021_134403
crossref_primary_10_1016_j_ces_2022_118106
crossref_primary_10_1016_j_seppur_2023_124237
crossref_primary_10_1016_j_colsurfa_2024_135607
crossref_primary_10_1016_j_seppur_2025_132191
crossref_primary_10_1016_j_seppur_2022_121498
crossref_primary_10_1080_10406638_2022_2150657
crossref_primary_10_1002_slct_202400422
crossref_primary_10_1021_acs_macromol_4c01148
crossref_primary_10_1039_D0CP06406H
crossref_primary_10_1016_j_chemosphere_2022_136608
crossref_primary_10_3390_molecules28052304
crossref_primary_10_1002_adma_202208229
crossref_primary_10_1021_acs_joc_3c01530
crossref_primary_10_1021_acsmaterialslett_4c00059
crossref_primary_10_1016_j_jorganchem_2023_122668
crossref_primary_10_1021_acs_jpcb_1c04212
crossref_primary_10_1016_j_fuel_2023_129777
crossref_primary_10_1016_j_est_2024_110688
crossref_primary_10_1016_j_ijbiomac_2024_137984
crossref_primary_10_1016_j_foodchem_2024_142494
crossref_primary_10_1021_acs_joc_3c01423
crossref_primary_10_1016_j_ica_2022_121336
crossref_primary_10_1016_j_molliq_2024_126261
crossref_primary_10_1016_j_cplett_2021_139151
crossref_primary_10_1016_j_molliq_2021_117576
crossref_primary_10_1016_j_jpowsour_2022_231799
crossref_primary_10_1021_acs_macromol_0c02326
crossref_primary_10_1016_j_eehl_2024_08_004
crossref_primary_10_1016_j_jhazmat_2021_128062
crossref_primary_10_1063_5_0216272
crossref_primary_10_1021_acssensors_3c01476
crossref_primary_10_1016_j_jece_2024_112374
crossref_primary_10_1016_j_fuel_2023_128630
crossref_primary_10_1016_j_jmgm_2023_108663
crossref_primary_10_1002_anie_202208473
crossref_primary_10_1016_j_molliq_2025_127089
crossref_primary_10_1016_j_apcatb_2023_122988
crossref_primary_10_1007_s44372_025_00128_0
crossref_primary_10_1016_j_watres_2023_119659
crossref_primary_10_1016_j_polymer_2022_124817
crossref_primary_10_1016_j_psep_2024_10_026
crossref_primary_10_1016_j_seppur_2021_120108
crossref_primary_10_1021_acs_inorgchem_4c01407
crossref_primary_10_1016_j_cej_2021_132939
crossref_primary_10_1109_TDEI_2023_3239051
crossref_primary_10_1016_j_molliq_2022_120570
crossref_primary_10_1007_s11249_023_01752_1
crossref_primary_10_1016_j_mcat_2023_113039
crossref_primary_10_1016_j_ces_2025_121495
crossref_primary_10_1016_j_seppur_2024_129150
crossref_primary_10_1016_j_fuel_2023_129034
crossref_primary_10_1039_D3CP01896B
crossref_primary_10_1016_j_seppur_2024_130258
crossref_primary_10_1021_acs_cgd_4c00780
crossref_primary_10_3390_ijms24097705
crossref_primary_10_1016_j_fuel_2022_126749
crossref_primary_10_1016_j_seppur_2024_130250
crossref_primary_10_1016_j_comptc_2024_115022
crossref_primary_10_1021_jacs_1c12664
crossref_primary_10_1016_j_foodchem_2024_141819
crossref_primary_10_1039_D4GC02385D
crossref_primary_10_1016_j_molstruc_2024_137802
crossref_primary_10_1016_j_polymertesting_2022_107820
crossref_primary_10_1016_j_seppur_2025_132396
crossref_primary_10_1039_D3CP01385E
crossref_primary_10_1038_s41467_024_49865_y
crossref_primary_10_1016_j_enmf_2024_01_003
crossref_primary_10_1016_j_indcrop_2025_120563
crossref_primary_10_1016_j_ces_2024_120425
crossref_primary_10_1016_j_molliq_2022_120549
crossref_primary_10_1016_j_foodres_2024_115384
crossref_primary_10_1016_j_seppur_2023_126103
crossref_primary_10_1080_25740881_2025_2477106
crossref_primary_10_1002_aic_18456
crossref_primary_10_1016_j_seppur_2023_123993
crossref_primary_10_1021_acs_organomet_4c00405
crossref_primary_10_1002_adfm_202407100
crossref_primary_10_1002_chem_202403422
crossref_primary_10_1007_s10570_024_06345_2
crossref_primary_10_1016_j_chphi_2023_100265
crossref_primary_10_1016_j_foodchem_2024_141255
crossref_primary_10_1039_D4NJ05467A
crossref_primary_10_1016_j_molstruc_2024_137933
crossref_primary_10_1021_acs_langmuir_2c02181
crossref_primary_10_1016_j_jmgm_2023_108551
crossref_primary_10_1016_j_colsurfa_2021_127746
crossref_primary_10_1016_j_molliq_2023_121262
crossref_primary_10_1016_j_seppur_2022_121281
crossref_primary_10_1016_j_surfcoat_2023_129526
crossref_primary_10_1016_j_fuel_2022_127258
crossref_primary_10_1002_ange_202208473
crossref_primary_10_1016_j_scitotenv_2023_162861
crossref_primary_10_1016_j_fufo_2024_100354
crossref_primary_10_1021_acsomega_1c05000
crossref_primary_10_1016_j_cej_2024_153868
crossref_primary_10_1016_j_poly_2023_116369
crossref_primary_10_1016_j_cej_2023_143095
crossref_primary_10_1016_j_seppur_2022_120756
crossref_primary_10_1016_j_apcatb_2024_124774
crossref_primary_10_1039_D4RA02375G
Cites_doi 10.1007/s00894-013-2034-2
10.1007/s00894-015-2585-5
10.1002/jcc.26068
10.1002/qua.25443
10.1002/jcc.20035
10.1021/j100096a001
10.1016/j.carbon.2020.05.023
10.1039/C8CP06786D
10.1063/1.4867135
10.1002/wcms.86
10.1021/ja00051a040
10.1002/wcms.19
10.1007/s11224-014-0430-6
10.1007/s00894-013-1845-5
10.3866/PKU.WHXB2012281
10.1063/1.448118
10.1016/0263-7855(96)00018-5
10.1007/BF00533485
10.1002/poc.3111
10.1021/acs.jctc.7b00118
10.1016/j.carbon.2020.04.099
10.1016/j.carbon.2020.09.048
10.1016/j.jmgm.2012.07.004
10.1002/jcc.22885
10.3866/PKU.WHXB201401211
10.26434/chemrxiv.11320130
10.26434/chemrxiv.12919349
10.1039/C5RA17148B
10.26434/chemrxiv.8326202
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2020
Springer-Verlag GmbH Germany, part of Springer Nature 2020.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020
– notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020.
DBID AAYXX
CITATION
7X8
DOI 10.1007/s00894-020-04577-0
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 0948-5023
ExternalDocumentID 10_1007_s00894_020_04577_0
GroupedDBID ---
-4Y
-58
-5G
-BR
-EM
-Y2
-~C
.VR
06C
06D
0R~
0VY
1N0
1SB
2.D
203
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3SX
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9N
PF0
PT4
PT5
QOK
QOR
QOS
R89
R9I
RHV
RNI
RNS
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SCG
SCLPG
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SV3
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z5O
Z7R
Z7U
Z7V
Z7W
Z7X
Z7Y
Z83
Z86
Z87
Z8M
Z8O
Z8P
Z8Q
Z8S
Z8W
Z91
ZMTXR
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
7X8
ID FETCH-LOGICAL-c418t-847b8dc2600bafadc685684ef6394f28894e81be3832e8b716b78cfc3a8d57823
IEDL.DBID U2A
ISSN 1610-2940
0948-5023
IngestDate Fri Jul 11 06:14:53 EDT 2025
Fri Jul 25 11:08:34 EDT 2025
Thu Apr 24 23:10:33 EDT 2025
Tue Jul 01 02:45:53 EDT 2025
Fri Feb 21 02:30:23 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Intermolecular interaction
Vvan der Waals
Cyclocarbon
Adsorption
Multiwfn
Electrostatic potential
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-847b8dc2600bafadc685684ef6394f28894e81be3832e8b716b78cfc3a8d57823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0155-2387
0000-0002-1822-1229
PQID 2473784039
PQPubID 2043656
ParticipantIDs proquest_miscellaneous_2454118641
proquest_journals_2473784039
crossref_primary_10_1007_s00894_020_04577_0
crossref_citationtrail_10_1007_s00894_020_04577_0
springer_journals_10_1007_s00894_020_04577_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201100
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 20201100
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Computational Chemistry - Life Science - Advanced Materials - New Methods
PublicationTitle Journal of molecular modeling
PublicationTitleAbbrev J Mol Model
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Jin, Li, Lu, Duan, Geng, Wu, Su (CR5) 2013; 19
CR19
Lu, Chen (CR15) 2012; 28
CR16
Liu, Lu, Chen (CR28) 2020; 165
CR14
CR13
Berendsen, Postma, van Gunsteren, DiNola, Haak (CR25) 1984; 81
Lu, Manzetti (CR7) 2014; 25
Politzer, Murray, Clark (CR10) 2015; 21
Wang, Wolf, Caldwell, Kollman, Case (CR11) 2004; 25
Emamian, Lu, Kruse, Emamian (CR12) 2019; 40
Stephens, Devlin, Chabalowski, Frisch (CR21) 1994; 98
CR2
CR4
Lu, Chen (CR1) 2013; 19
CR6
Clark, Murray, Politzer (CR9) 2018; 20
Grimme, Bannwarth, Shushkov (CR24) 2017; 13
CR29
Murray, Politzer (CR3) 2011; 1
Hariharan, Pople (CR20) 1973; 28
CR26
Parker, Burns, Parrish, Ryno, Sherrill (CR30) 2014; 140
CR23
CR22
Jiao, Liu, Zhao, Wang, Ding, Liu, Lu (CR32) 2017; 117
Liu, Lu, Chen (CR27) 2020; 165
Humphrey, Dalke, Schulten (CR18) 1996; 14
Rappe, Casewit, Colwell, Goddard, Skiff (CR17) 1992; 114
Manzetti, Lu (CR8) 2013; 26
Szalewicz (CR31) 2012; 2
J-L Jin (4577_CR5) 2013; 19
4577_CR14
Y Jiao (4577_CR32) 2017; 117
4577_CR16
4577_CR19
K Szalewicz (4577_CR31) 2012; 2
S Grimme (4577_CR24) 2017; 13
PJ Stephens (4577_CR21) 1994; 98
T Clark (4577_CR9) 2018; 20
T Lu (4577_CR1) 2013; 19
Z Liu (4577_CR28) 2020; 165
Z Liu (4577_CR27) 2020; 165
JS Murray (4577_CR3) 2011; 1
PC Hariharan (4577_CR20) 1973; 28
P Politzer (4577_CR10) 2015; 21
4577_CR13
4577_CR26
S Manzetti (4577_CR8) 2013; 26
4577_CR29
T Lu (4577_CR7) 2014; 25
HJC Berendsen (4577_CR25) 1984; 81
4577_CR2
4577_CR4
S Emamian (4577_CR12) 2019; 40
TM Parker (4577_CR30) 2014; 140
W Humphrey (4577_CR18) 1996; 14
J Wang (4577_CR11) 2004; 25
4577_CR6
4577_CR22
AK Rappe (4577_CR17) 1992; 114
4577_CR23
T Lu (4577_CR15) 2012; 28
References_xml – ident: CR22
– volume: 19
  start-page: 5387
  year: 2013
  ident: CR1
  article-title: Revealing the nature of intermolecular interaction and configurational preference of the nonpolar molecular dimers (H2)2, (N2)2, and (H2)(N2)
  publication-title: J. Mol. Model.
  doi: 10.1007/s00894-013-2034-2
– volume: 21
  start-page: 52
  year: 2015
  ident: CR10
  article-title: Mathematical modeling and physical reality in noncovalent interactions
  publication-title: J. Mol. Model.
  doi: 10.1007/s00894-015-2585-5
– volume: 40
  start-page: 2868
  year: 2019
  ident: CR12
  article-title: Exploring nature and predicting strength of hydrogen bonds: a correlation analysis between atoms-in-molecules descriptors, binding energies, and energy components of symmetry-adapted perturbation theory
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.26068
– volume: 117
  start-page: e25443
  year: 2017
  ident: CR32
  article-title: Theoretical study on the interactions of halogen-bonds and pnicogen-bonds in phosphine derivatives with Br2, BrCl, and BrF
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.25443
– ident: CR4
– ident: CR14
– ident: CR2
– ident: CR16
– volume: 25
  start-page: 1157
  year: 2004
  ident: CR11
  article-title: Development and testing of a general amber force field
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20035
– volume: 98
  start-page: 11623
  year: 1994
  ident: CR21
  article-title: Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100096a001
– volume: 165
  start-page: 461
  year: 2020
  ident: CR27
  article-title: An sp-hybridized all-carboatomic ring, cyclo[18]carbon: electronic structure, electronic spectrum, and optical nonlinearity
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.05.023
– volume: 20
  start-page: 30076
  year: 2018
  ident: CR9
  article-title: A perspective on quantum mechanics and chemical concepts in describing noncovalent interactions
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C8CP06786D
– volume: 140
  start-page: 094106
  year: 2014
  ident: CR30
  article-title: Levels of symmetry adapted perturbation theory (SAPT). I. Efficiency and performance for interaction energies
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4867135
– ident: CR6
– ident: CR29
– volume: 2
  start-page: 254
  year: 2012
  ident: CR31
  article-title: Symmetry-adapted perturbation theory of intermolecular forces
  publication-title: WIREs: Comp. Mol. Sci.
  doi: 10.1002/wcms.86
– volume: 114
  start-page: 10024
  year: 1992
  ident: CR17
  article-title: UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00051a040
– ident: CR23
– volume: 1
  start-page: 153
  year: 2011
  ident: CR3
  article-title: The electrostatic potential: an overview
  publication-title: WIREs: Comp. Mol. Sci.
  doi: 10.1002/wcms.19
– ident: CR19
– volume: 25
  start-page: 1521
  year: 2014
  ident: CR7
  article-title: Wavefunction and reactivity study of benzo[a]pyrene diol epoxide and its enantiomeric forms
  publication-title: Struct. Chem.
  doi: 10.1007/s11224-014-0430-6
– volume: 19
  start-page: 3437
  year: 2013
  ident: CR5
  article-title: Density functional studies on photophysical properties and chemical reactivities of the triarylboranes: effect of the constraint of planarity
  publication-title: J. Mol. Model.
  doi: 10.1007/s00894-013-1845-5
– volume: 28
  start-page: 1
  year: 2012
  ident: CR15
  article-title: Comparison of computational methods for atomic charges
  publication-title: Acta Phys. -Chim. Sin.
  doi: 10.3866/PKU.WHXB2012281
– volume: 81
  start-page: 3684
  year: 1984
  ident: CR25
  article-title: Molecular dynamics with coupling to an external bath
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.448118
– ident: CR13
– volume: 14
  start-page: 33
  year: 1996
  ident: CR18
  article-title: VMD: visual molecular dynamics
  publication-title: J. Mol. Graph.
  doi: 10.1016/0263-7855(96)00018-5
– volume: 28
  start-page: 213
  year: 1973
  ident: CR20
  article-title: The influence of polarization functions on molecular orbital hydrogenation energies
  publication-title: Theor. Chem. Accounts
  doi: 10.1007/BF00533485
– ident: CR26
– volume: 26
  start-page: 473
  year: 2013
  ident: CR8
  article-title: The geometry and electronic structure of Aristolochic acid: possible implications for a frozen resonance
  publication-title: J. Phys. Org. Chem.
  doi: 10.1002/poc.3111
– volume: 13
  start-page: 1989
  year: 2017
  ident: CR24
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.7b00118
– volume: 165
  start-page: 468
  year: 2020
  ident: CR28
  article-title: An sp-hybridized all-carboatomic ring, cyclo[18]carbon: bonding character, electron delocalization, and aromaticity
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.04.099
– ident: 4577_CR13
  doi: 10.1016/j.carbon.2020.09.048
– volume: 2
  start-page: 254
  year: 2012
  ident: 4577_CR31
  publication-title: WIREs: Comp. Mol. Sci.
  doi: 10.1002/wcms.86
– volume: 165
  start-page: 468
  year: 2020
  ident: 4577_CR28
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.04.099
– ident: 4577_CR22
– volume: 21
  start-page: 52
  year: 2015
  ident: 4577_CR10
  publication-title: J. Mol. Model.
  doi: 10.1007/s00894-015-2585-5
– volume: 25
  start-page: 1157
  year: 2004
  ident: 4577_CR11
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20035
– volume: 81
  start-page: 3684
  year: 1984
  ident: 4577_CR25
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.448118
– volume: 14
  start-page: 33
  year: 1996
  ident: 4577_CR18
  publication-title: J. Mol. Graph.
  doi: 10.1016/0263-7855(96)00018-5
– ident: 4577_CR19
– volume: 20
  start-page: 30076
  year: 2018
  ident: 4577_CR9
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C8CP06786D
– volume: 19
  start-page: 5387
  year: 2013
  ident: 4577_CR1
  publication-title: J. Mol. Model.
  doi: 10.1007/s00894-013-2034-2
– volume: 140
  start-page: 094106
  year: 2014
  ident: 4577_CR30
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4867135
– ident: 4577_CR2
  doi: 10.1016/j.jmgm.2012.07.004
– volume: 28
  start-page: 1
  year: 2012
  ident: 4577_CR15
  publication-title: Acta Phys. -Chim. Sin.
  doi: 10.3866/PKU.WHXB2012281
– volume: 19
  start-page: 3437
  year: 2013
  ident: 4577_CR5
  publication-title: J. Mol. Model.
  doi: 10.1007/s00894-013-1845-5
– ident: 4577_CR14
  doi: 10.1002/jcc.22885
– volume: 40
  start-page: 2868
  year: 2019
  ident: 4577_CR12
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.26068
– volume: 165
  start-page: 461
  year: 2020
  ident: 4577_CR27
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.05.023
– volume: 26
  start-page: 473
  year: 2013
  ident: 4577_CR8
  publication-title: J. Phys. Org. Chem.
  doi: 10.1002/poc.3111
– volume: 114
  start-page: 10024
  year: 1992
  ident: 4577_CR17
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00051a040
– volume: 117
  start-page: e25443
  year: 2017
  ident: 4577_CR32
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.25443
– volume: 28
  start-page: 213
  year: 1973
  ident: 4577_CR20
  publication-title: Theor. Chem. Accounts
  doi: 10.1007/BF00533485
– ident: 4577_CR4
  doi: 10.3866/PKU.WHXB201401211
– ident: 4577_CR26
  doi: 10.26434/chemrxiv.11320130
– volume: 1
  start-page: 153
  year: 2011
  ident: 4577_CR3
  publication-title: WIREs: Comp. Mol. Sci.
  doi: 10.1002/wcms.19
– ident: 4577_CR29
  doi: 10.26434/chemrxiv.12919349
– ident: 4577_CR6
  doi: 10.1039/C5RA17148B
– volume: 98
  start-page: 11623
  year: 1994
  ident: 4577_CR21
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100096a001
– ident: 4577_CR16
– volume: 25
  start-page: 1521
  year: 2014
  ident: 4577_CR7
  publication-title: Struct. Chem.
  doi: 10.1007/s11224-014-0430-6
– ident: 4577_CR23
  doi: 10.26434/chemrxiv.8326202
– volume: 13
  start-page: 1989
  year: 2017
  ident: 4577_CR24
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.7b00118
SSID ssj0001256522
Score 2.6352093
Snippet Electrostatics and van der Waals (vdW) interactions are two major components of intermolecular weak interactions. Electrostatic potential has been a very...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 315
SubjectTerms Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Computer Appl. in Life Sciences
Computer Applications in Chemistry
Electrostatics
Molecular Medicine
Original Paper
Theoretical and Computational Chemistry
Title van der Waals potential: an important complement to molecular electrostatic potential in studying intermolecular interactions
URI https://link.springer.com/article/10.1007/s00894-020-04577-0
https://www.proquest.com/docview/2473784039
https://www.proquest.com/docview/2454118641
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA-yHfQifuJ0jgjeNNCm6Zp628bmUNjJ4TyVNElhsLVj647-775k_VBRwVNpm6QlL-37vbz3fg-h21AF2tF-Qoz2JsxPFIlBTRPhcUGVookjbJTvpDuesqeZPyuSwjZltHvpkrR_6irZDbSVobGlJhzRDwIChnrTN7Y7rOIp7X3aWQGQYt0HgGYcQkPmFNkyPw_zVSPVMPObZ9QqnNEROiyQIu7tRHuM9nR6gvYHZYG2U_QOIBgrvcavAtYQXmW5ifwRiwcM1-dLC6zTHNugcbsJiPMML8tyuLgogGMyiuay7o3nKbacs_BS2JBJrOsu9nSXCbE5Q9PR8GUwJkU1BSKZy3MCaijmShpC-lgkQsku97uc6QQwCksoh1nRgGE1mKxU8xjsqDjgMpGe4Mpw3nvnqJFmqb5AGDBhAoYOTHXsMClMbq0Ow0DFLJAOc1kLueWMRrKgGjcVLxZRRZJspRCBFCIrhchpobuqz2pHtPFn63YpqKj46DYRZYEXgMHqhS10U90GoRgfiEh1tjVtfAY2VZe5LXRfCrge4vcnXv6v-RU6oGaN2azFNmrk662-BviSxx3U7I36_Yk5Pr49Dzt29X4ADuLp7A
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4MHvBi_BmnqDXxpk22rqOdN0IkqMgJIrela7uEBAaBcfR_97VsoEZNPG5ru6av2_te33vfQ-g21tz4JsqI1d6ERZkmKahpIkMhqdY086WL8u03u0P2PIpGZVLYsop2r1yS7k-9SXYDbWVpbKkNR4w4J2Co7wIYEDaQa0hbn05WAKQ49wGgGZ_QmPlltszPw3zVSFuY-c0z6hRO5wDtl0gRt9aiPUQ7Jj9C9XZVoO0YvQMIxtos8JuEPYTns8JG_sjJA4b746kD1nmBXdC4OwTExQxPq3K4uCyAYzOKxmrbG49z7DhnYVLYkkkstl3c5ToTYnmChp3HQbtLymoKRLFAFATUUCq0soT0qcykVk0RNQUzGWAUllEBq2IAwxowWakRKdhRKRcqU6EU2nLeh6eols9yc4YwYMIMDB1Y6tRnStrcWhPHXKeMK58FzENBtaKJKqnGbcWLSbIhSXZSSEAKiZNC4nvobtNnviba-LN1oxJUUn50y4QyHnIwWMPYQzebxyAU6wORuZmtbJuIgU3VZIGH7isBb4f4_Y3n_2t-jerdwWsv6T31Xy7QHrX7zWUwNlCtWKzMJUCZIr1yO_cDlC3pzw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA-ioL6In1idGsE3DWvTdE19G9MxPxg-ONxbSfMBA9eNrXv0f_eStdsUFXxsm6Rt7tr7XS73O4SuEhVrX0eGWOtNWGQUycBMExFyQZWixhdul2-30emxx37UX8nid7vdq5DkPKfBsjTlRX2sTH2R-AaWy1LaUrs1MYpjAk77BvyOA6vXPdpcWWUBwOJCCYBsfEIT5peZMz8P89U6LSHntyipMz7tXbRTokbcnIt5D63pfB9ttapibQfoAwAxVnqC3wToEx6P7MuAat1iOD8YOpCdF9htIHcLgrgY4WFVGheXxXBsdtFALnvjQY4d_yw8FLbEEpNlF3c4z4qYHqJe-_611SFlZQUiWcALAiYp40pacvpMGKFkg0cNzrQBvMIM5TArGvCsBveVap6BT5XFXBoZCq4s_314hNbzUa6PEQZ8aMDpganOfCaFzbPVSRKrjMXSZwHzUFDNaCpL2nFb_eI9XRAmOymkIIXUSSH1PXS96DOek2782bpWCSotP8BpSlkcxuC8homHLheXQSg2HiJyPZrZNhED_6rBAg_dVAJeDvH7HU_-1_wCbb7ctdPnh-7TKdqmVt1cMmMNrReTmT4DVFNk505xPwEPpu4L
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=van+der+Waals+potential%3A+an+important+complement+to+molecular+electrostatic+potential+in+studying+intermolecular+interactions&rft.jtitle=Journal+of+molecular+modeling&rft.au=Lu%2C+Tian&rft.au=Chen%2C+Qinxue&rft.date=2020-11-01&rft.issn=1610-2940&rft.eissn=0948-5023&rft.volume=26&rft.issue=11&rft_id=info:doi/10.1007%2Fs00894-020-04577-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00894_020_04577_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1610-2940&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1610-2940&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1610-2940&client=summon