Anomaly Detection from Hyperspectral Remote Sensing Imagery

Hyperspectral remote sensing imagery contains much more information in the spectral domain than does multispectral imagery. The consecutive and abundant spectral signals provide a great potential for classification and anomaly detection. In this study, two real hyperspectral data sets were used for...

Full description

Saved in:
Bibliographic Details
Published inGeosciences (Basel) Vol. 6; no. 4; p. 56
Main Authors Guo, Qiandong, Pu, Ruiliang, Cheng, Jun
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.12.2016
Subjects
Online AccessGet full text
ISSN2076-3263
2076-3263
DOI10.3390/geosciences6040056

Cover

Abstract Hyperspectral remote sensing imagery contains much more information in the spectral domain than does multispectral imagery. The consecutive and abundant spectral signals provide a great potential for classification and anomaly detection. In this study, two real hyperspectral data sets were used for anomaly detection. One data set was an Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data covering the post-attack World Trade Center (WTC) and anomalies are fire spots. The other data set called SpecTIR contained fabric panels as anomalies compared to their background. Existing anomaly detection algorithms including the Reed–Xiaoli detector (RXD), the blocked adaptive computation efficient outlier nominator (BACON), the random selection based anomaly detector (RSAD), the weighted-RXD (W-RXD), and the probabilistic anomaly detector (PAD) are reviewed here. The RXD generally sets strict assumptions to the background, which cannot be met in many scenarios, while BACON, RSAD, and W-RXD employ strategies to optimize the estimation of background information. The PAD firstly estimates both background information and anomaly information and then uses the information to conduct anomaly detection. Here, the BACON, RSAD, W-RXD, and PAD outperformed the RXD in terms of detection accuracy, and W-RXD and PAD required less time than BACON and RSAD.
AbstractList Hyperspectral remote sensing imagery contains much more information in the spectral domain than does multispectral imagery. The consecutive and abundant spectral signals provide a great potential for classification and anomaly detection. In this study, two real hyperspectral data sets were used for anomaly detection. One data set was an Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data covering the post-attack World Trade Center (WTC) and anomalies are fire spots. The other data set called SpecTIR contained fabric panels as anomalies compared to their background. Existing anomaly detection algorithms including the Reed-Xiaoli detector (RXD), the blocked adaptive computation efficient outlier nominator (BACON), the random selection based anomaly detector (RSAD), the weighted-RXD (W-RXD), and the probabilistic anomaly detector (PAD) are reviewed here. The RXD generally sets strict assumptions to the background, which cannot be met in many scenarios, while BACON, RSAD, and W-RXD employ strategies to optimize the estimation of background information. The PAD firstly estimates both background information and anomaly information and then uses the information to conduct anomaly detection. Here, the BACON, RSAD, W-RXD, and PAD outperformed the RXD in terms of detection accuracy, and W-RXD and PAD required less time than BACON and RSAD.
Author Pu, Ruiliang
Guo, Qiandong
Cheng, Jun
Author_xml – sequence: 1
  givenname: Qiandong
  surname: Guo
  fullname: Guo, Qiandong
– sequence: 2
  givenname: Ruiliang
  surname: Pu
  fullname: Pu, Ruiliang
– sequence: 3
  givenname: Jun
  surname: Cheng
  fullname: Cheng, Jun
BookMark eNp9kUFrGzEQhUVxoWmSP9DTQi-9uBmttFqJnoybNAZDIE3PYizPGpldyZXWB__7yHEIwYXqIvF435vRzGc2CTEQY184fBfCwM2GYnaegqOsQAI06gO7qKFVU1ErMXn3_sSuc95COYYLLeQF-zELccD-UP2kkdzoY6i6FIfq_rCjlHdFSthXjzTEkarfFLIPm2ox4IbS4Yp97LDPdP16X7I_d7dP8_vp8uHXYj5bTp3kepzqeg1aSddyZdDUrmtNxxFbToiaTMNXQoo1rBvdAaxcW7emMaC1lIqvALW4ZItT7jri1u6SHzAdbERvX4SYNhbT6F1P1nBQJVWjNkJSJwstGg5t06FWonEl69spa5fi3z3l0Q4-O-p7DBT32XKtjohsj2W_nlm3cZ9C-WlxNVrUoGtZXPXJ5VLMOVH31iAHe1yP_Xc9BdJnkPMjHqdfxu37_6HPWguYOQ
CitedBy_id crossref_primary_10_1016_j_rsase_2021_100468
crossref_primary_10_1109_LGRS_2020_2970582
crossref_primary_10_3390_su15064725
crossref_primary_10_3390_land13091427
crossref_primary_10_1007_s11227_024_05918_z
crossref_primary_10_1109_JSTARS_2019_2954865
crossref_primary_10_3390_rs15030723
crossref_primary_10_1109_TGRS_2021_3116186
crossref_primary_10_3390_geosciences7010004
Cites_doi 10.1109/TGRS.2010.2081677
10.1109/WHISPERS.2010.5594914
10.1117/12.919268
10.1117/12.816917
10.1109/29.60107
10.1109/79.974730
10.1109/LGRS.2010.2098842
10.1109/JSTARS.2014.2302446
10.1117/1.1614265
10.1109/TGRS.2006.873019
10.1117/1.JRS.6.061503
10.1109/JSTARS.2013.2238609
10.1016/S0167-9473(99)00101-2
10.1117/1.JRS.8.083538
10.1109/TGRS.2004.841487
ContentType Journal Article
Copyright Copyright MDPI AG 2016
Copyright_xml – notice: Copyright MDPI AG 2016
DBID AAYXX
CITATION
7TG
7TN
7UA
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H96
HCIFZ
KL.
L.G
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
DOA
DOI 10.3390/geosciences6040056
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
ProQuest Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection (UHCL Subscription)
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList Meteorological & Geoastrophysical Abstracts - Academic
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2076-3263
EndPage 56
ExternalDocumentID oai_doaj_org_article_9106aa88a8934ef4a83351075fa8635c
4301354121
10_3390_geosciences6040056
GroupedDBID 5VS
7XC
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IPNFZ
KQ8
LK5
M7R
MODMG
M~E
OK1
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PYCSY
RIG
ZBA
7TG
7TN
7UA
ABUWG
AZQEC
C1K
DWQXO
F1W
GNUQQ
H96
KL.
L.G
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c418t-82d0864c7169a92cf79f1aa71eaa8e951b343d0d58f00bc7279590884461b0a83
IEDL.DBID DOA
ISSN 2076-3263
IngestDate Wed Aug 27 01:10:52 EDT 2025
Fri Sep 05 07:37:26 EDT 2025
Mon Jun 30 11:25:38 EDT 2025
Tue Jul 01 03:50:46 EDT 2025
Thu Apr 24 22:56:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-82d0864c7169a92cf79f1aa71eaa8e951b343d0d58f00bc7279590884461b0a83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/9106aa88a8934ef4a83351075fa8635c
PQID 1858320824
PQPubID 2032391
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_9106aa88a8934ef4a83351075fa8635c
proquest_miscellaneous_1868335478
proquest_journals_1858320824
crossref_primary_10_3390_geosciences6040056
crossref_citationtrail_10_3390_geosciences6040056
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-12-01
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Geosciences (Basel)
PublicationYear 2016
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Du (ref_7) 2011; 49
Gao (ref_9) 2014; 8
Molero (ref_12) 2013; 6
ref_13
Huck (ref_5) 2010; 48
Guo (ref_8) 2004; 7
ref_11
Stein (ref_1) 2002; 19
ref_10
Kwon (ref_14) 2003; 42
Banerjee (ref_2) 2006; 44
Billor (ref_6) 2000; 34
ref_15
Khazai (ref_16) 2011; 8
Kwon (ref_3) 2005; 43
Reed (ref_4) 1990; 38
References_xml – volume: 49
  start-page: 1578
  year: 2011
  ident: ref_7
  article-title: Random-selection-based anomaly detector for hyperspectral imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2010.2081677
– ident: ref_10
  doi: 10.1109/WHISPERS.2010.5594914
– ident: ref_13
  doi: 10.1117/12.919268
– ident: ref_11
  doi: 10.1117/12.816917
– volume: 38
  start-page: 1760
  year: 1990
  ident: ref_4
  article-title: Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
  doi: 10.1109/29.60107
– volume: 19
  start-page: 58
  year: 2002
  ident: ref_1
  article-title: Anomaly detection from hyperspectral imagery
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/79.974730
– volume: 8
  start-page: 646
  year: 2011
  ident: ref_16
  article-title: Anomaly detection in hyperspectral images based on an adaptive support vector method
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2010.2098842
– volume: 7
  start-page: 2351
  year: 2004
  ident: ref_8
  article-title: Weighted-RXD and Linear Filter-Based RXD: Improving Background Statistics Estimation for Anomaly Detection in Hyperspectral Imagery
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2014.2302446
– volume: 42
  start-page: 3342
  year: 2003
  ident: ref_14
  article-title: Adaptive anomaly detection using subspace separation for hyperspectral imagery
  publication-title: Opt. Eng.
  doi: 10.1117/1.1614265
– volume: 44
  start-page: 2282
  year: 2006
  ident: ref_2
  article-title: A support vector method for anomaly detection in hyperspectral imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2006.873019
– ident: ref_15
  doi: 10.1117/1.JRS.6.061503
– volume: 48
  start-page: 3980
  year: 2010
  ident: ref_5
  article-title: Asymptotically CFAR-unsupervised target detection and discrimination in hyperspectral images with anomalous-component pursuit
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 6
  start-page: 801
  year: 2013
  ident: ref_12
  article-title: Analysis and optimizations of global and local versions of the RX algorithm for anomaly detection in hyperspectral data
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2013.2238609
– volume: 34
  start-page: 279
  year: 2000
  ident: ref_6
  article-title: BACON: Blocked adaptive computationally efficient outlier nominators
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/S0167-9473(99)00101-2
– volume: 8
  start-page: 083538
  year: 2014
  ident: ref_9
  article-title: Probabilistic anomaly detector for remotely sensed hyperspectral data
  publication-title: J. Appl. Remote Sens.
  doi: 10.1117/1.JRS.8.083538
– volume: 43
  start-page: 388
  year: 2005
  ident: ref_3
  article-title: Kernel RX-algorithm: A nonlinear anomaly detector for hyperspectral imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2004.841487
SSID ssj0000913834
Score 2.1164918
Snippet Hyperspectral remote sensing imagery contains much more information in the spectral domain than does multispectral imagery. The consecutive and abundant...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 56
SubjectTerms Algorithms
Anomalies
anomaly detection
AVIRIS
Bacon
Computation
Data
Detection
Earth science
fire mapping
Fires
hyperspectral imagery
Image detection
Imagery
Imaging techniques
Infrared imaging
Infrared spectrometers
Remote sensing
Sensors
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60RfAiPjFaJYI3CU2aTbLBg1htrYJFqoXewmaz6aVNapse-u-dSbZVKHhNdgOZmd35vt15ANzK0E5cPxAWjzmzmJKhJZKwRd3c0eGjwww9ShR-7_u9IXsbeSN94LbQYZXrPbHcqJNc0hl5E_0KGh86LPYw-7aoaxTdruoWGrtQxy2Yo53X253-x2BzykJVL7nLqmwZF_l9c6x0kUi18MmAqXP1H49UFu7f2pdLZ9M9hAONEs3HSq1HsKOyY9h7Kbvwrk7gHkn7VExW5rMqylCqzKQ0EbOHpLLKnZzj7IFCNSjzk0LUs7H5OqVyFatTGHY7X089S3dBsCRzeGHxVoK0g0kqayPClkyDMHWECBwlBFcIkGKXuYmdeDy17ViW4qXgJeR5TmwL7p5BLcszdQ4moiNEcMJ3EoUsCHUSSO4pzwtSHiOxUQY4a0lEUpcIp04VkwipAkkv2paeAXebObOqQMa_o9sk4M1IKm5dPsjn40ivlQgRjI__xgViKaZSJigxDGmqlwqO-Ega0FirJ9IrbhH92ocBN5vXuFboAkRkKl_SGJ8-xQJ-8f8nLmEfgZFfha00oFbMl-oKwUcRX2sL-wGowdl2
  priority: 102
  providerName: ProQuest
Title Anomaly Detection from Hyperspectral Remote Sensing Imagery
URI https://www.proquest.com/docview/1858320824
https://www.proquest.com/docview/1868335478
https://doaj.org/article/9106aa88a8934ef4a83351075fa8635c
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF2kIngRPzFaSwRvEpo0m2QXT1Zbq2CRaqG3sNlMemlTadND_70zm7QUCnrxmuyG5c3uzjwy84axOy3d1A8j5YhEcIeDlo5KZYu6uaPDR4cpAyoUfu-HvSF_GwWjrVZflBNWygOXwDXRnYVKCaHQsXLIuKIqIeQsQaYEOktNt68r3S0yZe5g6SH14mWVjI-8vjmGShwSFiFtXOpYveWJjGD_zn1snEz3mB1V0aH9WK7qhO1BfsoOXkz33dUZe0CyPlWTlf0MhUmhym0qD7F7SCbLmsk5zh4Awg_2J6Wm52P7dUoyFatzNux2vp56TtX9wNHcE4UjWinSDa5JzkbJls4imXlKRR4gHICBUeJzP3XTQGSum2gDKyUtIb_zEhdhumC1fJbDJbMxKsLITYVeCsh-0BaRFgEEQZSJBAkNWMxbIxHrShqcOlRMYqQIhF68i57F7jdzvkthjF9HtwngzUgStTYP0NRxZer4L1NbrL42T1ydtEWM8QZeShjIcIvdbl7jGaEfHyqH2ZLGhPQpHomr_1jHNTvEsCksk1rqrFbMl3CDoUmRNNh-u9P_GDTMbvwBADPhOg
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5BEKKXihYQaQO4EpyQFT_W9loVQlCgCY8IhUTiZtbrcS5g0zxU5U_1NzLjR4qExI2rvbuyZ2d3vtmdmQ9gX4dW4vqBMmUshSlQh6ZKQofZ3Mngk8EMPU4Uvun5naG4vPful-BfnQvDYZX1nlhs1Emu-Yy8TXaFlI8Mljh-_mMyaxTfrtYUGqVaXOH8L7lsk6PuGc3vgeNcnA9-dcyKVcDUwpZTUzoJwXihuUyMCh2dBmFqKxXYqJREAhyxK9zESjyZWlasi8_lYCDym-zYUtKlcZdhRXBGawNWTs97t_3FqQ5X2ZSuKLNzXDe02iOsilLixOcFw0zZryxgQRTwxg4Uxu1iHT5XqNQ4KdXoCyxh9hVWfxesv_MN-HmS5U_qcW6c4bQI3coMTksxOuTElrmaY-rdR5p2NO44JD4bGd0nLo8x34Thh8hnCxpZnuE2GITGCDEq306QvC7SgUBLDz0vSGVMjhQ2wa4lEemqJDkzYzxG5Jqw9KK30mvC4aLPc1mQ493WpyzgRUsupl08yMejqFqbESEmn_5NKsJuAlOhOBGN3GIvVZLwmG5Cq56eqFrhk-i_Pjbhx-I1rU2-cFEZ5jNu4_NQIpDf3h9iD9Y6g5vr6Lrbu_oOnwiU-WXITAsa0_EMdwj4TOPdStsMePhoBX8BxaQU0A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB6xRay4IF6rLc8gwWkVNQ8ncYQQAkppga0QLBK3rONMeoEE2iLUv8avYyaPgoTEjWtiW8n4s-cbex4Auzq0EtcPlCljKUyBOjRVEjpczZ0UPinM0ONA4b99v3srzu-8uxl4rWNh2K2y3hOLjTrJNZ-Rt0ivEPhIYYlWWrlFXLU7h49PJleQ4pvWupxGCZELnLyQ-TY66LVprvccp3P676RrVhUGTC1sOTalkxClF5pTxqjQ0WkQprZSgY1KSSTyEbvCTazEk6llxbr4dHYMIhvKji0lXRr3B8wGpBVFA2aPT_tX19MTHs64KV1RRuq4bmi1BlglqMSRz4uHq2Z_0IZF0YBPOqFQdJ1FWKgYqnFUQmoJZjBbhrmzogLwZAX2j7L8Qd1PjDaOCzeuzOAQFaNLBm0Ztzmk3tdIEEDjht3js4HRe-BUGZNVuP0W-fyCRpZn-BsMYmbEHpVvJ0gWGOEh0NJDzwtSGZNRhU2wa0lEukpPzlUy7iMyU1h60WfpNeHPtM9jmZzjy9bHLOBpS06sXTzIh4OoWqcRsSef_k0q4nECU6E4KI1MZC9VkriZbsJGPT1RtdpH0Ts2m7AzfU3rlC9fVIb5M7fxeSgRyLWvh9iGnwTs6LLXv1iHeeJnfuk9swGN8fAZN4kDjeOtCmwG_P9ufL8BZZEY_A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anomaly+Detection+from+Hyperspectral+Remote+Sensing+Imagery&rft.jtitle=Geosciences+%28Basel%29&rft.au=Guo%2C+Qiandong&rft.au=Pu%2C+Ruiliang&rft.au=Cheng%2C+Jun&rft.date=2016-12-01&rft.issn=2076-3263&rft.eissn=2076-3263&rft.volume=6&rft.issue=4&rft.spage=56&rft_id=info:doi/10.3390%2Fgeosciences6040056&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_geosciences6040056
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3263&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3263&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3263&client=summon