Anomaly Detection from Hyperspectral Remote Sensing Imagery
Hyperspectral remote sensing imagery contains much more information in the spectral domain than does multispectral imagery. The consecutive and abundant spectral signals provide a great potential for classification and anomaly detection. In this study, two real hyperspectral data sets were used for...
Saved in:
Published in | Geosciences (Basel) Vol. 6; no. 4; p. 56 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.12.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 2076-3263 2076-3263 |
DOI | 10.3390/geosciences6040056 |
Cover
Abstract | Hyperspectral remote sensing imagery contains much more information in the spectral domain than does multispectral imagery. The consecutive and abundant spectral signals provide a great potential for classification and anomaly detection. In this study, two real hyperspectral data sets were used for anomaly detection. One data set was an Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data covering the post-attack World Trade Center (WTC) and anomalies are fire spots. The other data set called SpecTIR contained fabric panels as anomalies compared to their background. Existing anomaly detection algorithms including the Reed–Xiaoli detector (RXD), the blocked adaptive computation efficient outlier nominator (BACON), the random selection based anomaly detector (RSAD), the weighted-RXD (W-RXD), and the probabilistic anomaly detector (PAD) are reviewed here. The RXD generally sets strict assumptions to the background, which cannot be met in many scenarios, while BACON, RSAD, and W-RXD employ strategies to optimize the estimation of background information. The PAD firstly estimates both background information and anomaly information and then uses the information to conduct anomaly detection. Here, the BACON, RSAD, W-RXD, and PAD outperformed the RXD in terms of detection accuracy, and W-RXD and PAD required less time than BACON and RSAD. |
---|---|
AbstractList | Hyperspectral remote sensing imagery contains much more information in the spectral domain than does multispectral imagery. The consecutive and abundant spectral signals provide a great potential for classification and anomaly detection. In this study, two real hyperspectral data sets were used for anomaly detection. One data set was an Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data covering the post-attack World Trade Center (WTC) and anomalies are fire spots. The other data set called SpecTIR contained fabric panels as anomalies compared to their background. Existing anomaly detection algorithms including the Reed-Xiaoli detector (RXD), the blocked adaptive computation efficient outlier nominator (BACON), the random selection based anomaly detector (RSAD), the weighted-RXD (W-RXD), and the probabilistic anomaly detector (PAD) are reviewed here. The RXD generally sets strict assumptions to the background, which cannot be met in many scenarios, while BACON, RSAD, and W-RXD employ strategies to optimize the estimation of background information. The PAD firstly estimates both background information and anomaly information and then uses the information to conduct anomaly detection. Here, the BACON, RSAD, W-RXD, and PAD outperformed the RXD in terms of detection accuracy, and W-RXD and PAD required less time than BACON and RSAD. |
Author | Pu, Ruiliang Guo, Qiandong Cheng, Jun |
Author_xml | – sequence: 1 givenname: Qiandong surname: Guo fullname: Guo, Qiandong – sequence: 2 givenname: Ruiliang surname: Pu fullname: Pu, Ruiliang – sequence: 3 givenname: Jun surname: Cheng fullname: Cheng, Jun |
BookMark | eNp9kUFrGzEQhUVxoWmSP9DTQi-9uBmttFqJnoybNAZDIE3PYizPGpldyZXWB__7yHEIwYXqIvF435vRzGc2CTEQY184fBfCwM2GYnaegqOsQAI06gO7qKFVU1ErMXn3_sSuc95COYYLLeQF-zELccD-UP2kkdzoY6i6FIfq_rCjlHdFSthXjzTEkarfFLIPm2ox4IbS4Yp97LDPdP16X7I_d7dP8_vp8uHXYj5bTp3kepzqeg1aSddyZdDUrmtNxxFbToiaTMNXQoo1rBvdAaxcW7emMaC1lIqvALW4ZItT7jri1u6SHzAdbERvX4SYNhbT6F1P1nBQJVWjNkJSJwstGg5t06FWonEl69spa5fi3z3l0Q4-O-p7DBT32XKtjohsj2W_nlm3cZ9C-WlxNVrUoGtZXPXJ5VLMOVH31iAHe1yP_Xc9BdJnkPMjHqdfxu37_6HPWguYOQ |
CitedBy_id | crossref_primary_10_1016_j_rsase_2021_100468 crossref_primary_10_1109_LGRS_2020_2970582 crossref_primary_10_3390_su15064725 crossref_primary_10_3390_land13091427 crossref_primary_10_1007_s11227_024_05918_z crossref_primary_10_1109_JSTARS_2019_2954865 crossref_primary_10_3390_rs15030723 crossref_primary_10_1109_TGRS_2021_3116186 crossref_primary_10_3390_geosciences7010004 |
Cites_doi | 10.1109/TGRS.2010.2081677 10.1109/WHISPERS.2010.5594914 10.1117/12.919268 10.1117/12.816917 10.1109/29.60107 10.1109/79.974730 10.1109/LGRS.2010.2098842 10.1109/JSTARS.2014.2302446 10.1117/1.1614265 10.1109/TGRS.2006.873019 10.1117/1.JRS.6.061503 10.1109/JSTARS.2013.2238609 10.1016/S0167-9473(99)00101-2 10.1117/1.JRS.8.083538 10.1109/TGRS.2004.841487 |
ContentType | Journal Article |
Copyright | Copyright MDPI AG 2016 |
Copyright_xml | – notice: Copyright MDPI AG 2016 |
DBID | AAYXX CITATION 7TG 7TN 7UA ABUWG AFKRA ATCPS AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H96 HCIFZ KL. L.G PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS PYCSY DOA |
DOI | 10.3390/geosciences6040056 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts ProQuest Central (Alumni) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection ProQuest Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection (UHCL Subscription) Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
DatabaseTitleList | Meteorological & Geoastrophysical Abstracts - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 2076-3263 |
EndPage | 56 |
ExternalDocumentID | oai_doaj_org_article_9106aa88a8934ef4a83351075fa8635c 4301354121 10_3390_geosciences6040056 |
GroupedDBID | 5VS 7XC 8FE 8FH AADQD AAFWJ AAHBH AAYXX ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI BKSAR CCPQU CITATION GROUPED_DOAJ HCIFZ IPNFZ KQ8 LK5 M7R MODMG M~E OK1 PATMY PCBAR PHGZM PHGZT PIMPY PROAC PYCSY RIG ZBA 7TG 7TN 7UA ABUWG AZQEC C1K DWQXO F1W GNUQQ H96 KL. L.G PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c418t-82d0864c7169a92cf79f1aa71eaa8e951b343d0d58f00bc7279590884461b0a83 |
IEDL.DBID | DOA |
ISSN | 2076-3263 |
IngestDate | Wed Aug 27 01:10:52 EDT 2025 Fri Sep 05 07:37:26 EDT 2025 Mon Jun 30 11:25:38 EDT 2025 Tue Jul 01 03:50:46 EDT 2025 Thu Apr 24 22:56:07 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c418t-82d0864c7169a92cf79f1aa71eaa8e951b343d0d58f00bc7279590884461b0a83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/9106aa88a8934ef4a83351075fa8635c |
PQID | 1858320824 |
PQPubID | 2032391 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9106aa88a8934ef4a83351075fa8635c proquest_miscellaneous_1868335478 proquest_journals_1858320824 crossref_primary_10_3390_geosciences6040056 crossref_citationtrail_10_3390_geosciences6040056 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-12-01 |
PublicationDateYYYYMMDD | 2016-12-01 |
PublicationDate_xml | – month: 12 year: 2016 text: 2016-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Geosciences (Basel) |
PublicationYear | 2016 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Du (ref_7) 2011; 49 Gao (ref_9) 2014; 8 Molero (ref_12) 2013; 6 ref_13 Huck (ref_5) 2010; 48 Guo (ref_8) 2004; 7 ref_11 Stein (ref_1) 2002; 19 ref_10 Kwon (ref_14) 2003; 42 Banerjee (ref_2) 2006; 44 Billor (ref_6) 2000; 34 ref_15 Khazai (ref_16) 2011; 8 Kwon (ref_3) 2005; 43 Reed (ref_4) 1990; 38 |
References_xml | – volume: 49 start-page: 1578 year: 2011 ident: ref_7 article-title: Random-selection-based anomaly detector for hyperspectral imagery publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2010.2081677 – ident: ref_10 doi: 10.1109/WHISPERS.2010.5594914 – ident: ref_13 doi: 10.1117/12.919268 – ident: ref_11 doi: 10.1117/12.816917 – volume: 38 start-page: 1760 year: 1990 ident: ref_4 article-title: Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution publication-title: IEEE Trans. Acoust. Speech Signal Process. doi: 10.1109/29.60107 – volume: 19 start-page: 58 year: 2002 ident: ref_1 article-title: Anomaly detection from hyperspectral imagery publication-title: IEEE Signal Process. Mag. doi: 10.1109/79.974730 – volume: 8 start-page: 646 year: 2011 ident: ref_16 article-title: Anomaly detection in hyperspectral images based on an adaptive support vector method publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2010.2098842 – volume: 7 start-page: 2351 year: 2004 ident: ref_8 article-title: Weighted-RXD and Linear Filter-Based RXD: Improving Background Statistics Estimation for Anomaly Detection in Hyperspectral Imagery publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2014.2302446 – volume: 42 start-page: 3342 year: 2003 ident: ref_14 article-title: Adaptive anomaly detection using subspace separation for hyperspectral imagery publication-title: Opt. Eng. doi: 10.1117/1.1614265 – volume: 44 start-page: 2282 year: 2006 ident: ref_2 article-title: A support vector method for anomaly detection in hyperspectral imagery publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2006.873019 – ident: ref_15 doi: 10.1117/1.JRS.6.061503 – volume: 48 start-page: 3980 year: 2010 ident: ref_5 article-title: Asymptotically CFAR-unsupervised target detection and discrimination in hyperspectral images with anomalous-component pursuit publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 6 start-page: 801 year: 2013 ident: ref_12 article-title: Analysis and optimizations of global and local versions of the RX algorithm for anomaly detection in hyperspectral data publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2013.2238609 – volume: 34 start-page: 279 year: 2000 ident: ref_6 article-title: BACON: Blocked adaptive computationally efficient outlier nominators publication-title: Comput. Stat. Data Anal. doi: 10.1016/S0167-9473(99)00101-2 – volume: 8 start-page: 083538 year: 2014 ident: ref_9 article-title: Probabilistic anomaly detector for remotely sensed hyperspectral data publication-title: J. Appl. Remote Sens. doi: 10.1117/1.JRS.8.083538 – volume: 43 start-page: 388 year: 2005 ident: ref_3 article-title: Kernel RX-algorithm: A nonlinear anomaly detector for hyperspectral imagery publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2004.841487 |
SSID | ssj0000913834 |
Score | 2.1164918 |
Snippet | Hyperspectral remote sensing imagery contains much more information in the spectral domain than does multispectral imagery. The consecutive and abundant... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 56 |
SubjectTerms | Algorithms Anomalies anomaly detection AVIRIS Bacon Computation Data Detection Earth science fire mapping Fires hyperspectral imagery Image detection Imagery Imaging techniques Infrared imaging Infrared spectrometers Remote sensing Sensors |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60RfAiPjFaJYI3CU2aTbLBg1htrYJFqoXewmaz6aVNapse-u-dSbZVKHhNdgOZmd35vt15ANzK0E5cPxAWjzmzmJKhJZKwRd3c0eGjwww9ShR-7_u9IXsbeSN94LbQYZXrPbHcqJNc0hl5E_0KGh86LPYw-7aoaxTdruoWGrtQxy2Yo53X253-x2BzykJVL7nLqmwZF_l9c6x0kUi18MmAqXP1H49UFu7f2pdLZ9M9hAONEs3HSq1HsKOyY9h7Kbvwrk7gHkn7VExW5rMqylCqzKQ0EbOHpLLKnZzj7IFCNSjzk0LUs7H5OqVyFatTGHY7X089S3dBsCRzeGHxVoK0g0kqayPClkyDMHWECBwlBFcIkGKXuYmdeDy17ViW4qXgJeR5TmwL7p5BLcszdQ4moiNEcMJ3EoUsCHUSSO4pzwtSHiOxUQY4a0lEUpcIp04VkwipAkkv2paeAXebObOqQMa_o9sk4M1IKm5dPsjn40ivlQgRjI__xgViKaZSJigxDGmqlwqO-Ega0FirJ9IrbhH92ocBN5vXuFboAkRkKl_SGJ8-xQJ-8f8nLmEfgZFfha00oFbMl-oKwUcRX2sL-wGowdl2 priority: 102 providerName: ProQuest |
Title | Anomaly Detection from Hyperspectral Remote Sensing Imagery |
URI | https://www.proquest.com/docview/1858320824 https://www.proquest.com/docview/1868335478 https://doaj.org/article/9106aa88a8934ef4a83351075fa8635c |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF2kIngRPzFaSwRvEpo0m2QXT1Zbq2CRaqG3sNlMemlTadND_70zm7QUCnrxmuyG5c3uzjwy84axOy3d1A8j5YhEcIeDlo5KZYu6uaPDR4cpAyoUfu-HvSF_GwWjrVZflBNWygOXwDXRnYVKCaHQsXLIuKIqIeQsQaYEOktNt68r3S0yZe5g6SH14mWVjI-8vjmGShwSFiFtXOpYveWJjGD_zn1snEz3mB1V0aH9WK7qhO1BfsoOXkz33dUZe0CyPlWTlf0MhUmhym0qD7F7SCbLmsk5zh4Awg_2J6Wm52P7dUoyFatzNux2vp56TtX9wNHcE4UjWinSDa5JzkbJls4imXlKRR4gHICBUeJzP3XTQGSum2gDKyUtIb_zEhdhumC1fJbDJbMxKsLITYVeCsh-0BaRFgEEQZSJBAkNWMxbIxHrShqcOlRMYqQIhF68i57F7jdzvkthjF9HtwngzUgStTYP0NRxZer4L1NbrL42T1ydtEWM8QZeShjIcIvdbl7jGaEfHyqH2ZLGhPQpHomr_1jHNTvEsCksk1rqrFbMl3CDoUmRNNh-u9P_GDTMbvwBADPhOg |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5BEKKXihYQaQO4EpyQFT_W9loVQlCgCY8IhUTiZtbrcS5g0zxU5U_1NzLjR4qExI2rvbuyZ2d3vtmdmQ9gX4dW4vqBMmUshSlQh6ZKQofZ3Mngk8EMPU4Uvun5naG4vPful-BfnQvDYZX1nlhs1Emu-Yy8TXaFlI8Mljh-_mMyaxTfrtYUGqVaXOH8L7lsk6PuGc3vgeNcnA9-dcyKVcDUwpZTUzoJwXihuUyMCh2dBmFqKxXYqJREAhyxK9zESjyZWlasi8_lYCDym-zYUtKlcZdhRXBGawNWTs97t_3FqQ5X2ZSuKLNzXDe02iOsilLixOcFw0zZryxgQRTwxg4Uxu1iHT5XqNQ4KdXoCyxh9hVWfxesv_MN-HmS5U_qcW6c4bQI3coMTksxOuTElrmaY-rdR5p2NO44JD4bGd0nLo8x34Thh8hnCxpZnuE2GITGCDEq306QvC7SgUBLDz0vSGVMjhQ2wa4lEemqJDkzYzxG5Jqw9KK30mvC4aLPc1mQ493WpyzgRUsupl08yMejqFqbESEmn_5NKsJuAlOhOBGN3GIvVZLwmG5Cq56eqFrhk-i_Pjbhx-I1rU2-cFEZ5jNu4_NQIpDf3h9iD9Y6g5vr6Lrbu_oOnwiU-WXITAsa0_EMdwj4TOPdStsMePhoBX8BxaQU0A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB6xRay4IF6rLc8gwWkVNQ8ncYQQAkppga0QLBK3rONMeoEE2iLUv8avYyaPgoTEjWtiW8n4s-cbex4Auzq0EtcPlCljKUyBOjRVEjpczZ0UPinM0ONA4b99v3srzu-8uxl4rWNh2K2y3hOLjTrJNZ-Rt0ivEPhIYYlWWrlFXLU7h49PJleQ4pvWupxGCZELnLyQ-TY66LVprvccp3P676RrVhUGTC1sOTalkxClF5pTxqjQ0WkQprZSgY1KSSTyEbvCTazEk6llxbr4dHYMIhvKji0lXRr3B8wGpBVFA2aPT_tX19MTHs64KV1RRuq4bmi1BlglqMSRz4uHq2Z_0IZF0YBPOqFQdJ1FWKgYqnFUQmoJZjBbhrmzogLwZAX2j7L8Qd1PjDaOCzeuzOAQFaNLBm0Ztzmk3tdIEEDjht3js4HRe-BUGZNVuP0W-fyCRpZn-BsMYmbEHpVvJ0gWGOEh0NJDzwtSGZNRhU2wa0lEukpPzlUy7iMyU1h60WfpNeHPtM9jmZzjy9bHLOBpS06sXTzIh4OoWqcRsSef_k0q4nECU6E4KI1MZC9VkriZbsJGPT1RtdpH0Ts2m7AzfU3rlC9fVIb5M7fxeSgRyLWvh9iGnwTs6LLXv1iHeeJnfuk9swGN8fAZN4kDjeOtCmwG_P9ufL8BZZEY_A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anomaly+Detection+from+Hyperspectral+Remote+Sensing+Imagery&rft.jtitle=Geosciences+%28Basel%29&rft.au=Guo%2C+Qiandong&rft.au=Pu%2C+Ruiliang&rft.au=Cheng%2C+Jun&rft.date=2016-12-01&rft.issn=2076-3263&rft.eissn=2076-3263&rft.volume=6&rft.issue=4&rft.spage=56&rft_id=info:doi/10.3390%2Fgeosciences6040056&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_geosciences6040056 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3263&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3263&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3263&client=summon |