Epithelial–Mesenchymal Transition Induced by TNF-α Requires NF-κB–Mediated Transcriptional Upregulation of Twist1

Proinflammatory cytokines produced in the tumor microenvironment facilitate tumor development and metastatic progression. In particular, TNF-α promotes cancer invasion and angiogenesis associated with epithelial–mesenchymal transition (EMT); however, the mechanisms underlying its induction of EMT in...

Full description

Saved in:
Bibliographic Details
Published inCancer research (Chicago, Ill.) Vol. 72; no. 5; pp. 1290 - 1300
Main Authors Li, Chia-Wei, Xia, Weiya, Huo, Longfei, Lim, Seung-Oe, Wu, Yun, Hsu, Jennifer L., Chao, Chi-Hong, Yamaguchi, Hirohito, Yang, Neng-Kai, Ding, Qingqing, Wang, Yan, Lai, Yun-Ju, LaBaff, Adam M., Wu, Ting-Jung, Lin, Been-Ren, Yang, Muh-Hwa, Hortobagyi, Gabriel N., Hung, Mien-Chie
Format Journal Article
LanguageEnglish
Published Philadelphia, PA American Association for Cancer Research 01.03.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Proinflammatory cytokines produced in the tumor microenvironment facilitate tumor development and metastatic progression. In particular, TNF-α promotes cancer invasion and angiogenesis associated with epithelial–mesenchymal transition (EMT); however, the mechanisms underlying its induction of EMT in cancer cells remain unclear. Here we show that EMT and cancer stemness properties induced by chronic treatment with TNF-α are mediated by the upregulation of the transcriptional repressor Twist1. Exposure to TNF-α rapidly induced Twist1 mRNA and protein expression in normal breast epithelial and breast cancer cells. Both IKK-β and NF-κB p65 were required for TNF-α–induced expression of Twist1, suggesting the involvement of canonical NF-κB signaling. In support of this likelihood, we defined a functional NF-κB–binding site in the Twist1 promoter, and overexpression of p65 was sufficient to induce transcriptional upregulation of Twist1 along with EMT in mammary epithelial cells. Conversely, suppressing Twist1 expression abrogated p65-induced cell migration, invasion, EMT, and stemness properties, establishing that Twist1 is required for NF-κB to induce these aggressive phenotypes in breast cancer cells. Taken together, our results establish a signaling axis through which the tumor microenvironment elicits Twist1 expression to promote cancer metastasis. We suggest that targeting NF-κB–mediated Twist1 upregulation may offer an effective a therapeutic strategy for breast cancer treatment. Cancer Res; 72(5); 1290–300. ©2012 AACR.
AbstractList Proinflammatory cytokines produced in the tumor microenvironment facilitate tumor development and metastatic progression. In particular, TNF- alpha promotes cancer invasion and angiogenesis associated with epithelial-mesenchymal transition (EMT); however, the mechanisms underlying its induction of EMT in cancer cells remain unclear. Here we show that EMT and cancer stemness properties induced by chronic treatment with TNF- alpha are mediated by the upregulation of the transcriptional repressor Twist1. Exposure to TNF- alpha rapidly induced Twist1 mRNA and protein expression in normal breast epithelial and breast cancer cells. Both IKK- beta and NF- Kappa B p65 were required for TNF- alpha -induced expression of Twist1, suggesting the involvement of canonical NF- Kappa B signaling. In support of this likelihood, we defined a functional NF- Kappa B-binding site in the Twist1 promoter, and overexpression of p65 was sufficient to induce transcriptional upregulation of Twist1 along with EMT in mammary epithelial cells. Conversely, suppressing Twist1 expression abrogated p65-induced cell migration, invasion, EMT, and stemness properties, establishing that Twist1 is required for NF- Kappa B to induce these aggressive phenotypes in breast cancer cells. Taken together, our results establish a signaling axis through which the tumor microenvironment elicits Twist1 expression to promote cancer metastasis. We suggest that targeting NF- Kappa B-mediated Twist1 upregulation may offer an effective a therapeutic strategy for breast cancer treatment. Cancer Res; 72(5); 1290-300. [copy]2012 AACR.
Proinflammatory cytokines produced in the tumor microenvironment facilitate tumor development and metastatic progression. In particular, TNF-α promotes cancer invasion and angiogenesis associated with epithelial-mesenchymal transition (EMT); however, the mechanisms underlying its induction of EMT in cancer cells remain unclear. Here we show that EMT and cancer stemness properties induced by chronic treatment with TNF-α are mediated by the upregulation of the transcriptional repressor Twist1. Exposure to TNF-α rapidly induced Twist1 mRNA and protein expression in normal breast epithelial and breast cancer cells. Both IKK-β and NF-κB p65 were required for TNF-α-induced expression of Twist1, suggesting the involvement of canonical NF-κB signaling. In support of this likelihood, we defined a functional NF-κB-binding site in the Twist1 promoter, and overexpression of p65 was sufficient to induce transcriptional upregulation of Twist1 along with EMT in mammary epithelial cells. Conversely, suppressing Twist1 expression abrogated p65-induced cell migration, invasion, EMT, and stemness properties, establishing that Twist1 is required for NF-κB to induce these aggressive phenotypes in breast cancer cells. Taken together, our results establish a signaling axis through which the tumor microenvironment elicits Twist1 expression to promote cancer metastasis. We suggest that targeting NF-κB-mediated Twist1 upregulation may offer an effective a therapeutic strategy for breast cancer treatment.
Proinflammatory cytokines produced in the tumor microenvironment facilitate tumor development and metastatic progression. In particular, TNF-α promotes cancer invasion and angiogenesis associated with epithelial-mesenchymal transition (EMT); however, the mechanisms underlying its induction of EMT in cancer cells remain unclear. Here we show that EMT and cancer stemness properties induced by chronic treatment with TNF-α are mediated by the upregulation of the transcriptional repressor Twist1. Exposure to TNF-α rapidly induced Twist1 mRNA and protein expression in normal breast epithelial and breast cancer cells. Both IKK-β and NF-κB p65 were required for TNF-α-induced expression of Twist1, suggesting the involvement of canonical NF-κB signaling. In support of this likelihood, we defined a functional NF-κB-binding site in the Twist1 promoter, and overexpression of p65 was sufficient to induce transcriptional upregulation of Twist1 along with EMT in mammary epithelial cells. Conversely, suppressing Twist1 expression abrogated p65-induced cell migration, invasion, EMT, and stemness properties, establishing that Twist1 is required for NF-κB to induce these aggressive phenotypes in breast cancer cells. Taken together, our results establish a signaling axis through which the tumor microenvironment elicits Twist1 expression to promote cancer metastasis. We suggest that targeting NF-κB-mediated Twist1 upregulation may offer an effective a therapeutic strategy for breast cancer treatment.Proinflammatory cytokines produced in the tumor microenvironment facilitate tumor development and metastatic progression. In particular, TNF-α promotes cancer invasion and angiogenesis associated with epithelial-mesenchymal transition (EMT); however, the mechanisms underlying its induction of EMT in cancer cells remain unclear. Here we show that EMT and cancer stemness properties induced by chronic treatment with TNF-α are mediated by the upregulation of the transcriptional repressor Twist1. Exposure to TNF-α rapidly induced Twist1 mRNA and protein expression in normal breast epithelial and breast cancer cells. Both IKK-β and NF-κB p65 were required for TNF-α-induced expression of Twist1, suggesting the involvement of canonical NF-κB signaling. In support of this likelihood, we defined a functional NF-κB-binding site in the Twist1 promoter, and overexpression of p65 was sufficient to induce transcriptional upregulation of Twist1 along with EMT in mammary epithelial cells. Conversely, suppressing Twist1 expression abrogated p65-induced cell migration, invasion, EMT, and stemness properties, establishing that Twist1 is required for NF-κB to induce these aggressive phenotypes in breast cancer cells. Taken together, our results establish a signaling axis through which the tumor microenvironment elicits Twist1 expression to promote cancer metastasis. We suggest that targeting NF-κB-mediated Twist1 upregulation may offer an effective a therapeutic strategy for breast cancer treatment.
Proinflammatory cytokines produced in the tumor microenvironment facilitate tumor development and metastatic progression. In particular, TNF-α promotes cancer invasion and angiogenesis associated with epithelial–mesenchymal transition (EMT); however, the mechanisms underlying its induction of EMT in cancer cells remain unclear. Here we show that EMT and cancer stemness properties induced by chronic treatment with TNF-α are mediated by the upregulation of the transcriptional repressor Twist1. Exposure to TNF-α rapidly induced Twist1 mRNA and protein expression in normal breast epithelial and breast cancer cells. Both IKK-β and NF-κB p65 were required for TNF-α–induced expression of Twist1, suggesting the involvement of canonical NF-κB signaling. In support of this likelihood, we defined a functional NF-κB–binding site in the Twist1 promoter, and overexpression of p65 was sufficient to induce transcriptional upregulation of Twist1 along with EMT in mammary epithelial cells. Conversely, suppressing Twist1 expression abrogated p65-induced cell migration, invasion, EMT, and stemness properties, establishing that Twist1 is required for NF-κB to induce these aggressive phenotypes in breast cancer cells. Taken together, our results establish a signaling axis through which the tumor microenvironment elicits Twist1 expression to promote cancer metastasis. We suggest that targeting NF-κB–mediated Twist1 upregulation may offer an effective a therapeutic strategy for breast cancer treatment. Cancer Res; 72(5); 1290–300. ©2012 AACR.
Author Lim, Seung-Oe
Wu, Yun
Yamaguchi, Hirohito
Wu, Ting-Jung
Ding, Qingqing
Hung, Mien-Chie
Yang, Neng-Kai
Huo, Longfei
Lai, Yun-Ju
Lin, Been-Ren
Hortobagyi, Gabriel N.
Wang, Yan
Hsu, Jennifer L.
Li, Chia-Wei
Xia, Weiya
LaBaff, Adam M.
Yang, Muh-Hwa
Chao, Chi-Hong
Author_xml – sequence: 1
  givenname: Chia-Wei
  surname: Li
  fullname: Li, Chia-Wei
– sequence: 2
  givenname: Weiya
  surname: Xia
  fullname: Xia, Weiya
– sequence: 3
  givenname: Longfei
  surname: Huo
  fullname: Huo, Longfei
– sequence: 4
  givenname: Seung-Oe
  surname: Lim
  fullname: Lim, Seung-Oe
– sequence: 5
  givenname: Yun
  surname: Wu
  fullname: Wu, Yun
– sequence: 6
  givenname: Jennifer L.
  surname: Hsu
  fullname: Hsu, Jennifer L.
– sequence: 7
  givenname: Chi-Hong
  surname: Chao
  fullname: Chao, Chi-Hong
– sequence: 8
  givenname: Hirohito
  surname: Yamaguchi
  fullname: Yamaguchi, Hirohito
– sequence: 9
  givenname: Neng-Kai
  surname: Yang
  fullname: Yang, Neng-Kai
– sequence: 10
  givenname: Qingqing
  surname: Ding
  fullname: Ding, Qingqing
– sequence: 11
  givenname: Yan
  surname: Wang
  fullname: Wang, Yan
– sequence: 12
  givenname: Yun-Ju
  surname: Lai
  fullname: Lai, Yun-Ju
– sequence: 13
  givenname: Adam M.
  surname: LaBaff
  fullname: LaBaff, Adam M.
– sequence: 14
  givenname: Ting-Jung
  surname: Wu
  fullname: Wu, Ting-Jung
– sequence: 15
  givenname: Been-Ren
  surname: Lin
  fullname: Lin, Been-Ren
– sequence: 16
  givenname: Muh-Hwa
  surname: Yang
  fullname: Yang, Muh-Hwa
– sequence: 17
  givenname: Gabriel N.
  surname: Hortobagyi
  fullname: Hortobagyi, Gabriel N.
– sequence: 18
  givenname: Mien-Chie
  surname: Hung
  fullname: Hung, Mien-Chie
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25863056$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22253230$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1O3DAYhq2Kqgw_RyjKpoJNwL-Jo66GEVAkSiU0rC3H-QKuPEmwE6HZ9Q49CVsOwSE4SZ1hoBKLdmV91vO8i_fdQhtN2wBCnwk-JETII4yxTAXP6eFsepkSkjJC2Qc0IYLJNOdcbKDJG7OJtkL4GU9BsPiENimlglGGJ-j-pLP9LTir3fOv398hQGNulwvtkrnXTbC9bZvkvKkGA1VSLpP55Wn69JBcwd1gPYRkPB-PV2pldR-hlWe87UY15lx3Hm4Gp1dJbZ3M723oyQ76WGsXYHf9bqPr05P57Ft68ePsfDa9SA0nsk8l5VlhRFXlHEOBaUYFlKC1yUFUmRSFLCnULKPAckmzupQ5EI15IWqm86Ji22j_Jbfz7d0AoVcLGww4pxtoh6CKgpGIMx7Jg3-SJJYpGeN8RPfW6FAuoFKdtwvtl-q11gh8WQM6GO3qWImx4S8nZMawyCInXjjj2xA81G8IwWqcWY0TqnFCFWeOX2qcOXpf33nG9quGe6-t-4_9Bzqxr9I
CODEN CNREA8
CitedBy_id crossref_primary_10_1038_s41598_017_00916_z
crossref_primary_10_1371_journal_pone_0137229
crossref_primary_10_1158_0008_5472_CAN_18_2502
crossref_primary_10_1158_0008_5472_CAN_18_0562
crossref_primary_10_1371_journal_pone_0247550
crossref_primary_10_3892_ijmm_2017_3320
crossref_primary_10_1016_j_prp_2025_155873
crossref_primary_10_1016_j_cbi_2013_01_005
crossref_primary_10_3390_ijms24010759
crossref_primary_10_1016_j_biopha_2023_114822
crossref_primary_10_1080_2162402X_2024_2393442
crossref_primary_10_1158_1078_0432_CCR_17_1963
crossref_primary_10_1007_s13402_021_00609_w
crossref_primary_10_1038_s41598_024_52204_2
crossref_primary_10_1186_1472_6882_14_197
crossref_primary_10_1186_s40170_016_0160_x
crossref_primary_10_1038_s41388_018_0618_0
crossref_primary_10_1038_s41419_020_2415_2
crossref_primary_10_1038_srep12520
crossref_primary_10_3390_ijms22095019
crossref_primary_10_1016_j_bcp_2018_10_031
crossref_primary_10_1016_j_cyto_2018_03_020
crossref_primary_10_1038_onc_2016_394
crossref_primary_10_1002_mco2_347
crossref_primary_10_1016_j_canlet_2016_02_015
crossref_primary_10_1038_s41467_017_01781_0
crossref_primary_10_1007_s12032_017_0980_8
crossref_primary_10_1080_2162402X_2017_1388485
crossref_primary_10_3390_cells5020016
crossref_primary_10_1007_s13402_015_0236_6
crossref_primary_10_1002_mc_23066
crossref_primary_10_1016_j_jare_2024_07_030
crossref_primary_10_1016_j_fertnstert_2013_10_032
crossref_primary_10_1038_s42003_020_01200_z
crossref_primary_10_1109_ACCESS_2023_3283291
crossref_primary_10_1016_j_bbrc_2018_04_101
crossref_primary_10_1111_jcmm_18064
crossref_primary_10_1038_s41598_019_44835_7
crossref_primary_10_1016_j_bbamcr_2019_118537
crossref_primary_10_18632_oncotarget_4484
crossref_primary_10_3349_ymj_2020_61_9_816
crossref_primary_10_3389_fimmu_2021_656908
crossref_primary_10_3892_or_2016_5319
crossref_primary_10_1016_j_bbrep_2015_11_007
crossref_primary_10_1016_j_rvsc_2014_02_005
crossref_primary_10_1017_erm_2017_6
crossref_primary_10_1177_0300060515581671
crossref_primary_10_1021_acs_analchem_4c05947
crossref_primary_10_3892_or_2016_5317
crossref_primary_10_1016_j_rpor_2020_04_004
crossref_primary_10_3892_ijmm_2019_4319
crossref_primary_10_1186_1939_4551_7_13
crossref_primary_10_1111_imm_13486
crossref_primary_10_1038_s41598_017_08537_2
crossref_primary_10_18632_oncotarget_7521
crossref_primary_10_1007_s13277_014_2899_4
crossref_primary_10_3389_fcell_2021_662754
crossref_primary_10_1038_bjc_2014_141
crossref_primary_10_1016_j_bbrc_2013_06_115
crossref_primary_10_1038_s41419_018_1225_2
crossref_primary_10_1111_his_12309
crossref_primary_10_1111_biom_12893
crossref_primary_10_1089_scd_2016_0308
crossref_primary_10_1016_j_phymed_2015_03_007
crossref_primary_10_1007_s10517_016_3314_5
crossref_primary_10_1371_journal_pone_0070334
crossref_primary_10_1007_s10911_023_09553_x
crossref_primary_10_1158_0008_5472_CAN_15_1941
crossref_primary_10_1007_s12020_015_0714_7
crossref_primary_10_3390_cancers15051495
crossref_primary_10_1080_19336918_2019_1568139
crossref_primary_10_1016_j_cyto_2020_155066
crossref_primary_10_1371_journal_pone_0066070
crossref_primary_10_1080_19336950_2023_2208928
crossref_primary_10_1016_j_jtauto_2021_100096
crossref_primary_10_3892_or_2016_4927
crossref_primary_10_1016_j_pvr_2016_11_003
crossref_primary_10_1002_jcb_24896
crossref_primary_10_1186_s13046_019_1196_x
crossref_primary_10_18632_oncotarget_24917
crossref_primary_10_1002_ijc_29539
crossref_primary_10_1038_s43018_020_00145_w
crossref_primary_10_1007_s12079_019_00508_8
crossref_primary_10_3389_fphar_2021_639256
crossref_primary_10_3390_nu16050708
crossref_primary_10_1016_j_bbcan_2022_188800
crossref_primary_10_1007_s13277_016_5123_x
crossref_primary_10_3390_cells14020132
crossref_primary_10_3390_ijms22094490
crossref_primary_10_1002_ijc_28572
crossref_primary_10_1186_s13046_022_02484_1
crossref_primary_10_3389_fmicb_2023_1142283
crossref_primary_10_1016_j_neo_2016_03_003
crossref_primary_10_1016_j_prostaglandins_2014_11_003
crossref_primary_10_1038_s41418_019_0289_6
crossref_primary_10_1186_s12885_022_09330_9
crossref_primary_10_1186_1472_6882_14_153
crossref_primary_10_1016_j_yexcr_2020_111932
crossref_primary_10_18632_oncotarget_15449
crossref_primary_10_1158_1078_0432_CCR_18_3427
crossref_primary_10_1186_s13046_017_0574_5
crossref_primary_10_3390_cancers16040807
crossref_primary_10_1080_20013078_2020_1769373
crossref_primary_10_1016_j_suronc_2017_11_008
crossref_primary_10_1186_s12929_018_0440_6
crossref_primary_10_5761_atcs_cr_13_00202
crossref_primary_10_3390_jcm5070065
crossref_primary_10_3389_fimmu_2021_810286
crossref_primary_10_1016_j_ccell_2014_09_002
crossref_primary_10_1038_s41598_018_27810_6
crossref_primary_10_1016_j_neuint_2021_105081
crossref_primary_10_1038_cdd_2017_70
crossref_primary_10_1002_mog2_70005
crossref_primary_10_3390_foods10061195
crossref_primary_10_1080_01635581_2019_1577979
crossref_primary_10_1158_0008_5472_CAN_17_1686
crossref_primary_10_3390_cells8101143
crossref_primary_10_3390_vetsci10010019
crossref_primary_10_3390_vaccines11010055
crossref_primary_10_3892_ijo_2023_5553
crossref_primary_10_1186_1471_2407_13_317
crossref_primary_10_1158_1078_0432_CCR_15_0780
crossref_primary_10_1002_mc_22335
crossref_primary_10_1016_j_phrs_2016_10_022
crossref_primary_10_18632_oncotarget_23645
crossref_primary_10_3389_fonc_2020_614468
crossref_primary_10_1016_j_jinorgbio_2016_04_014
crossref_primary_10_3389_fonc_2024_1431418
crossref_primary_10_1038_s41388_019_1118_6
crossref_primary_10_3390_cells14020113
crossref_primary_10_1016_j_yexcr_2013_05_031
crossref_primary_10_1038_s41540_024_00422_9
crossref_primary_10_3390_ijms21165744
crossref_primary_10_1186_1756_9966_32_62
crossref_primary_10_1172_JCI121486
crossref_primary_10_1158_1541_7786_MCR_21_0208
crossref_primary_10_1242_jcs_120907
crossref_primary_10_3390_ijms22083935
crossref_primary_10_1016_j_ejso_2015_12_008
crossref_primary_10_1016_j_omtn_2017_03_007
crossref_primary_10_3390_cancers15123152
crossref_primary_10_1016_j_genrep_2023_101848
crossref_primary_10_1021_acs_jafc_1c05585
crossref_primary_10_1016_j_bbcan_2020_188475
crossref_primary_10_1002_jbt_21735
crossref_primary_10_1002_mc_22471
crossref_primary_10_1186_s40478_021_01151_4
crossref_primary_10_1007_s10549_019_05301_0
crossref_primary_10_1016_j_ccell_2016_10_010
crossref_primary_10_3390_cancers6020860
crossref_primary_10_1111_pcmr_12139
crossref_primary_10_3390_jcm8081253
crossref_primary_10_1080_2162402X_2014_1000083
crossref_primary_10_4251_wjgo_v12_i3_301
crossref_primary_10_1007_s12026_013_8434_7
crossref_primary_10_1016_j_cels_2022_10_004
crossref_primary_10_3390_cells10082042
crossref_primary_10_1194_jlr_M084202
crossref_primary_10_18632_oncotarget_11528
crossref_primary_10_3390_cancers15204974
crossref_primary_10_3390_ijms24044002
crossref_primary_10_1038_s41388_019_0848_9
crossref_primary_10_3390_ijms19123890
crossref_primary_10_1016_j_toxicon_2016_01_051
crossref_primary_10_1016_j_trecan_2021_10_006
crossref_primary_10_1021_acsabm_0c00970
crossref_primary_10_1002_dvdy_736
crossref_primary_10_1080_02772248_2015_1137099
crossref_primary_10_3390_cancers13184510
crossref_primary_10_1002_mc_22358
crossref_primary_10_3389_fimmu_2019_01818
crossref_primary_10_1007_s13402_019_00489_1
crossref_primary_10_1111_febs_16021
crossref_primary_10_3389_fphar_2022_1038073
crossref_primary_10_1111_1440_1681_13288
crossref_primary_10_3389_fragi_2022_935220
crossref_primary_10_1002_mc_22240
crossref_primary_10_1007_s10549_013_2737_1
crossref_primary_10_3390_cancers13040687
crossref_primary_10_3892_ijo_2015_3256
crossref_primary_10_1016_j_ejphar_2013_05_046
crossref_primary_10_1016_j_canlet_2014_12_012
crossref_primary_10_1210_endocr_bqaa152
crossref_primary_10_1016_j_stemcr_2017_11_010
crossref_primary_10_1093_sleep_zsac279
crossref_primary_10_3389_fonc_2021_631469
crossref_primary_10_1186_s13020_023_00797_7
crossref_primary_10_1016_j_tranon_2023_101733
crossref_primary_10_3390_ijms19082385
crossref_primary_10_1016_j_chemphyslip_2017_05_012
crossref_primary_10_1016_j_fct_2015_01_012
crossref_primary_10_1165_rcmb_2015_0195OC
crossref_primary_10_1158_1078_0432_CCR_16_1955
crossref_primary_10_1016_j_canlet_2015_06_019
crossref_primary_10_1158_1078_0432_CCR_18_3900
crossref_primary_10_1016_j_jss_2012_07_066
crossref_primary_10_3390_cancers6020969
crossref_primary_10_1007_s11010_016_2818_7
crossref_primary_10_1371_journal_pone_0056664
crossref_primary_10_1593_neo_131688
crossref_primary_10_1002_med_21948
crossref_primary_10_1016_j_mce_2013_06_003
crossref_primary_10_3892_ijo_2013_1852
crossref_primary_10_3892_ijo_2015_3245
crossref_primary_10_3389_fonc_2022_910678
crossref_primary_10_3390_biomedicines8110516
crossref_primary_10_3390_cimb45050251
crossref_primary_10_1038_s41392_024_01757_9
crossref_primary_10_1186_s13048_016_0258_3
crossref_primary_10_1016_j_bbrc_2014_11_014
crossref_primary_10_1186_s12903_024_04040_z
crossref_primary_10_3390_ijms25168972
crossref_primary_10_1136_jitc_2022_004832
crossref_primary_10_3892_or_2013_2841
crossref_primary_10_1186_s13058_015_0531_1
crossref_primary_10_1007_s13402_017_0341_9
crossref_primary_10_3390_biology11101481
crossref_primary_10_3390_cells7090125
crossref_primary_10_2147_CMAR_S245283
crossref_primary_10_1007_s12272_024_01497_y
crossref_primary_10_1016_j_canlet_2020_05_012
crossref_primary_10_1016_j_ccell_2018_01_009
crossref_primary_10_3390_cancers16213572
crossref_primary_10_1158_1078_0432_CCR_13_3173
crossref_primary_10_1158_1535_7163_MCT_17_1261
crossref_primary_10_1002_tox_23785
crossref_primary_10_1038_s41375_019_0674_7
crossref_primary_10_1101_gad_225334_113
crossref_primary_10_3389_fonc_2017_00145
crossref_primary_10_1152_ajplung_00224_2016
crossref_primary_10_1186_s13287_020_02113_8
crossref_primary_10_18632_oncotarget_14608
crossref_primary_10_3390_genes10120961
crossref_primary_10_3390_ijms19030844
crossref_primary_10_1016_j_semcancer_2012_05_004
crossref_primary_10_1158_1535_7163_MCT_12_0304
crossref_primary_10_1007_s11739_023_03281_0
crossref_primary_10_1158_0008_5472_CAN_12_2095
crossref_primary_10_1016_j_arr_2023_102115
crossref_primary_10_1038_srep18208
crossref_primary_10_1186_s12885_020_07228_y
crossref_primary_10_1093_carcin_bgt040
crossref_primary_10_3389_fonc_2020_00584
crossref_primary_10_1002_jcb_25219
crossref_primary_10_3389_fonc_2014_00358
crossref_primary_10_1186_s12943_015_0454_6
crossref_primary_10_1038_onc_2016_332
crossref_primary_10_1007_s10585_020_10021_7
crossref_primary_10_1080_19491034_2016_1150392
crossref_primary_10_1016_j_clinsp_2023_100276
crossref_primary_10_3390_ijms24021221
crossref_primary_10_1002_mc_23482
crossref_primary_10_3389_fmicb_2020_01301
crossref_primary_10_1007_s11010_021_04089_2
crossref_primary_10_1371_journal_pone_0069067
crossref_primary_10_1038_s41598_020_69907_x
crossref_primary_10_3390_jpm12081284
crossref_primary_10_1016_j_devcel_2024_05_007
crossref_primary_10_3390_nu11030704
crossref_primary_10_1016_j_molonc_2016_01_002
crossref_primary_10_1111_febs_14444
crossref_primary_10_18632_oncotarget_11454
crossref_primary_10_1016_j_adcanc_2022_100055
crossref_primary_10_3892_wasj_2025_330
crossref_primary_10_3390_biomedicines6010036
crossref_primary_10_1183_09031936_00100412
crossref_primary_10_1016_j_gpb_2017_06_002
crossref_primary_10_1007_s13277_015_4450_7
crossref_primary_10_1038_s41467_018_06268_0
crossref_primary_10_1083_jcb_201307066
crossref_primary_10_1002_ijc_30932
crossref_primary_10_1016_j_jcmgh_2023_08_001
crossref_primary_10_18632_oncotarget_3462
crossref_primary_10_1158_0008_5472_CAN_15_2926
crossref_primary_10_3390_cancers13174302
crossref_primary_10_3390_ijms23137437
crossref_primary_10_1007_s12195_021_00694_9
crossref_primary_10_1016_j_yexcr_2016_03_009
crossref_primary_10_1186_s12943_016_0576_5
crossref_primary_10_1038_s41467_018_04313_6
crossref_primary_10_1074_jbc_RA118_003662
crossref_primary_10_1016_j_bcp_2020_114152
crossref_primary_10_1155_2013_962038
crossref_primary_10_3892_or_2012_2191
crossref_primary_10_1038_bonekey_2015_75
crossref_primary_10_1158_1940_6207_CAPR_12_0431
crossref_primary_10_1016_j_oraloncology_2015_07_006
crossref_primary_10_1038_s41598_024_67587_5
crossref_primary_10_12677_tcm_2024_135159
crossref_primary_10_3390_cancers14030539
crossref_primary_10_1186_s12918_017_0393_5
crossref_primary_10_1016_j_plipres_2025_101330
crossref_primary_10_1371_journal_pgen_1005734
crossref_primary_10_3389_fonc_2018_00505
crossref_primary_10_3390_cancers6010211
crossref_primary_10_1038_oncsis_2017_85
crossref_primary_10_18632_oncotarget_2384
crossref_primary_10_1002_jcp_27222
crossref_primary_10_1016_j_cell_2023_02_020
crossref_primary_10_1007_s00262_014_1550_y
crossref_primary_10_1007_s12032_012_0305_x
crossref_primary_10_1016_j_bcp_2016_06_014
crossref_primary_10_3390_biology11020259
crossref_primary_10_1016_j_biopha_2022_113932
crossref_primary_10_1016_j_molimm_2017_12_011
crossref_primary_10_1002_jcb_27588
crossref_primary_10_1016_j_bbrc_2012_10_097
crossref_primary_10_1016_j_lungcan_2018_12_001
crossref_primary_10_1186_s13020_019_0257_6
crossref_primary_10_1016_j_ejca_2013_10_001
crossref_primary_10_3390_ijms22105086
crossref_primary_10_3892_or_2017_5369
crossref_primary_10_3389_fonc_2020_00554
crossref_primary_10_1038_s41598_020_64298_5
crossref_primary_10_18632_oncotarget_11232
crossref_primary_10_18632_oncotarget_8917
crossref_primary_10_3390_cells13110942
crossref_primary_10_1080_19336918_2017_1322253
crossref_primary_10_1002_cnr2_1291
crossref_primary_10_1016_S2213_2600_13_70159_0
crossref_primary_10_1155_2016_5285892
crossref_primary_10_3389_fonc_2022_911410
crossref_primary_10_1038_s41388_021_01708_6
crossref_primary_10_1093_jnci_djw209
crossref_primary_10_1007_s11010_020_04044_7
crossref_primary_10_1631_jzus_B1300264
crossref_primary_10_3390_ijms22094673
crossref_primary_10_1002_jcp_24832
crossref_primary_10_1007_s00262_021_02862_2
crossref_primary_10_1111_php_12758
crossref_primary_10_4252_wjsc_v5_i4_188
crossref_primary_10_1111_hel_12813
crossref_primary_10_1158_2326_6066_CIR_14_0112
crossref_primary_10_1242_jcs_259018
crossref_primary_10_1016_j_intimp_2013_03_034
crossref_primary_10_3892_or_2016_5024
crossref_primary_10_1007_s10735_021_09971_3
crossref_primary_10_1016_j_jare_2013_06_004
crossref_primary_10_3390_nu13072431
crossref_primary_10_1186_s12864_015_1707_x
crossref_primary_10_1016_j_ebiom_2018_12_047
crossref_primary_10_1038_s41598_017_02190_5
crossref_primary_10_3390_cancers10090287
crossref_primary_10_1016_j_cellimm_2015_11_007
crossref_primary_10_1038_onc_2013_39
crossref_primary_10_1080_2162402X_2017_1423170
crossref_primary_10_18632_oncotarget_9111
crossref_primary_10_4161_cc_26388
crossref_primary_10_1038_srep16578
crossref_primary_10_2217_nnm_2018_0379
crossref_primary_10_1016_j_omtn_2018_07_013
crossref_primary_10_1038_onc_2015_291
crossref_primary_10_1530_ERC_15_0218
Cites_doi 10.1172/JCI26322
10.1016/j.cell.2008.03.027
10.1016/S1535-6108(02)00154-X
10.1016/j.ccr.2009.03.016
10.1038/nri1703
10.1146/annurev.immunol.021908.132641
10.1136/jcp.2006.039099
10.1158/1078-0432.CCR-08-0123
10.1074/jbc.M707429200
10.1084/jem.193.4.417
10.1016/S0092-8674(04)00302-2
10.1186/1471-2407-9-240
10.1074/jbc.274.43.30353
10.1128/MCB.01219-06
10.1038/sj.bjc.6605530
10.1038/nrc822
10.1016/j.molcel.2007.02.019
10.1158/0008-5472.CAN-07-0575
10.1038/sj.cdd.4401744
10.1016/j.cell.2009.11.007
10.1158/0008-5472.CAN-04-3785
10.1016/j.cell.2004.06.006
10.1593/neo.04352
10.1016/j.humpath.2005.12.021
10.1083/jcb.200109037
10.1038/sj.onc.1209808
10.1016/j.ccr.2010.10.035
10.1593/neo.91084
10.1038/nrc2131
10.1016/S0092-8674(03)00002-3
10.1016/j.ceb.2005.08.001
10.1172/JCI200421358
10.1016/j.cell.2007.05.058
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright_xml – notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7TO
H94
7X8
DOI 10.1158/0008-5472.CAN-11-3123
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Oncogenes and Growth Factors Abstracts
AIDS and Cancer Research Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Oncogenes and Growth Factors Abstracts
AIDS and Cancer Research Abstracts
MEDLINE - Academic
DatabaseTitleList Oncogenes and Growth Factors Abstracts
MEDLINE
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1538-7445
EndPage 1300
ExternalDocumentID 22253230
25863056
10_1158_0008_5472_CAN_11_3123
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: CA16672
– fundername: NCI NIH HHS
  grantid: P30 CA016672
– fundername: NCI NIH HHS
  grantid: P50 CA116199
– fundername: NCI NIH HHS
  grantid: R01 CA109311
– fundername: NCI NIH HHS
  grantid: CA109311
– fundername: NCI NIH HHS
  grantid: CA09903
– fundername: NCI NIH HHS
  grantid: P01 CA099031
GroupedDBID ---
-ET
18M
29B
2WC
34G
39C
3O-
53G
5GY
5RE
5VS
6J9
AAFWJ
AAJMC
AAYXX
ABOCM
ACGFO
ACIWK
ACPRK
ACSVP
ADBBV
ADCOW
AENEX
AETEA
AFHIN
AFOSN
AFRAH
AFUMD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
CITATION
CS3
DIK
DU5
EBS
EJD
F5P
FRP
GX1
H13
IH2
KQ8
L7B
LSO
OK1
P0W
P2P
PQQKQ
RCR
RHI
RNS
SJN
TR2
UDS
W2D
W8F
WH7
WOQ
YKV
YZZ
.55
.GJ
8WZ
A6W
ADNWM
AFFNX
AI.
C1A
D0S
IQODW
J5H
MVM
OHT
VH1
WHG
X7M
XJT
ZCG
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
7TO
H94
7X8
ID FETCH-LOGICAL-c418t-82469c5dd740e902625ebeaac7e5d68598b2ef362e37826fb87e1a0495f3a79d3
ISSN 0008-5472
1538-7445
IngestDate Fri Jul 11 08:18:05 EDT 2025
Tue Aug 05 10:22:07 EDT 2025
Mon Jul 21 06:06:19 EDT 2025
Mon Jul 21 09:14:20 EDT 2025
Tue Jul 01 02:08:17 EDT 2025
Thu Apr 24 23:08:22 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Transcription factor NFκB
Epithelial mesenchymal transition
Transcription
Cell transformation
Tumor necrosis factor α
Cytokine
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c418t-82469c5dd740e902625ebeaac7e5d68598b2ef362e37826fb87e1a0495f3a79d3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3350107
PMID 22253230
PQID 1008833444
PQPubID 23462
PageCount 11
ParticipantIDs proquest_miscellaneous_993104934
proquest_miscellaneous_1008833444
pubmed_primary_22253230
pascalfrancis_primary_25863056
crossref_primary_10_1158_0008_5472_CAN_11_3123
crossref_citationtrail_10_1158_0008_5472_CAN_11_3123
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-03-01
PublicationDateYYYYMMDD 2012-03-01
PublicationDate_xml – month: 03
  year: 2012
  text: 2012-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Philadelphia, PA
PublicationPlace_xml – name: Philadelphia, PA
– name: United States
PublicationTitle Cancer research (Chicago, Ill.)
PublicationTitleAlternate Cancer Res
PublicationYear 2012
Publisher American Association for Cancer Research
Publisher_xml – name: American Association for Cancer Research
References Vesuna (2022061703493681200_bib28) 2009; 11
Karin (2022061703493681200_bib1) 2005; 5
Hu (2022061703493681200_bib23) 2004; 117
Yuen (2022061703493681200_bib10) 2007; 60
Huang (2022061703493681200_bib21) 2007; 26
Lee (2022061703493681200_bib13) 2008; 14
Cheng (2022061703493681200_bib32) 2008; 283
Huber (2022061703493681200_bib16) 2004; 114
Elias (2022061703493681200_bib12) 2005; 7
Thiery (2022061703493681200_bib31) 2009; 139
Wu (2022061703493681200_bib14) 2010; 102
Matsuo (2022061703493681200_bib11) 2009; 9
Vallabhapurapu (2022061703493681200_bib15) 2009; 27
Wu (2022061703493681200_bib18) 2009; 15
Kwok (2022061703493681200_bib8) 2005; 65
Thiery (2022061703493681200_bib4) 2002; 2
Kyo (2022061703493681200_bib9) 2006; 37
Luo (2022061703493681200_bib2) 2005; 115
Lo (2022061703493681200_bib24) 2007; 67
Sosic (2022061703493681200_bib33) 2003; 112
Janda (2022061703493681200_bib27) 2002; 156
Peinado (2022061703493681200_bib6) 2007; 7
Demontis (2022061703493681200_bib26) 2006; 13
Howe (2022061703493681200_bib34) 2003; 63
Chua (2022061703493681200_bib17) 2007; 26
Huber (2022061703493681200_bib5) 2005; 17
Kaisho (2022061703493681200_bib3) 2001; 193
Yang (2022061703493681200_bib7) 2004; 117
Deng (2022061703493681200_bib22) 2002; 2
Pham (2022061703493681200_bib19) 2007; 27
Sakurai (2022061703493681200_bib29) 1999; 274
Lee (2022061703493681200_bib20) 2007; 130
Chang (2022061703493681200_bib25) 2011; 19
Mani (2022061703493681200_bib30) 2008; 133
References_xml – volume: 115
  start-page: 2625
  year: 2005
  ident: 2022061703493681200_bib2
  article-title: IKK/NF-kappaB signaling: balancing life and death–a new approach to cancer therapy
  publication-title: J Clin Invest
  doi: 10.1172/JCI26322
– volume: 133
  start-page: 704
  year: 2008
  ident: 2022061703493681200_bib30
  article-title: The epithelial-mesenchymal transition generates cells with properties of stem cells
  publication-title: Cell
  doi: 10.1016/j.cell.2008.03.027
– volume: 2
  start-page: 323
  year: 2002
  ident: 2022061703493681200_bib22
  article-title: beta-catenin interacts with and inhibits NF-kappa B in human colon and breast cancer
  publication-title: Cancer Cell
  doi: 10.1016/S1535-6108(02)00154-X
– volume: 15
  start-page: 416
  year: 2009
  ident: 2022061703493681200_bib18
  article-title: Stabilization of snail by NF-kappaB is required for inflammation-induced cell migration and invasion
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2009.03.016
– volume: 63
  start-page: 1906
  year: 2003
  ident: 2022061703493681200_bib34
  article-title: Twist is up-regulated in response to Wnt1 and inhibits mouse mammary cell differentiation
  publication-title: Cancer Res
– volume: 5
  start-page: 749
  year: 2005
  ident: 2022061703493681200_bib1
  article-title: NF-kappaB: linking inflammation and immunity to cancer development and progression
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri1703
– volume: 27
  start-page: 693
  year: 2009
  ident: 2022061703493681200_bib15
  article-title: Regulation and function of NF-kappaB transcription factors in the immune system
  publication-title: Annu Rev Immunol
  doi: 10.1146/annurev.immunol.021908.132641
– volume: 60
  start-page: 510
  year: 2007
  ident: 2022061703493681200_bib10
  article-title: Upregulation of Twist in oesophageal squamous cell carcinoma is associated with neoplastic transformation and distant metastasis
  publication-title: J Clin Pathol
  doi: 10.1136/jcp.2006.039099
– volume: 14
  start-page: 5656
  year: 2008
  ident: 2022061703493681200_bib13
  article-title: Advances in targeting IKK and IKK-related kinases for cancer therapy
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-08-0123
– volume: 283
  start-page: 14665
  year: 2008
  ident: 2022061703493681200_bib32
  article-title: Twist is transcriptionally induced by activation of STAT3 and mediates STAT3 oncogenic function
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M707429200
– volume: 193
  start-page: 417
  year: 2001
  ident: 2022061703493681200_bib3
  article-title: IkappaB kinase alpha is essential for mature B cell development and function
  publication-title: J Exp Med
  doi: 10.1084/jem.193.4.417
– volume: 117
  start-page: 225
  year: 2004
  ident: 2022061703493681200_bib23
  article-title: IkappaB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a
  publication-title: Cell
  doi: 10.1016/S0092-8674(04)00302-2
– volume: 9
  start-page: 240
  year: 2009
  ident: 2022061703493681200_bib11
  article-title: Twist expression promotes migration and invasion in hepatocellular carcinoma
  publication-title: BMC Cancer
  doi: 10.1186/1471-2407-9-240
– volume: 274
  start-page: 30353
  year: 1999
  ident: 2022061703493681200_bib29
  article-title: IkappaB kinases phosphorylate NF-kappaB p65 subunit on serine 536 in the transactivation domain
  publication-title: J Biol Chem
  doi: 10.1074/jbc.274.43.30353
– volume: 27
  start-page: 3920
  year: 2007
  ident: 2022061703493681200_bib19
  article-title: Upregulation of Twist-1 by NF-kappaB blocks cytotoxicity induced by chemotherapeutic drugs
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.01219-06
– volume: 102
  start-page: 639
  year: 2010
  ident: 2022061703493681200_bib14
  article-title: TNF-alpha/NF-kappaB/Snail pathway in cancer cell migration and invasion
  publication-title: Br J Cancer
  doi: 10.1038/sj.bjc.6605530
– volume: 2
  start-page: 442
  year: 2002
  ident: 2022061703493681200_bib4
  article-title: Epithelial-mesenchymal transitions in tumour progression
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc822
– volume: 26
  start-page: 75
  year: 2007
  ident: 2022061703493681200_bib21
  article-title: Phosphorylation of CBP by IKKalpha promotes cell growth by switching the binding preference of CBP from p53 to NF-kappaB
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2007.02.019
– volume: 67
  start-page: 9066
  year: 2007
  ident: 2022061703493681200_bib24
  article-title: Epidermal growth factor receptor cooperates with signal transducer and activator of transcription 3 to induce epithelial-mesenchymal transition in cancer cells via up-regulation of TWIST gene expression
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-07-0575
– volume: 13
  start-page: 335
  year: 2006
  ident: 2022061703493681200_bib26
  article-title: Twist is substrate for caspase cleavage and proteasome-mediated degradation
  publication-title: Cell Death Differ
  doi: 10.1038/sj.cdd.4401744
– volume: 139
  start-page: 871
  year: 2009
  ident: 2022061703493681200_bib31
  article-title: Epithelial-mesenchymal transitions in development and disease
  publication-title: Cell
  doi: 10.1016/j.cell.2009.11.007
– volume: 65
  start-page: 5153
  year: 2005
  ident: 2022061703493681200_bib8
  article-title: Up-regulation of TWIST in prostate cancer and its implication as a therapeutic target
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-04-3785
– volume: 117
  start-page: 927
  year: 2004
  ident: 2022061703493681200_bib7
  article-title: Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis
  publication-title: Cell
  doi: 10.1016/j.cell.2004.06.006
– volume: 7
  start-page: 824
  year: 2005
  ident: 2022061703493681200_bib12
  article-title: TWIST is expressed in human gliomas and promotes invasion
  publication-title: Neoplasia
  doi: 10.1593/neo.04352
– volume: 37
  start-page: 431
  year: 2006
  ident: 2022061703493681200_bib9
  article-title: High Twist expression is involved in infiltrative endometrial cancer and affects patient survival
  publication-title: Hum Pathol
  doi: 10.1016/j.humpath.2005.12.021
– volume: 156
  start-page: 299
  year: 2002
  ident: 2022061703493681200_bib27
  article-title: Ras and TGF[beta] cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways
  publication-title: J Cell Biol
  doi: 10.1083/jcb.200109037
– volume: 26
  start-page: 711
  year: 2007
  ident: 2022061703493681200_bib17
  article-title: NF-kappaB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of ZEB-1 and ZEB-2
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1209808
– volume: 19
  start-page: 86
  year: 2011
  ident: 2022061703493681200_bib25
  article-title: EZH2 promotes expansion of breast tumor initiating cells through activation of RAF1-beta-catenin signaling
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2010.10.035
– volume: 11
  start-page: 1318
  year: 2009
  ident: 2022061703493681200_bib28
  article-title: Twist modulates breast cancer stem cells by transcriptional regulation of CD24 expression
  publication-title: Neoplasia
  doi: 10.1593/neo.91084
– volume: 7
  start-page: 415
  year: 2007
  ident: 2022061703493681200_bib6
  article-title: Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype?
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc2131
– volume: 112
  start-page: 169
  year: 2003
  ident: 2022061703493681200_bib33
  article-title: Twist regulates cytokine gene expression through a negative feedback loop that represses NF-kappaB activity
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00002-3
– volume: 17
  start-page: 548
  year: 2005
  ident: 2022061703493681200_bib5
  article-title: Molecular requirements for epithelial-mesenchymal transition during tumor progression
  publication-title: Curr Opin Cell Biol
  doi: 10.1016/j.ceb.2005.08.001
– volume: 114
  start-page: 569
  year: 2004
  ident: 2022061703493681200_bib16
  article-title: NF-kappaB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression
  publication-title: J Clin Invest
  doi: 10.1172/JCI200421358
– volume: 130
  start-page: 440
  year: 2007
  ident: 2022061703493681200_bib20
  article-title: IKK beta suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway
  publication-title: Cell
  doi: 10.1016/j.cell.2007.05.058
SSID ssj0005105
Score 2.550296
Snippet Proinflammatory cytokines produced in the tumor microenvironment facilitate tumor development and metastatic progression. In particular, TNF-α promotes cancer...
Proinflammatory cytokines produced in the tumor microenvironment facilitate tumor development and metastatic progression. In particular, TNF- alpha promotes...
SourceID proquest
pubmed
pascalfrancis
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 1290
SubjectTerms Animals
Antineoplastic agents
Biological and medical sciences
Breast Neoplasms - genetics
Breast Neoplasms - pathology
Carrier Proteins - metabolism
Cell Line, Tumor
Epithelial-Mesenchymal Transition
Female
Humans
I-kappa B Kinase - physiology
Inflammation - genetics
Intracellular Signaling Peptides and Proteins
Lung Neoplasms - secondary
Mammary Neoplasms, Experimental - pathology
Medical sciences
Mice
Mice, Inbred BALB C
Neoplasm Proteins - metabolism
NF-kappa B - metabolism
Nuclear Proteins - genetics
Pharmacology. Drug treatments
Transcriptional Activation
Transfection
Tumor Necrosis Factor-alpha - genetics
Tumor Necrosis Factor-alpha - pharmacology
Tumors
Twist-Related Protein 1 - genetics
Up-Regulation
Title Epithelial–Mesenchymal Transition Induced by TNF-α Requires NF-κB–Mediated Transcriptional Upregulation of Twist1
URI https://www.ncbi.nlm.nih.gov/pubmed/22253230
https://www.proquest.com/docview/1008833444
https://www.proquest.com/docview/993104934
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdZB2Mwxr6Xbisa7C0oS2zLlh-7kFDWJGXMYXkzsi21gSwxaULJ2MP-9N1JduyMlHV7MeHQh-P76XQn3QchH4Svw46G9a0BTsxzspAliUhYIv3QV4FKgwRvdEdj_2zifZ7yaaPxq-a1tFkn7fTHwbiS_-Eq0ICvGCX7D5zdDQoE-A38hSdwGJ534nE_x4iKOUzERhhFlF5tv2O8Pe4_xhWrhZU5UqtkRuMBa5nQWvim6P-rQMQB6VzmuWx9YiNTtAPamu6lMIHhJvnKFqwvdMvoBqDRrWu1PYTOqlUkDroyN8PWxcOIoPm8XTtwGM7sNf9Msm9qVlKn1mkXKFtZQc30Hy4Xl7pqObT1n78qEFPsQtWPLdD_o_Tb2oliwbgX7IniwKlBjtfkKp6W1fZovIM7LP-5sA6Tdux273Rs8jR2bVDzfr7t8UU8mAyHcdSfRvfIfQcMDZSU51-qfPO8cIItByxiwGCajwcn2dNuHuXyGhaathVSbjdhjCoTPSGPCxuEnlpAPSUNtXhGHowKL4vn5OdhXNEKV7TAFU22FHFFDa5oiSuKJIMrWuGK_oErWscVXWpqcfWCTAb9qHfGiiodLPW6Ys2E4_lhyrMs8DoqBJPe4SAYpEwDxTNf8FAkjtKgJykXtFFfJyJQXQmGKdeuDMLMfUmOFsuFek2o44QqAwM-kKDkuk4nFCKBLShItRBSc69JvPLrxmmRwh4rqcxjY8pyga4UIkamxMAUIMXIlCZp77rlNofL3zqc7LFu18vhwkebu0nel7yMQRzjHZtcqOXmGlOAY_luz4OXpbe0AZOgC__fhSavLA6qCWB7dR23c3yHCd6Qh9XCekuO1quNegca8jo5MSD-DU4mtag
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Epithelial-Mesenchymal+Transition+Induced+by+TNF-+alpha+Requires+NF-+Kappa+B-Mediated+Transcriptional+Upregulation+of+Twist1&rft.jtitle=Cancer+research+%28Chicago%2C+Ill.%29&rft.au=Li%2C+Chia-Wei&rft.au=Xia%2C+Weiya&rft.au=Huo%2C+Longfei&rft.au=Lim%2C+Seung-Oe&rft.date=2012-03-01&rft.issn=0008-5472&rft.volume=72&rft.issue=5&rft.spage=1290&rft.epage=1300&rft_id=info:doi/10.1158%2F0008-5472.CAN-11-3123&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-5472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-5472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-5472&client=summon