Ecoenzymatic stoichiometry reveals phosphorus addition alleviates microbial nutrient limitation and promotes soil carbon sequestration in agricultural ecosystems
Purpose Variation in soil microbial metabolism remains highly uncertain in predicting soil carbon (C) sequestration, and is particularly and poorly understood in agroecosystem with high soil phosphorus (P) variability. Materials and methods This study quantified metabolic limitation of microbes and...
Saved in:
Published in | Journal of soils and sediments Vol. 22; no. 2; pp. 536 - 546 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.02.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose
Variation in soil microbial metabolism remains highly uncertain in predicting soil carbon (C) sequestration, and is particularly and poorly understood in agroecosystem with high soil phosphorus (P) variability.
Materials and methods
This study quantified metabolic limitation of microbes and their association with carbon use efficiency (CUE) via extracellular enzymatic stoichiometry and biogeochemical equilibrium models in field experiment employing five inorganic P gradients (0, 75, 150, 225, and 300 kg P ha
−1
) in farmland used to grow peas.
Results and discussion
Results showed P fertilization significantly increased soil Olsen-P and NO
3
−
-N contents, and enzyme activities (β-1,4-glucosidase and β-
D
-cellobiosidase) were significantly affected by P fertilization. It indicated that P fertilization significantly decreased microbial P limitation due to the increase of soil available P. Interestingly, P application also significantly decreased microbial nitrogen (N) limitation, a phenomenon primarily attributable to increasing NO
3
−
-N content via increasing biological N fixation within the pea field. Furthermore, P fertilization increased microbial CUE because the reduction in microbial N and P limitation leads to higher C allocation to microbial growth. Partial least squares path modeling (PLS-PM) further revealed that the reduction of microbial metabolic limitation is conducive to soil C sequestration.
Conclusions
Our study revealed that P application in agroecosystem can alleviate not only microbial P limitation but also N limitation, which further reduces soil C loss via increasing microbial CUE. This study provides important insight into better understanding the mechanisms whereby fertilization mediates soil C cycling driven by microbial metabolism in agricultural ecosystems. |
---|---|
AbstractList | Purpose
Variation in soil microbial metabolism remains highly uncertain in predicting soil carbon (C) sequestration, and is particularly and poorly understood in agroecosystem with high soil phosphorus (P) variability.
Materials and methods
This study quantified metabolic limitation of microbes and their association with carbon use efficiency (CUE) via extracellular enzymatic stoichiometry and biogeochemical equilibrium models in field experiment employing five inorganic P gradients (0, 75, 150, 225, and 300 kg P ha
−1
) in farmland used to grow peas.
Results and discussion
Results showed P fertilization significantly increased soil Olsen-P and NO
3
−
-N contents, and enzyme activities (β-1,4-glucosidase and β-
D
-cellobiosidase) were significantly affected by P fertilization. It indicated that P fertilization significantly decreased microbial P limitation due to the increase of soil available P. Interestingly, P application also significantly decreased microbial nitrogen (N) limitation, a phenomenon primarily attributable to increasing NO
3
−
-N content via increasing biological N fixation within the pea field. Furthermore, P fertilization increased microbial CUE because the reduction in microbial N and P limitation leads to higher C allocation to microbial growth. Partial least squares path modeling (PLS-PM) further revealed that the reduction of microbial metabolic limitation is conducive to soil C sequestration.
Conclusions
Our study revealed that P application in agroecosystem can alleviate not only microbial P limitation but also N limitation, which further reduces soil C loss via increasing microbial CUE. This study provides important insight into better understanding the mechanisms whereby fertilization mediates soil C cycling driven by microbial metabolism in agricultural ecosystems. PURPOSE: Variation in soil microbial metabolism remains highly uncertain in predicting soil carbon (C) sequestration, and is particularly and poorly understood in agroecosystem with high soil phosphorus (P) variability. MATERIALS AND METHODS: This study quantified metabolic limitation of microbes and their association with carbon use efficiency (CUE) via extracellular enzymatic stoichiometry and biogeochemical equilibrium models in field experiment employing five inorganic P gradients (0, 75, 150, 225, and 300 kg P ha⁻¹) in farmland used to grow peas. RESULTS AND DISCUSSION: Results showed P fertilization significantly increased soil Olsen-P and NO₃⁻-N contents, and enzyme activities (β-1,4-glucosidase and β-D-cellobiosidase) were significantly affected by P fertilization. It indicated that P fertilization significantly decreased microbial P limitation due to the increase of soil available P. Interestingly, P application also significantly decreased microbial nitrogen (N) limitation, a phenomenon primarily attributable to increasing NO₃⁻-N content via increasing biological N fixation within the pea field. Furthermore, P fertilization increased microbial CUE because the reduction in microbial N and P limitation leads to higher C allocation to microbial growth. Partial least squares path modeling (PLS-PM) further revealed that the reduction of microbial metabolic limitation is conducive to soil C sequestration. CONCLUSIONS: Our study revealed that P application in agroecosystem can alleviate not only microbial P limitation but also N limitation, which further reduces soil C loss via increasing microbial CUE. This study provides important insight into better understanding the mechanisms whereby fertilization mediates soil C cycling driven by microbial metabolism in agricultural ecosystems. PurposeVariation in soil microbial metabolism remains highly uncertain in predicting soil carbon (C) sequestration, and is particularly and poorly understood in agroecosystem with high soil phosphorus (P) variability.Materials and methodsThis study quantified metabolic limitation of microbes and their association with carbon use efficiency (CUE) via extracellular enzymatic stoichiometry and biogeochemical equilibrium models in field experiment employing five inorganic P gradients (0, 75, 150, 225, and 300 kg P ha−1) in farmland used to grow peas.Results and discussionResults showed P fertilization significantly increased soil Olsen-P and NO3−-N contents, and enzyme activities (β-1,4-glucosidase and β-D-cellobiosidase) were significantly affected by P fertilization. It indicated that P fertilization significantly decreased microbial P limitation due to the increase of soil available P. Interestingly, P application also significantly decreased microbial nitrogen (N) limitation, a phenomenon primarily attributable to increasing NO3−-N content via increasing biological N fixation within the pea field. Furthermore, P fertilization increased microbial CUE because the reduction in microbial N and P limitation leads to higher C allocation to microbial growth. Partial least squares path modeling (PLS-PM) further revealed that the reduction of microbial metabolic limitation is conducive to soil C sequestration.ConclusionsOur study revealed that P application in agroecosystem can alleviate not only microbial P limitation but also N limitation, which further reduces soil C loss via increasing microbial CUE. This study provides important insight into better understanding the mechanisms whereby fertilization mediates soil C cycling driven by microbial metabolism in agricultural ecosystems. |
Author | Wang, Xiangxiang Duan, Chengjiao Wang, Yuhan Fang, Linchuan Niu, Yinan Sun, Ruxiao Cui, Yongxing Shen, Yufang Guo, Xuetao |
Author_xml | – sequence: 1 givenname: Xiangxiang surname: Wang fullname: Wang, Xiangxiang organization: State Key Laboratory of Soil Erosion and Dryland Farming On the Loess Plateau, Northwest A&F University, College of Natural Resources and Environment, Northwest A&F University – sequence: 2 givenname: Yongxing surname: Cui fullname: Cui, Yongxing organization: Institute of Soil and Water Conservation, Ministry of Water Resources, Chinese Academy of Sciences, University of Chinese Academy of Sciences – sequence: 3 givenname: Yuhan surname: Wang fullname: Wang, Yuhan organization: State Key Laboratory of Soil Erosion and Dryland Farming On the Loess Plateau, Northwest A&F University, College of Natural Resources and Environment, Northwest A&F University – sequence: 4 givenname: Chengjiao surname: Duan fullname: Duan, Chengjiao organization: Institute of Soil and Water Conservation, Ministry of Water Resources, Chinese Academy of Sciences, University of Chinese Academy of Sciences – sequence: 5 givenname: Yinan surname: Niu fullname: Niu, Yinan organization: State Key Laboratory of Soil Erosion and Dryland Farming On the Loess Plateau, Northwest A&F University, College of Natural Resources and Environment, Northwest A&F University – sequence: 6 givenname: Ruxiao surname: Sun fullname: Sun, Ruxiao organization: State Key Laboratory of Soil Erosion and Dryland Farming On the Loess Plateau, Northwest A&F University, College of Natural Resources and Environment, Northwest A&F University – sequence: 7 givenname: Yufang surname: Shen fullname: Shen, Yufang organization: State Key Laboratory of Soil Erosion and Dryland Farming On the Loess Plateau, Northwest A&F University, College of Natural Resources and Environment, Northwest A&F University – sequence: 8 givenname: Xuetao surname: Guo fullname: Guo, Xuetao organization: College of Natural Resources and Environment, Northwest A&F University – sequence: 9 givenname: Linchuan orcidid: 0000-0003-1923-7908 surname: Fang fullname: Fang, Linchuan email: flinc629@hotmail.com organization: State Key Laboratory of Soil Erosion and Dryland Farming On the Loess Plateau, Northwest A&F University, College of Natural Resources and Environment, Northwest A&F University, Institute of Soil and Water Conservation, Ministry of Water Resources, Chinese Academy of Sciences, CAS Center for Excellence in Quaternary Science and Global Change |
BookMark | eNp9kc9K5jAUxYM44L95AVcBN7PpmDRpmy5F1BkQ3Og6pOmtRtLkMzcVvnkb39R8Vhhw4SIkcH_n5nDOEdkPMQAhp5z95ox158i5aFXFal4xwXpZqT1yyFsuq04qtl_eUvQV40wdkCPEZ8ZEV8aH5O3KRgj_trPJzlLM0dknF2fIaUsTvILxSDdPEctJC1Izji67GKjxHl6dyYB0djbFwRlPw5KTg5Cpd7PLZgXDSDcpznGHYnSeWpOGMkB4WQBzWjFXyMfk7OLzksoqsBG3mGHGE_JjKi7g5-d9TB6ur-4v_1S3dzd_Ly9uKyu5ylUHg-xbwUU3ghzsxKfGsLqTzchsM4FqRsMNGDbWYzfJgSshm8n0reRQt0IO4pj8WvcWtx_O9OzQgvcmQFxQF6qVddfLtqBnX9DnuKRQ3BWqFm3dS7Wj6pUq8SAmmPQmudmkreZM71rTa2u6tKY_WtOqiNQXkf1MsiTl_PdSsUqx_BMeIf139Y3qHSQ8tFA |
CitedBy_id | crossref_primary_10_1016_j_catena_2023_106939 crossref_primary_10_7717_peerj_16227 crossref_primary_10_3390_f15020385 crossref_primary_10_1016_j_agee_2024_109219 crossref_primary_10_1007_s11104_022_05343_2 crossref_primary_10_1016_j_apsoil_2024_105520 crossref_primary_10_1016_j_ibiod_2023_105728 crossref_primary_10_1016_j_scitotenv_2024_170294 crossref_primary_10_3389_fpls_2024_1445230 crossref_primary_10_1016_j_ejsobi_2024_103601 crossref_primary_10_1093_femsle_fnad061 crossref_primary_10_1002_ldr_4840 crossref_primary_10_1016_j_envres_2024_118936 crossref_primary_10_1016_j_chemosphere_2022_136311 crossref_primary_10_1111_gcb_70036 crossref_primary_10_1016_j_agee_2023_108750 crossref_primary_10_3390_agronomy14030467 crossref_primary_10_1016_j_foreco_2025_122543 crossref_primary_10_1016_j_still_2024_106152 crossref_primary_10_1007_s11368_022_03142_x crossref_primary_10_1016_j_catena_2022_106901 crossref_primary_10_1016_j_foreco_2024_122147 crossref_primary_10_3389_fevo_2022_1104369 crossref_primary_10_1016_j_catena_2024_108050 crossref_primary_10_3390_agronomy14030581 crossref_primary_10_1016_j_agee_2024_109142 crossref_primary_10_3390_f13122102 crossref_primary_10_1016_j_scitotenv_2023_168719 crossref_primary_10_1016_j_scitotenv_2023_167856 crossref_primary_10_1007_s42832_023_0176_4 crossref_primary_10_1016_j_apsoil_2025_106031 crossref_primary_10_1016_j_catena_2023_107527 crossref_primary_10_3390_pr10112425 crossref_primary_10_1016_j_scitotenv_2022_157931 crossref_primary_10_1016_j_apsoil_2025_106010 crossref_primary_10_3390_agronomy12112796 |
Cites_doi | 10.1890/14-0189.1 10.1002/ldr.3723 10.1038/nature07028 10.1016/0038-0717(95)00102-6 10.1093/aob/mct048 10.1016/j.soilbio.2020.107815 10.1071/CP11229 10.1016/S0038-0717(02)00064-0 10.1016/j.apsoil.2021.104033 10.1016/j.geoderma.2021.114928 10.1016/j.soilbio.2016.03.008 10.1016/j.soilblo.2019.03.017 10.1016/j.soilbio.2020.107814 10.1038/nature08632 10.1146/annurev.energy.25.1.53 10.1016/j.soilbio.2016.05.021 10.1093/aobpla/plz047 10.1890/15-2110.1 10.1016/j.scitotenv.2018.12.289 10.1111/ele.12767 10.1007/s10533-016-0191-y 10.1016/j.soilbio.2015.06.021 10.3390/plants9010097 10.1007/s10584-017-1976-2 10.1111/j.2041-210X.2011.00153.x 10.1111/gcbb.12485 10.1111/j.1469-8137.2012.04225.x 10.1016/j.soilbio.2019.04.008 10.1016/j.scitotenv.2019.136405 10.1111/j.1747-0765.2010.00501.x 10.1146/annurev-ecolsys-071112-124414 10.1111/ejss.12428 10.1016/j.geoderma.2018.11.047 10.1016/S0038-0717(99)00129-7 10.1007/s00374-020-01468-7 10.1016/j.geoderma.2018.05.019 10.1007/s00374-018-1274-9 10.1016/j.apsoil.2007.02.002 10.1186/s40538-016-0085-1 10.1890/06-0219 10.1016/S0038-0717(02)00074-3 10.1016/j.foodpol.2010.12.001 10.1111/ele.12113 10.1016/j.still.2020.104605 10.1016/j.soilbio.2005.08.012 10.1007/s13593-020-0607-x 10.1007/s10533-016-0265-x 10.1007/s00374-015-1007-2 10.1016/j.soilbio.2017.09.025 10.1016/j.scitotenv.2018.09.038 10.3389/fmicb.2019.01146 10.1016/j.soilbio.2014.11.022 10.1016/j.soilbio.2014.11.008 10.1300/J064v31n03_04 10.1007/s00374-018-1294-5 10.1016/j.still.2019.104463 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021. |
DBID | AAYXX CITATION 3V. 7ST 7UA 7X2 7XB 88I 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H96 H97 HCIFZ L.G M0K M2P PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI PYCSY Q9U SOI 7S9 L.6 |
DOI | 10.1007/s11368-021-03094-8 |
DatabaseName | CrossRef ProQuest Central (Corporate) Environment Abstracts Water Resources Abstracts Agricultural Science Collection ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional Agriculture Science Database Science Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Agricultural Science Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest SciTech Collection Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic Environment Abstracts ProQuest Central (Alumni) ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Agricultural Science Database |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1614-7480 |
EndPage | 546 |
ExternalDocumentID | 10_1007_s11368_021_03094_8 |
GrantInformation_xml | – fundername: national natural science foundation of china grantid: 41977031 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: strategic priority research program of the chinese academy of sciences grantid: XDB40000000 – fundername: program of state key laboratory of loess and quaternary geology of cas grantid: SKLLQGZR1803 |
GroupedDBID | -5A -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 203 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 4P2 5GY 5VS 67M 67Z 6NX 7X2 7XC 88I 8CJ 8FE 8FH 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG APEBS ARMRJ ATCPS AXYYD AYJHY AZQEC B-. BA0 BDATZ BENPR BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D1J DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS ECGQY EDH EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV L8X LAS LK5 LLZTM M0K M2P M4Y M7R MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM PATMY PCBAR PF0 PQQKQ PROAC PT4 PYCSY Q2X QOS R89 R9I RMD ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7U Z7Y ZMTXR ~02 ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7ST 7UA 7XB 8FK ABRTQ C1K F1W H96 H97 L.G PKEHL PQEST PQUKI Q9U SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c418t-7eb4963137de4bcf1f5a02745d0c5fe85da1aea0d2d7f4b18345fa9641e2634b3 |
IEDL.DBID | U2A |
ISSN | 1439-0108 |
IngestDate | Fri Jul 11 02:58:03 EDT 2025 Fri Jul 25 20:57:03 EDT 2025 Thu Apr 24 23:00:27 EDT 2025 Tue Jul 01 01:38:24 EDT 2025 Fri Feb 21 02:46:21 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Carbon use efficiency Agricultural ecosystems Microbial metabolic limitation Ecoenzymatic stoichiometry |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c418t-7eb4963137de4bcf1f5a02745d0c5fe85da1aea0d2d7f4b18345fa9641e2634b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1923-7908 |
PQID | 2623629486 |
PQPubID | 54474 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2636427946 proquest_journals_2623629486 crossref_primary_10_1007_s11368_021_03094_8 crossref_citationtrail_10_1007_s11368_021_03094_8 springer_journals_10_1007_s11368_021_03094_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Dordrecht |
PublicationTitle | Journal of soils and sediments |
PublicationTitleAbbrev | J Soils Sediments |
PublicationYear | 2022 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | VesterdalLRaulund-RasmussenKAvailability of nitrogen and phosphorus in Norway spruce forest floors fertilized with nitrogen and other essential nutrientsSoil Biol Biochem200234124312511:CAS:528:DC%2BD38XlvVemu7k%3D10.1016/S0038-0717(02)00064-0 ZhaoHSunBFLuFWangXKZhuangTZhangGOuyangZYRoles of nitrogen, phosphorus, and potassium fertilizers in carbon sequestration in a Chinese agricultural ecosystemClim Change20171425875961:CAS:528:DC%2BC2sXmvFChtrY%3D10.1007/s10584-017-1976-2 ChengYWangJSunNXuMGZhangJBCaiZCWangSQPhosphorus addition enhances gross microbial N cycling in phosphorus-poor soils: a 15N study from two long-term fertilization experimentsBiol Fertil Soils2018547837891:CAS:528:DC%2BC1cXhtFWhtrrL10.1007/s00374-018-1294-5 FengJGZhuBA global meta-analysis of soil respiration and its components in response to phosphorus additionSoil Biol Biochem201913538471:CAS:528:DC%2BC1MXnvF2ht7w%3D10.1016/j.soilbio.2019.04.008 ThirukkumaranCMParkinsonDMicrobial respiration, biomass, metabolic quotient and litter decomposition in a lodgepole pine forest floor amended with nitrogen and phosphorous fertilizersSoil Biol Biochem20003259661:CAS:528:DC%2BD3cXmvFakug%3D%3D10.1016/S0038-0717(99)00129-7 SantiCBoguszDFrancheCBiological nitrogen fixation in non-legume plantsAnn Bot20131117437671:CAS:528:DC%2BC3sXmtlantb4%3D10.1093/aob/mct048 SinsabaughRLManzoniSMoorheadDLRichterACarbon use efficiency of microbial communities: stoichiometry, methodology and modellingEcol Lett20131693093910.1111/ele.12113 MehnazKRKeitelCDijkstraFAEffects of carbon and phosphorus addition on microbial respiration, N2O emission, and gross nitrogen mineralization in a phosphorus-limited grassland soilBiol Fert Soils2018544814931:CAS:528:DC%2BC1cXmslKksLc%3D10.1007/s00374-018-1274-9 SinsabaughRLTurnerBLTalbotJMWaringBGPowersJSKuskeCRMoorheadDLShahJJStoichiometry of microbial carbon use efficiency in soilsEcol Monogr20168617218910.1890/15-2110.1 ReedSCSeastedtTRMannCMSudingKNTownsendARCherwinKLPhosphorus fertilization stimulates nitrogen fixation and increases inorganic nitrogen concentrations in a restored prairieAppl Soil Ecol20073623824210.1016/j.apsoil.2007.02.002 WeiXMZhuZKLiuYLuoYDengYWXuXLLiuSLRichterAShibistovaOGuggenbergerGWuJSGeTDC:N: P stoichiometry regulates soil organic carbon mineralization and concomitant shifts in microbial community composition in paddy soilBiol Fert Soils202056109311071:CAS:528:DC%2BB3cXpsFOnsLs%3D10.1007/s00374-020-01468-7 OlsenSRSommersLEPageALMillerRHKeeneyDRPhosphorousMethods of soil analysis, Part 2, Chemical and Microbial Properties1982MadisonAgronomy Society of America403430 ZangHDBlagodatskayaEWenYXuXLDyckmansJKuzyakovYCarbon sequestration and turnover in soil under the energy crop Miscanthus: repeated 13C natural abundance approach and literature synthesisGCB Bioenergy2018102622711:CAS:528:DC%2BC1cXjsl2mtrk%3D10.1111/gcbb.12485 ChenHZhangWGurmesaGAZhuXLiDMoJPhosphorus addition affects soil nitrogen dynamics in a nitrogen-saturated and two nitrogen-limited forestsEur J Soil Sci2017684724791:CAS:528:DC%2BC2sXhtFGntbjF10.1111/ejss.12428 Cui YX, Wang X, Zhang XC, Ju WL, Duan CJ, Guo XB, Wang YQ, Fang LC (2020a) Soil moisture mediates microbial carbon and phosphorus metabolism during vegetation succession in a semiarid region. Soil Biol Biochem 147. https://doi.org/10.1016/j.soilbio.2020.107814 Wang YD, Hu N, Xu MG, Li ZF, Lou YL, Chen Y, Wu CY, Wang ZL (2015) 23-year manure and fertilizer application increases soil organic carbon sequestration of a rice-barley cropping system. Biol Fertil Soils 51:583–591. https://doi.org/10.1007/s00374-015-1007-2 ZhengMHLiDJLuXZhuXMZhangWHuangJFuSLLuXKMoJMEffects of phosphorus addition with and without nitrogen addition on biological nitrogen fixation in tropical legume and non-legume tree plantationsBiogeochemistry201613165761:CAS:528:DC%2BC28XhslKltb7F10.1007/s10533-016-0265-x MaZZZhangXCZhengBYYueSCZhangXCZhaiBNWangZHZhengWLiZYZamanianKRazaviBSEffects of plastic and straw mulching on soil microbial P limitations in maize fields: dependency on soil organic carbon demonstrated by ecoenzymatic stoichiometryGeoderma2021388121:CAS:528:DC%2BB3MXht1KiurfN10.1016/j.geoderma.2021.114928 Sanchez G, Trinchera L, Russolillo G (2017) Plspm: tools for partial least squares path modeling (PLS-PM). https://CRAN.R-project.org/package=plspm David IW, Remko AD, Daniel SF, Sara T (2012) smatr 3 - an R package for estimation and inference about allometric lines. Methods Ecol Evol 3:257–259 Kallenbach CM, Wallenstein MD, Schipanksi ME, Grandy AS (2019) Managing agroecosystems for soil microbial carbon use efficiency: ecological unknowns, potential outcomes, and a path forward. Front Microbiol 10. https://doi.org/10.3389/fmicb.2019.01146 BremnerJMMulvaneyCSPageALMillerRHKeeneyDRNitrogen-totalMethods of soil analysis, Part 2, Chemical and Microbial Properties1982MadisonAgronomy Society of America595624 PoeplauCHerrmannAMKattererTOpposing effects of nitrogen and phosphorus on soil microbial metabolism and the implications for soil carbon storageSoil Biol Biochem201610083911:CAS:528:DC%2BC28Xps1Wkt70%3D10.1016/j.soilbio.2016.05.021 SmilVPhosphorus in the environment: natural flows and human interferencesAnnu Rev Energ Environ200025538810.1146/annurev.energy.25.1.53 Mori T, Ohta S, Ishizuka S, Konda R, Wicaksono A, Heriyanto J, Hardjono A (2010) Effects of phosphorus addition on N2O and NO emissions from soils of an Acacia mangium plantation. Soil Sci Plant Nutr 56:782–788. https://doi.org/10.1111/j.1747-0765.2010.00501.x Saiya-CorkKRSinsabaughRLZakDRThe effects of long-term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soilSoil Biol Biochem200234130913151:CAS:528:DC%2BD38XlvVemu7w%3D10.1016/S0038-0717(02)00074-3 PangJTibbettMDentonMDLambersHSiddiqueKHMRyanMHSoil phosphorus supply affects nodulation and N: P ratio in 11 perennial legume seedlingsCrop Pasture Sci20116299210011:CAS:528:DC%2BC3MXhs1Gru7jK10.1071/CP11229 ChenHLiDJZhaoJZhangWXiaoKCWangKLNitrogen addition aggravates microbial carbon limitation: Evidence from ecoenzymatic stoichiometryGeoderma201832961641:CAS:528:DC%2BC1cXhtVGjtLbN10.1016/j.geoderma.2018.05.019 SpohnMChodakMMicrobial respiration per unit biomass increases with carbon-to-nutrient ratios in forest soilsSoil Biol Biochem2015811281331:CAS:528:DC%2BC2cXitVWku7%2FM10.1016/j.soilbio.2014.11.008 Zhu ZK, Zhou J, Shahbaz M, Tang HM, Liu SL, Zhang WJ, Yuan HZ, Zhou V, Alharbi H, Wu JS, Kuzyakov Y, Ge TD (2021) Microorganisms maintain C: N stoichiometric balance by regulating the priming effect in long-term fertilized soils. Appl Soil Ecol 167. https://doi.org/10.1016/j.apsoil.2021.104033 Jensen ES, Carlsson G, Hauggaard-Nielsen H (2020) Intercropping of grain legumes and cereals improves the use of soil N resources and reduces the requirement for synthetic fertilizer N: a global-scale analysis. Agron Sustain Dev 40. https://doi.org/10.1007/s13593-020-0607-x SinsabaughRLHillBHShahJJEcoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sedimentNature20094627957991:CAS:528:DC%2BD1MXhsFersrvK10.1038/nature08632 ZhangWXuYDGaoDXWangXLiuWCDengJHanXHYangGHFengYZRenGXEcoenzymatic stoichiometry and nutrient dynamics along a revegetation chronosequence in the soils of abandoned land and Robinia pseudoacacia plantation on the Loess Plateau, ChinaSoil Biol Biochem201913411410.1016/j.soilblo.2019.03.017 HoultonBZWangYPVitousekPMFieldCBA unifying framework for dinitrogen fixation in the terrestrial biosphereNature20084543273301:CAS:528:DC%2BD1cXosFCqs7w%3D10.1038/nature07028 Miguez-Montero MA, Valentine A, Perez-Fernandez MA (2020) Regulatory effect of phosphorus and nitrogen on nodulation and plant performance of leguminous shrubs. AoB Plants 12. https://doi.org/10.1093/aobpla/plz047 SpohnMPotschEMEichorstSAWoebkenDWanekWRichterASoil microbial carbon use efficiency and biomass turnover in a long-term fertilization experiment in a temperate grasslandSoil Biol Biochem2016971681751:CAS:528:DC%2BC28Xms1Kltbw%3D10.1016/j.soilbio.2016.03.008 YueKFornaraDAYangWQPengYPengCHLiuZLWuFZInfluence of multiple global change drivers on terrestrial carbon storage: additive effects are commonEcol Lett20172066367210.1111/ele.12767 CuiYXFangLCGuoXBWangXZhangYJLiPFZhangXCEcoenzymatic stoichiometry and microbial nutrient limitation in rhizosphere soil in the arid area of the northern Loess Plateau, ChinaSoil Biol Biochem201811611211:CAS:528:DC%2BC2sXhs1elurzO10.1016/j.soilbio.2017.09.025 CuiYXBingHJFangLCWuYHYuJLShenGTJiangMWangXZhangXCDiversity patterns of the rhizosphere and bulk soil microbial communities along an altitudinal gradient in an alpine ecosystem of the eastern Tibetan PlateauGeoderma20193381181271:CAS:528:DC%2BC1cXisVent7bE10.1016/j.geoderma.2018.11.047 CuiYXFangLCDengLGuoXBHanFJuWLWangXChenHSTanWFZhangXCPatterns of soil microbial nutrient limitations and their roles in the variation of soil organic carbon across a precipitation gradient in an arid and semi-arid regionSci Total Environ2019658144014511:CAS:528:DC%2BC1MXnvFWq10.1016/j.scitotenv.2018.12.289 FiskMSantangeloSMinickKCarbon mineralization is promoted by phosphorus and reduced by nitrogen addition in the organic horizon of northern hardwood forestsSoil Biol Biochem2015812122181:CAS:528:DC%2BC2cXitVWrs7bM10.1016/j.soilbio.2014.11.022 WuYChenWJLiQGuoZQLiYZZhaoZWZhaiJYLiuGBXueSEcoenzymatic stoichiometry and nutrient limitation under a natural secondary succession of vegetation on the Loess Plateau, ChinaLand Degrad Dev20213239940910.1002/ldr.3723 XiaoLLiuGBLiPLiQXueSEcoenzymatic stoichiometry and microbial nutrient limitation during secondary succession of natural grassland on the Loess PlateauChina Soil Tillage Res2020200910.1016/j.still.2020.104605 Aleixo S, Gama-Rodrigues AC, Gama-Rodrigues EF, Campello EFC, Silva EC, Schripsema J (2020) Can soil phosphorus availability in tropical forest systems be increased by nitrogen-fixing leguminous trees? Sci Total Environ 712. https://doi.org/10.1016/j.scitotenv.2019.136405 LuoRYFanJLWangWJL YX Cui (3094_CR8) 2019; 658 M Spohn (3094_CR43) 2016; 97 3094_CR34 L Vesterdal (3094_CR46) 2002; 34 HD Zang (3094_CR55) 2018; 10 L Xiao (3094_CR53) 2020; 200 YX Cui (3094_CR6) 2018; 116 Y Wu (3094_CR52) 2021; 32 M Spohn (3094_CR42) 2015; 81 JG Feng (3094_CR13) 2019; 135 JA Vera-Nunez (3094_CR47) 2007; 31 W Zhang (3094_CR57) 2019; 134 RL Sinsabaugh (3094_CR38) 2012; 43 RG Joergensen (3094_CR18) 1996; 28 BZ Houlton (3094_CR16) 2008; 454 P Dijkstra (3094_CR12) 2015; 89 RY Luo (3094_CR22) 2019; 650 3094_CR20 K Yue (3094_CR54) 2017; 20 H Chen (3094_CR3) 2017; 68 J Pang (3094_CR30) 2011; 62 CM Thirukkumaran (3094_CR45) 2000; 32 3094_CR60 KR Saiya-Cork (3094_CR33) 2002; 34 Y Cheng (3094_CR5) 2018; 54 3094_CR28 H Chen (3094_CR4) 2018; 329 3094_CR24 3094_CR27 MH Zheng (3094_CR59) 2016; 131 RL Sinsabaugh (3094_CR39) 2013; 16 3094_CR10 3094_CR11 M Fisk (3094_CR14) 2015; 81 ZZ Ma (3094_CR23) 2021; 388 3094_CR51 3094_CR17 3094_CR1 YX Cui (3094_CR7) 2019; 338 RL Sinsabaugh (3094_CR37) 2009; 462 H Zhao (3094_CR56) 2017; 142 XM Wei (3094_CR50) 2020; 56 SC Reed (3094_CR32) 2007; 36 S Manzoni (3094_CR25) 2012; 196 3094_CR44 RL Sinsabaugh (3094_CR40) 2016; 86 R Lal (3094_CR21) 2011; 36 JM Bremner (3094_CR2) 1982 KM Geyer (3094_CR15) 2016; 127 DL Jones (3094_CR19) 2006; 38 KR Mehnaz (3094_CR26) 2018; 54 C Poeplau (3094_CR31) 2016; 100 3094_CR48 V Smil (3094_CR41) 2000; 25 3094_CR49 C Santi (3094_CR35) 2013; 111 ZJ Zhang (3094_CR58) 2015; 25 3094_CR9 SR Olsen (3094_CR29) 1982 J Schimel (3094_CR36) 2007; 88 |
References_xml | – reference: ChengYWangJSunNXuMGZhangJBCaiZCWangSQPhosphorus addition enhances gross microbial N cycling in phosphorus-poor soils: a 15N study from two long-term fertilization experimentsBiol Fertil Soils2018547837891:CAS:528:DC%2BC1cXhtFWhtrrL10.1007/s00374-018-1294-5 – reference: SchimelJBalserTCWallensteinMMicrobial stress-response physiology and its implications for ecosystem functionEcology2007881386139410.1890/06-0219 – reference: Mori T, Ohta S, Ishizuka S, Konda R, Wicaksono A, Heriyanto J, Hardjono A (2010) Effects of phosphorus addition on N2O and NO emissions from soils of an Acacia mangium plantation. Soil Sci Plant Nutr 56:782–788. https://doi.org/10.1111/j.1747-0765.2010.00501.x – reference: FengJGZhuBA global meta-analysis of soil respiration and its components in response to phosphorus additionSoil Biol Biochem201913538471:CAS:528:DC%2BC1MXnvF2ht7w%3D10.1016/j.soilbio.2019.04.008 – reference: SmilVPhosphorus in the environment: natural flows and human interferencesAnnu Rev Energ Environ200025538810.1146/annurev.energy.25.1.53 – reference: ChenHZhangWGurmesaGAZhuXLiDMoJPhosphorus addition affects soil nitrogen dynamics in a nitrogen-saturated and two nitrogen-limited forestsEur J Soil Sci2017684724791:CAS:528:DC%2BC2sXhtFGntbjF10.1111/ejss.12428 – reference: PangJTibbettMDentonMDLambersHSiddiqueKHMRyanMHSoil phosphorus supply affects nodulation and N: P ratio in 11 perennial legume seedlingsCrop Pasture Sci20116299210011:CAS:528:DC%2BC3MXhs1Gru7jK10.1071/CP11229 – reference: Zhu ZK, Zhou J, Shahbaz M, Tang HM, Liu SL, Zhang WJ, Yuan HZ, Zhou V, Alharbi H, Wu JS, Kuzyakov Y, Ge TD (2021) Microorganisms maintain C: N stoichiometric balance by regulating the priming effect in long-term fertilized soils. Appl Soil Ecol 167. https://doi.org/10.1016/j.apsoil.2021.104033 – reference: LuoRYFanJLWangWJLuoJFKuzyakovYHeJSChuHYDingWXNitrogen and phosphorus enrichment accelerates soil organic carbon loss in alpine grassland on the Qinghai-Tibetan PlateauSci Total Environ20196503033121:CAS:528:DC%2BC1cXhslSks7zK10.1016/j.scitotenv.2018.09.038 – reference: VesterdalLRaulund-RasmussenKAvailability of nitrogen and phosphorus in Norway spruce forest floors fertilized with nitrogen and other essential nutrientsSoil Biol Biochem200234124312511:CAS:528:DC%2BD38XlvVemu7k%3D10.1016/S0038-0717(02)00064-0 – reference: ZhaoHSunBFLuFWangXKZhuangTZhangGOuyangZYRoles of nitrogen, phosphorus, and potassium fertilizers in carbon sequestration in a Chinese agricultural ecosystemClim Change20171425875961:CAS:528:DC%2BC2sXmvFChtrY%3D10.1007/s10584-017-1976-2 – reference: ZhangWXuYDGaoDXWangXLiuWCDengJHanXHYangGHFengYZRenGXEcoenzymatic stoichiometry and nutrient dynamics along a revegetation chronosequence in the soils of abandoned land and Robinia pseudoacacia plantation on the Loess Plateau, ChinaSoil Biol Biochem201913411410.1016/j.soilblo.2019.03.017 – reference: SinsabaughRLShahJJEcoenzymatic stoichiometry and ecological theoryAnnu Rev Ecol Evol Syst20124331334310.1146/annurev-ecolsys-071112-124414 – reference: Vera-NunezJAInfante-SantiagoJPVelasco-VelascoVSalgado-GarciaSPalma-LopezDJGrageda-CabreraOACardenasRPena-CabrialesJJInfluence of P fertilization on biological nitrogen fixation in herbaceous legumes grown in acid savannah soils from the Tabasco State, MexicoJ Sustainable Agric200731254210.1300/J064v31n03_04 – reference: XiaoLLiuGBLiPLiQXueSEcoenzymatic stoichiometry and microbial nutrient limitation during secondary succession of natural grassland on the Loess PlateauChina Soil Tillage Res2020200910.1016/j.still.2020.104605 – reference: SpohnMChodakMMicrobial respiration per unit biomass increases with carbon-to-nutrient ratios in forest soilsSoil Biol Biochem2015811281331:CAS:528:DC%2BC2cXitVWku7%2FM10.1016/j.soilbio.2014.11.008 – reference: JoergensenRGThe fumigation-extraction method to estimate soil microbial biomass: calibration of the k (EC) valueSoil Biol Biochem19962825311:CAS:528:DyaK2MXhtVSks7%2FK10.1016/0038-0717(95)00102-6 – reference: MehnazKRKeitelCDijkstraFAEffects of carbon and phosphorus addition on microbial respiration, N2O emission, and gross nitrogen mineralization in a phosphorus-limited grassland soilBiol Fert Soils2018544814931:CAS:528:DC%2BC1cXmslKksLc%3D10.1007/s00374-018-1274-9 – reference: CuiYXFangLCGuoXBWangXZhangYJLiPFZhangXCEcoenzymatic stoichiometry and microbial nutrient limitation in rhizosphere soil in the arid area of the northern Loess Plateau, ChinaSoil Biol Biochem201811611211:CAS:528:DC%2BC2sXhs1elurzO10.1016/j.soilbio.2017.09.025 – reference: MaZZZhangXCZhengBYYueSCZhangXCZhaiBNWangZHZhengWLiZYZamanianKRazaviBSEffects of plastic and straw mulching on soil microbial P limitations in maize fields: dependency on soil organic carbon demonstrated by ecoenzymatic stoichiometryGeoderma2021388121:CAS:528:DC%2BB3MXht1KiurfN10.1016/j.geoderma.2021.114928 – reference: WeiXMZhuZKLiuYLuoYDengYWXuXLLiuSLRichterAShibistovaOGuggenbergerGWuJSGeTDC:N: P stoichiometry regulates soil organic carbon mineralization and concomitant shifts in microbial community composition in paddy soilBiol Fert Soils202056109311071:CAS:528:DC%2BB3cXpsFOnsLs%3D10.1007/s00374-020-01468-7 – reference: Saiya-CorkKRSinsabaughRLZakDRThe effects of long-term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soilSoil Biol Biochem200234130913151:CAS:528:DC%2BD38XlvVemu7w%3D10.1016/S0038-0717(02)00074-3 – reference: FiskMSantangeloSMinickKCarbon mineralization is promoted by phosphorus and reduced by nitrogen addition in the organic horizon of northern hardwood forestsSoil Biol Biochem2015812122181:CAS:528:DC%2BC2cXitVWrs7bM10.1016/j.soilbio.2014.11.022 – reference: ZhangZJLiHYHuJLiXHeQTianGMWangHWangSYWangBDo microorganism stoichiometric alterations affect carbon sequestration in paddy soil subjected to phosphorus input?Ecol Appl20152586687910.1890/14-0189.1 – reference: SinsabaughRLHillBHShahJJEcoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sedimentNature20094627957991:CAS:528:DC%2BD1MXhsFersrvK10.1038/nature08632 – reference: SantiCBoguszDFrancheCBiological nitrogen fixation in non-legume plantsAnn Bot20131117437671:CAS:528:DC%2BC3sXmtlantb4%3D10.1093/aob/mct048 – reference: Cui YX, Wang X, Zhang XC, Ju WL, Duan CJ, Guo XB, Wang YQ, Fang LC (2020a) Soil moisture mediates microbial carbon and phosphorus metabolism during vegetation succession in a semiarid region. Soil Biol Biochem 147. https://doi.org/10.1016/j.soilbio.2020.107814 – reference: Kallenbach CM, Wallenstein MD, Schipanksi ME, Grandy AS (2019) Managing agroecosystems for soil microbial carbon use efficiency: ecological unknowns, potential outcomes, and a path forward. Front Microbiol 10. https://doi.org/10.3389/fmicb.2019.01146 – reference: Wang YD, Hu N, Xu MG, Li ZF, Lou YL, Chen Y, Wu CY, Wang ZL (2015) 23-year manure and fertilizer application increases soil organic carbon sequestration of a rice-barley cropping system. Biol Fertil Soils 51:583–591. https://doi.org/10.1007/s00374-015-1007-2 – reference: BremnerJMMulvaneyCSPageALMillerRHKeeneyDRNitrogen-totalMethods of soil analysis, Part 2, Chemical and Microbial Properties1982MadisonAgronomy Society of America595624 – reference: David IW, Remko AD, Daniel SF, Sara T (2012) smatr 3 - an R package for estimation and inference about allometric lines. Methods Ecol Evol 3:257–259 – reference: JonesDLWillettVBExperimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soilSoil Biol Biochem2006389919991:CAS:528:DC%2BD28XjvFSitr4%3D10.1016/j.soilbio.2005.08.012 – reference: ThirukkumaranCMParkinsonDMicrobial respiration, biomass, metabolic quotient and litter decomposition in a lodgepole pine forest floor amended with nitrogen and phosphorous fertilizersSoil Biol Biochem20003259661:CAS:528:DC%2BD3cXmvFakug%3D%3D10.1016/S0038-0717(99)00129-7 – reference: Wei TY, Simko V (2017) R package “corrplot”: visualization of a correlation matrix (Version 0.84). https://github.com/taiyun/corrplot – reference: Cui YX, Zhang YL, Duan CJ, Wang X, Zhang XC, Ju WL, Chen HS, Yue SC, Wang YQ, Li SQ, Fang LC (2020b) Ecoenzymatic stoichiometry reveals microbial phosphorus limitation decreases the nitrogen cycling potential of soils in semi-arid agricultural ecosystems. Soil Tillage Res 197. https://doi.org/10.1016/j.still.2019.104463 – reference: ChenHLiDJZhaoJZhangWXiaoKCWangKLNitrogen addition aggravates microbial carbon limitation: Evidence from ecoenzymatic stoichiometryGeoderma201832961641:CAS:528:DC%2BC1cXhtVGjtLbN10.1016/j.geoderma.2018.05.019 – reference: DijkstraPSalpasEFairbanksDMillerEBHagertySBvan GroenigenKJHungateBAMarksJCKochGWSchwartzEHigh carbon use efficiency in soil microbial communities is related to balanced growth, not storage compound synthesisSoil Biol Biochem20158935431:CAS:528:DC%2BC2MXhtFaiurbN10.1016/j.soilbio.2015.06.021 – reference: ZangHDBlagodatskayaEWenYXuXLDyckmansJKuzyakovYCarbon sequestration and turnover in soil under the energy crop Miscanthus: repeated 13C natural abundance approach and literature synthesisGCB Bioenergy2018102622711:CAS:528:DC%2BC1cXjsl2mtrk%3D10.1111/gcbb.12485 – reference: Widdig M, Schleuss PM, Biederman LA, Borer ET, Crawley MJ, Kirkman KP, Seabloom EW, Wragg PD, Spohn M (2020) Microbial carbon use efficiency in grassland soils subjected to nitrogen and phosphorus additions. Soil Biol Biochem 146. https://doi.org/10.1016/j.soilbio.2020.107815 – reference: ManzoniSTaylorPRichterAPorporatoAAgrenGIEnvironmental and stoichiometric controls on microbial carbon-use efficiency in soilsNew Phytol201219679911:CAS:528:DC%2BC38Xht1Cis7fL10.1111/j.1469-8137.2012.04225.x – reference: SpohnMPotschEMEichorstSAWoebkenDWanekWRichterASoil microbial carbon use efficiency and biomass turnover in a long-term fertilization experiment in a temperate grasslandSoil Biol Biochem2016971681751:CAS:528:DC%2BC28Xms1Kltbw%3D10.1016/j.soilbio.2016.03.008 – reference: GeyerKMKyker-SnowmanEGrandyASFreySDMicrobial carbon use efficiency: accounting for population, community, and ecosystem-scale controls over the fate of metabolized organic matterBiogeochemistry20161271731881:CAS:528:DC%2BC28Xislagurw%3D10.1007/s10533-016-0191-y – reference: Mahmud K, Makaju S, Ibrahim R, Missaoui A (2020) Current progress in nitrogen fixing plants and microbiome research. Plants-Basel 9. https://doi.org/10.3390/plants9010097 – reference: YueKFornaraDAYangWQPengYPengCHLiuZLWuFZInfluence of multiple global change drivers on terrestrial carbon storage: additive effects are commonEcol Lett20172066367210.1111/ele.12767 – reference: ReedSCSeastedtTRMannCMSudingKNTownsendARCherwinKLPhosphorus fertilization stimulates nitrogen fixation and increases inorganic nitrogen concentrations in a restored prairieAppl Soil Ecol20073623824210.1016/j.apsoil.2007.02.002 – reference: LalRSequestering carbon in soils of agro-ecosystemsFood Policy201136S33S3910.1016/j.foodpol.2010.12.001 – reference: CuiYXFangLCDengLGuoXBHanFJuWLWangXChenHSTanWFZhangXCPatterns of soil microbial nutrient limitations and their roles in the variation of soil organic carbon across a precipitation gradient in an arid and semi-arid regionSci Total Environ2019658144014511:CAS:528:DC%2BC1MXnvFWq10.1016/j.scitotenv.2018.12.289 – reference: Miguez-Montero MA, Valentine A, Perez-Fernandez MA (2020) Regulatory effect of phosphorus and nitrogen on nodulation and plant performance of leguminous shrubs. AoB Plants 12. https://doi.org/10.1093/aobpla/plz047 – reference: CuiYXBingHJFangLCWuYHYuJLShenGTJiangMWangXZhangXCDiversity patterns of the rhizosphere and bulk soil microbial communities along an altitudinal gradient in an alpine ecosystem of the eastern Tibetan PlateauGeoderma20193381181271:CAS:528:DC%2BC1cXisVent7bE10.1016/j.geoderma.2018.11.047 – reference: HoultonBZWangYPVitousekPMFieldCBA unifying framework for dinitrogen fixation in the terrestrial biosphereNature20084543273301:CAS:528:DC%2BD1cXosFCqs7w%3D10.1038/nature07028 – reference: SinsabaughRLManzoniSMoorheadDLRichterACarbon use efficiency of microbial communities: stoichiometry, methodology and modellingEcol Lett20131693093910.1111/ele.12113 – reference: ZhengMHLiDJLuXZhuXMZhangWHuangJFuSLLuXKMoJMEffects of phosphorus addition with and without nitrogen addition on biological nitrogen fixation in tropical legume and non-legume tree plantationsBiogeochemistry201613165761:CAS:528:DC%2BC28XhslKltb7F10.1007/s10533-016-0265-x – reference: OlsenSRSommersLEPageALMillerRHKeeneyDRPhosphorousMethods of soil analysis, Part 2, Chemical and Microbial Properties1982MadisonAgronomy Society of America403430 – reference: Sanchez G, Trinchera L, Russolillo G (2017) Plspm: tools for partial least squares path modeling (PLS-PM). https://CRAN.R-project.org/package=plspm – reference: WuYChenWJLiQGuoZQLiYZZhaoZWZhaiJYLiuGBXueSEcoenzymatic stoichiometry and nutrient limitation under a natural secondary succession of vegetation on the Loess Plateau, ChinaLand Degrad Dev20213239940910.1002/ldr.3723 – reference: PoeplauCHerrmannAMKattererTOpposing effects of nitrogen and phosphorus on soil microbial metabolism and the implications for soil carbon storageSoil Biol Biochem201610083911:CAS:528:DC%2BC28Xps1Wkt70%3D10.1016/j.soilbio.2016.05.021 – reference: Jensen ES, Carlsson G, Hauggaard-Nielsen H (2020) Intercropping of grain legumes and cereals improves the use of soil N resources and reduces the requirement for synthetic fertilizer N: a global-scale analysis. Agron Sustain Dev 40. https://doi.org/10.1007/s13593-020-0607-x – reference: Aleixo S, Gama-Rodrigues AC, Gama-Rodrigues EF, Campello EFC, Silva EC, Schripsema J (2020) Can soil phosphorus availability in tropical forest systems be increased by nitrogen-fixing leguminous trees? Sci Total Environ 712. https://doi.org/10.1016/j.scitotenv.2019.136405 – reference: SinsabaughRLTurnerBLTalbotJMWaringBGPowersJSKuskeCRMoorheadDLShahJJStoichiometry of microbial carbon use efficiency in soilsEcol Monogr20168617218910.1890/15-2110.1 – reference: Stagnari F, Maggio A, Galieni A, Pisante M (2017) Multiple benefits of legumes for agriculture sustainability: an overview. Chem Biol Technol Ag 4. https://doi.org/10.1186/s40538-016-0085-1 – volume: 25 start-page: 866 year: 2015 ident: 3094_CR58 publication-title: Ecol Appl doi: 10.1890/14-0189.1 – volume: 32 start-page: 399 year: 2021 ident: 3094_CR52 publication-title: Land Degrad Dev doi: 10.1002/ldr.3723 – volume: 454 start-page: 327 year: 2008 ident: 3094_CR16 publication-title: Nature doi: 10.1038/nature07028 – volume: 28 start-page: 25 year: 1996 ident: 3094_CR18 publication-title: Soil Biol Biochem doi: 10.1016/0038-0717(95)00102-6 – volume: 111 start-page: 743 year: 2013 ident: 3094_CR35 publication-title: Ann Bot doi: 10.1093/aob/mct048 – ident: 3094_CR51 doi: 10.1016/j.soilbio.2020.107815 – volume: 62 start-page: 992 year: 2011 ident: 3094_CR30 publication-title: Crop Pasture Sci doi: 10.1071/CP11229 – volume: 34 start-page: 1243 year: 2002 ident: 3094_CR46 publication-title: Soil Biol Biochem doi: 10.1016/S0038-0717(02)00064-0 – ident: 3094_CR60 doi: 10.1016/j.apsoil.2021.104033 – volume: 388 start-page: 12 year: 2021 ident: 3094_CR23 publication-title: Geoderma doi: 10.1016/j.geoderma.2021.114928 – volume: 97 start-page: 168 year: 2016 ident: 3094_CR43 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2016.03.008 – volume: 134 start-page: 1 year: 2019 ident: 3094_CR57 publication-title: Soil Biol Biochem doi: 10.1016/j.soilblo.2019.03.017 – ident: 3094_CR9 doi: 10.1016/j.soilbio.2020.107814 – volume: 462 start-page: 795 year: 2009 ident: 3094_CR37 publication-title: Nature doi: 10.1038/nature08632 – volume: 25 start-page: 53 year: 2000 ident: 3094_CR41 publication-title: Annu Rev Energ Environ doi: 10.1146/annurev.energy.25.1.53 – volume: 100 start-page: 83 year: 2016 ident: 3094_CR31 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2016.05.021 – ident: 3094_CR27 doi: 10.1093/aobpla/plz047 – volume: 86 start-page: 172 year: 2016 ident: 3094_CR40 publication-title: Ecol Monogr doi: 10.1890/15-2110.1 – volume: 658 start-page: 1440 year: 2019 ident: 3094_CR8 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.12.289 – volume: 20 start-page: 663 year: 2017 ident: 3094_CR54 publication-title: Ecol Lett doi: 10.1111/ele.12767 – volume: 127 start-page: 173 year: 2016 ident: 3094_CR15 publication-title: Biogeochemistry doi: 10.1007/s10533-016-0191-y – volume: 89 start-page: 35 year: 2015 ident: 3094_CR12 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2015.06.021 – ident: 3094_CR24 doi: 10.3390/plants9010097 – volume: 142 start-page: 587 year: 2017 ident: 3094_CR56 publication-title: Clim Change doi: 10.1007/s10584-017-1976-2 – ident: 3094_CR11 doi: 10.1111/j.2041-210X.2011.00153.x – volume: 10 start-page: 262 year: 2018 ident: 3094_CR55 publication-title: GCB Bioenergy doi: 10.1111/gcbb.12485 – volume: 196 start-page: 79 year: 2012 ident: 3094_CR25 publication-title: New Phytol doi: 10.1111/j.1469-8137.2012.04225.x – volume: 135 start-page: 38 year: 2019 ident: 3094_CR13 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2019.04.008 – ident: 3094_CR1 doi: 10.1016/j.scitotenv.2019.136405 – ident: 3094_CR28 doi: 10.1111/j.1747-0765.2010.00501.x – volume: 43 start-page: 313 year: 2012 ident: 3094_CR38 publication-title: Annu Rev Ecol Evol Syst doi: 10.1146/annurev-ecolsys-071112-124414 – volume: 68 start-page: 472 year: 2017 ident: 3094_CR3 publication-title: Eur J Soil Sci doi: 10.1111/ejss.12428 – start-page: 595 volume-title: Methods of soil analysis, Part 2, Chemical and Microbial Properties year: 1982 ident: 3094_CR2 – volume: 338 start-page: 118 year: 2019 ident: 3094_CR7 publication-title: Geoderma doi: 10.1016/j.geoderma.2018.11.047 – volume: 32 start-page: 59 year: 2000 ident: 3094_CR45 publication-title: Soil Biol Biochem doi: 10.1016/S0038-0717(99)00129-7 – volume: 56 start-page: 1093 year: 2020 ident: 3094_CR50 publication-title: Biol Fert Soils doi: 10.1007/s00374-020-01468-7 – volume: 329 start-page: 61 year: 2018 ident: 3094_CR4 publication-title: Geoderma doi: 10.1016/j.geoderma.2018.05.019 – volume: 54 start-page: 481 year: 2018 ident: 3094_CR26 publication-title: Biol Fert Soils doi: 10.1007/s00374-018-1274-9 – volume: 36 start-page: 238 year: 2007 ident: 3094_CR32 publication-title: Appl Soil Ecol doi: 10.1016/j.apsoil.2007.02.002 – ident: 3094_CR44 doi: 10.1186/s40538-016-0085-1 – volume: 88 start-page: 1386 year: 2007 ident: 3094_CR36 publication-title: Ecology doi: 10.1890/06-0219 – volume: 34 start-page: 1309 year: 2002 ident: 3094_CR33 publication-title: Soil Biol Biochem doi: 10.1016/S0038-0717(02)00074-3 – volume: 36 start-page: S33 year: 2011 ident: 3094_CR21 publication-title: Food Policy doi: 10.1016/j.foodpol.2010.12.001 – volume: 16 start-page: 930 year: 2013 ident: 3094_CR39 publication-title: Ecol Lett doi: 10.1111/ele.12113 – volume: 200 start-page: 9 year: 2020 ident: 3094_CR53 publication-title: China Soil Tillage Res doi: 10.1016/j.still.2020.104605 – volume: 38 start-page: 991 year: 2006 ident: 3094_CR19 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2005.08.012 – ident: 3094_CR17 doi: 10.1007/s13593-020-0607-x – start-page: 403 volume-title: Methods of soil analysis, Part 2, Chemical and Microbial Properties year: 1982 ident: 3094_CR29 – volume: 131 start-page: 65 year: 2016 ident: 3094_CR59 publication-title: Biogeochemistry doi: 10.1007/s10533-016-0265-x – ident: 3094_CR48 doi: 10.1007/s00374-015-1007-2 – volume: 116 start-page: 11 year: 2018 ident: 3094_CR6 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2017.09.025 – volume: 650 start-page: 303 year: 2019 ident: 3094_CR22 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.09.038 – ident: 3094_CR20 doi: 10.3389/fmicb.2019.01146 – ident: 3094_CR34 – volume: 81 start-page: 212 year: 2015 ident: 3094_CR14 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2014.11.022 – volume: 81 start-page: 128 year: 2015 ident: 3094_CR42 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2014.11.008 – volume: 31 start-page: 25 year: 2007 ident: 3094_CR47 publication-title: J Sustainable Agric doi: 10.1300/J064v31n03_04 – ident: 3094_CR49 – volume: 54 start-page: 783 year: 2018 ident: 3094_CR5 publication-title: Biol Fertil Soils doi: 10.1007/s00374-018-1294-5 – ident: 3094_CR10 doi: 10.1016/j.still.2019.104463 |
SSID | ssj0037161 |
Score | 2.4639435 |
Snippet | Purpose
Variation in soil microbial metabolism remains highly uncertain in predicting soil carbon (C) sequestration, and is particularly and poorly understood... PurposeVariation in soil microbial metabolism remains highly uncertain in predicting soil carbon (C) sequestration, and is particularly and poorly understood... PURPOSE: Variation in soil microbial metabolism remains highly uncertain in predicting soil carbon (C) sequestration, and is particularly and poorly understood... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 536 |
SubjectTerms | Agricultural ecosystems Agricultural land agroecosystems Biological fertilization Carbon Carbon sequestration Earth and Environmental Science Ecosystems Environment Environmental Physics Enzymatic activity Enzyme activity enzymes Extracellular Fertilization field experimentation Glucosidase Metabolism microbial growth microbial nitrogen Microorganisms Nitrogen nitrogen fixation Peas Phosphorus Reduction Sec 3 • Remediation and Management of Contaminated or Degraded Lands • Research Article Soil soil carbon Soil Science & Conservation Soils Stoichiometry |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB_0-qIPUqviaZUt-KaL2WST2z6VWq4UwSJioW9hv2ID1-RM7oT63_Q_7cxmc0cF-5CnnWSTzO587Mz8BuCDLjSBkiueaym5zK3iJnEVFzZLK6mMMYqKk7-dF2cX8utlfhkP3PqYVjnKxCCoXWvpjPxzinq6SA-lKo6Wvzl1jaLoamyh8Rh2UAQrNYGdL_Pz7z9GWZyhNxBcLlS76DQnKpbNDMVzIisUpxQFCjNIru6rpq29-U-INGie0114Fk1Gdjzw-Dk88s0ePD3-1UXYDP8Cbue29c3fm4C_ytCeq-0V1dWvuhtGGE24xtjyqu3x6tY9oyQiYgijRip_ajI32XUdIJlwooYA-lEXsQUVP-mBsHFsGTL3kLRv6wWzujM4EFKxR-xdViPl5r3wUejbDlDR_Uu4OJ3_PDnjsfkCt1KoFZ95I3FzimzmvDS2ElWuyYXNXUIJaip3WmivE5e6WSUNSgaZV_qwkMKnRSZN9gomTdv418DQzctFZZGBkgxItBFsoitHIVzkpxdTEON_L238LmqQsSi3mMrEqxJ5VQZelWoKHzf3LAdcjgep90d2lnGP9uV2RU3hYDOMu4tCJrrx7ZpoMnTQCIR_Cp_GZbB9xP9nfPPwjG_hSUp1FCH9ex8mq27t36F1szLv4xK-AxF3-vU priority: 102 providerName: ProQuest |
Title | Ecoenzymatic stoichiometry reveals phosphorus addition alleviates microbial nutrient limitation and promotes soil carbon sequestration in agricultural ecosystems |
URI | https://link.springer.com/article/10.1007/s11368-021-03094-8 https://www.proquest.com/docview/2623629486 https://www.proquest.com/docview/2636427946 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9wwEB3S5NIeSpu2dJsPFOitFVi25FWOm7JpaEkoIQvpyUiynBg29mLvBpJ_k3-aGa29S0pT6MH44LEkeyTNPGbmCeCzSQ2RkmuujJRcKqe5jfKCC5fEhdTWWk3Fyadn6clE_rhUl11RWNtnu_chybBTr4vdRJJqTikFFBaQXL-ALYXYnRK5JvGo338TRAABZqGpRaAc6a5U5u9tPDVHax_zj7BosDbHb-B15yay0VKvb2HDV9vwanTVdFQZ_h08jF3tq_u7wLnK0Icr3TXV0s-bO0a8TDiv2Oy6bvFqFi2jxCFSAqPDU25LcjHZTRlomLCjikj50f6wKRU8maVglbNZyNZD0bYup8yZxuKDkH7d8-2yEiVX48KmEM8u6aHb9zA5Hl98O-HdgQvcSaHnfOitxAUpkmHupXWFKJQh2KryiJLStMqNMN5EeZwPC2lxN5CqMIepFD5OE2mTD7BZ1ZX_CAyhnRKFQ-dKktOIfoGLTJFT2PZQai8GIPr_nrnuu-hQjGm25lEmXWWoqyzoKtMD-LJ6Z7bk4vin9G6vzqxbl20W44DSGEeQDuBg9RhXFIVJTOXrBckkCMqIeH8AX_tpsG7i-R4__Z_4DryMqZYipIDvwua8Wfg99HDmdh-2Rt9__xzj_Wh89ut8P0zwR9ep-Z4 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAcEE8RKLBIcIIVXnvtbA8IFUiV0jZCqJV6M_sytRTsYCeg8G_4A_xGZvxIBBK99eCTJ7tO5vPOTGbmG4BnOtFESq54rKXkMraKm8BlXNgozKQyxihqTj6eJpNT-eEsPtuC330vDJVV9mdic1C70tJ_5K9CtNNJuCtV8mb-jdPUKMqu9iM0Wlgc-tUPDNnq1wfvUb_Pw3B_fPJuwrupAtxKoRZ85I1E1Ilo5Lw0NhNZrCk2i11AlVcqdlporwMXulEmDUJexpneTaTwYRJJE-G6V2BbRkkQDmD77Xj68VN_9kcYfTQhHpp5DNID1bXptM16IkoUp5IISmtIrv42hRv_9p-UbGPp9m_Cjc5FZXstpm7Bli9uw_W9L1VH0-HvwK-xLX3xc9XwvTL0H3N7Tn38i2rFiBMKMc3m52WNV7WsGRUtEQAYDW75npN7y77mDQUUblTQQAC0fWxGzVa6FSwcmzeVgihal_mMWV0ZvNGUfvdcvyxHyfVz4VIYS7fU1PVdOL0UtdyDQVEW_j4wDCtjkVkEjCSHFX0SG-jMUcoY8ePFEET_u6e2-140kGOWbjicSVcp6iptdJWqIbxYf2be8oBcKL3TqzPtzoQ63SB4CE_Xt_FtphSNLny5JJkIA0Ii_R_Cyx4GmyX-v-ODi3d8AlcnJ8dH6dHB9PAhXAuph6MpPd-BwaJa-kfoWS3M4w7ODD5f9hv0B03COFM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQDxFoMAiwQlW9dprZ3tAqNBELYWoQlTqzezL1FKwg52Awr_hb_DrmPEjEUj01kNOnuwmmW935su8AJ7pRFNTcsVjLSWXsVXcBC7jwkZhJpUxRlFx8odpcngq353FZ1vwu6-FobTK_k5sLmpXWvqPfDdEO52Ee1Ilu1mXFnFyMHk9_8ZpghRFWvtxGi1Ejv3qB9K3-tXRAer6eRhOxp_eHvJuwgC3UqgFH3kjEYEiGjkvjc1EFmviabELKAtLxU4L7XXgQjfKpEH4yzjTe4kUPkwiaSJc9wpsj4gVDWD7zXh68rG3AxEykYbuoclHwh6ormSnLdwTUaI4pUdQiENy9bdZ3Pi6_4RnG6s3uQk3OneV7bf4ugVbvrgN1_e_VF3LDn8Hfo1t6Yufq6b3K0NfMrfnVNO_qFaM-kMhvtn8vKzxVS1rRglMBAZGQ1y-5-Tqsq950w4KNypoOADaQTajwivdChaOzZusQRSty3zGrK4MPmjSwPu-vyxHyfXnwqWQV7dtquu7cHoparkHg6Is_H1gSDFjkVkEjyTnFf0TG-jMUfgYseTFEET_u6e2-140nGOWbvo5k65S1FXa6CpVQ3ixfs-87QlyofROr860ux_qdIPmITxdP8aTTeEaXfhySTIRkkMaADCElz0MNkv8f8cHF-_4BK7iyUnfH02PH8K1kMo5miz0HRgsqqV_hE7Wwjzu0Mzg82UfoD-nrzyI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ecoenzymatic+stoichiometry+reveals+phosphorus+addition+alleviates+microbial+nutrient+limitation+and+promotes+soil+carbon+sequestration+in+agricultural+ecosystems&rft.jtitle=Journal+of+soils+and+sediments&rft.au=Wang%2C+Xiangxiang&rft.au=Cui%2C+Yongxing&rft.au=Wang%2C+Yuhan&rft.au=Duan%2C+Chengjiao&rft.date=2022-02-01&rft.issn=1439-0108&rft.eissn=1614-7480&rft.volume=22&rft.issue=2&rft.spage=536&rft.epage=546&rft_id=info:doi/10.1007%2Fs11368-021-03094-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11368_021_03094_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1439-0108&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1439-0108&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1439-0108&client=summon |