Ecoenzymatic stoichiometry reveals phosphorus addition alleviates microbial nutrient limitation and promotes soil carbon sequestration in agricultural ecosystems

Purpose Variation in soil microbial metabolism remains highly uncertain in predicting soil carbon (C) sequestration, and is particularly and poorly understood in agroecosystem with high soil phosphorus (P) variability. Materials and methods This study quantified metabolic limitation of microbes and...

Full description

Saved in:
Bibliographic Details
Published inJournal of soils and sediments Vol. 22; no. 2; pp. 536 - 546
Main Authors Wang, Xiangxiang, Cui, Yongxing, Wang, Yuhan, Duan, Chengjiao, Niu, Yinan, Sun, Ruxiao, Shen, Yufang, Guo, Xuetao, Fang, Linchuan
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose Variation in soil microbial metabolism remains highly uncertain in predicting soil carbon (C) sequestration, and is particularly and poorly understood in agroecosystem with high soil phosphorus (P) variability. Materials and methods This study quantified metabolic limitation of microbes and their association with carbon use efficiency (CUE) via extracellular enzymatic stoichiometry and biogeochemical equilibrium models in field experiment employing five inorganic P gradients (0, 75, 150, 225, and 300 kg P ha −1 ) in farmland used to grow peas. Results and discussion Results showed P fertilization significantly increased soil Olsen-P and NO 3 − -N contents, and enzyme activities (β-1,4-glucosidase and β- D -cellobiosidase) were significantly affected by P fertilization. It indicated that P fertilization significantly decreased microbial P limitation due to the increase of soil available P. Interestingly, P application also significantly decreased microbial nitrogen (N) limitation, a phenomenon primarily attributable to increasing NO 3 − -N content via increasing biological N fixation within the pea field. Furthermore, P fertilization increased microbial CUE because the reduction in microbial N and P limitation leads to higher C allocation to microbial growth. Partial least squares path modeling (PLS-PM) further revealed that the reduction of microbial metabolic limitation is conducive to soil C sequestration. Conclusions Our study revealed that P application in agroecosystem can alleviate not only microbial P limitation but also N limitation, which further reduces soil C loss via increasing microbial CUE. This study provides important insight into better understanding the mechanisms whereby fertilization mediates soil C cycling driven by microbial metabolism in agricultural ecosystems.
AbstractList Purpose Variation in soil microbial metabolism remains highly uncertain in predicting soil carbon (C) sequestration, and is particularly and poorly understood in agroecosystem with high soil phosphorus (P) variability. Materials and methods This study quantified metabolic limitation of microbes and their association with carbon use efficiency (CUE) via extracellular enzymatic stoichiometry and biogeochemical equilibrium models in field experiment employing five inorganic P gradients (0, 75, 150, 225, and 300 kg P ha −1 ) in farmland used to grow peas. Results and discussion Results showed P fertilization significantly increased soil Olsen-P and NO 3 − -N contents, and enzyme activities (β-1,4-glucosidase and β- D -cellobiosidase) were significantly affected by P fertilization. It indicated that P fertilization significantly decreased microbial P limitation due to the increase of soil available P. Interestingly, P application also significantly decreased microbial nitrogen (N) limitation, a phenomenon primarily attributable to increasing NO 3 − -N content via increasing biological N fixation within the pea field. Furthermore, P fertilization increased microbial CUE because the reduction in microbial N and P limitation leads to higher C allocation to microbial growth. Partial least squares path modeling (PLS-PM) further revealed that the reduction of microbial metabolic limitation is conducive to soil C sequestration. Conclusions Our study revealed that P application in agroecosystem can alleviate not only microbial P limitation but also N limitation, which further reduces soil C loss via increasing microbial CUE. This study provides important insight into better understanding the mechanisms whereby fertilization mediates soil C cycling driven by microbial metabolism in agricultural ecosystems.
PURPOSE: Variation in soil microbial metabolism remains highly uncertain in predicting soil carbon (C) sequestration, and is particularly and poorly understood in agroecosystem with high soil phosphorus (P) variability. MATERIALS AND METHODS: This study quantified metabolic limitation of microbes and their association with carbon use efficiency (CUE) via extracellular enzymatic stoichiometry and biogeochemical equilibrium models in field experiment employing five inorganic P gradients (0, 75, 150, 225, and 300 kg P ha⁻¹) in farmland used to grow peas. RESULTS AND DISCUSSION: Results showed P fertilization significantly increased soil Olsen-P and NO₃⁻-N contents, and enzyme activities (β-1,4-glucosidase and β-D-cellobiosidase) were significantly affected by P fertilization. It indicated that P fertilization significantly decreased microbial P limitation due to the increase of soil available P. Interestingly, P application also significantly decreased microbial nitrogen (N) limitation, a phenomenon primarily attributable to increasing NO₃⁻-N content via increasing biological N fixation within the pea field. Furthermore, P fertilization increased microbial CUE because the reduction in microbial N and P limitation leads to higher C allocation to microbial growth. Partial least squares path modeling (PLS-PM) further revealed that the reduction of microbial metabolic limitation is conducive to soil C sequestration. CONCLUSIONS: Our study revealed that P application in agroecosystem can alleviate not only microbial P limitation but also N limitation, which further reduces soil C loss via increasing microbial CUE. This study provides important insight into better understanding the mechanisms whereby fertilization mediates soil C cycling driven by microbial metabolism in agricultural ecosystems.
PurposeVariation in soil microbial metabolism remains highly uncertain in predicting soil carbon (C) sequestration, and is particularly and poorly understood in agroecosystem with high soil phosphorus (P) variability.Materials and methodsThis study quantified metabolic limitation of microbes and their association with carbon use efficiency (CUE) via extracellular enzymatic stoichiometry and biogeochemical equilibrium models in field experiment employing five inorganic P gradients (0, 75, 150, 225, and 300 kg P ha−1) in farmland used to grow peas.Results and discussionResults showed P fertilization significantly increased soil Olsen-P and NO3−-N contents, and enzyme activities (β-1,4-glucosidase and β-D-cellobiosidase) were significantly affected by P fertilization. It indicated that P fertilization significantly decreased microbial P limitation due to the increase of soil available P. Interestingly, P application also significantly decreased microbial nitrogen (N) limitation, a phenomenon primarily attributable to increasing NO3−-N content via increasing biological N fixation within the pea field. Furthermore, P fertilization increased microbial CUE because the reduction in microbial N and P limitation leads to higher C allocation to microbial growth. Partial least squares path modeling (PLS-PM) further revealed that the reduction of microbial metabolic limitation is conducive to soil C sequestration.ConclusionsOur study revealed that P application in agroecosystem can alleviate not only microbial P limitation but also N limitation, which further reduces soil C loss via increasing microbial CUE. This study provides important insight into better understanding the mechanisms whereby fertilization mediates soil C cycling driven by microbial metabolism in agricultural ecosystems.
Author Wang, Xiangxiang
Duan, Chengjiao
Wang, Yuhan
Fang, Linchuan
Niu, Yinan
Sun, Ruxiao
Cui, Yongxing
Shen, Yufang
Guo, Xuetao
Author_xml – sequence: 1
  givenname: Xiangxiang
  surname: Wang
  fullname: Wang, Xiangxiang
  organization: State Key Laboratory of Soil Erosion and Dryland Farming On the Loess Plateau, Northwest A&F University, College of Natural Resources and Environment, Northwest A&F University
– sequence: 2
  givenname: Yongxing
  surname: Cui
  fullname: Cui, Yongxing
  organization: Institute of Soil and Water Conservation, Ministry of Water Resources, Chinese Academy of Sciences, University of Chinese Academy of Sciences
– sequence: 3
  givenname: Yuhan
  surname: Wang
  fullname: Wang, Yuhan
  organization: State Key Laboratory of Soil Erosion and Dryland Farming On the Loess Plateau, Northwest A&F University, College of Natural Resources and Environment, Northwest A&F University
– sequence: 4
  givenname: Chengjiao
  surname: Duan
  fullname: Duan, Chengjiao
  organization: Institute of Soil and Water Conservation, Ministry of Water Resources, Chinese Academy of Sciences, University of Chinese Academy of Sciences
– sequence: 5
  givenname: Yinan
  surname: Niu
  fullname: Niu, Yinan
  organization: State Key Laboratory of Soil Erosion and Dryland Farming On the Loess Plateau, Northwest A&F University, College of Natural Resources and Environment, Northwest A&F University
– sequence: 6
  givenname: Ruxiao
  surname: Sun
  fullname: Sun, Ruxiao
  organization: State Key Laboratory of Soil Erosion and Dryland Farming On the Loess Plateau, Northwest A&F University, College of Natural Resources and Environment, Northwest A&F University
– sequence: 7
  givenname: Yufang
  surname: Shen
  fullname: Shen, Yufang
  organization: State Key Laboratory of Soil Erosion and Dryland Farming On the Loess Plateau, Northwest A&F University, College of Natural Resources and Environment, Northwest A&F University
– sequence: 8
  givenname: Xuetao
  surname: Guo
  fullname: Guo, Xuetao
  organization: College of Natural Resources and Environment, Northwest A&F University
– sequence: 9
  givenname: Linchuan
  orcidid: 0000-0003-1923-7908
  surname: Fang
  fullname: Fang, Linchuan
  email: flinc629@hotmail.com
  organization: State Key Laboratory of Soil Erosion and Dryland Farming On the Loess Plateau, Northwest A&F University, College of Natural Resources and Environment, Northwest A&F University, Institute of Soil and Water Conservation, Ministry of Water Resources, Chinese Academy of Sciences, CAS Center for Excellence in Quaternary Science and Global Change
BookMark eNp9kc9K5jAUxYM44L95AVcBN7PpmDRpmy5F1BkQ3Og6pOmtRtLkMzcVvnkb39R8Vhhw4SIkcH_n5nDOEdkPMQAhp5z95ox158i5aFXFal4xwXpZqT1yyFsuq04qtl_eUvQV40wdkCPEZ8ZEV8aH5O3KRgj_trPJzlLM0dknF2fIaUsTvILxSDdPEctJC1Izji67GKjxHl6dyYB0djbFwRlPw5KTg5Cpd7PLZgXDSDcpznGHYnSeWpOGMkB4WQBzWjFXyMfk7OLzksoqsBG3mGHGE_JjKi7g5-d9TB6ur-4v_1S3dzd_Ly9uKyu5ylUHg-xbwUU3ghzsxKfGsLqTzchsM4FqRsMNGDbWYzfJgSshm8n0reRQt0IO4pj8WvcWtx_O9OzQgvcmQFxQF6qVddfLtqBnX9DnuKRQ3BWqFm3dS7Wj6pUq8SAmmPQmudmkreZM71rTa2u6tKY_WtOqiNQXkf1MsiTl_PdSsUqx_BMeIf139Y3qHSQ8tFA
CitedBy_id crossref_primary_10_1016_j_catena_2023_106939
crossref_primary_10_7717_peerj_16227
crossref_primary_10_3390_f15020385
crossref_primary_10_1016_j_agee_2024_109219
crossref_primary_10_1007_s11104_022_05343_2
crossref_primary_10_1016_j_apsoil_2024_105520
crossref_primary_10_1016_j_ibiod_2023_105728
crossref_primary_10_1016_j_scitotenv_2024_170294
crossref_primary_10_3389_fpls_2024_1445230
crossref_primary_10_1016_j_ejsobi_2024_103601
crossref_primary_10_1093_femsle_fnad061
crossref_primary_10_1002_ldr_4840
crossref_primary_10_1016_j_envres_2024_118936
crossref_primary_10_1016_j_chemosphere_2022_136311
crossref_primary_10_1111_gcb_70036
crossref_primary_10_1016_j_agee_2023_108750
crossref_primary_10_3390_agronomy14030467
crossref_primary_10_1016_j_foreco_2025_122543
crossref_primary_10_1016_j_still_2024_106152
crossref_primary_10_1007_s11368_022_03142_x
crossref_primary_10_1016_j_catena_2022_106901
crossref_primary_10_1016_j_foreco_2024_122147
crossref_primary_10_3389_fevo_2022_1104369
crossref_primary_10_1016_j_catena_2024_108050
crossref_primary_10_3390_agronomy14030581
crossref_primary_10_1016_j_agee_2024_109142
crossref_primary_10_3390_f13122102
crossref_primary_10_1016_j_scitotenv_2023_168719
crossref_primary_10_1016_j_scitotenv_2023_167856
crossref_primary_10_1007_s42832_023_0176_4
crossref_primary_10_1016_j_apsoil_2025_106031
crossref_primary_10_1016_j_catena_2023_107527
crossref_primary_10_3390_pr10112425
crossref_primary_10_1016_j_scitotenv_2022_157931
crossref_primary_10_1016_j_apsoil_2025_106010
crossref_primary_10_3390_agronomy12112796
Cites_doi 10.1890/14-0189.1
10.1002/ldr.3723
10.1038/nature07028
10.1016/0038-0717(95)00102-6
10.1093/aob/mct048
10.1016/j.soilbio.2020.107815
10.1071/CP11229
10.1016/S0038-0717(02)00064-0
10.1016/j.apsoil.2021.104033
10.1016/j.geoderma.2021.114928
10.1016/j.soilbio.2016.03.008
10.1016/j.soilblo.2019.03.017
10.1016/j.soilbio.2020.107814
10.1038/nature08632
10.1146/annurev.energy.25.1.53
10.1016/j.soilbio.2016.05.021
10.1093/aobpla/plz047
10.1890/15-2110.1
10.1016/j.scitotenv.2018.12.289
10.1111/ele.12767
10.1007/s10533-016-0191-y
10.1016/j.soilbio.2015.06.021
10.3390/plants9010097
10.1007/s10584-017-1976-2
10.1111/j.2041-210X.2011.00153.x
10.1111/gcbb.12485
10.1111/j.1469-8137.2012.04225.x
10.1016/j.soilbio.2019.04.008
10.1016/j.scitotenv.2019.136405
10.1111/j.1747-0765.2010.00501.x
10.1146/annurev-ecolsys-071112-124414
10.1111/ejss.12428
10.1016/j.geoderma.2018.11.047
10.1016/S0038-0717(99)00129-7
10.1007/s00374-020-01468-7
10.1016/j.geoderma.2018.05.019
10.1007/s00374-018-1274-9
10.1016/j.apsoil.2007.02.002
10.1186/s40538-016-0085-1
10.1890/06-0219
10.1016/S0038-0717(02)00074-3
10.1016/j.foodpol.2010.12.001
10.1111/ele.12113
10.1016/j.still.2020.104605
10.1016/j.soilbio.2005.08.012
10.1007/s13593-020-0607-x
10.1007/s10533-016-0265-x
10.1007/s00374-015-1007-2
10.1016/j.soilbio.2017.09.025
10.1016/j.scitotenv.2018.09.038
10.3389/fmicb.2019.01146
10.1016/j.soilbio.2014.11.022
10.1016/j.soilbio.2014.11.008
10.1300/J064v31n03_04
10.1007/s00374-018-1294-5
10.1016/j.still.2019.104463
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7ST
7UA
7X2
7XB
88I
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H96
H97
HCIFZ
L.G
M0K
M2P
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
PYCSY
Q9U
SOI
7S9
L.6
DOI 10.1007/s11368-021-03094-8
DatabaseName CrossRef
ProQuest Central (Corporate)
Environment Abstracts
Water Resources Abstracts
Agricultural Science Collection
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
SciTech Premium Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Agriculture Science Database
Science Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Agricultural Science Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest SciTech Collection
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Environment Abstracts
ProQuest Central (Alumni)
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Agricultural Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1614-7480
EndPage 546
ExternalDocumentID 10_1007_s11368_021_03094_8
GrantInformation_xml – fundername: national natural science foundation of china
  grantid: 41977031
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: strategic priority research program of the chinese academy of sciences
  grantid: XDB40000000
– fundername: program of state key laboratory of loess and quaternary geology of cas
  grantid: SKLLQGZR1803
GroupedDBID -5A
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
203
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
4P2
5GY
5VS
67M
67Z
6NX
7X2
7XC
88I
8CJ
8FE
8FH
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
APEBS
ARMRJ
ATCPS
AXYYD
AYJHY
AZQEC
B-.
BA0
BDATZ
BENPR
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1J
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
L8X
LAS
LK5
LLZTM
M0K
M2P
M4Y
M7R
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
PATMY
PCBAR
PF0
PQQKQ
PROAC
PT4
PYCSY
Q2X
QOS
R89
R9I
RMD
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7U
Z7Y
ZMTXR
~02
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7ST
7UA
7XB
8FK
ABRTQ
C1K
F1W
H96
H97
L.G
PKEHL
PQEST
PQUKI
Q9U
SOI
7S9
L.6
ID FETCH-LOGICAL-c418t-7eb4963137de4bcf1f5a02745d0c5fe85da1aea0d2d7f4b18345fa9641e2634b3
IEDL.DBID U2A
ISSN 1439-0108
IngestDate Fri Jul 11 02:58:03 EDT 2025
Fri Jul 25 20:57:03 EDT 2025
Thu Apr 24 23:00:27 EDT 2025
Tue Jul 01 01:38:24 EDT 2025
Fri Feb 21 02:46:21 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Carbon use efficiency
Agricultural ecosystems
Microbial metabolic limitation
Ecoenzymatic stoichiometry
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-7eb4963137de4bcf1f5a02745d0c5fe85da1aea0d2d7f4b18345fa9641e2634b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1923-7908
PQID 2623629486
PQPubID 54474
PageCount 11
ParticipantIDs proquest_miscellaneous_2636427946
proquest_journals_2623629486
crossref_primary_10_1007_s11368_021_03094_8
crossref_citationtrail_10_1007_s11368_021_03094_8
springer_journals_10_1007_s11368_021_03094_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Dordrecht
PublicationTitle Journal of soils and sediments
PublicationTitleAbbrev J Soils Sediments
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References VesterdalLRaulund-RasmussenKAvailability of nitrogen and phosphorus in Norway spruce forest floors fertilized with nitrogen and other essential nutrientsSoil Biol Biochem200234124312511:CAS:528:DC%2BD38XlvVemu7k%3D10.1016/S0038-0717(02)00064-0
ZhaoHSunBFLuFWangXKZhuangTZhangGOuyangZYRoles of nitrogen, phosphorus, and potassium fertilizers in carbon sequestration in a Chinese agricultural ecosystemClim Change20171425875961:CAS:528:DC%2BC2sXmvFChtrY%3D10.1007/s10584-017-1976-2
ChengYWangJSunNXuMGZhangJBCaiZCWangSQPhosphorus addition enhances gross microbial N cycling in phosphorus-poor soils: a 15N study from two long-term fertilization experimentsBiol Fertil Soils2018547837891:CAS:528:DC%2BC1cXhtFWhtrrL10.1007/s00374-018-1294-5
FengJGZhuBA global meta-analysis of soil respiration and its components in response to phosphorus additionSoil Biol Biochem201913538471:CAS:528:DC%2BC1MXnvF2ht7w%3D10.1016/j.soilbio.2019.04.008
ThirukkumaranCMParkinsonDMicrobial respiration, biomass, metabolic quotient and litter decomposition in a lodgepole pine forest floor amended with nitrogen and phosphorous fertilizersSoil Biol Biochem20003259661:CAS:528:DC%2BD3cXmvFakug%3D%3D10.1016/S0038-0717(99)00129-7
SantiCBoguszDFrancheCBiological nitrogen fixation in non-legume plantsAnn Bot20131117437671:CAS:528:DC%2BC3sXmtlantb4%3D10.1093/aob/mct048
SinsabaughRLManzoniSMoorheadDLRichterACarbon use efficiency of microbial communities: stoichiometry, methodology and modellingEcol Lett20131693093910.1111/ele.12113
MehnazKRKeitelCDijkstraFAEffects of carbon and phosphorus addition on microbial respiration, N2O emission, and gross nitrogen mineralization in a phosphorus-limited grassland soilBiol Fert Soils2018544814931:CAS:528:DC%2BC1cXmslKksLc%3D10.1007/s00374-018-1274-9
SinsabaughRLTurnerBLTalbotJMWaringBGPowersJSKuskeCRMoorheadDLShahJJStoichiometry of microbial carbon use efficiency in soilsEcol Monogr20168617218910.1890/15-2110.1
ReedSCSeastedtTRMannCMSudingKNTownsendARCherwinKLPhosphorus fertilization stimulates nitrogen fixation and increases inorganic nitrogen concentrations in a restored prairieAppl Soil Ecol20073623824210.1016/j.apsoil.2007.02.002
WeiXMZhuZKLiuYLuoYDengYWXuXLLiuSLRichterAShibistovaOGuggenbergerGWuJSGeTDC:N: P stoichiometry regulates soil organic carbon mineralization and concomitant shifts in microbial community composition in paddy soilBiol Fert Soils202056109311071:CAS:528:DC%2BB3cXpsFOnsLs%3D10.1007/s00374-020-01468-7
OlsenSRSommersLEPageALMillerRHKeeneyDRPhosphorousMethods of soil analysis, Part 2, Chemical and Microbial Properties1982MadisonAgronomy Society of America403430
ZangHDBlagodatskayaEWenYXuXLDyckmansJKuzyakovYCarbon sequestration and turnover in soil under the energy crop Miscanthus: repeated 13C natural abundance approach and literature synthesisGCB Bioenergy2018102622711:CAS:528:DC%2BC1cXjsl2mtrk%3D10.1111/gcbb.12485
ChenHZhangWGurmesaGAZhuXLiDMoJPhosphorus addition affects soil nitrogen dynamics in a nitrogen-saturated and two nitrogen-limited forestsEur J Soil Sci2017684724791:CAS:528:DC%2BC2sXhtFGntbjF10.1111/ejss.12428
Cui YX, Wang X, Zhang XC, Ju WL, Duan CJ, Guo XB, Wang YQ, Fang LC (2020a) Soil moisture mediates microbial carbon and phosphorus metabolism during vegetation succession in a semiarid region. Soil Biol Biochem 147. https://doi.org/10.1016/j.soilbio.2020.107814
Wang YD, Hu N, Xu MG, Li ZF, Lou YL, Chen Y, Wu CY, Wang ZL (2015) 23-year manure and fertilizer application increases soil organic carbon sequestration of a rice-barley cropping system. Biol Fertil Soils 51:583–591. https://doi.org/10.1007/s00374-015-1007-2
ZhengMHLiDJLuXZhuXMZhangWHuangJFuSLLuXKMoJMEffects of phosphorus addition with and without nitrogen addition on biological nitrogen fixation in tropical legume and non-legume tree plantationsBiogeochemistry201613165761:CAS:528:DC%2BC28XhslKltb7F10.1007/s10533-016-0265-x
MaZZZhangXCZhengBYYueSCZhangXCZhaiBNWangZHZhengWLiZYZamanianKRazaviBSEffects of plastic and straw mulching on soil microbial P limitations in maize fields: dependency on soil organic carbon demonstrated by ecoenzymatic stoichiometryGeoderma2021388121:CAS:528:DC%2BB3MXht1KiurfN10.1016/j.geoderma.2021.114928
Sanchez G, Trinchera L, Russolillo G (2017) Plspm: tools for partial least squares path modeling (PLS-PM). https://CRAN.R-project.org/package=plspm
David IW, Remko AD, Daniel SF, Sara T (2012) smatr 3 - an R package for estimation and inference about allometric lines. Methods Ecol Evol 3:257–259
Kallenbach CM, Wallenstein MD, Schipanksi ME, Grandy AS (2019) Managing agroecosystems for soil microbial carbon use efficiency: ecological unknowns, potential outcomes, and a path forward. Front Microbiol 10. https://doi.org/10.3389/fmicb.2019.01146
BremnerJMMulvaneyCSPageALMillerRHKeeneyDRNitrogen-totalMethods of soil analysis, Part 2, Chemical and Microbial Properties1982MadisonAgronomy Society of America595624
PoeplauCHerrmannAMKattererTOpposing effects of nitrogen and phosphorus on soil microbial metabolism and the implications for soil carbon storageSoil Biol Biochem201610083911:CAS:528:DC%2BC28Xps1Wkt70%3D10.1016/j.soilbio.2016.05.021
SmilVPhosphorus in the environment: natural flows and human interferencesAnnu Rev Energ Environ200025538810.1146/annurev.energy.25.1.53
Mori T, Ohta S, Ishizuka S, Konda R, Wicaksono A, Heriyanto J, Hardjono A (2010) Effects of phosphorus addition on N2O and NO emissions from soils of an Acacia mangium plantation. Soil Sci Plant Nutr 56:782–788. https://doi.org/10.1111/j.1747-0765.2010.00501.x
Saiya-CorkKRSinsabaughRLZakDRThe effects of long-term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soilSoil Biol Biochem200234130913151:CAS:528:DC%2BD38XlvVemu7w%3D10.1016/S0038-0717(02)00074-3
PangJTibbettMDentonMDLambersHSiddiqueKHMRyanMHSoil phosphorus supply affects nodulation and N: P ratio in 11 perennial legume seedlingsCrop Pasture Sci20116299210011:CAS:528:DC%2BC3MXhs1Gru7jK10.1071/CP11229
ChenHLiDJZhaoJZhangWXiaoKCWangKLNitrogen addition aggravates microbial carbon limitation: Evidence from ecoenzymatic stoichiometryGeoderma201832961641:CAS:528:DC%2BC1cXhtVGjtLbN10.1016/j.geoderma.2018.05.019
SpohnMChodakMMicrobial respiration per unit biomass increases with carbon-to-nutrient ratios in forest soilsSoil Biol Biochem2015811281331:CAS:528:DC%2BC2cXitVWku7%2FM10.1016/j.soilbio.2014.11.008
Zhu ZK, Zhou J, Shahbaz M, Tang HM, Liu SL, Zhang WJ, Yuan HZ, Zhou V, Alharbi H, Wu JS, Kuzyakov Y, Ge TD (2021) Microorganisms maintain C: N stoichiometric balance by regulating the priming effect in long-term fertilized soils. Appl Soil Ecol 167. https://doi.org/10.1016/j.apsoil.2021.104033
Jensen ES, Carlsson G, Hauggaard-Nielsen H (2020) Intercropping of grain legumes and cereals improves the use of soil N resources and reduces the requirement for synthetic fertilizer N: a global-scale analysis. Agron Sustain Dev 40. https://doi.org/10.1007/s13593-020-0607-x
SinsabaughRLHillBHShahJJEcoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sedimentNature20094627957991:CAS:528:DC%2BD1MXhsFersrvK10.1038/nature08632
ZhangWXuYDGaoDXWangXLiuWCDengJHanXHYangGHFengYZRenGXEcoenzymatic stoichiometry and nutrient dynamics along a revegetation chronosequence in the soils of abandoned land and Robinia pseudoacacia plantation on the Loess Plateau, ChinaSoil Biol Biochem201913411410.1016/j.soilblo.2019.03.017
HoultonBZWangYPVitousekPMFieldCBA unifying framework for dinitrogen fixation in the terrestrial biosphereNature20084543273301:CAS:528:DC%2BD1cXosFCqs7w%3D10.1038/nature07028
Miguez-Montero MA, Valentine A, Perez-Fernandez MA (2020) Regulatory effect of phosphorus and nitrogen on nodulation and plant performance of leguminous shrubs. AoB Plants 12. https://doi.org/10.1093/aobpla/plz047
SpohnMPotschEMEichorstSAWoebkenDWanekWRichterASoil microbial carbon use efficiency and biomass turnover in a long-term fertilization experiment in a temperate grasslandSoil Biol Biochem2016971681751:CAS:528:DC%2BC28Xms1Kltbw%3D10.1016/j.soilbio.2016.03.008
YueKFornaraDAYangWQPengYPengCHLiuZLWuFZInfluence of multiple global change drivers on terrestrial carbon storage: additive effects are commonEcol Lett20172066367210.1111/ele.12767
CuiYXFangLCGuoXBWangXZhangYJLiPFZhangXCEcoenzymatic stoichiometry and microbial nutrient limitation in rhizosphere soil in the arid area of the northern Loess Plateau, ChinaSoil Biol Biochem201811611211:CAS:528:DC%2BC2sXhs1elurzO10.1016/j.soilbio.2017.09.025
CuiYXBingHJFangLCWuYHYuJLShenGTJiangMWangXZhangXCDiversity patterns of the rhizosphere and bulk soil microbial communities along an altitudinal gradient in an alpine ecosystem of the eastern Tibetan PlateauGeoderma20193381181271:CAS:528:DC%2BC1cXisVent7bE10.1016/j.geoderma.2018.11.047
CuiYXFangLCDengLGuoXBHanFJuWLWangXChenHSTanWFZhangXCPatterns of soil microbial nutrient limitations and their roles in the variation of soil organic carbon across a precipitation gradient in an arid and semi-arid regionSci Total Environ2019658144014511:CAS:528:DC%2BC1MXnvFWq10.1016/j.scitotenv.2018.12.289
FiskMSantangeloSMinickKCarbon mineralization is promoted by phosphorus and reduced by nitrogen addition in the organic horizon of northern hardwood forestsSoil Biol Biochem2015812122181:CAS:528:DC%2BC2cXitVWrs7bM10.1016/j.soilbio.2014.11.022
WuYChenWJLiQGuoZQLiYZZhaoZWZhaiJYLiuGBXueSEcoenzymatic stoichiometry and nutrient limitation under a natural secondary succession of vegetation on the Loess Plateau, ChinaLand Degrad Dev20213239940910.1002/ldr.3723
XiaoLLiuGBLiPLiQXueSEcoenzymatic stoichiometry and microbial nutrient limitation during secondary succession of natural grassland on the Loess PlateauChina Soil Tillage Res2020200910.1016/j.still.2020.104605
Aleixo S, Gama-Rodrigues AC, Gama-Rodrigues EF, Campello EFC, Silva EC, Schripsema J (2020) Can soil phosphorus availability in tropical forest systems be increased by nitrogen-fixing leguminous trees? Sci Total Environ 712. https://doi.org/10.1016/j.scitotenv.2019.136405
LuoRYFanJLWangWJL
YX Cui (3094_CR8) 2019; 658
M Spohn (3094_CR43) 2016; 97
3094_CR34
L Vesterdal (3094_CR46) 2002; 34
HD Zang (3094_CR55) 2018; 10
L Xiao (3094_CR53) 2020; 200
YX Cui (3094_CR6) 2018; 116
Y Wu (3094_CR52) 2021; 32
M Spohn (3094_CR42) 2015; 81
JG Feng (3094_CR13) 2019; 135
JA Vera-Nunez (3094_CR47) 2007; 31
W Zhang (3094_CR57) 2019; 134
RL Sinsabaugh (3094_CR38) 2012; 43
RG Joergensen (3094_CR18) 1996; 28
BZ Houlton (3094_CR16) 2008; 454
P Dijkstra (3094_CR12) 2015; 89
RY Luo (3094_CR22) 2019; 650
3094_CR20
K Yue (3094_CR54) 2017; 20
H Chen (3094_CR3) 2017; 68
J Pang (3094_CR30) 2011; 62
CM Thirukkumaran (3094_CR45) 2000; 32
3094_CR60
KR Saiya-Cork (3094_CR33) 2002; 34
Y Cheng (3094_CR5) 2018; 54
3094_CR28
H Chen (3094_CR4) 2018; 329
3094_CR24
3094_CR27
MH Zheng (3094_CR59) 2016; 131
RL Sinsabaugh (3094_CR39) 2013; 16
3094_CR10
3094_CR11
M Fisk (3094_CR14) 2015; 81
ZZ Ma (3094_CR23) 2021; 388
3094_CR51
3094_CR17
3094_CR1
YX Cui (3094_CR7) 2019; 338
RL Sinsabaugh (3094_CR37) 2009; 462
H Zhao (3094_CR56) 2017; 142
XM Wei (3094_CR50) 2020; 56
SC Reed (3094_CR32) 2007; 36
S Manzoni (3094_CR25) 2012; 196
3094_CR44
RL Sinsabaugh (3094_CR40) 2016; 86
R Lal (3094_CR21) 2011; 36
JM Bremner (3094_CR2) 1982
KM Geyer (3094_CR15) 2016; 127
DL Jones (3094_CR19) 2006; 38
KR Mehnaz (3094_CR26) 2018; 54
C Poeplau (3094_CR31) 2016; 100
3094_CR48
V Smil (3094_CR41) 2000; 25
3094_CR49
C Santi (3094_CR35) 2013; 111
ZJ Zhang (3094_CR58) 2015; 25
3094_CR9
SR Olsen (3094_CR29) 1982
J Schimel (3094_CR36) 2007; 88
References_xml – reference: ChengYWangJSunNXuMGZhangJBCaiZCWangSQPhosphorus addition enhances gross microbial N cycling in phosphorus-poor soils: a 15N study from two long-term fertilization experimentsBiol Fertil Soils2018547837891:CAS:528:DC%2BC1cXhtFWhtrrL10.1007/s00374-018-1294-5
– reference: SchimelJBalserTCWallensteinMMicrobial stress-response physiology and its implications for ecosystem functionEcology2007881386139410.1890/06-0219
– reference: Mori T, Ohta S, Ishizuka S, Konda R, Wicaksono A, Heriyanto J, Hardjono A (2010) Effects of phosphorus addition on N2O and NO emissions from soils of an Acacia mangium plantation. Soil Sci Plant Nutr 56:782–788. https://doi.org/10.1111/j.1747-0765.2010.00501.x
– reference: FengJGZhuBA global meta-analysis of soil respiration and its components in response to phosphorus additionSoil Biol Biochem201913538471:CAS:528:DC%2BC1MXnvF2ht7w%3D10.1016/j.soilbio.2019.04.008
– reference: SmilVPhosphorus in the environment: natural flows and human interferencesAnnu Rev Energ Environ200025538810.1146/annurev.energy.25.1.53
– reference: ChenHZhangWGurmesaGAZhuXLiDMoJPhosphorus addition affects soil nitrogen dynamics in a nitrogen-saturated and two nitrogen-limited forestsEur J Soil Sci2017684724791:CAS:528:DC%2BC2sXhtFGntbjF10.1111/ejss.12428
– reference: PangJTibbettMDentonMDLambersHSiddiqueKHMRyanMHSoil phosphorus supply affects nodulation and N: P ratio in 11 perennial legume seedlingsCrop Pasture Sci20116299210011:CAS:528:DC%2BC3MXhs1Gru7jK10.1071/CP11229
– reference: Zhu ZK, Zhou J, Shahbaz M, Tang HM, Liu SL, Zhang WJ, Yuan HZ, Zhou V, Alharbi H, Wu JS, Kuzyakov Y, Ge TD (2021) Microorganisms maintain C: N stoichiometric balance by regulating the priming effect in long-term fertilized soils. Appl Soil Ecol 167. https://doi.org/10.1016/j.apsoil.2021.104033
– reference: LuoRYFanJLWangWJLuoJFKuzyakovYHeJSChuHYDingWXNitrogen and phosphorus enrichment accelerates soil organic carbon loss in alpine grassland on the Qinghai-Tibetan PlateauSci Total Environ20196503033121:CAS:528:DC%2BC1cXhslSks7zK10.1016/j.scitotenv.2018.09.038
– reference: VesterdalLRaulund-RasmussenKAvailability of nitrogen and phosphorus in Norway spruce forest floors fertilized with nitrogen and other essential nutrientsSoil Biol Biochem200234124312511:CAS:528:DC%2BD38XlvVemu7k%3D10.1016/S0038-0717(02)00064-0
– reference: ZhaoHSunBFLuFWangXKZhuangTZhangGOuyangZYRoles of nitrogen, phosphorus, and potassium fertilizers in carbon sequestration in a Chinese agricultural ecosystemClim Change20171425875961:CAS:528:DC%2BC2sXmvFChtrY%3D10.1007/s10584-017-1976-2
– reference: ZhangWXuYDGaoDXWangXLiuWCDengJHanXHYangGHFengYZRenGXEcoenzymatic stoichiometry and nutrient dynamics along a revegetation chronosequence in the soils of abandoned land and Robinia pseudoacacia plantation on the Loess Plateau, ChinaSoil Biol Biochem201913411410.1016/j.soilblo.2019.03.017
– reference: SinsabaughRLShahJJEcoenzymatic stoichiometry and ecological theoryAnnu Rev Ecol Evol Syst20124331334310.1146/annurev-ecolsys-071112-124414
– reference: Vera-NunezJAInfante-SantiagoJPVelasco-VelascoVSalgado-GarciaSPalma-LopezDJGrageda-CabreraOACardenasRPena-CabrialesJJInfluence of P fertilization on biological nitrogen fixation in herbaceous legumes grown in acid savannah soils from the Tabasco State, MexicoJ Sustainable Agric200731254210.1300/J064v31n03_04
– reference: XiaoLLiuGBLiPLiQXueSEcoenzymatic stoichiometry and microbial nutrient limitation during secondary succession of natural grassland on the Loess PlateauChina Soil Tillage Res2020200910.1016/j.still.2020.104605
– reference: SpohnMChodakMMicrobial respiration per unit biomass increases with carbon-to-nutrient ratios in forest soilsSoil Biol Biochem2015811281331:CAS:528:DC%2BC2cXitVWku7%2FM10.1016/j.soilbio.2014.11.008
– reference: JoergensenRGThe fumigation-extraction method to estimate soil microbial biomass: calibration of the k (EC) valueSoil Biol Biochem19962825311:CAS:528:DyaK2MXhtVSks7%2FK10.1016/0038-0717(95)00102-6
– reference: MehnazKRKeitelCDijkstraFAEffects of carbon and phosphorus addition on microbial respiration, N2O emission, and gross nitrogen mineralization in a phosphorus-limited grassland soilBiol Fert Soils2018544814931:CAS:528:DC%2BC1cXmslKksLc%3D10.1007/s00374-018-1274-9
– reference: CuiYXFangLCGuoXBWangXZhangYJLiPFZhangXCEcoenzymatic stoichiometry and microbial nutrient limitation in rhizosphere soil in the arid area of the northern Loess Plateau, ChinaSoil Biol Biochem201811611211:CAS:528:DC%2BC2sXhs1elurzO10.1016/j.soilbio.2017.09.025
– reference: MaZZZhangXCZhengBYYueSCZhangXCZhaiBNWangZHZhengWLiZYZamanianKRazaviBSEffects of plastic and straw mulching on soil microbial P limitations in maize fields: dependency on soil organic carbon demonstrated by ecoenzymatic stoichiometryGeoderma2021388121:CAS:528:DC%2BB3MXht1KiurfN10.1016/j.geoderma.2021.114928
– reference: WeiXMZhuZKLiuYLuoYDengYWXuXLLiuSLRichterAShibistovaOGuggenbergerGWuJSGeTDC:N: P stoichiometry regulates soil organic carbon mineralization and concomitant shifts in microbial community composition in paddy soilBiol Fert Soils202056109311071:CAS:528:DC%2BB3cXpsFOnsLs%3D10.1007/s00374-020-01468-7
– reference: Saiya-CorkKRSinsabaughRLZakDRThe effects of long-term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soilSoil Biol Biochem200234130913151:CAS:528:DC%2BD38XlvVemu7w%3D10.1016/S0038-0717(02)00074-3
– reference: FiskMSantangeloSMinickKCarbon mineralization is promoted by phosphorus and reduced by nitrogen addition in the organic horizon of northern hardwood forestsSoil Biol Biochem2015812122181:CAS:528:DC%2BC2cXitVWrs7bM10.1016/j.soilbio.2014.11.022
– reference: ZhangZJLiHYHuJLiXHeQTianGMWangHWangSYWangBDo microorganism stoichiometric alterations affect carbon sequestration in paddy soil subjected to phosphorus input?Ecol Appl20152586687910.1890/14-0189.1
– reference: SinsabaughRLHillBHShahJJEcoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sedimentNature20094627957991:CAS:528:DC%2BD1MXhsFersrvK10.1038/nature08632
– reference: SantiCBoguszDFrancheCBiological nitrogen fixation in non-legume plantsAnn Bot20131117437671:CAS:528:DC%2BC3sXmtlantb4%3D10.1093/aob/mct048
– reference: Cui YX, Wang X, Zhang XC, Ju WL, Duan CJ, Guo XB, Wang YQ, Fang LC (2020a) Soil moisture mediates microbial carbon and phosphorus metabolism during vegetation succession in a semiarid region. Soil Biol Biochem 147. https://doi.org/10.1016/j.soilbio.2020.107814
– reference: Kallenbach CM, Wallenstein MD, Schipanksi ME, Grandy AS (2019) Managing agroecosystems for soil microbial carbon use efficiency: ecological unknowns, potential outcomes, and a path forward. Front Microbiol 10. https://doi.org/10.3389/fmicb.2019.01146
– reference: Wang YD, Hu N, Xu MG, Li ZF, Lou YL, Chen Y, Wu CY, Wang ZL (2015) 23-year manure and fertilizer application increases soil organic carbon sequestration of a rice-barley cropping system. Biol Fertil Soils 51:583–591. https://doi.org/10.1007/s00374-015-1007-2
– reference: BremnerJMMulvaneyCSPageALMillerRHKeeneyDRNitrogen-totalMethods of soil analysis, Part 2, Chemical and Microbial Properties1982MadisonAgronomy Society of America595624
– reference: David IW, Remko AD, Daniel SF, Sara T (2012) smatr 3 - an R package for estimation and inference about allometric lines. Methods Ecol Evol 3:257–259
– reference: JonesDLWillettVBExperimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soilSoil Biol Biochem2006389919991:CAS:528:DC%2BD28XjvFSitr4%3D10.1016/j.soilbio.2005.08.012
– reference: ThirukkumaranCMParkinsonDMicrobial respiration, biomass, metabolic quotient and litter decomposition in a lodgepole pine forest floor amended with nitrogen and phosphorous fertilizersSoil Biol Biochem20003259661:CAS:528:DC%2BD3cXmvFakug%3D%3D10.1016/S0038-0717(99)00129-7
– reference: Wei TY, Simko V (2017) R package “corrplot”: visualization of a correlation matrix (Version 0.84). https://github.com/taiyun/corrplot
– reference: Cui YX, Zhang YL, Duan CJ, Wang X, Zhang XC, Ju WL, Chen HS, Yue SC, Wang YQ, Li SQ, Fang LC (2020b) Ecoenzymatic stoichiometry reveals microbial phosphorus limitation decreases the nitrogen cycling potential of soils in semi-arid agricultural ecosystems. Soil Tillage Res 197. https://doi.org/10.1016/j.still.2019.104463
– reference: ChenHLiDJZhaoJZhangWXiaoKCWangKLNitrogen addition aggravates microbial carbon limitation: Evidence from ecoenzymatic stoichiometryGeoderma201832961641:CAS:528:DC%2BC1cXhtVGjtLbN10.1016/j.geoderma.2018.05.019
– reference: DijkstraPSalpasEFairbanksDMillerEBHagertySBvan GroenigenKJHungateBAMarksJCKochGWSchwartzEHigh carbon use efficiency in soil microbial communities is related to balanced growth, not storage compound synthesisSoil Biol Biochem20158935431:CAS:528:DC%2BC2MXhtFaiurbN10.1016/j.soilbio.2015.06.021
– reference: ZangHDBlagodatskayaEWenYXuXLDyckmansJKuzyakovYCarbon sequestration and turnover in soil under the energy crop Miscanthus: repeated 13C natural abundance approach and literature synthesisGCB Bioenergy2018102622711:CAS:528:DC%2BC1cXjsl2mtrk%3D10.1111/gcbb.12485
– reference: Widdig M, Schleuss PM, Biederman LA, Borer ET, Crawley MJ, Kirkman KP, Seabloom EW, Wragg PD, Spohn M (2020) Microbial carbon use efficiency in grassland soils subjected to nitrogen and phosphorus additions. Soil Biol Biochem 146. https://doi.org/10.1016/j.soilbio.2020.107815
– reference: ManzoniSTaylorPRichterAPorporatoAAgrenGIEnvironmental and stoichiometric controls on microbial carbon-use efficiency in soilsNew Phytol201219679911:CAS:528:DC%2BC38Xht1Cis7fL10.1111/j.1469-8137.2012.04225.x
– reference: SpohnMPotschEMEichorstSAWoebkenDWanekWRichterASoil microbial carbon use efficiency and biomass turnover in a long-term fertilization experiment in a temperate grasslandSoil Biol Biochem2016971681751:CAS:528:DC%2BC28Xms1Kltbw%3D10.1016/j.soilbio.2016.03.008
– reference: GeyerKMKyker-SnowmanEGrandyASFreySDMicrobial carbon use efficiency: accounting for population, community, and ecosystem-scale controls over the fate of metabolized organic matterBiogeochemistry20161271731881:CAS:528:DC%2BC28Xislagurw%3D10.1007/s10533-016-0191-y
– reference: Mahmud K, Makaju S, Ibrahim R, Missaoui A (2020) Current progress in nitrogen fixing plants and microbiome research. Plants-Basel 9. https://doi.org/10.3390/plants9010097
– reference: YueKFornaraDAYangWQPengYPengCHLiuZLWuFZInfluence of multiple global change drivers on terrestrial carbon storage: additive effects are commonEcol Lett20172066367210.1111/ele.12767
– reference: ReedSCSeastedtTRMannCMSudingKNTownsendARCherwinKLPhosphorus fertilization stimulates nitrogen fixation and increases inorganic nitrogen concentrations in a restored prairieAppl Soil Ecol20073623824210.1016/j.apsoil.2007.02.002
– reference: LalRSequestering carbon in soils of agro-ecosystemsFood Policy201136S33S3910.1016/j.foodpol.2010.12.001
– reference: CuiYXFangLCDengLGuoXBHanFJuWLWangXChenHSTanWFZhangXCPatterns of soil microbial nutrient limitations and their roles in the variation of soil organic carbon across a precipitation gradient in an arid and semi-arid regionSci Total Environ2019658144014511:CAS:528:DC%2BC1MXnvFWq10.1016/j.scitotenv.2018.12.289
– reference: Miguez-Montero MA, Valentine A, Perez-Fernandez MA (2020) Regulatory effect of phosphorus and nitrogen on nodulation and plant performance of leguminous shrubs. AoB Plants 12. https://doi.org/10.1093/aobpla/plz047
– reference: CuiYXBingHJFangLCWuYHYuJLShenGTJiangMWangXZhangXCDiversity patterns of the rhizosphere and bulk soil microbial communities along an altitudinal gradient in an alpine ecosystem of the eastern Tibetan PlateauGeoderma20193381181271:CAS:528:DC%2BC1cXisVent7bE10.1016/j.geoderma.2018.11.047
– reference: HoultonBZWangYPVitousekPMFieldCBA unifying framework for dinitrogen fixation in the terrestrial biosphereNature20084543273301:CAS:528:DC%2BD1cXosFCqs7w%3D10.1038/nature07028
– reference: SinsabaughRLManzoniSMoorheadDLRichterACarbon use efficiency of microbial communities: stoichiometry, methodology and modellingEcol Lett20131693093910.1111/ele.12113
– reference: ZhengMHLiDJLuXZhuXMZhangWHuangJFuSLLuXKMoJMEffects of phosphorus addition with and without nitrogen addition on biological nitrogen fixation in tropical legume and non-legume tree plantationsBiogeochemistry201613165761:CAS:528:DC%2BC28XhslKltb7F10.1007/s10533-016-0265-x
– reference: OlsenSRSommersLEPageALMillerRHKeeneyDRPhosphorousMethods of soil analysis, Part 2, Chemical and Microbial Properties1982MadisonAgronomy Society of America403430
– reference: Sanchez G, Trinchera L, Russolillo G (2017) Plspm: tools for partial least squares path modeling (PLS-PM). https://CRAN.R-project.org/package=plspm
– reference: WuYChenWJLiQGuoZQLiYZZhaoZWZhaiJYLiuGBXueSEcoenzymatic stoichiometry and nutrient limitation under a natural secondary succession of vegetation on the Loess Plateau, ChinaLand Degrad Dev20213239940910.1002/ldr.3723
– reference: PoeplauCHerrmannAMKattererTOpposing effects of nitrogen and phosphorus on soil microbial metabolism and the implications for soil carbon storageSoil Biol Biochem201610083911:CAS:528:DC%2BC28Xps1Wkt70%3D10.1016/j.soilbio.2016.05.021
– reference: Jensen ES, Carlsson G, Hauggaard-Nielsen H (2020) Intercropping of grain legumes and cereals improves the use of soil N resources and reduces the requirement for synthetic fertilizer N: a global-scale analysis. Agron Sustain Dev 40. https://doi.org/10.1007/s13593-020-0607-x
– reference: Aleixo S, Gama-Rodrigues AC, Gama-Rodrigues EF, Campello EFC, Silva EC, Schripsema J (2020) Can soil phosphorus availability in tropical forest systems be increased by nitrogen-fixing leguminous trees? Sci Total Environ 712. https://doi.org/10.1016/j.scitotenv.2019.136405
– reference: SinsabaughRLTurnerBLTalbotJMWaringBGPowersJSKuskeCRMoorheadDLShahJJStoichiometry of microbial carbon use efficiency in soilsEcol Monogr20168617218910.1890/15-2110.1
– reference: Stagnari F, Maggio A, Galieni A, Pisante M (2017) Multiple benefits of legumes for agriculture sustainability: an overview. Chem Biol Technol Ag 4. https://doi.org/10.1186/s40538-016-0085-1
– volume: 25
  start-page: 866
  year: 2015
  ident: 3094_CR58
  publication-title: Ecol Appl
  doi: 10.1890/14-0189.1
– volume: 32
  start-page: 399
  year: 2021
  ident: 3094_CR52
  publication-title: Land Degrad Dev
  doi: 10.1002/ldr.3723
– volume: 454
  start-page: 327
  year: 2008
  ident: 3094_CR16
  publication-title: Nature
  doi: 10.1038/nature07028
– volume: 28
  start-page: 25
  year: 1996
  ident: 3094_CR18
  publication-title: Soil Biol Biochem
  doi: 10.1016/0038-0717(95)00102-6
– volume: 111
  start-page: 743
  year: 2013
  ident: 3094_CR35
  publication-title: Ann Bot
  doi: 10.1093/aob/mct048
– ident: 3094_CR51
  doi: 10.1016/j.soilbio.2020.107815
– volume: 62
  start-page: 992
  year: 2011
  ident: 3094_CR30
  publication-title: Crop Pasture Sci
  doi: 10.1071/CP11229
– volume: 34
  start-page: 1243
  year: 2002
  ident: 3094_CR46
  publication-title: Soil Biol Biochem
  doi: 10.1016/S0038-0717(02)00064-0
– ident: 3094_CR60
  doi: 10.1016/j.apsoil.2021.104033
– volume: 388
  start-page: 12
  year: 2021
  ident: 3094_CR23
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2021.114928
– volume: 97
  start-page: 168
  year: 2016
  ident: 3094_CR43
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2016.03.008
– volume: 134
  start-page: 1
  year: 2019
  ident: 3094_CR57
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilblo.2019.03.017
– ident: 3094_CR9
  doi: 10.1016/j.soilbio.2020.107814
– volume: 462
  start-page: 795
  year: 2009
  ident: 3094_CR37
  publication-title: Nature
  doi: 10.1038/nature08632
– volume: 25
  start-page: 53
  year: 2000
  ident: 3094_CR41
  publication-title: Annu Rev Energ Environ
  doi: 10.1146/annurev.energy.25.1.53
– volume: 100
  start-page: 83
  year: 2016
  ident: 3094_CR31
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2016.05.021
– ident: 3094_CR27
  doi: 10.1093/aobpla/plz047
– volume: 86
  start-page: 172
  year: 2016
  ident: 3094_CR40
  publication-title: Ecol Monogr
  doi: 10.1890/15-2110.1
– volume: 658
  start-page: 1440
  year: 2019
  ident: 3094_CR8
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.12.289
– volume: 20
  start-page: 663
  year: 2017
  ident: 3094_CR54
  publication-title: Ecol Lett
  doi: 10.1111/ele.12767
– volume: 127
  start-page: 173
  year: 2016
  ident: 3094_CR15
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-016-0191-y
– volume: 89
  start-page: 35
  year: 2015
  ident: 3094_CR12
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2015.06.021
– ident: 3094_CR24
  doi: 10.3390/plants9010097
– volume: 142
  start-page: 587
  year: 2017
  ident: 3094_CR56
  publication-title: Clim Change
  doi: 10.1007/s10584-017-1976-2
– ident: 3094_CR11
  doi: 10.1111/j.2041-210X.2011.00153.x
– volume: 10
  start-page: 262
  year: 2018
  ident: 3094_CR55
  publication-title: GCB Bioenergy
  doi: 10.1111/gcbb.12485
– volume: 196
  start-page: 79
  year: 2012
  ident: 3094_CR25
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2012.04225.x
– volume: 135
  start-page: 38
  year: 2019
  ident: 3094_CR13
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2019.04.008
– ident: 3094_CR1
  doi: 10.1016/j.scitotenv.2019.136405
– ident: 3094_CR28
  doi: 10.1111/j.1747-0765.2010.00501.x
– volume: 43
  start-page: 313
  year: 2012
  ident: 3094_CR38
  publication-title: Annu Rev Ecol Evol Syst
  doi: 10.1146/annurev-ecolsys-071112-124414
– volume: 68
  start-page: 472
  year: 2017
  ident: 3094_CR3
  publication-title: Eur J Soil Sci
  doi: 10.1111/ejss.12428
– start-page: 595
  volume-title: Methods of soil analysis, Part 2, Chemical and Microbial Properties
  year: 1982
  ident: 3094_CR2
– volume: 338
  start-page: 118
  year: 2019
  ident: 3094_CR7
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.11.047
– volume: 32
  start-page: 59
  year: 2000
  ident: 3094_CR45
  publication-title: Soil Biol Biochem
  doi: 10.1016/S0038-0717(99)00129-7
– volume: 56
  start-page: 1093
  year: 2020
  ident: 3094_CR50
  publication-title: Biol Fert Soils
  doi: 10.1007/s00374-020-01468-7
– volume: 329
  start-page: 61
  year: 2018
  ident: 3094_CR4
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.05.019
– volume: 54
  start-page: 481
  year: 2018
  ident: 3094_CR26
  publication-title: Biol Fert Soils
  doi: 10.1007/s00374-018-1274-9
– volume: 36
  start-page: 238
  year: 2007
  ident: 3094_CR32
  publication-title: Appl Soil Ecol
  doi: 10.1016/j.apsoil.2007.02.002
– ident: 3094_CR44
  doi: 10.1186/s40538-016-0085-1
– volume: 88
  start-page: 1386
  year: 2007
  ident: 3094_CR36
  publication-title: Ecology
  doi: 10.1890/06-0219
– volume: 34
  start-page: 1309
  year: 2002
  ident: 3094_CR33
  publication-title: Soil Biol Biochem
  doi: 10.1016/S0038-0717(02)00074-3
– volume: 36
  start-page: S33
  year: 2011
  ident: 3094_CR21
  publication-title: Food Policy
  doi: 10.1016/j.foodpol.2010.12.001
– volume: 16
  start-page: 930
  year: 2013
  ident: 3094_CR39
  publication-title: Ecol Lett
  doi: 10.1111/ele.12113
– volume: 200
  start-page: 9
  year: 2020
  ident: 3094_CR53
  publication-title: China Soil Tillage Res
  doi: 10.1016/j.still.2020.104605
– volume: 38
  start-page: 991
  year: 2006
  ident: 3094_CR19
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2005.08.012
– ident: 3094_CR17
  doi: 10.1007/s13593-020-0607-x
– start-page: 403
  volume-title: Methods of soil analysis, Part 2, Chemical and Microbial Properties
  year: 1982
  ident: 3094_CR29
– volume: 131
  start-page: 65
  year: 2016
  ident: 3094_CR59
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-016-0265-x
– ident: 3094_CR48
  doi: 10.1007/s00374-015-1007-2
– volume: 116
  start-page: 11
  year: 2018
  ident: 3094_CR6
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2017.09.025
– volume: 650
  start-page: 303
  year: 2019
  ident: 3094_CR22
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.09.038
– ident: 3094_CR20
  doi: 10.3389/fmicb.2019.01146
– ident: 3094_CR34
– volume: 81
  start-page: 212
  year: 2015
  ident: 3094_CR14
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2014.11.022
– volume: 81
  start-page: 128
  year: 2015
  ident: 3094_CR42
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2014.11.008
– volume: 31
  start-page: 25
  year: 2007
  ident: 3094_CR47
  publication-title: J Sustainable Agric
  doi: 10.1300/J064v31n03_04
– ident: 3094_CR49
– volume: 54
  start-page: 783
  year: 2018
  ident: 3094_CR5
  publication-title: Biol Fertil Soils
  doi: 10.1007/s00374-018-1294-5
– ident: 3094_CR10
  doi: 10.1016/j.still.2019.104463
SSID ssj0037161
Score 2.4639435
Snippet Purpose Variation in soil microbial metabolism remains highly uncertain in predicting soil carbon (C) sequestration, and is particularly and poorly understood...
PurposeVariation in soil microbial metabolism remains highly uncertain in predicting soil carbon (C) sequestration, and is particularly and poorly understood...
PURPOSE: Variation in soil microbial metabolism remains highly uncertain in predicting soil carbon (C) sequestration, and is particularly and poorly understood...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 536
SubjectTerms Agricultural ecosystems
Agricultural land
agroecosystems
Biological fertilization
Carbon
Carbon sequestration
Earth and Environmental Science
Ecosystems
Environment
Environmental Physics
Enzymatic activity
Enzyme activity
enzymes
Extracellular
Fertilization
field experimentation
Glucosidase
Metabolism
microbial growth
microbial nitrogen
Microorganisms
Nitrogen
nitrogen fixation
Peas
Phosphorus
Reduction
Sec 3 • Remediation and Management of Contaminated or Degraded Lands • Research Article
Soil
soil carbon
Soil Science & Conservation
Soils
Stoichiometry
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB_0-qIPUqviaZUt-KaL2WST2z6VWq4UwSJioW9hv2ID1-RM7oT63_Q_7cxmc0cF-5CnnWSTzO587Mz8BuCDLjSBkiueaym5zK3iJnEVFzZLK6mMMYqKk7-dF2cX8utlfhkP3PqYVjnKxCCoXWvpjPxzinq6SA-lKo6Wvzl1jaLoamyh8Rh2UAQrNYGdL_Pz7z9GWZyhNxBcLlS76DQnKpbNDMVzIisUpxQFCjNIru6rpq29-U-INGie0114Fk1Gdjzw-Dk88s0ePD3-1UXYDP8Cbue29c3fm4C_ytCeq-0V1dWvuhtGGE24xtjyqu3x6tY9oyQiYgijRip_ajI32XUdIJlwooYA-lEXsQUVP-mBsHFsGTL3kLRv6wWzujM4EFKxR-xdViPl5r3wUejbDlDR_Uu4OJ3_PDnjsfkCt1KoFZ95I3FzimzmvDS2ElWuyYXNXUIJaip3WmivE5e6WSUNSgaZV_qwkMKnRSZN9gomTdv418DQzctFZZGBkgxItBFsoitHIVzkpxdTEON_L238LmqQsSi3mMrEqxJ5VQZelWoKHzf3LAdcjgep90d2lnGP9uV2RU3hYDOMu4tCJrrx7ZpoMnTQCIR_Cp_GZbB9xP9nfPPwjG_hSUp1FCH9ex8mq27t36F1szLv4xK-AxF3-vU
  priority: 102
  providerName: ProQuest
Title Ecoenzymatic stoichiometry reveals phosphorus addition alleviates microbial nutrient limitation and promotes soil carbon sequestration in agricultural ecosystems
URI https://link.springer.com/article/10.1007/s11368-021-03094-8
https://www.proquest.com/docview/2623629486
https://www.proquest.com/docview/2636427946
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9wwEB3S5NIeSpu2dJsPFOitFVi25FWOm7JpaEkoIQvpyUiynBg29mLvBpJ_k3-aGa29S0pT6MH44LEkeyTNPGbmCeCzSQ2RkmuujJRcKqe5jfKCC5fEhdTWWk3Fyadn6clE_rhUl11RWNtnu_chybBTr4vdRJJqTikFFBaQXL-ALYXYnRK5JvGo338TRAABZqGpRaAc6a5U5u9tPDVHax_zj7BosDbHb-B15yay0VKvb2HDV9vwanTVdFQZ_h08jF3tq_u7wLnK0Icr3TXV0s-bO0a8TDiv2Oy6bvFqFi2jxCFSAqPDU25LcjHZTRlomLCjikj50f6wKRU8maVglbNZyNZD0bYup8yZxuKDkH7d8-2yEiVX48KmEM8u6aHb9zA5Hl98O-HdgQvcSaHnfOitxAUpkmHupXWFKJQh2KryiJLStMqNMN5EeZwPC2lxN5CqMIepFD5OE2mTD7BZ1ZX_CAyhnRKFQ-dKktOIfoGLTJFT2PZQai8GIPr_nrnuu-hQjGm25lEmXWWoqyzoKtMD-LJ6Z7bk4vin9G6vzqxbl20W44DSGEeQDuBg9RhXFIVJTOXrBckkCMqIeH8AX_tpsG7i-R4__Z_4DryMqZYipIDvwua8Wfg99HDmdh-2Rt9__xzj_Wh89ut8P0zwR9ep-Z4
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAcEE8RKLBIcIIVXnvtbA8IFUiV0jZCqJV6M_sytRTsYCeg8G_4A_xGZvxIBBK99eCTJ7tO5vPOTGbmG4BnOtFESq54rKXkMraKm8BlXNgozKQyxihqTj6eJpNT-eEsPtuC330vDJVV9mdic1C70tJ_5K9CtNNJuCtV8mb-jdPUKMqu9iM0Wlgc-tUPDNnq1wfvUb_Pw3B_fPJuwrupAtxKoRZ85I1E1Ilo5Lw0NhNZrCk2i11AlVcqdlporwMXulEmDUJexpneTaTwYRJJE-G6V2BbRkkQDmD77Xj68VN_9kcYfTQhHpp5DNID1bXptM16IkoUp5IISmtIrv42hRv_9p-UbGPp9m_Cjc5FZXstpm7Bli9uw_W9L1VH0-HvwK-xLX3xc9XwvTL0H3N7Tn38i2rFiBMKMc3m52WNV7WsGRUtEQAYDW75npN7y77mDQUUblTQQAC0fWxGzVa6FSwcmzeVgihal_mMWV0ZvNGUfvdcvyxHyfVz4VIYS7fU1PVdOL0UtdyDQVEW_j4wDCtjkVkEjCSHFX0SG-jMUcoY8ePFEET_u6e2-140kGOWbjicSVcp6iptdJWqIbxYf2be8oBcKL3TqzPtzoQ63SB4CE_Xt_FtphSNLny5JJkIA0Ii_R_Cyx4GmyX-v-ODi3d8AlcnJ8dH6dHB9PAhXAuph6MpPd-BwaJa-kfoWS3M4w7ODD5f9hv0B03COFM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQDxFoMAiwQlW9dprZ3tAqNBELYWoQlTqzezL1FKwg52Awr_hb_DrmPEjEUj01kNOnuwmmW935su8AJ7pRFNTcsVjLSWXsVXcBC7jwkZhJpUxRlFx8odpcngq353FZ1vwu6-FobTK_k5sLmpXWvqPfDdEO52Ee1Ilu1mXFnFyMHk9_8ZpghRFWvtxGi1Ejv3qB9K3-tXRAer6eRhOxp_eHvJuwgC3UqgFH3kjEYEiGjkvjc1EFmviabELKAtLxU4L7XXgQjfKpEH4yzjTe4kUPkwiaSJc9wpsj4gVDWD7zXh68rG3AxEykYbuoclHwh6ormSnLdwTUaI4pUdQiENy9bdZ3Pi6_4RnG6s3uQk3OneV7bf4ugVbvrgN1_e_VF3LDn8Hfo1t6Yufq6b3K0NfMrfnVNO_qFaM-kMhvtn8vKzxVS1rRglMBAZGQ1y-5-Tqsq950w4KNypoOADaQTajwivdChaOzZusQRSty3zGrK4MPmjSwPu-vyxHyfXnwqWQV7dtquu7cHoparkHg6Is_H1gSDFjkVkEjyTnFf0TG-jMUfgYseTFEET_u6e2-140nGOWbvo5k65S1FXa6CpVQ3ixfs-87QlyofROr860ux_qdIPmITxdP8aTTeEaXfhySTIRkkMaADCElz0MNkv8f8cHF-_4BK7iyUnfH02PH8K1kMo5miz0HRgsqqV_hE7Wwjzu0Mzg82UfoD-nrzyI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ecoenzymatic+stoichiometry+reveals+phosphorus+addition+alleviates+microbial+nutrient+limitation+and+promotes+soil+carbon+sequestration+in+agricultural+ecosystems&rft.jtitle=Journal+of+soils+and+sediments&rft.au=Wang%2C+Xiangxiang&rft.au=Cui%2C+Yongxing&rft.au=Wang%2C+Yuhan&rft.au=Duan%2C+Chengjiao&rft.date=2022-02-01&rft.issn=1439-0108&rft.eissn=1614-7480&rft.volume=22&rft.issue=2&rft.spage=536&rft.epage=546&rft_id=info:doi/10.1007%2Fs11368-021-03094-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11368_021_03094_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1439-0108&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1439-0108&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1439-0108&client=summon