Finite element analysis of residual stress and warpage in a 3D printed semi-crystalline polymer: Effect of ambient temperature and nozzle speed

The printing conditions in Fused Deposition Modelling (FDM) affect the amount of induced residual stresses within the printed part and its dimensional accuracy. Among the thermoplastic feedstock for FDM, semi-crystalline polymers are more prone to part distortion due to crystallisation. Therefore, t...

Full description

Saved in:
Bibliographic Details
Published inJournal of manufacturing processes Vol. 70; pp. 389 - 399
Main Authors Samy, Anto Antony, Golbang, Atefeh, Harkin-Jones, Eileen, Archer, Edward, Tormey, David, McIlhagger, Alistair
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2021
Subjects
Online AccessGet full text
ISSN1526-6125
2212-4616
DOI10.1016/j.jmapro.2021.08.054

Cover

Abstract The printing conditions in Fused Deposition Modelling (FDM) affect the amount of induced residual stresses within the printed part and its dimensional accuracy. Among the thermoplastic feedstock for FDM, semi-crystalline polymers are more prone to part distortion due to crystallisation. Therefore, this study aims to numerically investigate the behaviour of semi-crystalline polymer under various FDM printing conditions (namely print speed and ambient temperature) and the resultant residual stress and warpage in the printed parts. For this, the coefficient of thermal expansion (CTE) and the thermo-mechanical properties of the polymer under study (polypropylene), and the crystallisation kinetics are coupled with the evolving temperature and time during printing. The values of residual stress and warpage are calculated and compared for the bottom and top layers of the samples. From the results, it was observed that increasing the nozzle speed from 30 mm/s to 60 mm/s resulted in the bottom and top layers exhibiting a 15% and 13% decrease in residual stress, respectively. Similarly, a drop in warpage (~30%) was observed for both layers. The reduction in residual stress and warpage with increased printing speed is attributed to the improved heat transfer between the deposited roads and the reduced cooling rate. Increasing the ambient temperature from 25 °C to 75 °C resulted in a 2% and 3% decrease in residual stress in the bottom and top layers, respectively. In terms of warpage, an insignificant increase (~1%) was observed in both top and bottom layers. This is explained by the counter effects of reduced thermal gradients (i.e., lower cooling rate) and increased crystallisation on the overall amount of residual stress and warpage. 3D scanning of experimentally printed samples was used for verification of the simulation results, and good agreement between these is reported.
AbstractList The printing conditions in Fused Deposition Modelling (FDM) affect the amount of induced residual stresses within the printed part and its dimensional accuracy. Among the thermoplastic feedstock for FDM, semi-crystalline polymers are more prone to part distortion due to crystallisation. Therefore, this study aims to numerically investigate the behaviour of semi-crystalline polymer under various FDM printing conditions (namely print speed and ambient temperature) and the resultant residual stress and warpage in the printed parts. For this, the coefficient of thermal expansion (CTE) and the thermo-mechanical properties of the polymer under study (polypropylene), and the crystallisation kinetics are coupled with the evolving temperature and time during printing. The values of residual stress and warpage are calculated and compared for the bottom and top layers of the samples. From the results, it was observed that increasing the nozzle speed from 30 mm/s to 60 mm/s resulted in the bottom and top layers exhibiting a 15% and 13% decrease in residual stress, respectively. Similarly, a drop in warpage (~30%) was observed for both layers. The reduction in residual stress and warpage with increased printing speed is attributed to the improved heat transfer between the deposited roads and the reduced cooling rate. Increasing the ambient temperature from 25 °C to 75 °C resulted in a 2% and 3% decrease in residual stress in the bottom and top layers, respectively. In terms of warpage, an insignificant increase (~1%) was observed in both top and bottom layers. This is explained by the counter effects of reduced thermal gradients (i.e., lower cooling rate) and increased crystallisation on the overall amount of residual stress and warpage. 3D scanning of experimentally printed samples was used for verification of the simulation results, and good agreement between these is reported.
Author Samy, Anto Antony
Golbang, Atefeh
Harkin-Jones, Eileen
McIlhagger, Alistair
Archer, Edward
Tormey, David
Author_xml – sequence: 1
  givenname: Anto Antony
  surname: Samy
  fullname: Samy, Anto Antony
  email: antony_samy-a@ulster.ac.uk
  organization: Engineering Research Institute, Ulster University, Shore Road, Newtownabbey, Co. Antrim, BT37 0QB, United Kingdom
– sequence: 2
  givenname: Atefeh
  surname: Golbang
  fullname: Golbang, Atefeh
  organization: Engineering Research Institute, Ulster University, Shore Road, Newtownabbey, Co. Antrim, BT37 0QB, United Kingdom
– sequence: 3
  givenname: Eileen
  surname: Harkin-Jones
  fullname: Harkin-Jones, Eileen
  organization: Engineering Research Institute, Ulster University, Shore Road, Newtownabbey, Co. Antrim, BT37 0QB, United Kingdom
– sequence: 4
  givenname: Edward
  surname: Archer
  fullname: Archer, Edward
  organization: Engineering Research Institute, Ulster University, Shore Road, Newtownabbey, Co. Antrim, BT37 0QB, United Kingdom
– sequence: 5
  givenname: David
  surname: Tormey
  fullname: Tormey, David
  organization: Centre for Precision Engineering, Materials and Manufacturing Research, Institute of Technology Sligo, Ash Lane, F91 YW50, Sligo, Ireland
– sequence: 6
  givenname: Alistair
  surname: McIlhagger
  fullname: McIlhagger, Alistair
  organization: Engineering Research Institute, Ulster University, Shore Road, Newtownabbey, Co. Antrim, BT37 0QB, United Kingdom
BookMark eNqFkMtKBDEQRYMoOD7-wEV-oNtK-jkuBPENghtdh-p0RTKk000SlfEn_GV7HFcudFUFxbnFPQds14-eGDsRkAsQ9ekqXw04hTGXIEUObQ5VucMWUgqZlbWod9lCVLLOaiGrfXYQ4wpAyBLEgn3eWG8TcXI0kE8cPbp1tJGPhgeKtn9Fx2Oa1zjfev6OYcIX4tZz5MUVn4L1iXoeabCZDuuY0DnriU-jWw8Uzvi1MaTTJg-Hzm5-JBomCpheA31n-vHjwxGPE1F_xPYMukjHP_OQPd9cP13eZQ-Pt_eXFw-ZLkWbsqY0LXUN1W0DqKnqtMEOi0YCCoRlRdC2pig6qkUnJTQgNHSNNs1SVOWyKYtDVm5zdRhjDGTU3GTAsFYC1EaqWqmtVLWRqqBVs9QZO_uFaZsw2dGngNb9B59vYZqLvVkKKupZiKbehlmR6kf7d8AX4qua3Q
CitedBy_id crossref_primary_10_1002_vnl_22176
crossref_primary_10_1080_2374068X_2023_2295651
crossref_primary_10_1007_s10924_024_03447_7
crossref_primary_10_30657_pea_2023_29_32
crossref_primary_10_1016_j_jmapro_2022_02_028
crossref_primary_10_1016_j_rineng_2024_103317
crossref_primary_10_1021_acs_iecr_4c04783
crossref_primary_10_3390_polym14050879
crossref_primary_10_1007_s00170_024_14484_w
crossref_primary_10_3390_polym16020208
crossref_primary_10_1016_j_jmapro_2024_10_016
crossref_primary_10_1021_acsapm_3c03205
crossref_primary_10_3390_polym14132746
crossref_primary_10_1016_j_compositesb_2023_111067
crossref_primary_10_3390_coatings12060827
crossref_primary_10_3390_polym14020356
crossref_primary_10_3390_chemengineering7010001
crossref_primary_10_1016_j_matpr_2023_09_101
crossref_primary_10_1108_RPJ_01_2024_0023
crossref_primary_10_1016_j_coco_2022_101464
crossref_primary_10_1038_s41598_024_77635_9
crossref_primary_10_3390_ma16247664
crossref_primary_10_1007_s00170_024_14173_8
crossref_primary_10_1002_pen_27167
crossref_primary_10_1002_pol_20240563
crossref_primary_10_1002_pol_20240121
crossref_primary_10_1177_09673911241273654
crossref_primary_10_3390_jmmp8020077
crossref_primary_10_3390_polym17020156
crossref_primary_10_1051_e3sconf_202346900034
crossref_primary_10_1177_09544089231223316
crossref_primary_10_1007_s12008_024_02030_7
crossref_primary_10_17350_HJSE19030000287
crossref_primary_10_1007_s11665_024_09321_w
crossref_primary_10_3390_polym16142067
crossref_primary_10_1177_14644207241285399
crossref_primary_10_1016_j_jmapro_2022_09_048
crossref_primary_10_3390_app14198834
crossref_primary_10_1002_app_52128
crossref_primary_10_1002_pol_20230365
crossref_primary_10_1016_j_heliyon_2023_e14445
Cites_doi 10.1017/dsi.2019.69
10.1080/14658011.2017.1399531
10.1016/j.polymertesting.2013.05.007
10.1177/2516598419843687
10.1021/acsomega.9b02795
10.1007/s00170-017-1340-8
10.1016/S1007-0214(09)70063-X
10.1007/s00170-015-6893-9
10.1142/S0219876218440024
10.1002/app.48545
10.1016/j.polymertesting.2015.05.013
10.1002/mame.201600259
10.1016/j.matdes.2020.108978
10.1016/S0032-3861(02)00628-6
10.1002/app.1972.070160503
10.1108/RPJ-04-2017-0062
10.1063/1.4963594
10.1007/s00170-006-0556-9
10.1108/RPJ-06-2016-0090
10.1016/j.compositesa.2005.12.025
10.1016/j.polymer.2009.02.038
10.1016/j.matdes.2017.05.040
10.1243/09544054JEM990
10.1016/j.compscitech.2017.07.017
10.1108/13552541011083317
10.1108/13552540810862028
10.1016/j.msea.2005.08.167
10.1243/09544054JEM572
10.1016/j.ijheatmasstransfer.2005.06.015
10.1177/002199839002400603
10.1155/2016/5450708
10.1007/s00170-019-03965-y
10.1016/j.cirpj.2021.04.012
10.1007/s12289-008-0312-9
10.1108/13552541011065722
10.1080/03602559.2012.671413
10.1016/j.matdes.2013.02.067
10.26678/ABCM.COBEM2017.COB17-0124
10.1115/1.1688377
10.1016/j.polymertesting.2018.05.020
ContentType Journal Article
Copyright 2021
Copyright_xml – notice: 2021
DBID AAYXX
CITATION
DOI 10.1016/j.jmapro.2021.08.054
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2212-4616
EndPage 399
ExternalDocumentID 10_1016_j_jmapro_2021_08_054
S1526612521006381
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29K
3V.
4.4
457
4G.
5GY
5VS
7-5
71M
7WY
883
88I
8AO
8FE
8FG
8FL
8FW
8P~
8R4
8R5
9M8
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJCF
ABJNI
ABMAC
ABUWG
ABXDB
ABYKQ
ACDAQ
ACGFS
ACGOD
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKRA
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BENPR
BEZIV
BGLVJ
BJAXD
BKOJK
BLXMC
BPHCQ
CCPQU
CS3
D-I
DU5
DWQXO
E3Z
EBS
EFJIC
EFLBG
EJD
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FRNLG
FYGXN
GBLVA
GNUQQ
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
HCIFZ
HVGLF
HZ~
H~9
J1W
JJJVA
K60
K6~
KOM
L6V
M0C
M0F
M2P
M41
M7S
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQBIZ
PQQKQ
PROAC
PTHSS
Q2X
Q38
R2-
RIG
RNS
ROL
RWL
S0X
SDF
SES
SPC
SPCBC
SST
SSZ
T5K
TAE
TN5
U5U
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
PHGZM
PHGZT
PQBZA
SSH
ID FETCH-LOGICAL-c418t-74f8eb7e6870ace5bcfaba3720a1a095e088f33be61b220701c0b7cf791549743
IEDL.DBID AIKHN
ISSN 1526-6125
IngestDate Thu Apr 24 23:03:19 EDT 2025
Tue Jul 01 02:23:37 EDT 2025
Fri Feb 23 02:43:58 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Warpage
Polymer crystallisation kinetics
Fused deposition modelling (FDM)
Finite element analysis (FEA)
Semi-crystalline polymers
Residual stress
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-74f8eb7e6870ace5bcfaba3720a1a095e088f33be61b220701c0b7cf791549743
OpenAccessLink http://www.scopus.com/inward/record.url?scp=85114661526&partnerID=8YFLogxK
PageCount 11
ParticipantIDs crossref_primary_10_1016_j_jmapro_2021_08_054
crossref_citationtrail_10_1016_j_jmapro_2021_08_054
elsevier_sciencedirect_doi_10_1016_j_jmapro_2021_08_054
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2021
2021-10-00
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 2021
PublicationDecade 2020
PublicationTitle Journal of manufacturing processes
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Deng, Zeng, Peng, Yan, Ke (bb0110) 2018
Fitzharris, Watanabe, Rosen, Shofner (bb0155) 2018; 95
Yu, Sun, Wang, Zhang, Li (bb0245) 2020; 195
Dey, Yodo (bb0295) 2019
Boyard (bb0210) 2016
Wang, Xi, Jin (bb0010) 2006; 33
Li, Wang, Sun, Yu (bb0085) 2018; 24
Kumar, Bhushan, Sinha, Prakash, Bhattacharya (bb0130) 2019; 2
Grimm T. Fused Deposition Modeling: A Technology Evaluation n.d.:1–12.
Zhang, Chou (bb0090) 2008; 222
Xinhua, Shengpeng, Zhou, Xianhua, Xiaohu, Zhongbin (bb0095) 2015; 79
Hertle, Drexler, Drummer (bb0005) 2016; 301
Brenken, Barocio, Favaloro, Kunc, Pipes (bb0315) 2018; 21
Koscher, Fulchiron (bb0170) 2002; 43
Dong, Zhang, Gao, Chou (bb0235) 2019
Nakamura, Watanabe, Katayama, Amano (bb0250) 1972; 16
Diederichs E V., Picard MC, Chang BP, Misra M, Mielewski DF, Mohanty AK. Strategy to improve printability of renewable resource-based engineering plastic tailored for fdm applications. ACS Omega 2019;4:20297–307. doi
Amado, Wegener, Schmid, Levy (bb0225) 2012
Chapman, Gillespie, Pipes, Manson, Seferis (bb0280) 1990; 24
Watanabe, Shofner, Treat, Rosen (bb0115) 2016
.
Levy A, Le Corre S, Sobotka V. Heat transfer and crystallization kinetics in thermoplastic composite processing. A coupled modelling framework. AIP Conf Proc 2016;1769. doi
Brahmia, Bourgin, Boutaous, Garcia (bb0165) 2006
Levy (bb0190) 2016
Clark (bb0185) 1985
Parlevliet, Bersee, Beukers (bb0275) 2006; 37
Jin, Giesa, Neuber, Schmidt (bb0100) 2018; 1800507
El Moumen, Tarfaoui, Lafdi (bb0050) 2019
Spoerk, Gonzalez-Gutierrez, Sapkota, Schuschnigg, Holzer (bb0055) 2018; 47
Pignon, Tardif, Lefèvre, Sobotka, Boyard, Delaunay (bb0220) 2015; 45
Edith Wiria, Fai Leong, Kai Chua (bb0200) 2010; 16
Sun, Rizvi, Bellehumeur, Gu (bb0125) 2008; 14
Hallmann M, Schleich B, Wartzack S. A method for analyzing the influence of process and design parameters on the build time of additively manufactured components. Proc Int Conf Eng Des ICED, vol. 2019- Augus, 2019, p. 649–58. doi
Kantaros, Karalekas (bb0310) 2013; 50
Gradys, Sajkiewicz, Minakov, Adamovsky, Schick, Hashimoto (bb0180) 2005; 413–414
Yamamoto (bb0255) 2009; 50
Costa, Duarte, Covas (bb0075) 2008; 1
Antony Samy, Golbang, Harkin-Jones, Archer, McIlhagger (bb0140) 2021; 33
Ruan, Guo, Liang, Li (bb0040) 2012; 51
Hämäläinen JP. Semi-crystalline polyolefins in fused deposition modeling. 2017.
Fischer, Drummer (bb0285) 2016; 2016
Bakrani Balani (bb0025) 2019
Spoerk, Holzer, Gonzalez-Gutierrez (bb0065) 2020; 137
Furushima, Schick, Toda (bb0260) 2018; 1
Courter B, Savane V, Bi J, Dev S, Hansen CJ. Finite element simulation of the fused deposition modelling process modelling process 2017.
Liu, Anderson, Sridhar (bb0300) 2020; 17
Ahn, Montero, Odell, Roundy, Wright (bb0045) 2002; 8
Bellini, Güçeri S, Bellini, Güçeri, Bertoldi (bb0290) 2004; 126
Zhang, Chou (bb0070) 2006; 220
Mostafa, Syed, Igor, Andrew (bb0150) 2009; 14
Ji, Zhou (bb0305) 2010; 97–101
Hu, Zha (bb0175) 2016
Barocio, Brenken, Favaloro, Bogdanor, Pipes (bb0160) 2020
Spoerk, Arbeiter, Raguž, Weingrill, Fischinger, Traxler (bb0015) 2018
Ferreira RTL, Quelho de Macedo R. Residual Thermal Stress in Fused Deposition Modelling 2018. doi
Wolszczak, Lygas, Paszko, Wach (bb0080) 2018; 24
Dressler, Röllig, Schmidt, Maturilli, Helbert (bb0195) 2010; 16
Dos Santos WN, De Sousa JA, Gregorio R. Thermal conductivity behaviour of polymers around glass transition and crystalline melting temperatures. Polym Test 2013;32:987–94. doi
Ruan (bb0060) 2017
Brenken, Barocio, Favaloro, Kunc, Pipes (bb0020) 2019; 25
Zhang, Wang, Yu, Deng (bb0270) 2017; 130
Le Goff, Poutot, Delaunay, Fulchiron, Koscher (bb0230) 2005; 48
Zhang, Wu, Sun, Quan, Gu, Sun (bb0135) 2017; 150
Popescu, Zapciu, Amza, Baciu, Marinescu (bb0120) 2018; 69
Fischer (bb0035) 2012
Costa (10.1016/j.jmapro.2021.08.054_bb0075) 2008; 1
Furushima (10.1016/j.jmapro.2021.08.054_bb0260) 2018; 1
Spoerk (10.1016/j.jmapro.2021.08.054_bb0015) 2018
10.1016/j.jmapro.2021.08.054_bb0240
Liu (10.1016/j.jmapro.2021.08.054_bb0300) 2020; 17
10.1016/j.jmapro.2021.08.054_bb0320
10.1016/j.jmapro.2021.08.054_bb0205
Barocio (10.1016/j.jmapro.2021.08.054_bb0160) 2020
Brahmia (10.1016/j.jmapro.2021.08.054_bb0165) 2006
Yamamoto (10.1016/j.jmapro.2021.08.054_bb0255) 2009; 50
Ruan (10.1016/j.jmapro.2021.08.054_bb0060) 2017
Brenken (10.1016/j.jmapro.2021.08.054_bb0315) 2018; 21
Gradys (10.1016/j.jmapro.2021.08.054_bb0180) 2005; 413–414
Spoerk (10.1016/j.jmapro.2021.08.054_bb0055) 2018; 47
Chapman (10.1016/j.jmapro.2021.08.054_bb0280) 1990; 24
Fitzharris (10.1016/j.jmapro.2021.08.054_bb0155) 2018; 95
Hu (10.1016/j.jmapro.2021.08.054_bb0175) 2016
Yu (10.1016/j.jmapro.2021.08.054_bb0245) 2020; 195
Spoerk (10.1016/j.jmapro.2021.08.054_bb0065) 2020; 137
10.1016/j.jmapro.2021.08.054_bb0030
Koscher (10.1016/j.jmapro.2021.08.054_bb0170) 2002; 43
Zhang (10.1016/j.jmapro.2021.08.054_bb0090) 2008; 222
Levy (10.1016/j.jmapro.2021.08.054_bb0190) 2016
Edith Wiria (10.1016/j.jmapro.2021.08.054_bb0200) 2010; 16
Nakamura (10.1016/j.jmapro.2021.08.054_bb0250) 1972; 16
Ji (10.1016/j.jmapro.2021.08.054_bb0305) 2010; 97–101
Bellini (10.1016/j.jmapro.2021.08.054_bb0290) 2004; 126
Zhang (10.1016/j.jmapro.2021.08.054_bb0135) 2017; 150
Ruan (10.1016/j.jmapro.2021.08.054_bb0040) 2012; 51
Ahn (10.1016/j.jmapro.2021.08.054_bb0045) 2002; 8
Sun (10.1016/j.jmapro.2021.08.054_bb0125) 2008; 14
Antony Samy (10.1016/j.jmapro.2021.08.054_bb0140) 2021; 33
10.1016/j.jmapro.2021.08.054_bb0265
Zhang (10.1016/j.jmapro.2021.08.054_bb0270) 2017; 130
10.1016/j.jmapro.2021.08.054_bb0145
El Moumen (10.1016/j.jmapro.2021.08.054_bb0050) 2019
10.1016/j.jmapro.2021.08.054_bb0105
Le Goff (10.1016/j.jmapro.2021.08.054_bb0230) 2005; 48
Boyard (10.1016/j.jmapro.2021.08.054_bb0210) 2016
Parlevliet (10.1016/j.jmapro.2021.08.054_bb0275) 2006; 37
Clark (10.1016/j.jmapro.2021.08.054_bb0185) 1985
Amado (10.1016/j.jmapro.2021.08.054_bb0225) 2012
Kumar (10.1016/j.jmapro.2021.08.054_bb0130) 2019; 2
Bakrani Balani (10.1016/j.jmapro.2021.08.054_bb0025) 2019
Dey (10.1016/j.jmapro.2021.08.054_bb0295) 2019
Dressler (10.1016/j.jmapro.2021.08.054_bb0195) 2010; 16
Popescu (10.1016/j.jmapro.2021.08.054_bb0120) 2018; 69
Deng (10.1016/j.jmapro.2021.08.054_bb0110) 2018
10.1016/j.jmapro.2021.08.054_bb0215
Pignon (10.1016/j.jmapro.2021.08.054_bb0220) 2015; 45
Kantaros (10.1016/j.jmapro.2021.08.054_bb0310) 2013; 50
Hertle (10.1016/j.jmapro.2021.08.054_bb0005) 2016; 301
Mostafa (10.1016/j.jmapro.2021.08.054_bb0150) 2009; 14
Wolszczak (10.1016/j.jmapro.2021.08.054_bb0080) 2018; 24
Jin (10.1016/j.jmapro.2021.08.054_bb0100) 2018; 1800507
Dong (10.1016/j.jmapro.2021.08.054_bb0235) 2019
Li (10.1016/j.jmapro.2021.08.054_bb0085) 2018; 24
Zhang (10.1016/j.jmapro.2021.08.054_bb0070) 2006; 220
Fischer (10.1016/j.jmapro.2021.08.054_bb0035) 2012
Fischer (10.1016/j.jmapro.2021.08.054_bb0285) 2016; 2016
Watanabe (10.1016/j.jmapro.2021.08.054_bb0115) 2016
Xinhua (10.1016/j.jmapro.2021.08.054_bb0095) 2015; 79
Brenken (10.1016/j.jmapro.2021.08.054_bb0020) 2019; 25
Wang (10.1016/j.jmapro.2021.08.054_bb0010) 2006; 33
References_xml – year: 2020
  ident: bb0160
  article-title: Extrusion deposition additive manufacturing with fiber-reinforced thermoplastic polymers
– volume: 48
  start-page: 5417
  year: 2005
  end-page: 5430
  ident: bb0230
  article-title: Study and modeling of heat transfer during the solidification of semi-crystalline polymers
  publication-title: Int J Heat Mass Transf
– year: 2016
  ident: bb0190
  article-title: A novel physics node for Nakamura crystallization kinetics
  publication-title: Int J Numer Methods Eng
– reference: Hämäläinen JP. Semi-crystalline polyolefins in fused deposition modeling. 2017.
– start-page: 1
  year: 2016
  end-page: 434
  ident: bb0210
  article-title: Heat transfer in polymer composite materials: forming processes
  publication-title: Heat Transf Polym Compos Mater Form Process
– year: 2012
  ident: bb0035
  article-title: Handbook of molded part shrinkage and warpage
– volume: 14
  start-page: 72
  year: 2008
  end-page: 80
  ident: bb0125
  article-title: Effect of processing conditions on the bonding quality of FDM polymer filaments
  publication-title: Rapid Prototyp J
– volume: 130
  start-page: 59
  year: 2017
  end-page: 68
  ident: bb0270
  article-title: Numerical investigation of the influence of process conditions on the temperature variation in fused deposition modeling
  publication-title: Mater Des
– volume: 97–101
  start-page: 2585
  year: 2010
  end-page: 2588
  ident: bb0305
  article-title: Finite element simulation of temperature field in fused deposition modeling
  publication-title: Adv Mat Res
– reference: Grimm T. Fused Deposition Modeling: A Technology Evaluation n.d.:1–12.
– volume: 413–414
  start-page: 442
  year: 2005
  end-page: 446
  ident: bb0180
  article-title: Crystallization of polypropylene at various cooling rates
  publication-title: Mater Sci Eng A
– volume: 8
  year: 2002
  ident: bb0045
  article-title: Anisotropic material properties of fused deposition modeling ABS
– volume: 24
  start-page: 615
  year: 2018
  end-page: 622
  ident: bb0080
  article-title: Heat distribution in material during fused deposition modelling
  publication-title: Rapid Prototyp J
– reference: Levy A, Le Corre S, Sobotka V. Heat transfer and crystallization kinetics in thermoplastic composite processing. A coupled modelling framework. AIP Conf Proc 2016;1769. doi:
– volume: 51
  start-page: 816
  year: 2012
  end-page: 822
  ident: bb0040
  article-title: Computer modeling and simulation for 3D crystallization of polymers. II. Non-isothermal case
  publication-title: Polym-Plast Technol Eng
– reference: Courter B, Savane V, Bi J, Dev S, Hansen CJ. Finite element simulation of the fused deposition modelling process modelling process 2017.
– volume: 150
  start-page: 102
  year: 2017
  end-page: 110
  ident: bb0135
  article-title: Characterization of residual stress and deformation in additively manufactured ABS polymer and composite specimens
  publication-title: Compos Sci Technol
– start-page: 2437
  year: 2016
  end-page: 2455
  ident: bb0115
  article-title: A model for residual stress and part warpage prediction in
  publication-title: Solid Free Fabr
– start-page: 7
  year: 2017
  ident: bb0060
  article-title: Kinetics and morphology of flow induced polymer crystallization in 3D shear flow investigated by Monte Carlo simulation
  publication-title: Crystals
– volume: 21
  start-page: 1
  year: 2018
  end-page: 16
  ident: bb0315
  article-title: Fused filament fabrication of fiber-reinforced polymers: a review
  publication-title: Addit Manuf
– volume: 2
  start-page: 167
  year: 2019
  end-page: 174
  ident: bb0130
  article-title: Investigation of structure–mechanical property relationship in fused filament fabrication of the polymer composites
  publication-title: J Micromanufacturing
– start-page: 11
  year: 2018
  ident: bb0110
  article-title: Mechanical properties optimization of poly-ether-ether-ketone via fused deposition modeling
  publication-title: Materials (Basel)
– volume: 220
  start-page: 1663
  year: 2006
  end-page: 1671
  ident: bb0070
  article-title: Three-dimensional finite element analysis simulations of the fused deposition modelling process
  publication-title: Proc Inst Mech Eng B J Eng Manuf
– volume: 16
  start-page: 1077
  year: 1972
  end-page: 1091
  ident: bb0250
  article-title: Some aspects of nonisothermal crystallization of polymers. I. Relationship between crystallization temperature, crystallinity, and cooling conditions
  publication-title: J Appl Polym Sci
– volume: 69
  start-page: 157
  year: 2018
  end-page: 166
  ident: bb0120
  article-title: FDM process parameters influence over the mechanical properties of polymer specimens: a review
  publication-title: Polym Test
– year: 1985
  ident: bb0185
  article-title: Molecular and Microstructural Factors Affecting Mechanical Properties of Polymeric Cover Plate Materials
– reference: Ferreira RTL, Quelho de Macedo R. Residual Thermal Stress in Fused Deposition Modelling 2018. doi:
– volume: 50
  start-page: 1975
  year: 2009
  end-page: 1985
  ident: bb0255
  article-title: Computer modeling of polymer crystallization - toward computer-assisted materials’ design
  publication-title: Polymer (Guildf)
– volume: 33
  start-page: 443
  year: 2021
  end-page: 453
  ident: bb0140
  article-title: Prediction of part distortion in Fused Deposition Modelling (FDM) of semi-crystalline polymers via COMSOL: effect of printing conditions
  publication-title: CIRP J Manuf Sci Technol
– start-page: 1
  year: 2006
  end-page: 7
  ident: bb0165
  article-title: Numerical simulation with “comsol multiphysics” of crystallization kinetics of semi-crystalline polymer during cooling: application to injection moulding
  publication-title: Comsol Users Conf
– volume: 17
  start-page: 1844002
  year: 2020
  ident: bb0300
  article-title: Direct simulation of polymer fused deposition modeling (FDM) — an implementation of the multi-phase viscoelastic solver in OpenFOAM
  publication-title: Int J Comput Methods
– volume: 47
  start-page: 17
  year: 2018
  end-page: 24
  ident: bb0055
  article-title: Effect of the printing bed temperature on the adhesion of parts produced by fused filament fabrication
  publication-title: Plast Rubber Compos
– volume: 45
  start-page: 152
  year: 2015
  end-page: 160
  ident: bb0220
  article-title: A new PvT device for high performance thermoplastics: heat transfer analysis and crystallization kinetics identification
  publication-title: Polym Test
– start-page: 242
  year: 2016
  end-page: 258
  ident: bb0175
  article-title: Thermodynamics and kinetics of polymer crystallization
  publication-title: Polym Morphol Princ Charact Process
– start-page: 207
  year: 2012
  end-page: 216
  ident: bb0225
  article-title: Characterization and modeling of non-isothermal crystallization of polyamide 12 and co-polypropylene during the SLS process
  publication-title: 5th Int Polym Mould Innov Conf
– volume: 37
  start-page: 1847
  year: 2006
  end-page: 1857
  ident: bb0275
  article-title: Residual stresses in thermoplastic composites-a study of the literature-part I: formation of residual stresses
  publication-title: Compos Part A Appl Sci Manuf
– volume: 24
  start-page: 80
  year: 2018
  end-page: 92
  ident: bb0085
  article-title: The effect of process parameters in fused deposition modelling on bonding degree and mechanical properties
  publication-title: Rapid Prototyp J
– volume: 16
  start-page: 328
  year: 2010
  end-page: 336
  ident: bb0195
  article-title: Temperature distribution in powder beds during 3D printing
  publication-title: Rapid Prototyp J
– reference: Hallmann M, Schleich B, Wartzack S. A method for analyzing the influence of process and design parameters on the build time of additively manufactured components. Proc Int Conf Eng Des ICED, vol. 2019- Augus, 2019, p. 649–58. doi:
– volume: 95
  start-page: 2059
  year: 2018
  end-page: 2070
  ident: bb0155
  article-title: Effects of material properties on warpage in fused deposition modeling parts
  publication-title: Int J Adv Manuf Technol
– volume: 1
  start-page: 1
  year: 2018
  end-page: 10
  ident: bb0260
  article-title: Crystallization, recrystallization, and melting of polymer crystals on heating and cooling examined with fast scanning calorimetry
  publication-title: Polym Cryst
– start-page: 1661
  year: 2019
  end-page: 1676
  ident: bb0050
  article-title: Modelling of the temperature and residual stress fields during 3D printing of polymer composites
  publication-title: Int J Adv Manuf Technol
– volume: 2016
  year: 2016
  ident: bb0285
  article-title: Crystallization and mechanical properties of polypropylene under processing-relevant cooling conditions with respect to isothermal holding time
  publication-title: Int J Polym Sci
– volume: 24
  start-page: 616
  year: 1990
  end-page: 643
  ident: bb0280
  article-title: Prediction of process-induced residual stresses in thermoplastic composites
  publication-title: J Thermoplast Compos Mater
– volume: 50
  start-page: 44
  year: 2013
  end-page: 50
  ident: bb0310
  article-title: Fiber Bragg grating based investigation of residual strains in ABS parts fabricated by fused deposition modeling process
  publication-title: Mater Des
– volume: 43
  start-page: 6931
  year: 2002
  end-page: 6942
  ident: bb0170
  article-title: Influence of shear on polypropylene crystallization: morphology development and kinetics
  publication-title: Polymer (Guildf)
– volume: 79
  start-page: 1117
  year: 2015
  end-page: 1126
  ident: bb0095
  article-title: An investigation on distortion of PLA thin-plate part in the FDM process
  publication-title: Int J Adv Manuf Technol
– reference: Dos Santos WN, De Sousa JA, Gregorio R. Thermal conductivity behaviour of polymers around glass transition and crystalline melting temperatures. Polym Test 2013;32:987–94. doi:
– volume: 1800507
  start-page: 1
  year: 2018
  end-page: 7
  ident: bb0100
  article-title: Filament materials screening for FDM 3D printing by means of injection-molded short rods
– start-page: 3
  year: 2019
  ident: bb0295
  article-title: A systematic survey of FDM process parameter optimization and their influence on part characteristics
  publication-title: J Manuf Mater Process
– volume: 195
  start-page: 108978
  year: 2020
  ident: bb0245
  article-title: Effects of auxiliary heat on warpage and mechanical properties in carbon fiber/ABS composite manufactured by fused deposition modeling
  publication-title: Mater Des
– volume: 222
  start-page: 959
  year: 2008
  end-page: 967
  ident: bb0090
  article-title: A parametric study of part distortions in fused deposition modelling using three-dimensional finite element analysis
  publication-title: Proc Inst Mech Eng B J Eng Manuf
– volume: 126
  start-page: 237
  year: 2004
  ident: bb0290
  article-title: Liquefier dynamics in fused deposition
  publication-title: J Manuf Sci Eng
– volume: 33
  start-page: 1087
  year: 2006
  end-page: 1096
  ident: bb0010
  article-title: A model research for prototype warp deformation in the FDM process
  publication-title: Int J Adv Manuf Technol
– volume: 137
  year: 2020
  ident: bb0065
  article-title: Material extrusion-based additive manufacturing of polypropylene: A review on how to improve dimensional inaccuracy and warpage
  publication-title: J Appl Polym Sci
– volume: 16
  start-page: 400
  year: 2010
  end-page: 410
  ident: bb0200
  article-title: Modeling of powder particle heat transfer process in selective laser sintering for fabricating tissue engineering scaffolds
  publication-title: Rapid Prototyp J
– volume: 301
  start-page: 1482
  year: 2016
  end-page: 1493
  ident: bb0005
  article-title: Additive manufacturing of poly(propylene) by means of melt extrusion
  publication-title: Macromol Mater Eng
– volume: 14
  start-page: 29
  year: 2009
  end-page: 37
  ident: bb0150
  article-title: A study of melt flow analysis of an ABS-Iron composite in fused deposition modelling process
  publication-title: Tsinghua Sci Technol
– reference: Diederichs E V., Picard MC, Chang BP, Misra M, Mielewski DF, Mohanty AK. Strategy to improve printability of renewable resource-based engineering plastic tailored for fdm applications. ACS Omega 2019;4:20297–307. doi:
– year: 2019
  ident: bb0025
  article-title: Additive Manufacturing of the High-performance Thermoplastics: Experimental Study and Numerical Simulation of the Fused Filament Fabrication
– reference: .
– start-page: 2065
  year: 2019
  ident: bb0235
  article-title: The study on polypropylene applied in fused deposition modeling
  publication-title: AIP Conf Proc
– volume: 25
  start-page: 218
  year: 2019
  end-page: 226
  ident: bb0020
  article-title: Development and validation of extrusion deposition additive manufacturing process simulations
  publication-title: Addit Manuf
– start-page: 303
  year: 2018
  ident: bb0015
  article-title: Polypropylene filled with glass spheres in extrusion-based additive manufacturing: effect of filler size and printing chamber temperature
  publication-title: Macromol Mater Eng
– volume: 1
  start-page: 703
  year: 2008
  end-page: 706
  ident: bb0075
  article-title: Towards modelling of free form extrusion: analytical solution of transient heat transfer
  publication-title: Int J Mater Form
– start-page: 2437
  year: 2016
  ident: 10.1016/j.jmapro.2021.08.054_bb0115
  article-title: A model for residual stress and part warpage prediction in
  publication-title: Solid Free Fabr
– ident: 10.1016/j.jmapro.2021.08.054_bb0105
  doi: 10.1017/dsi.2019.69
– start-page: 242
  year: 2016
  ident: 10.1016/j.jmapro.2021.08.054_bb0175
  article-title: Thermodynamics and kinetics of polymer crystallization
  publication-title: Polym Morphol Princ Charact Process
– ident: 10.1016/j.jmapro.2021.08.054_bb0320
– volume: 47
  start-page: 17
  year: 2018
  ident: 10.1016/j.jmapro.2021.08.054_bb0055
  article-title: Effect of the printing bed temperature on the adhesion of parts produced by fused filament fabrication
  publication-title: Plast Rubber Compos
  doi: 10.1080/14658011.2017.1399531
– ident: 10.1016/j.jmapro.2021.08.054_bb0205
  doi: 10.1016/j.polymertesting.2013.05.007
– ident: 10.1016/j.jmapro.2021.08.054_bb0240
– start-page: 207
  year: 2012
  ident: 10.1016/j.jmapro.2021.08.054_bb0225
  article-title: Characterization and modeling of non-isothermal crystallization of polyamide 12 and co-polypropylene during the SLS process
– volume: 2
  start-page: 167
  year: 2019
  ident: 10.1016/j.jmapro.2021.08.054_bb0130
  article-title: Investigation of structure–mechanical property relationship in fused filament fabrication of the polymer composites
  publication-title: J Micromanufacturing
  doi: 10.1177/2516598419843687
– ident: 10.1016/j.jmapro.2021.08.054_bb0030
  doi: 10.1021/acsomega.9b02795
– volume: 95
  start-page: 2059
  year: 2018
  ident: 10.1016/j.jmapro.2021.08.054_bb0155
  article-title: Effects of material properties on warpage in fused deposition modeling parts
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-017-1340-8
– volume: 14
  start-page: 29
  year: 2009
  ident: 10.1016/j.jmapro.2021.08.054_bb0150
  article-title: A study of melt flow analysis of an ABS-Iron composite in fused deposition modelling process
  publication-title: Tsinghua Sci Technol
  doi: 10.1016/S1007-0214(09)70063-X
– volume: 79
  start-page: 1117
  year: 2015
  ident: 10.1016/j.jmapro.2021.08.054_bb0095
  article-title: An investigation on distortion of PLA thin-plate part in the FDM process
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-015-6893-9
– volume: 21
  start-page: 1
  year: 2018
  ident: 10.1016/j.jmapro.2021.08.054_bb0315
  article-title: Fused filament fabrication of fiber-reinforced polymers: a review
  publication-title: Addit Manuf
– volume: 17
  start-page: 1844002
  year: 2020
  ident: 10.1016/j.jmapro.2021.08.054_bb0300
  article-title: Direct simulation of polymer fused deposition modeling (FDM) — an implementation of the multi-phase viscoelastic solver in OpenFOAM
  publication-title: Int J Comput Methods
  doi: 10.1142/S0219876218440024
– volume: 137
  issue: 12
  year: 2020
  ident: 10.1016/j.jmapro.2021.08.054_bb0065
  article-title: Material extrusion-based additive manufacturing of polypropylene: A review on how to improve dimensional inaccuracy and warpage
  publication-title: J Appl Polym Sci
  doi: 10.1002/app.48545
– volume: 45
  start-page: 152
  year: 2015
  ident: 10.1016/j.jmapro.2021.08.054_bb0220
  article-title: A new PvT device for high performance thermoplastics: heat transfer analysis and crystallization kinetics identification
  publication-title: Polym Test
  doi: 10.1016/j.polymertesting.2015.05.013
– ident: 10.1016/j.jmapro.2021.08.054_bb0145
– volume: 301
  start-page: 1482
  year: 2016
  ident: 10.1016/j.jmapro.2021.08.054_bb0005
  article-title: Additive manufacturing of poly(propylene) by means of melt extrusion
  publication-title: Macromol Mater Eng
  doi: 10.1002/mame.201600259
– start-page: 11
  year: 2018
  ident: 10.1016/j.jmapro.2021.08.054_bb0110
  article-title: Mechanical properties optimization of poly-ether-ether-ketone via fused deposition modeling
  publication-title: Materials (Basel)
– volume: 195
  start-page: 108978
  year: 2020
  ident: 10.1016/j.jmapro.2021.08.054_bb0245
  article-title: Effects of auxiliary heat on warpage and mechanical properties in carbon fiber/ABS composite manufactured by fused deposition modeling
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2020.108978
– volume: 43
  start-page: 6931
  year: 2002
  ident: 10.1016/j.jmapro.2021.08.054_bb0170
  article-title: Influence of shear on polypropylene crystallization: morphology development and kinetics
  publication-title: Polymer (Guildf)
  doi: 10.1016/S0032-3861(02)00628-6
– volume: 16
  start-page: 1077
  year: 1972
  ident: 10.1016/j.jmapro.2021.08.054_bb0250
  article-title: Some aspects of nonisothermal crystallization of polymers. I. Relationship between crystallization temperature, crystallinity, and cooling conditions
  publication-title: J Appl Polym Sci
  doi: 10.1002/app.1972.070160503
– start-page: 3
  year: 2019
  ident: 10.1016/j.jmapro.2021.08.054_bb0295
  article-title: A systematic survey of FDM process parameter optimization and their influence on part characteristics
  publication-title: J Manuf Mater Process
– volume: 24
  start-page: 615
  year: 2018
  ident: 10.1016/j.jmapro.2021.08.054_bb0080
  article-title: Heat distribution in material during fused deposition modelling
  publication-title: Rapid Prototyp J
  doi: 10.1108/RPJ-04-2017-0062
– volume: 1800507
  start-page: 1
  year: 2018
  ident: 10.1016/j.jmapro.2021.08.054_bb0100
  article-title: Filament materials screening for FDM 3D printing by means of injection-molded short rods
– ident: 10.1016/j.jmapro.2021.08.054_bb0215
  doi: 10.1063/1.4963594
– year: 1985
  ident: 10.1016/j.jmapro.2021.08.054_bb0185
– volume: 33
  start-page: 1087
  year: 2006
  ident: 10.1016/j.jmapro.2021.08.054_bb0010
  article-title: A model research for prototype warp deformation in the FDM process
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-006-0556-9
– volume: 24
  start-page: 80
  year: 2018
  ident: 10.1016/j.jmapro.2021.08.054_bb0085
  article-title: The effect of process parameters in fused deposition modelling on bonding degree and mechanical properties
  publication-title: Rapid Prototyp J
  doi: 10.1108/RPJ-06-2016-0090
– volume: 37
  start-page: 1847
  year: 2006
  ident: 10.1016/j.jmapro.2021.08.054_bb0275
  article-title: Residual stresses in thermoplastic composites-a study of the literature-part I: formation of residual stresses
  publication-title: Compos Part A Appl Sci Manuf
  doi: 10.1016/j.compositesa.2005.12.025
– volume: 50
  start-page: 1975
  year: 2009
  ident: 10.1016/j.jmapro.2021.08.054_bb0255
  article-title: Computer modeling of polymer crystallization - toward computer-assisted materials’ design
  publication-title: Polymer (Guildf)
  doi: 10.1016/j.polymer.2009.02.038
– start-page: 7
  year: 2017
  ident: 10.1016/j.jmapro.2021.08.054_bb0060
  article-title: Kinetics and morphology of flow induced polymer crystallization in 3D shear flow investigated by Monte Carlo simulation
  publication-title: Crystals
– volume: 130
  start-page: 59
  year: 2017
  ident: 10.1016/j.jmapro.2021.08.054_bb0270
  article-title: Numerical investigation of the influence of process conditions on the temperature variation in fused deposition modeling
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2017.05.040
– start-page: 303
  year: 2018
  ident: 10.1016/j.jmapro.2021.08.054_bb0015
  article-title: Polypropylene filled with glass spheres in extrusion-based additive manufacturing: effect of filler size and printing chamber temperature
  publication-title: Macromol Mater Eng
– volume: 222
  start-page: 959
  year: 2008
  ident: 10.1016/j.jmapro.2021.08.054_bb0090
  article-title: A parametric study of part distortions in fused deposition modelling using three-dimensional finite element analysis
  publication-title: Proc Inst Mech Eng B J Eng Manuf
  doi: 10.1243/09544054JEM990
– volume: 150
  start-page: 102
  year: 2017
  ident: 10.1016/j.jmapro.2021.08.054_bb0135
  article-title: Characterization of residual stress and deformation in additively manufactured ABS polymer and composite specimens
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2017.07.017
– start-page: 1
  year: 2006
  ident: 10.1016/j.jmapro.2021.08.054_bb0165
  article-title: Numerical simulation with “comsol multiphysics” of crystallization kinetics of semi-crystalline polymer during cooling: application to injection moulding
  publication-title: Comsol Users Conf
– year: 2012
  ident: 10.1016/j.jmapro.2021.08.054_bb0035
– volume: 16
  start-page: 400
  year: 2010
  ident: 10.1016/j.jmapro.2021.08.054_bb0200
  article-title: Modeling of powder particle heat transfer process in selective laser sintering for fabricating tissue engineering scaffolds
  publication-title: Rapid Prototyp J
  doi: 10.1108/13552541011083317
– volume: 14
  start-page: 72
  year: 2008
  ident: 10.1016/j.jmapro.2021.08.054_bb0125
  article-title: Effect of processing conditions on the bonding quality of FDM polymer filaments
  publication-title: Rapid Prototyp J
  doi: 10.1108/13552540810862028
– volume: 413–414
  start-page: 442
  year: 2005
  ident: 10.1016/j.jmapro.2021.08.054_bb0180
  article-title: Crystallization of polypropylene at various cooling rates
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2005.08.167
– year: 2016
  ident: 10.1016/j.jmapro.2021.08.054_bb0190
  article-title: A novel physics node for Nakamura crystallization kinetics
  publication-title: Int J Numer Methods Eng
– volume: 220
  start-page: 1663
  year: 2006
  ident: 10.1016/j.jmapro.2021.08.054_bb0070
  article-title: Three-dimensional finite element analysis simulations of the fused deposition modelling process
  publication-title: Proc Inst Mech Eng B J Eng Manuf
  doi: 10.1243/09544054JEM572
– volume: 48
  start-page: 5417
  year: 2005
  ident: 10.1016/j.jmapro.2021.08.054_bb0230
  article-title: Study and modeling of heat transfer during the solidification of semi-crystalline polymers
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2005.06.015
– start-page: 1
  year: 2016
  ident: 10.1016/j.jmapro.2021.08.054_bb0210
  article-title: Heat transfer in polymer composite materials: forming processes
  publication-title: Heat Transf Polym Compos Mater Form Process
– volume: 8
  year: 2002
  ident: 10.1016/j.jmapro.2021.08.054_bb0045
  article-title: Anisotropic material properties of fused deposition modeling ABS
– volume: 24
  start-page: 616
  year: 1990
  ident: 10.1016/j.jmapro.2021.08.054_bb0280
  article-title: Prediction of process-induced residual stresses in thermoplastic composites
  publication-title: J Thermoplast Compos Mater
  doi: 10.1177/002199839002400603
– volume: 2016
  year: 2016
  ident: 10.1016/j.jmapro.2021.08.054_bb0285
  article-title: Crystallization and mechanical properties of polypropylene under processing-relevant cooling conditions with respect to isothermal holding time
  publication-title: Int J Polym Sci
  doi: 10.1155/2016/5450708
– volume: 25
  start-page: 218
  year: 2019
  ident: 10.1016/j.jmapro.2021.08.054_bb0020
  article-title: Development and validation of extrusion deposition additive manufacturing process simulations
  publication-title: Addit Manuf
– start-page: 1661
  year: 2019
  ident: 10.1016/j.jmapro.2021.08.054_bb0050
  article-title: Modelling of the temperature and residual stress fields during 3D printing of polymer composites
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-019-03965-y
– volume: 33
  start-page: 443
  year: 2021
  ident: 10.1016/j.jmapro.2021.08.054_bb0140
  article-title: Prediction of part distortion in Fused Deposition Modelling (FDM) of semi-crystalline polymers via COMSOL: effect of printing conditions
  publication-title: CIRP J Manuf Sci Technol
  doi: 10.1016/j.cirpj.2021.04.012
– volume: 97–101
  start-page: 2585
  year: 2010
  ident: 10.1016/j.jmapro.2021.08.054_bb0305
  article-title: Finite element simulation of temperature field in fused deposition modeling
  publication-title: Adv Mat Res
– year: 2019
  ident: 10.1016/j.jmapro.2021.08.054_bb0025
– volume: 1
  start-page: 703
  year: 2008
  ident: 10.1016/j.jmapro.2021.08.054_bb0075
  article-title: Towards modelling of free form extrusion: analytical solution of transient heat transfer
  publication-title: Int J Mater Form
  doi: 10.1007/s12289-008-0312-9
– volume: 16
  start-page: 328
  year: 2010
  ident: 10.1016/j.jmapro.2021.08.054_bb0195
  article-title: Temperature distribution in powder beds during 3D printing
  publication-title: Rapid Prototyp J
  doi: 10.1108/13552541011065722
– volume: 51
  start-page: 816
  year: 2012
  ident: 10.1016/j.jmapro.2021.08.054_bb0040
  article-title: Computer modeling and simulation for 3D crystallization of polymers. II. Non-isothermal case
  publication-title: Polym-Plast Technol Eng
  doi: 10.1080/03602559.2012.671413
– volume: 1
  start-page: 1
  year: 2018
  ident: 10.1016/j.jmapro.2021.08.054_bb0260
  article-title: Crystallization, recrystallization, and melting of polymer crystals on heating and cooling examined with fast scanning calorimetry
  publication-title: Polym Cryst
– volume: 50
  start-page: 44
  year: 2013
  ident: 10.1016/j.jmapro.2021.08.054_bb0310
  article-title: Fiber Bragg grating based investigation of residual strains in ABS parts fabricated by fused deposition modeling process
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2013.02.067
– ident: 10.1016/j.jmapro.2021.08.054_bb0265
  doi: 10.26678/ABCM.COBEM2017.COB17-0124
– start-page: 2065
  year: 2019
  ident: 10.1016/j.jmapro.2021.08.054_bb0235
  article-title: The study on polypropylene applied in fused deposition modeling
  publication-title: AIP Conf Proc
– volume: 126
  start-page: 237
  issue: 2
  year: 2004
  ident: 10.1016/j.jmapro.2021.08.054_bb0290
  article-title: Liquefier dynamics in fused deposition
  publication-title: J Manuf Sci Eng
  doi: 10.1115/1.1688377
– volume: 69
  start-page: 157
  year: 2018
  ident: 10.1016/j.jmapro.2021.08.054_bb0120
  article-title: FDM process parameters influence over the mechanical properties of polymer specimens: a review
  publication-title: Polym Test
  doi: 10.1016/j.polymertesting.2018.05.020
– year: 2020
  ident: 10.1016/j.jmapro.2021.08.054_bb0160
SSID ssj0012401
Score 2.4484634
Snippet The printing conditions in Fused Deposition Modelling (FDM) affect the amount of induced residual stresses within the printed part and its dimensional...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 389
SubjectTerms Finite element analysis (FEA)
Fused deposition modelling (FDM)
Polymer crystallisation kinetics
Residual stress
Semi-crystalline polymers
Warpage
Title Finite element analysis of residual stress and warpage in a 3D printed semi-crystalline polymer: Effect of ambient temperature and nozzle speed
URI https://dx.doi.org/10.1016/j.jmapro.2021.08.054
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELXK9lIOCEqrlo9qDr2abRIn8XKrCqsFRC9Qqbdo7EykVLvZ1XYRag_8Bf4yM7FTtVIFEsd8jBXZybw3zswbpY454kKb10ZjWZA2Fr12J6bRZOuytozfrt8a-HpezC7M58v8ckudDbUwklYZfX_w6b23jmfGcTbHq7Ydf2PkKQSfOWgR3OUQaDvNJkU-Utunn77Mzu9-JjBoBdnUtNBiMFTQ9WleVwtkV8WBYhq0PHPzOELdQ53pc_Us0kU4DU_0Qm1Rt6ue3hMRfKl-T1vhjUAhERwwyozAsgGOpftiKwglIXythp-4FicCbQcI2QeQnT2mnXBNi1b79Q3TRdHpJlgt5zcLWr-HoHAs4-HCSf0kiKBVVGPux-yWt7dzgusVY-Geuph-_H4207HNgvYmsRtdmsaSK6ngTxc95c436FC612CCzMCIHVGTZY6KxKUpu4jEnzhRM5qIvBszkH016pYdHShATNHWlDfWojGehym9S4ty0tS5I3SHKhumtvJRg1xaYcyrIdnsqgoLUsmCVNIhMzeHSt9ZrYIGxz_uL4dVqx68SxXDxF8tX_235Wu1I0chze-NGm3WP-gt05WNO1JP3v1KjuJL-Qc_Fe4G
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9tAEF0hOJQeKihFpYV2Dr0uSey1vekNAVHaApeCxM2aXY8lo8SJQhAih_6F_mVmvDaiUkWlXr0fsvZj3szqzRulvnDEhTYpjMYsJW0seu36ptRki6ywjN-ueRo4v0jHV-b7dXK9po67XBihVba2P9j0xlq3X3rtavbmVdX7yciTCj5z0CK4yyHQhkniTHh9h7-eeB6MX_0gmhqlWrp3-XMNyetmimyoOEyMgpJnYv6OT88wZ7Sl3rTOIhyF_9lWa1S_Va-fSQjuqN-jSrxGoEADB2xFRmBWAkfSTaoVhIQQbivgHhdiQqCqASE-AXnXY6cTbmlaab94YGdRVLoJ5rPJw5QWXyHoG8t8OHWSPQkiZ9VqMTdz1rPVakJwO2ckfKeuRqeXx2PdFlnQ3gzsUmemtOQySvnioqfE-RIdSu0aHCD7X8RmqIxjR-nARREbiIHvO9EyGoq4G_sfu2q9ntX0XgFihLagpLQWjfE8TeZdlGbDskgcodtTcbe0uW8VyKUQxiTvqGY3ediQXDYkl_qYidlT-mnUPChw_KN_1u1a_sdJyhkkXhz54b9HflavxpfnZ_nZt4sfH9WmtATC375aXy7u6IAdl6X71BzMR0lt7tE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finite+element+analysis+of+residual+stress+and+warpage+in+a+3D+printed+semi-crystalline+polymer%3A+Effect+of+ambient+temperature+and+nozzle+speed&rft.jtitle=Journal+of+manufacturing+processes&rft.au=Samy%2C+Anto+Antony&rft.au=Golbang%2C+Atefeh&rft.au=Harkin-Jones%2C+Eileen&rft.au=Archer%2C+Edward&rft.date=2021-10-01&rft.pub=Elsevier+Ltd&rft.issn=1526-6125&rft.eissn=2212-4616&rft.volume=70&rft.spage=389&rft.epage=399&rft_id=info:doi/10.1016%2Fj.jmapro.2021.08.054&rft.externalDocID=S1526612521006381
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1526-6125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1526-6125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1526-6125&client=summon