Finite element analysis of residual stress and warpage in a 3D printed semi-crystalline polymer: Effect of ambient temperature and nozzle speed
The printing conditions in Fused Deposition Modelling (FDM) affect the amount of induced residual stresses within the printed part and its dimensional accuracy. Among the thermoplastic feedstock for FDM, semi-crystalline polymers are more prone to part distortion due to crystallisation. Therefore, t...
Saved in:
Published in | Journal of manufacturing processes Vol. 70; pp. 389 - 399 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1526-6125 2212-4616 |
DOI | 10.1016/j.jmapro.2021.08.054 |
Cover
Abstract | The printing conditions in Fused Deposition Modelling (FDM) affect the amount of induced residual stresses within the printed part and its dimensional accuracy. Among the thermoplastic feedstock for FDM, semi-crystalline polymers are more prone to part distortion due to crystallisation. Therefore, this study aims to numerically investigate the behaviour of semi-crystalline polymer under various FDM printing conditions (namely print speed and ambient temperature) and the resultant residual stress and warpage in the printed parts. For this, the coefficient of thermal expansion (CTE) and the thermo-mechanical properties of the polymer under study (polypropylene), and the crystallisation kinetics are coupled with the evolving temperature and time during printing. The values of residual stress and warpage are calculated and compared for the bottom and top layers of the samples. From the results, it was observed that increasing the nozzle speed from 30 mm/s to 60 mm/s resulted in the bottom and top layers exhibiting a 15% and 13% decrease in residual stress, respectively. Similarly, a drop in warpage (~30%) was observed for both layers. The reduction in residual stress and warpage with increased printing speed is attributed to the improved heat transfer between the deposited roads and the reduced cooling rate. Increasing the ambient temperature from 25 °C to 75 °C resulted in a 2% and 3% decrease in residual stress in the bottom and top layers, respectively. In terms of warpage, an insignificant increase (~1%) was observed in both top and bottom layers. This is explained by the counter effects of reduced thermal gradients (i.e., lower cooling rate) and increased crystallisation on the overall amount of residual stress and warpage. 3D scanning of experimentally printed samples was used for verification of the simulation results, and good agreement between these is reported. |
---|---|
AbstractList | The printing conditions in Fused Deposition Modelling (FDM) affect the amount of induced residual stresses within the printed part and its dimensional accuracy. Among the thermoplastic feedstock for FDM, semi-crystalline polymers are more prone to part distortion due to crystallisation. Therefore, this study aims to numerically investigate the behaviour of semi-crystalline polymer under various FDM printing conditions (namely print speed and ambient temperature) and the resultant residual stress and warpage in the printed parts. For this, the coefficient of thermal expansion (CTE) and the thermo-mechanical properties of the polymer under study (polypropylene), and the crystallisation kinetics are coupled with the evolving temperature and time during printing. The values of residual stress and warpage are calculated and compared for the bottom and top layers of the samples. From the results, it was observed that increasing the nozzle speed from 30 mm/s to 60 mm/s resulted in the bottom and top layers exhibiting a 15% and 13% decrease in residual stress, respectively. Similarly, a drop in warpage (~30%) was observed for both layers. The reduction in residual stress and warpage with increased printing speed is attributed to the improved heat transfer between the deposited roads and the reduced cooling rate. Increasing the ambient temperature from 25 °C to 75 °C resulted in a 2% and 3% decrease in residual stress in the bottom and top layers, respectively. In terms of warpage, an insignificant increase (~1%) was observed in both top and bottom layers. This is explained by the counter effects of reduced thermal gradients (i.e., lower cooling rate) and increased crystallisation on the overall amount of residual stress and warpage. 3D scanning of experimentally printed samples was used for verification of the simulation results, and good agreement between these is reported. |
Author | Samy, Anto Antony Golbang, Atefeh Harkin-Jones, Eileen McIlhagger, Alistair Archer, Edward Tormey, David |
Author_xml | – sequence: 1 givenname: Anto Antony surname: Samy fullname: Samy, Anto Antony email: antony_samy-a@ulster.ac.uk organization: Engineering Research Institute, Ulster University, Shore Road, Newtownabbey, Co. Antrim, BT37 0QB, United Kingdom – sequence: 2 givenname: Atefeh surname: Golbang fullname: Golbang, Atefeh organization: Engineering Research Institute, Ulster University, Shore Road, Newtownabbey, Co. Antrim, BT37 0QB, United Kingdom – sequence: 3 givenname: Eileen surname: Harkin-Jones fullname: Harkin-Jones, Eileen organization: Engineering Research Institute, Ulster University, Shore Road, Newtownabbey, Co. Antrim, BT37 0QB, United Kingdom – sequence: 4 givenname: Edward surname: Archer fullname: Archer, Edward organization: Engineering Research Institute, Ulster University, Shore Road, Newtownabbey, Co. Antrim, BT37 0QB, United Kingdom – sequence: 5 givenname: David surname: Tormey fullname: Tormey, David organization: Centre for Precision Engineering, Materials and Manufacturing Research, Institute of Technology Sligo, Ash Lane, F91 YW50, Sligo, Ireland – sequence: 6 givenname: Alistair surname: McIlhagger fullname: McIlhagger, Alistair organization: Engineering Research Institute, Ulster University, Shore Road, Newtownabbey, Co. Antrim, BT37 0QB, United Kingdom |
BookMark | eNqFkMtKBDEQRYMoOD7-wEV-oNtK-jkuBPENghtdh-p0RTKk000SlfEn_GV7HFcudFUFxbnFPQds14-eGDsRkAsQ9ekqXw04hTGXIEUObQ5VucMWUgqZlbWod9lCVLLOaiGrfXYQ4wpAyBLEgn3eWG8TcXI0kE8cPbp1tJGPhgeKtn9Fx2Oa1zjfev6OYcIX4tZz5MUVn4L1iXoeabCZDuuY0DnriU-jWw8Uzvi1MaTTJg-Hzm5-JBomCpheA31n-vHjwxGPE1F_xPYMukjHP_OQPd9cP13eZQ-Pt_eXFw-ZLkWbsqY0LXUN1W0DqKnqtMEOi0YCCoRlRdC2pig6qkUnJTQgNHSNNs1SVOWyKYtDVm5zdRhjDGTU3GTAsFYC1EaqWqmtVLWRqqBVs9QZO_uFaZsw2dGngNb9B59vYZqLvVkKKupZiKbehlmR6kf7d8AX4qua3Q |
CitedBy_id | crossref_primary_10_1002_vnl_22176 crossref_primary_10_1080_2374068X_2023_2295651 crossref_primary_10_1007_s10924_024_03447_7 crossref_primary_10_30657_pea_2023_29_32 crossref_primary_10_1016_j_jmapro_2022_02_028 crossref_primary_10_1016_j_rineng_2024_103317 crossref_primary_10_1021_acs_iecr_4c04783 crossref_primary_10_3390_polym14050879 crossref_primary_10_1007_s00170_024_14484_w crossref_primary_10_3390_polym16020208 crossref_primary_10_1016_j_jmapro_2024_10_016 crossref_primary_10_1021_acsapm_3c03205 crossref_primary_10_3390_polym14132746 crossref_primary_10_1016_j_compositesb_2023_111067 crossref_primary_10_3390_coatings12060827 crossref_primary_10_3390_polym14020356 crossref_primary_10_3390_chemengineering7010001 crossref_primary_10_1016_j_matpr_2023_09_101 crossref_primary_10_1108_RPJ_01_2024_0023 crossref_primary_10_1016_j_coco_2022_101464 crossref_primary_10_1038_s41598_024_77635_9 crossref_primary_10_3390_ma16247664 crossref_primary_10_1007_s00170_024_14173_8 crossref_primary_10_1002_pen_27167 crossref_primary_10_1002_pol_20240563 crossref_primary_10_1002_pol_20240121 crossref_primary_10_1177_09673911241273654 crossref_primary_10_3390_jmmp8020077 crossref_primary_10_3390_polym17020156 crossref_primary_10_1051_e3sconf_202346900034 crossref_primary_10_1177_09544089231223316 crossref_primary_10_1007_s12008_024_02030_7 crossref_primary_10_17350_HJSE19030000287 crossref_primary_10_1007_s11665_024_09321_w crossref_primary_10_3390_polym16142067 crossref_primary_10_1177_14644207241285399 crossref_primary_10_1016_j_jmapro_2022_09_048 crossref_primary_10_3390_app14198834 crossref_primary_10_1002_app_52128 crossref_primary_10_1002_pol_20230365 crossref_primary_10_1016_j_heliyon_2023_e14445 |
Cites_doi | 10.1017/dsi.2019.69 10.1080/14658011.2017.1399531 10.1016/j.polymertesting.2013.05.007 10.1177/2516598419843687 10.1021/acsomega.9b02795 10.1007/s00170-017-1340-8 10.1016/S1007-0214(09)70063-X 10.1007/s00170-015-6893-9 10.1142/S0219876218440024 10.1002/app.48545 10.1016/j.polymertesting.2015.05.013 10.1002/mame.201600259 10.1016/j.matdes.2020.108978 10.1016/S0032-3861(02)00628-6 10.1002/app.1972.070160503 10.1108/RPJ-04-2017-0062 10.1063/1.4963594 10.1007/s00170-006-0556-9 10.1108/RPJ-06-2016-0090 10.1016/j.compositesa.2005.12.025 10.1016/j.polymer.2009.02.038 10.1016/j.matdes.2017.05.040 10.1243/09544054JEM990 10.1016/j.compscitech.2017.07.017 10.1108/13552541011083317 10.1108/13552540810862028 10.1016/j.msea.2005.08.167 10.1243/09544054JEM572 10.1016/j.ijheatmasstransfer.2005.06.015 10.1177/002199839002400603 10.1155/2016/5450708 10.1007/s00170-019-03965-y 10.1016/j.cirpj.2021.04.012 10.1007/s12289-008-0312-9 10.1108/13552541011065722 10.1080/03602559.2012.671413 10.1016/j.matdes.2013.02.067 10.26678/ABCM.COBEM2017.COB17-0124 10.1115/1.1688377 10.1016/j.polymertesting.2018.05.020 |
ContentType | Journal Article |
Copyright | 2021 |
Copyright_xml | – notice: 2021 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jmapro.2021.08.054 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2212-4616 |
EndPage | 399 |
ExternalDocumentID | 10_1016_j_jmapro_2021_08_054 S1526612521006381 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29K 3V. 4.4 457 4G. 5GY 5VS 7-5 71M 7WY 883 88I 8AO 8FE 8FG 8FL 8FW 8P~ 8R4 8R5 9M8 AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJCF ABJNI ABMAC ABUWG ABXDB ABYKQ ACDAQ ACGFS ACGOD ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKRA AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN AZQEC BENPR BEZIV BGLVJ BJAXD BKOJK BLXMC BPHCQ CCPQU CS3 D-I DU5 DWQXO E3Z EBS EFJIC EFLBG EJD EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FRNLG FYGXN GBLVA GNUQQ GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH HCIFZ HVGLF HZ~ H~9 J1W JJJVA K60 K6~ KOM L6V M0C M0F M2P M41 M7S MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQBIZ PQQKQ PROAC PTHSS Q2X Q38 R2- RIG RNS ROL RWL S0X SDF SES SPC SPCBC SST SSZ T5K TAE TN5 U5U ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION PHGZM PHGZT PQBZA SSH |
ID | FETCH-LOGICAL-c418t-74f8eb7e6870ace5bcfaba3720a1a095e088f33be61b220701c0b7cf791549743 |
IEDL.DBID | AIKHN |
ISSN | 1526-6125 |
IngestDate | Thu Apr 24 23:03:19 EDT 2025 Tue Jul 01 02:23:37 EDT 2025 Fri Feb 23 02:43:58 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Warpage Polymer crystallisation kinetics Fused deposition modelling (FDM) Finite element analysis (FEA) Semi-crystalline polymers Residual stress |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c418t-74f8eb7e6870ace5bcfaba3720a1a095e088f33be61b220701c0b7cf791549743 |
OpenAccessLink | http://www.scopus.com/inward/record.url?scp=85114661526&partnerID=8YFLogxK |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1016_j_jmapro_2021_08_054 crossref_citationtrail_10_1016_j_jmapro_2021_08_054 elsevier_sciencedirect_doi_10_1016_j_jmapro_2021_08_054 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2021 2021-10-00 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: October 2021 |
PublicationDecade | 2020 |
PublicationTitle | Journal of manufacturing processes |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Deng, Zeng, Peng, Yan, Ke (bb0110) 2018 Fitzharris, Watanabe, Rosen, Shofner (bb0155) 2018; 95 Yu, Sun, Wang, Zhang, Li (bb0245) 2020; 195 Dey, Yodo (bb0295) 2019 Boyard (bb0210) 2016 Wang, Xi, Jin (bb0010) 2006; 33 Li, Wang, Sun, Yu (bb0085) 2018; 24 Kumar, Bhushan, Sinha, Prakash, Bhattacharya (bb0130) 2019; 2 Grimm T. Fused Deposition Modeling: A Technology Evaluation n.d.:1–12. Zhang, Chou (bb0090) 2008; 222 Xinhua, Shengpeng, Zhou, Xianhua, Xiaohu, Zhongbin (bb0095) 2015; 79 Hertle, Drexler, Drummer (bb0005) 2016; 301 Brenken, Barocio, Favaloro, Kunc, Pipes (bb0315) 2018; 21 Koscher, Fulchiron (bb0170) 2002; 43 Dong, Zhang, Gao, Chou (bb0235) 2019 Nakamura, Watanabe, Katayama, Amano (bb0250) 1972; 16 Diederichs E V., Picard MC, Chang BP, Misra M, Mielewski DF, Mohanty AK. Strategy to improve printability of renewable resource-based engineering plastic tailored for fdm applications. ACS Omega 2019;4:20297–307. doi Amado, Wegener, Schmid, Levy (bb0225) 2012 Chapman, Gillespie, Pipes, Manson, Seferis (bb0280) 1990; 24 Watanabe, Shofner, Treat, Rosen (bb0115) 2016 . Levy A, Le Corre S, Sobotka V. Heat transfer and crystallization kinetics in thermoplastic composite processing. A coupled modelling framework. AIP Conf Proc 2016;1769. doi Brahmia, Bourgin, Boutaous, Garcia (bb0165) 2006 Levy (bb0190) 2016 Clark (bb0185) 1985 Parlevliet, Bersee, Beukers (bb0275) 2006; 37 Jin, Giesa, Neuber, Schmidt (bb0100) 2018; 1800507 El Moumen, Tarfaoui, Lafdi (bb0050) 2019 Spoerk, Gonzalez-Gutierrez, Sapkota, Schuschnigg, Holzer (bb0055) 2018; 47 Pignon, Tardif, Lefèvre, Sobotka, Boyard, Delaunay (bb0220) 2015; 45 Edith Wiria, Fai Leong, Kai Chua (bb0200) 2010; 16 Sun, Rizvi, Bellehumeur, Gu (bb0125) 2008; 14 Hallmann M, Schleich B, Wartzack S. A method for analyzing the influence of process and design parameters on the build time of additively manufactured components. Proc Int Conf Eng Des ICED, vol. 2019- Augus, 2019, p. 649–58. doi Kantaros, Karalekas (bb0310) 2013; 50 Gradys, Sajkiewicz, Minakov, Adamovsky, Schick, Hashimoto (bb0180) 2005; 413–414 Yamamoto (bb0255) 2009; 50 Costa, Duarte, Covas (bb0075) 2008; 1 Antony Samy, Golbang, Harkin-Jones, Archer, McIlhagger (bb0140) 2021; 33 Ruan, Guo, Liang, Li (bb0040) 2012; 51 Hämäläinen JP. Semi-crystalline polyolefins in fused deposition modeling. 2017. Fischer, Drummer (bb0285) 2016; 2016 Bakrani Balani (bb0025) 2019 Spoerk, Holzer, Gonzalez-Gutierrez (bb0065) 2020; 137 Furushima, Schick, Toda (bb0260) 2018; 1 Courter B, Savane V, Bi J, Dev S, Hansen CJ. Finite element simulation of the fused deposition modelling process modelling process 2017. Liu, Anderson, Sridhar (bb0300) 2020; 17 Ahn, Montero, Odell, Roundy, Wright (bb0045) 2002; 8 Bellini, Güçeri S, Bellini, Güçeri, Bertoldi (bb0290) 2004; 126 Zhang, Chou (bb0070) 2006; 220 Mostafa, Syed, Igor, Andrew (bb0150) 2009; 14 Ji, Zhou (bb0305) 2010; 97–101 Hu, Zha (bb0175) 2016 Barocio, Brenken, Favaloro, Bogdanor, Pipes (bb0160) 2020 Spoerk, Arbeiter, Raguž, Weingrill, Fischinger, Traxler (bb0015) 2018 Ferreira RTL, Quelho de Macedo R. Residual Thermal Stress in Fused Deposition Modelling 2018. doi Wolszczak, Lygas, Paszko, Wach (bb0080) 2018; 24 Dressler, Röllig, Schmidt, Maturilli, Helbert (bb0195) 2010; 16 Dos Santos WN, De Sousa JA, Gregorio R. Thermal conductivity behaviour of polymers around glass transition and crystalline melting temperatures. Polym Test 2013;32:987–94. doi Ruan (bb0060) 2017 Brenken, Barocio, Favaloro, Kunc, Pipes (bb0020) 2019; 25 Zhang, Wang, Yu, Deng (bb0270) 2017; 130 Le Goff, Poutot, Delaunay, Fulchiron, Koscher (bb0230) 2005; 48 Zhang, Wu, Sun, Quan, Gu, Sun (bb0135) 2017; 150 Popescu, Zapciu, Amza, Baciu, Marinescu (bb0120) 2018; 69 Fischer (bb0035) 2012 Costa (10.1016/j.jmapro.2021.08.054_bb0075) 2008; 1 Furushima (10.1016/j.jmapro.2021.08.054_bb0260) 2018; 1 Spoerk (10.1016/j.jmapro.2021.08.054_bb0015) 2018 10.1016/j.jmapro.2021.08.054_bb0240 Liu (10.1016/j.jmapro.2021.08.054_bb0300) 2020; 17 10.1016/j.jmapro.2021.08.054_bb0320 10.1016/j.jmapro.2021.08.054_bb0205 Barocio (10.1016/j.jmapro.2021.08.054_bb0160) 2020 Brahmia (10.1016/j.jmapro.2021.08.054_bb0165) 2006 Yamamoto (10.1016/j.jmapro.2021.08.054_bb0255) 2009; 50 Ruan (10.1016/j.jmapro.2021.08.054_bb0060) 2017 Brenken (10.1016/j.jmapro.2021.08.054_bb0315) 2018; 21 Gradys (10.1016/j.jmapro.2021.08.054_bb0180) 2005; 413–414 Spoerk (10.1016/j.jmapro.2021.08.054_bb0055) 2018; 47 Chapman (10.1016/j.jmapro.2021.08.054_bb0280) 1990; 24 Fitzharris (10.1016/j.jmapro.2021.08.054_bb0155) 2018; 95 Hu (10.1016/j.jmapro.2021.08.054_bb0175) 2016 Yu (10.1016/j.jmapro.2021.08.054_bb0245) 2020; 195 Spoerk (10.1016/j.jmapro.2021.08.054_bb0065) 2020; 137 10.1016/j.jmapro.2021.08.054_bb0030 Koscher (10.1016/j.jmapro.2021.08.054_bb0170) 2002; 43 Zhang (10.1016/j.jmapro.2021.08.054_bb0090) 2008; 222 Levy (10.1016/j.jmapro.2021.08.054_bb0190) 2016 Edith Wiria (10.1016/j.jmapro.2021.08.054_bb0200) 2010; 16 Nakamura (10.1016/j.jmapro.2021.08.054_bb0250) 1972; 16 Ji (10.1016/j.jmapro.2021.08.054_bb0305) 2010; 97–101 Bellini (10.1016/j.jmapro.2021.08.054_bb0290) 2004; 126 Zhang (10.1016/j.jmapro.2021.08.054_bb0135) 2017; 150 Ruan (10.1016/j.jmapro.2021.08.054_bb0040) 2012; 51 Ahn (10.1016/j.jmapro.2021.08.054_bb0045) 2002; 8 Sun (10.1016/j.jmapro.2021.08.054_bb0125) 2008; 14 Antony Samy (10.1016/j.jmapro.2021.08.054_bb0140) 2021; 33 10.1016/j.jmapro.2021.08.054_bb0265 Zhang (10.1016/j.jmapro.2021.08.054_bb0270) 2017; 130 10.1016/j.jmapro.2021.08.054_bb0145 El Moumen (10.1016/j.jmapro.2021.08.054_bb0050) 2019 10.1016/j.jmapro.2021.08.054_bb0105 Le Goff (10.1016/j.jmapro.2021.08.054_bb0230) 2005; 48 Boyard (10.1016/j.jmapro.2021.08.054_bb0210) 2016 Parlevliet (10.1016/j.jmapro.2021.08.054_bb0275) 2006; 37 Clark (10.1016/j.jmapro.2021.08.054_bb0185) 1985 Amado (10.1016/j.jmapro.2021.08.054_bb0225) 2012 Kumar (10.1016/j.jmapro.2021.08.054_bb0130) 2019; 2 Bakrani Balani (10.1016/j.jmapro.2021.08.054_bb0025) 2019 Dey (10.1016/j.jmapro.2021.08.054_bb0295) 2019 Dressler (10.1016/j.jmapro.2021.08.054_bb0195) 2010; 16 Popescu (10.1016/j.jmapro.2021.08.054_bb0120) 2018; 69 Deng (10.1016/j.jmapro.2021.08.054_bb0110) 2018 10.1016/j.jmapro.2021.08.054_bb0215 Pignon (10.1016/j.jmapro.2021.08.054_bb0220) 2015; 45 Kantaros (10.1016/j.jmapro.2021.08.054_bb0310) 2013; 50 Hertle (10.1016/j.jmapro.2021.08.054_bb0005) 2016; 301 Mostafa (10.1016/j.jmapro.2021.08.054_bb0150) 2009; 14 Wolszczak (10.1016/j.jmapro.2021.08.054_bb0080) 2018; 24 Jin (10.1016/j.jmapro.2021.08.054_bb0100) 2018; 1800507 Dong (10.1016/j.jmapro.2021.08.054_bb0235) 2019 Li (10.1016/j.jmapro.2021.08.054_bb0085) 2018; 24 Zhang (10.1016/j.jmapro.2021.08.054_bb0070) 2006; 220 Fischer (10.1016/j.jmapro.2021.08.054_bb0035) 2012 Fischer (10.1016/j.jmapro.2021.08.054_bb0285) 2016; 2016 Watanabe (10.1016/j.jmapro.2021.08.054_bb0115) 2016 Xinhua (10.1016/j.jmapro.2021.08.054_bb0095) 2015; 79 Brenken (10.1016/j.jmapro.2021.08.054_bb0020) 2019; 25 Wang (10.1016/j.jmapro.2021.08.054_bb0010) 2006; 33 |
References_xml | – year: 2020 ident: bb0160 article-title: Extrusion deposition additive manufacturing with fiber-reinforced thermoplastic polymers – volume: 48 start-page: 5417 year: 2005 end-page: 5430 ident: bb0230 article-title: Study and modeling of heat transfer during the solidification of semi-crystalline polymers publication-title: Int J Heat Mass Transf – year: 2016 ident: bb0190 article-title: A novel physics node for Nakamura crystallization kinetics publication-title: Int J Numer Methods Eng – reference: Hämäläinen JP. Semi-crystalline polyolefins in fused deposition modeling. 2017. – start-page: 1 year: 2016 end-page: 434 ident: bb0210 article-title: Heat transfer in polymer composite materials: forming processes publication-title: Heat Transf Polym Compos Mater Form Process – year: 2012 ident: bb0035 article-title: Handbook of molded part shrinkage and warpage – volume: 14 start-page: 72 year: 2008 end-page: 80 ident: bb0125 article-title: Effect of processing conditions on the bonding quality of FDM polymer filaments publication-title: Rapid Prototyp J – volume: 130 start-page: 59 year: 2017 end-page: 68 ident: bb0270 article-title: Numerical investigation of the influence of process conditions on the temperature variation in fused deposition modeling publication-title: Mater Des – volume: 97–101 start-page: 2585 year: 2010 end-page: 2588 ident: bb0305 article-title: Finite element simulation of temperature field in fused deposition modeling publication-title: Adv Mat Res – reference: Grimm T. Fused Deposition Modeling: A Technology Evaluation n.d.:1–12. – volume: 413–414 start-page: 442 year: 2005 end-page: 446 ident: bb0180 article-title: Crystallization of polypropylene at various cooling rates publication-title: Mater Sci Eng A – volume: 8 year: 2002 ident: bb0045 article-title: Anisotropic material properties of fused deposition modeling ABS – volume: 24 start-page: 615 year: 2018 end-page: 622 ident: bb0080 article-title: Heat distribution in material during fused deposition modelling publication-title: Rapid Prototyp J – reference: Levy A, Le Corre S, Sobotka V. Heat transfer and crystallization kinetics in thermoplastic composite processing. A coupled modelling framework. AIP Conf Proc 2016;1769. doi: – volume: 51 start-page: 816 year: 2012 end-page: 822 ident: bb0040 article-title: Computer modeling and simulation for 3D crystallization of polymers. II. Non-isothermal case publication-title: Polym-Plast Technol Eng – reference: Courter B, Savane V, Bi J, Dev S, Hansen CJ. Finite element simulation of the fused deposition modelling process modelling process 2017. – volume: 150 start-page: 102 year: 2017 end-page: 110 ident: bb0135 article-title: Characterization of residual stress and deformation in additively manufactured ABS polymer and composite specimens publication-title: Compos Sci Technol – start-page: 2437 year: 2016 end-page: 2455 ident: bb0115 article-title: A model for residual stress and part warpage prediction in publication-title: Solid Free Fabr – start-page: 7 year: 2017 ident: bb0060 article-title: Kinetics and morphology of flow induced polymer crystallization in 3D shear flow investigated by Monte Carlo simulation publication-title: Crystals – volume: 21 start-page: 1 year: 2018 end-page: 16 ident: bb0315 article-title: Fused filament fabrication of fiber-reinforced polymers: a review publication-title: Addit Manuf – volume: 2 start-page: 167 year: 2019 end-page: 174 ident: bb0130 article-title: Investigation of structure–mechanical property relationship in fused filament fabrication of the polymer composites publication-title: J Micromanufacturing – start-page: 11 year: 2018 ident: bb0110 article-title: Mechanical properties optimization of poly-ether-ether-ketone via fused deposition modeling publication-title: Materials (Basel) – volume: 220 start-page: 1663 year: 2006 end-page: 1671 ident: bb0070 article-title: Three-dimensional finite element analysis simulations of the fused deposition modelling process publication-title: Proc Inst Mech Eng B J Eng Manuf – volume: 16 start-page: 1077 year: 1972 end-page: 1091 ident: bb0250 article-title: Some aspects of nonisothermal crystallization of polymers. I. Relationship between crystallization temperature, crystallinity, and cooling conditions publication-title: J Appl Polym Sci – volume: 69 start-page: 157 year: 2018 end-page: 166 ident: bb0120 article-title: FDM process parameters influence over the mechanical properties of polymer specimens: a review publication-title: Polym Test – year: 1985 ident: bb0185 article-title: Molecular and Microstructural Factors Affecting Mechanical Properties of Polymeric Cover Plate Materials – reference: Ferreira RTL, Quelho de Macedo R. Residual Thermal Stress in Fused Deposition Modelling 2018. doi: – volume: 50 start-page: 1975 year: 2009 end-page: 1985 ident: bb0255 article-title: Computer modeling of polymer crystallization - toward computer-assisted materials’ design publication-title: Polymer (Guildf) – volume: 33 start-page: 443 year: 2021 end-page: 453 ident: bb0140 article-title: Prediction of part distortion in Fused Deposition Modelling (FDM) of semi-crystalline polymers via COMSOL: effect of printing conditions publication-title: CIRP J Manuf Sci Technol – start-page: 1 year: 2006 end-page: 7 ident: bb0165 article-title: Numerical simulation with “comsol multiphysics” of crystallization kinetics of semi-crystalline polymer during cooling: application to injection moulding publication-title: Comsol Users Conf – volume: 17 start-page: 1844002 year: 2020 ident: bb0300 article-title: Direct simulation of polymer fused deposition modeling (FDM) — an implementation of the multi-phase viscoelastic solver in OpenFOAM publication-title: Int J Comput Methods – volume: 47 start-page: 17 year: 2018 end-page: 24 ident: bb0055 article-title: Effect of the printing bed temperature on the adhesion of parts produced by fused filament fabrication publication-title: Plast Rubber Compos – volume: 45 start-page: 152 year: 2015 end-page: 160 ident: bb0220 article-title: A new PvT device for high performance thermoplastics: heat transfer analysis and crystallization kinetics identification publication-title: Polym Test – start-page: 242 year: 2016 end-page: 258 ident: bb0175 article-title: Thermodynamics and kinetics of polymer crystallization publication-title: Polym Morphol Princ Charact Process – start-page: 207 year: 2012 end-page: 216 ident: bb0225 article-title: Characterization and modeling of non-isothermal crystallization of polyamide 12 and co-polypropylene during the SLS process publication-title: 5th Int Polym Mould Innov Conf – volume: 37 start-page: 1847 year: 2006 end-page: 1857 ident: bb0275 article-title: Residual stresses in thermoplastic composites-a study of the literature-part I: formation of residual stresses publication-title: Compos Part A Appl Sci Manuf – volume: 24 start-page: 80 year: 2018 end-page: 92 ident: bb0085 article-title: The effect of process parameters in fused deposition modelling on bonding degree and mechanical properties publication-title: Rapid Prototyp J – volume: 16 start-page: 328 year: 2010 end-page: 336 ident: bb0195 article-title: Temperature distribution in powder beds during 3D printing publication-title: Rapid Prototyp J – reference: Hallmann M, Schleich B, Wartzack S. A method for analyzing the influence of process and design parameters on the build time of additively manufactured components. Proc Int Conf Eng Des ICED, vol. 2019- Augus, 2019, p. 649–58. doi: – volume: 95 start-page: 2059 year: 2018 end-page: 2070 ident: bb0155 article-title: Effects of material properties on warpage in fused deposition modeling parts publication-title: Int J Adv Manuf Technol – volume: 1 start-page: 1 year: 2018 end-page: 10 ident: bb0260 article-title: Crystallization, recrystallization, and melting of polymer crystals on heating and cooling examined with fast scanning calorimetry publication-title: Polym Cryst – start-page: 1661 year: 2019 end-page: 1676 ident: bb0050 article-title: Modelling of the temperature and residual stress fields during 3D printing of polymer composites publication-title: Int J Adv Manuf Technol – volume: 2016 year: 2016 ident: bb0285 article-title: Crystallization and mechanical properties of polypropylene under processing-relevant cooling conditions with respect to isothermal holding time publication-title: Int J Polym Sci – volume: 24 start-page: 616 year: 1990 end-page: 643 ident: bb0280 article-title: Prediction of process-induced residual stresses in thermoplastic composites publication-title: J Thermoplast Compos Mater – volume: 50 start-page: 44 year: 2013 end-page: 50 ident: bb0310 article-title: Fiber Bragg grating based investigation of residual strains in ABS parts fabricated by fused deposition modeling process publication-title: Mater Des – volume: 43 start-page: 6931 year: 2002 end-page: 6942 ident: bb0170 article-title: Influence of shear on polypropylene crystallization: morphology development and kinetics publication-title: Polymer (Guildf) – volume: 79 start-page: 1117 year: 2015 end-page: 1126 ident: bb0095 article-title: An investigation on distortion of PLA thin-plate part in the FDM process publication-title: Int J Adv Manuf Technol – reference: Dos Santos WN, De Sousa JA, Gregorio R. Thermal conductivity behaviour of polymers around glass transition and crystalline melting temperatures. Polym Test 2013;32:987–94. doi: – volume: 1800507 start-page: 1 year: 2018 end-page: 7 ident: bb0100 article-title: Filament materials screening for FDM 3D printing by means of injection-molded short rods – start-page: 3 year: 2019 ident: bb0295 article-title: A systematic survey of FDM process parameter optimization and their influence on part characteristics publication-title: J Manuf Mater Process – volume: 195 start-page: 108978 year: 2020 ident: bb0245 article-title: Effects of auxiliary heat on warpage and mechanical properties in carbon fiber/ABS composite manufactured by fused deposition modeling publication-title: Mater Des – volume: 222 start-page: 959 year: 2008 end-page: 967 ident: bb0090 article-title: A parametric study of part distortions in fused deposition modelling using three-dimensional finite element analysis publication-title: Proc Inst Mech Eng B J Eng Manuf – volume: 126 start-page: 237 year: 2004 ident: bb0290 article-title: Liquefier dynamics in fused deposition publication-title: J Manuf Sci Eng – volume: 33 start-page: 1087 year: 2006 end-page: 1096 ident: bb0010 article-title: A model research for prototype warp deformation in the FDM process publication-title: Int J Adv Manuf Technol – volume: 137 year: 2020 ident: bb0065 article-title: Material extrusion-based additive manufacturing of polypropylene: A review on how to improve dimensional inaccuracy and warpage publication-title: J Appl Polym Sci – volume: 16 start-page: 400 year: 2010 end-page: 410 ident: bb0200 article-title: Modeling of powder particle heat transfer process in selective laser sintering for fabricating tissue engineering scaffolds publication-title: Rapid Prototyp J – volume: 301 start-page: 1482 year: 2016 end-page: 1493 ident: bb0005 article-title: Additive manufacturing of poly(propylene) by means of melt extrusion publication-title: Macromol Mater Eng – volume: 14 start-page: 29 year: 2009 end-page: 37 ident: bb0150 article-title: A study of melt flow analysis of an ABS-Iron composite in fused deposition modelling process publication-title: Tsinghua Sci Technol – reference: Diederichs E V., Picard MC, Chang BP, Misra M, Mielewski DF, Mohanty AK. Strategy to improve printability of renewable resource-based engineering plastic tailored for fdm applications. ACS Omega 2019;4:20297–307. doi: – year: 2019 ident: bb0025 article-title: Additive Manufacturing of the High-performance Thermoplastics: Experimental Study and Numerical Simulation of the Fused Filament Fabrication – reference: . – start-page: 2065 year: 2019 ident: bb0235 article-title: The study on polypropylene applied in fused deposition modeling publication-title: AIP Conf Proc – volume: 25 start-page: 218 year: 2019 end-page: 226 ident: bb0020 article-title: Development and validation of extrusion deposition additive manufacturing process simulations publication-title: Addit Manuf – start-page: 303 year: 2018 ident: bb0015 article-title: Polypropylene filled with glass spheres in extrusion-based additive manufacturing: effect of filler size and printing chamber temperature publication-title: Macromol Mater Eng – volume: 1 start-page: 703 year: 2008 end-page: 706 ident: bb0075 article-title: Towards modelling of free form extrusion: analytical solution of transient heat transfer publication-title: Int J Mater Form – start-page: 2437 year: 2016 ident: 10.1016/j.jmapro.2021.08.054_bb0115 article-title: A model for residual stress and part warpage prediction in publication-title: Solid Free Fabr – ident: 10.1016/j.jmapro.2021.08.054_bb0105 doi: 10.1017/dsi.2019.69 – start-page: 242 year: 2016 ident: 10.1016/j.jmapro.2021.08.054_bb0175 article-title: Thermodynamics and kinetics of polymer crystallization publication-title: Polym Morphol Princ Charact Process – ident: 10.1016/j.jmapro.2021.08.054_bb0320 – volume: 47 start-page: 17 year: 2018 ident: 10.1016/j.jmapro.2021.08.054_bb0055 article-title: Effect of the printing bed temperature on the adhesion of parts produced by fused filament fabrication publication-title: Plast Rubber Compos doi: 10.1080/14658011.2017.1399531 – ident: 10.1016/j.jmapro.2021.08.054_bb0205 doi: 10.1016/j.polymertesting.2013.05.007 – ident: 10.1016/j.jmapro.2021.08.054_bb0240 – start-page: 207 year: 2012 ident: 10.1016/j.jmapro.2021.08.054_bb0225 article-title: Characterization and modeling of non-isothermal crystallization of polyamide 12 and co-polypropylene during the SLS process – volume: 2 start-page: 167 year: 2019 ident: 10.1016/j.jmapro.2021.08.054_bb0130 article-title: Investigation of structure–mechanical property relationship in fused filament fabrication of the polymer composites publication-title: J Micromanufacturing doi: 10.1177/2516598419843687 – ident: 10.1016/j.jmapro.2021.08.054_bb0030 doi: 10.1021/acsomega.9b02795 – volume: 95 start-page: 2059 year: 2018 ident: 10.1016/j.jmapro.2021.08.054_bb0155 article-title: Effects of material properties on warpage in fused deposition modeling parts publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-017-1340-8 – volume: 14 start-page: 29 year: 2009 ident: 10.1016/j.jmapro.2021.08.054_bb0150 article-title: A study of melt flow analysis of an ABS-Iron composite in fused deposition modelling process publication-title: Tsinghua Sci Technol doi: 10.1016/S1007-0214(09)70063-X – volume: 79 start-page: 1117 year: 2015 ident: 10.1016/j.jmapro.2021.08.054_bb0095 article-title: An investigation on distortion of PLA thin-plate part in the FDM process publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-015-6893-9 – volume: 21 start-page: 1 year: 2018 ident: 10.1016/j.jmapro.2021.08.054_bb0315 article-title: Fused filament fabrication of fiber-reinforced polymers: a review publication-title: Addit Manuf – volume: 17 start-page: 1844002 year: 2020 ident: 10.1016/j.jmapro.2021.08.054_bb0300 article-title: Direct simulation of polymer fused deposition modeling (FDM) — an implementation of the multi-phase viscoelastic solver in OpenFOAM publication-title: Int J Comput Methods doi: 10.1142/S0219876218440024 – volume: 137 issue: 12 year: 2020 ident: 10.1016/j.jmapro.2021.08.054_bb0065 article-title: Material extrusion-based additive manufacturing of polypropylene: A review on how to improve dimensional inaccuracy and warpage publication-title: J Appl Polym Sci doi: 10.1002/app.48545 – volume: 45 start-page: 152 year: 2015 ident: 10.1016/j.jmapro.2021.08.054_bb0220 article-title: A new PvT device for high performance thermoplastics: heat transfer analysis and crystallization kinetics identification publication-title: Polym Test doi: 10.1016/j.polymertesting.2015.05.013 – ident: 10.1016/j.jmapro.2021.08.054_bb0145 – volume: 301 start-page: 1482 year: 2016 ident: 10.1016/j.jmapro.2021.08.054_bb0005 article-title: Additive manufacturing of poly(propylene) by means of melt extrusion publication-title: Macromol Mater Eng doi: 10.1002/mame.201600259 – start-page: 11 year: 2018 ident: 10.1016/j.jmapro.2021.08.054_bb0110 article-title: Mechanical properties optimization of poly-ether-ether-ketone via fused deposition modeling publication-title: Materials (Basel) – volume: 195 start-page: 108978 year: 2020 ident: 10.1016/j.jmapro.2021.08.054_bb0245 article-title: Effects of auxiliary heat on warpage and mechanical properties in carbon fiber/ABS composite manufactured by fused deposition modeling publication-title: Mater Des doi: 10.1016/j.matdes.2020.108978 – volume: 43 start-page: 6931 year: 2002 ident: 10.1016/j.jmapro.2021.08.054_bb0170 article-title: Influence of shear on polypropylene crystallization: morphology development and kinetics publication-title: Polymer (Guildf) doi: 10.1016/S0032-3861(02)00628-6 – volume: 16 start-page: 1077 year: 1972 ident: 10.1016/j.jmapro.2021.08.054_bb0250 article-title: Some aspects of nonisothermal crystallization of polymers. I. Relationship between crystallization temperature, crystallinity, and cooling conditions publication-title: J Appl Polym Sci doi: 10.1002/app.1972.070160503 – start-page: 3 year: 2019 ident: 10.1016/j.jmapro.2021.08.054_bb0295 article-title: A systematic survey of FDM process parameter optimization and their influence on part characteristics publication-title: J Manuf Mater Process – volume: 24 start-page: 615 year: 2018 ident: 10.1016/j.jmapro.2021.08.054_bb0080 article-title: Heat distribution in material during fused deposition modelling publication-title: Rapid Prototyp J doi: 10.1108/RPJ-04-2017-0062 – volume: 1800507 start-page: 1 year: 2018 ident: 10.1016/j.jmapro.2021.08.054_bb0100 article-title: Filament materials screening for FDM 3D printing by means of injection-molded short rods – ident: 10.1016/j.jmapro.2021.08.054_bb0215 doi: 10.1063/1.4963594 – year: 1985 ident: 10.1016/j.jmapro.2021.08.054_bb0185 – volume: 33 start-page: 1087 year: 2006 ident: 10.1016/j.jmapro.2021.08.054_bb0010 article-title: A model research for prototype warp deformation in the FDM process publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-006-0556-9 – volume: 24 start-page: 80 year: 2018 ident: 10.1016/j.jmapro.2021.08.054_bb0085 article-title: The effect of process parameters in fused deposition modelling on bonding degree and mechanical properties publication-title: Rapid Prototyp J doi: 10.1108/RPJ-06-2016-0090 – volume: 37 start-page: 1847 year: 2006 ident: 10.1016/j.jmapro.2021.08.054_bb0275 article-title: Residual stresses in thermoplastic composites-a study of the literature-part I: formation of residual stresses publication-title: Compos Part A Appl Sci Manuf doi: 10.1016/j.compositesa.2005.12.025 – volume: 50 start-page: 1975 year: 2009 ident: 10.1016/j.jmapro.2021.08.054_bb0255 article-title: Computer modeling of polymer crystallization - toward computer-assisted materials’ design publication-title: Polymer (Guildf) doi: 10.1016/j.polymer.2009.02.038 – start-page: 7 year: 2017 ident: 10.1016/j.jmapro.2021.08.054_bb0060 article-title: Kinetics and morphology of flow induced polymer crystallization in 3D shear flow investigated by Monte Carlo simulation publication-title: Crystals – volume: 130 start-page: 59 year: 2017 ident: 10.1016/j.jmapro.2021.08.054_bb0270 article-title: Numerical investigation of the influence of process conditions on the temperature variation in fused deposition modeling publication-title: Mater Des doi: 10.1016/j.matdes.2017.05.040 – start-page: 303 year: 2018 ident: 10.1016/j.jmapro.2021.08.054_bb0015 article-title: Polypropylene filled with glass spheres in extrusion-based additive manufacturing: effect of filler size and printing chamber temperature publication-title: Macromol Mater Eng – volume: 222 start-page: 959 year: 2008 ident: 10.1016/j.jmapro.2021.08.054_bb0090 article-title: A parametric study of part distortions in fused deposition modelling using three-dimensional finite element analysis publication-title: Proc Inst Mech Eng B J Eng Manuf doi: 10.1243/09544054JEM990 – volume: 150 start-page: 102 year: 2017 ident: 10.1016/j.jmapro.2021.08.054_bb0135 article-title: Characterization of residual stress and deformation in additively manufactured ABS polymer and composite specimens publication-title: Compos Sci Technol doi: 10.1016/j.compscitech.2017.07.017 – start-page: 1 year: 2006 ident: 10.1016/j.jmapro.2021.08.054_bb0165 article-title: Numerical simulation with “comsol multiphysics” of crystallization kinetics of semi-crystalline polymer during cooling: application to injection moulding publication-title: Comsol Users Conf – year: 2012 ident: 10.1016/j.jmapro.2021.08.054_bb0035 – volume: 16 start-page: 400 year: 2010 ident: 10.1016/j.jmapro.2021.08.054_bb0200 article-title: Modeling of powder particle heat transfer process in selective laser sintering for fabricating tissue engineering scaffolds publication-title: Rapid Prototyp J doi: 10.1108/13552541011083317 – volume: 14 start-page: 72 year: 2008 ident: 10.1016/j.jmapro.2021.08.054_bb0125 article-title: Effect of processing conditions on the bonding quality of FDM polymer filaments publication-title: Rapid Prototyp J doi: 10.1108/13552540810862028 – volume: 413–414 start-page: 442 year: 2005 ident: 10.1016/j.jmapro.2021.08.054_bb0180 article-title: Crystallization of polypropylene at various cooling rates publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2005.08.167 – year: 2016 ident: 10.1016/j.jmapro.2021.08.054_bb0190 article-title: A novel physics node for Nakamura crystallization kinetics publication-title: Int J Numer Methods Eng – volume: 220 start-page: 1663 year: 2006 ident: 10.1016/j.jmapro.2021.08.054_bb0070 article-title: Three-dimensional finite element analysis simulations of the fused deposition modelling process publication-title: Proc Inst Mech Eng B J Eng Manuf doi: 10.1243/09544054JEM572 – volume: 48 start-page: 5417 year: 2005 ident: 10.1016/j.jmapro.2021.08.054_bb0230 article-title: Study and modeling of heat transfer during the solidification of semi-crystalline polymers publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2005.06.015 – start-page: 1 year: 2016 ident: 10.1016/j.jmapro.2021.08.054_bb0210 article-title: Heat transfer in polymer composite materials: forming processes publication-title: Heat Transf Polym Compos Mater Form Process – volume: 8 year: 2002 ident: 10.1016/j.jmapro.2021.08.054_bb0045 article-title: Anisotropic material properties of fused deposition modeling ABS – volume: 24 start-page: 616 year: 1990 ident: 10.1016/j.jmapro.2021.08.054_bb0280 article-title: Prediction of process-induced residual stresses in thermoplastic composites publication-title: J Thermoplast Compos Mater doi: 10.1177/002199839002400603 – volume: 2016 year: 2016 ident: 10.1016/j.jmapro.2021.08.054_bb0285 article-title: Crystallization and mechanical properties of polypropylene under processing-relevant cooling conditions with respect to isothermal holding time publication-title: Int J Polym Sci doi: 10.1155/2016/5450708 – volume: 25 start-page: 218 year: 2019 ident: 10.1016/j.jmapro.2021.08.054_bb0020 article-title: Development and validation of extrusion deposition additive manufacturing process simulations publication-title: Addit Manuf – start-page: 1661 year: 2019 ident: 10.1016/j.jmapro.2021.08.054_bb0050 article-title: Modelling of the temperature and residual stress fields during 3D printing of polymer composites publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-019-03965-y – volume: 33 start-page: 443 year: 2021 ident: 10.1016/j.jmapro.2021.08.054_bb0140 article-title: Prediction of part distortion in Fused Deposition Modelling (FDM) of semi-crystalline polymers via COMSOL: effect of printing conditions publication-title: CIRP J Manuf Sci Technol doi: 10.1016/j.cirpj.2021.04.012 – volume: 97–101 start-page: 2585 year: 2010 ident: 10.1016/j.jmapro.2021.08.054_bb0305 article-title: Finite element simulation of temperature field in fused deposition modeling publication-title: Adv Mat Res – year: 2019 ident: 10.1016/j.jmapro.2021.08.054_bb0025 – volume: 1 start-page: 703 year: 2008 ident: 10.1016/j.jmapro.2021.08.054_bb0075 article-title: Towards modelling of free form extrusion: analytical solution of transient heat transfer publication-title: Int J Mater Form doi: 10.1007/s12289-008-0312-9 – volume: 16 start-page: 328 year: 2010 ident: 10.1016/j.jmapro.2021.08.054_bb0195 article-title: Temperature distribution in powder beds during 3D printing publication-title: Rapid Prototyp J doi: 10.1108/13552541011065722 – volume: 51 start-page: 816 year: 2012 ident: 10.1016/j.jmapro.2021.08.054_bb0040 article-title: Computer modeling and simulation for 3D crystallization of polymers. II. Non-isothermal case publication-title: Polym-Plast Technol Eng doi: 10.1080/03602559.2012.671413 – volume: 1 start-page: 1 year: 2018 ident: 10.1016/j.jmapro.2021.08.054_bb0260 article-title: Crystallization, recrystallization, and melting of polymer crystals on heating and cooling examined with fast scanning calorimetry publication-title: Polym Cryst – volume: 50 start-page: 44 year: 2013 ident: 10.1016/j.jmapro.2021.08.054_bb0310 article-title: Fiber Bragg grating based investigation of residual strains in ABS parts fabricated by fused deposition modeling process publication-title: Mater Des doi: 10.1016/j.matdes.2013.02.067 – ident: 10.1016/j.jmapro.2021.08.054_bb0265 doi: 10.26678/ABCM.COBEM2017.COB17-0124 – start-page: 2065 year: 2019 ident: 10.1016/j.jmapro.2021.08.054_bb0235 article-title: The study on polypropylene applied in fused deposition modeling publication-title: AIP Conf Proc – volume: 126 start-page: 237 issue: 2 year: 2004 ident: 10.1016/j.jmapro.2021.08.054_bb0290 article-title: Liquefier dynamics in fused deposition publication-title: J Manuf Sci Eng doi: 10.1115/1.1688377 – volume: 69 start-page: 157 year: 2018 ident: 10.1016/j.jmapro.2021.08.054_bb0120 article-title: FDM process parameters influence over the mechanical properties of polymer specimens: a review publication-title: Polym Test doi: 10.1016/j.polymertesting.2018.05.020 – year: 2020 ident: 10.1016/j.jmapro.2021.08.054_bb0160 |
SSID | ssj0012401 |
Score | 2.4484634 |
Snippet | The printing conditions in Fused Deposition Modelling (FDM) affect the amount of induced residual stresses within the printed part and its dimensional... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 389 |
SubjectTerms | Finite element analysis (FEA) Fused deposition modelling (FDM) Polymer crystallisation kinetics Residual stress Semi-crystalline polymers Warpage |
Title | Finite element analysis of residual stress and warpage in a 3D printed semi-crystalline polymer: Effect of ambient temperature and nozzle speed |
URI | https://dx.doi.org/10.1016/j.jmapro.2021.08.054 |
Volume | 70 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELXK9lIOCEqrlo9qDr2abRIn8XKrCqsFRC9Qqbdo7EykVLvZ1XYRag_8Bf4yM7FTtVIFEsd8jBXZybw3zswbpY454kKb10ZjWZA2Fr12J6bRZOuytozfrt8a-HpezC7M58v8ckudDbUwklYZfX_w6b23jmfGcTbHq7Ydf2PkKQSfOWgR3OUQaDvNJkU-Utunn77Mzu9-JjBoBdnUtNBiMFTQ9WleVwtkV8WBYhq0PHPzOELdQ53pc_Us0kU4DU_0Qm1Rt6ue3hMRfKl-T1vhjUAhERwwyozAsgGOpftiKwglIXythp-4FicCbQcI2QeQnT2mnXBNi1b79Q3TRdHpJlgt5zcLWr-HoHAs4-HCSf0kiKBVVGPux-yWt7dzgusVY-Geuph-_H4207HNgvYmsRtdmsaSK6ngTxc95c436FC612CCzMCIHVGTZY6KxKUpu4jEnzhRM5qIvBszkH016pYdHShATNHWlDfWojGehym9S4ty0tS5I3SHKhumtvJRg1xaYcyrIdnsqgoLUsmCVNIhMzeHSt9ZrYIGxz_uL4dVqx68SxXDxF8tX_235Wu1I0chze-NGm3WP-gt05WNO1JP3v1KjuJL-Qc_Fe4G |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9tAEF0hOJQeKihFpYV2Dr0uSey1vekNAVHaApeCxM2aXY8lo8SJQhAih_6F_mVmvDaiUkWlXr0fsvZj3szqzRulvnDEhTYpjMYsJW0seu36ptRki6ywjN-ueRo4v0jHV-b7dXK9po67XBihVba2P9j0xlq3X3rtavbmVdX7yciTCj5z0CK4yyHQhkniTHh9h7-eeB6MX_0gmhqlWrp3-XMNyetmimyoOEyMgpJnYv6OT88wZ7Sl3rTOIhyF_9lWa1S_Va-fSQjuqN-jSrxGoEADB2xFRmBWAkfSTaoVhIQQbivgHhdiQqCqASE-AXnXY6cTbmlaab94YGdRVLoJ5rPJw5QWXyHoG8t8OHWSPQkiZ9VqMTdz1rPVakJwO2ckfKeuRqeXx2PdFlnQ3gzsUmemtOQySvnioqfE-RIdSu0aHCD7X8RmqIxjR-nARREbiIHvO9EyGoq4G_sfu2q9ntX0XgFihLagpLQWjfE8TeZdlGbDskgcodtTcbe0uW8VyKUQxiTvqGY3ediQXDYkl_qYidlT-mnUPChw_KN_1u1a_sdJyhkkXhz54b9HflavxpfnZ_nZt4sfH9WmtATC375aXy7u6IAdl6X71BzMR0lt7tE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finite+element+analysis+of+residual+stress+and+warpage+in+a+3D+printed+semi-crystalline+polymer%3A+Effect+of+ambient+temperature+and+nozzle+speed&rft.jtitle=Journal+of+manufacturing+processes&rft.au=Samy%2C+Anto+Antony&rft.au=Golbang%2C+Atefeh&rft.au=Harkin-Jones%2C+Eileen&rft.au=Archer%2C+Edward&rft.date=2021-10-01&rft.pub=Elsevier+Ltd&rft.issn=1526-6125&rft.eissn=2212-4616&rft.volume=70&rft.spage=389&rft.epage=399&rft_id=info:doi/10.1016%2Fj.jmapro.2021.08.054&rft.externalDocID=S1526612521006381 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1526-6125&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1526-6125&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1526-6125&client=summon |