Towards efficient and photorealistic 3D human reconstruction: A brief survey

Reconstructing 3D digital models of humans from sensory data is a long-standing problem in computer vision and graphics with a variety of applications in VR/AR, film production, and human–computer interaction, etc. While a huge amount of effort has been devoted to developing various capture hardware...

Full description

Saved in:
Bibliographic Details
Published inVisual informatics (Online) Vol. 5; no. 4; pp. 11 - 19
Main Authors Chen, Lu, Peng, Sida, Zhou, Xiaowei
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2021
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Reconstructing 3D digital models of humans from sensory data is a long-standing problem in computer vision and graphics with a variety of applications in VR/AR, film production, and human–computer interaction, etc. While a huge amount of effort has been devoted to developing various capture hardware and reconstruction algorithms, traditional reconstruction pipelines may still suffer from high-cost capture systems and tedious capture processes, which prevent them from being easily accessible. Moreover, the dedicatedly hand-crafted pipelines are prone to reconstruction artifacts, resulting in limited visual quality. To solve these challenges, the recent trend in this area is to use deep neural networks to improve reconstruction efficiency and robustness by learning human priors from existing data. Neural network-based implicit functions have been also shown to be a favorable 3D representation compared to traditional forms like meshes and voxels. Furthermore, neural rendering has emerged as a powerful tool to achieve highly photorealistic modeling and re-rendering of humans by end-to-end optimizing the visual quality of output images. In this article, we will briefly review these advances in this fast-developing field, discuss the advantages and limitations of different approaches, and finally, share some thoughts on future research directions.
AbstractList Reconstructing 3D digital models of humans from sensory data is a long-standing problem in computer vision and graphics with a variety of applications in VR/AR, film production, and human–computer interaction, etc. While a huge amount of effort has been devoted to developing various capture hardware and reconstruction algorithms, traditional reconstruction pipelines may still suffer from high-cost capture systems and tedious capture processes, which prevent them from being easily accessible. Moreover, the dedicatedly hand-crafted pipelines are prone to reconstruction artifacts, resulting in limited visual quality. To solve these challenges, the recent trend in this area is to use deep neural networks to improve reconstruction efficiency and robustness by learning human priors from existing data. Neural network-based implicit functions have been also shown to be a favorable 3D representation compared to traditional forms like meshes and voxels. Furthermore, neural rendering has emerged as a powerful tool to achieve highly photorealistic modeling and re-rendering of humans by end-to-end optimizing the visual quality of output images. In this article, we will briefly review these advances in this fast-developing field, discuss the advantages and limitations of different approaches, and finally, share some thoughts on future research directions.
Author Peng, Sida
Chen, Lu
Zhou, Xiaowei
Author_xml – sequence: 1
  givenname: Lu
  surname: Chen
  fullname: Chen, Lu
  organization: Taishan College, Shandong University, Qingdao, China
– sequence: 2
  givenname: Sida
  orcidid: 0000-0001-6546-4525
  surname: Peng
  fullname: Peng, Sida
  organization: State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China
– sequence: 3
  givenname: Xiaowei
  surname: Zhou
  fullname: Zhou, Xiaowei
  email: xwzhou@zju.edu.cn
  organization: State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China
BookMark eNqFkMtKQzEURYMoWKt_4CA_0JrXfXUgFN9QcKLgLORxoin1piRpxb831yqIAx3lZMPanLOO0H4fekDolJIpJbQ-W063PvneTRlhtERTQvgeGjFRt5OKsKf9H_MhOklpSQhhbWEpHaHFQ3hT0SYMznnjoc9Y9RavX0IOEdTKp-wN5pf4ZfOqehzBhD7luDHZh36G51hHDw6nTdzC-zE6cGqV4OTrHaPH66uHi9vJ4v7m7mK-mBhB2zxpRO0qp3THu8YB08xqQzrqbEdoY1vOTFs-YDUBbmphlSWcNrStGKXEVpyP0d2u1wa1lOvoX1V8l0F5-RmE-CxVLHuvQLYOrGPKiVYLwQF0VwntNGm6ujPcmdI123WZGFKK4KTxWQ3X5aj8SlIiB81yKXea5aB5SIvmAotf8Pcy_2DnOwyKpK2HKNOg3oD1RXAuV_i_Cz4A2EScnw
CitedBy_id crossref_primary_10_1016_j_measurement_2022_112321
crossref_primary_10_1007_s41870_023_01470_w
crossref_primary_10_1111_cgf_14971
crossref_primary_10_1109_TPAMI_2023_3298850
crossref_primary_10_1080_00140139_2024_2449113
crossref_primary_10_1109_TVCG_2022_3209352
crossref_primary_10_2478_emj_2024_0020
crossref_primary_10_1109_TBIOM_2023_3276901
crossref_primary_10_1016_j_cag_2023_07_011
crossref_primary_10_1038_s41746_023_00909_5
crossref_primary_10_1360_SSI_2022_0319
crossref_primary_10_3390_electronics12224705
crossref_primary_10_1016_j_neucom_2024_128049
crossref_primary_10_1109_JPROC_2023_3321433
crossref_primary_10_3233_IDT_240458
crossref_primary_10_1016_j_imavis_2023_104782
Cites_doi 10.1109/CVPR46437.2021.01018
10.1109/CVPR.2018.00411
10.1109/CVPR.2019.00798
10.1145/3355089.3356571
10.1109/CVPR46437.2021.00894
10.1109/TPAMI.2019.2954885
10.1109/CVPR42600.2020.00813
10.1109/CVPR46437.2021.00466
10.1109/CVPR.2019.00461
10.1109/CVPR42600.2020.00530
10.1007/978-3-030-01234-2_2
10.1109/CVPR46437.2021.00741
10.1109/CVPR42600.2020.00016
10.1109/CVPR46437.2021.00150
10.1109/CVPR42600.2020.00140
10.1109/CVPR.2019.00453
10.1109/CVPR46437.2021.00616
10.1109/CVPR.2014.196
10.1016/j.cviu.2019.102897
10.1109/CVPR42600.2020.00510
10.1109/CVPR46437.2021.00291
10.1145/2816795.2818013
10.1007/978-3-030-01252-6_35
10.1109/CVPR46437.2021.00287
10.1109/CVPR.2019.00576
10.1109/ICCV48922.2021.00581
10.1109/CVPR46437.2021.01308
10.1109/CVPR42600.2020.00700
10.1145/3450626.3459783
10.1007/978-3-030-01270-0_21
10.1109/CVPR46437.2021.00060
10.1145/3181973
10.1109/CVPR46437.2021.00455
10.1109/ICCV.2019.00780
10.1109/ICCV.2019.00239
10.1145/2766945
10.1109/CVPR46437.2021.00643
10.1109/CVPR42600.2020.00316
10.1016/j.patcog.2017.08.003
10.1016/j.cviu.2021.103275
10.1109/ICCV.2019.00783
10.1109/ICCV.2019.00238
10.1145/3311970
10.1145/2897824.2925969
10.1109/CVPR42600.2020.00491
ContentType Journal Article
Copyright 2021 The Author(s)
Copyright_xml – notice: 2021 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.visinf.2021.10.003
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2468-502X
EndPage 19
ExternalDocumentID oai_doaj_org_article_8fedf2af48b443eeb954bfb07969c3fc
10_1016_j_visinf_2021_10_003
S2468502X21000413
GroupedDBID 0SF
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
AEXQZ
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
M~E
NCXOZ
OK1
ROL
SSZ
0R~
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
ID FETCH-LOGICAL-c418t-746f5fab9397fe2b2dbc091fd9017d832c81fdedb0e3c64dad03171852110d533
IEDL.DBID DOA
ISSN 2468-502X
IngestDate Wed Aug 27 01:17:10 EDT 2025
Tue Jul 01 03:37:20 EDT 2025
Thu Apr 24 23:00:32 EDT 2025
Thu Jul 20 20:10:56 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Neural representation
Differentiable rendering
3D human reconstruction
Language English
License This is an open access article under the CC BY-NC-ND license.
https://www.elsevier.com/tdm/userlicense/1.0
http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-746f5fab9397fe2b2dbc091fd9017d832c81fdedb0e3c64dad03171852110d533
ORCID 0000-0001-6546-4525
OpenAccessLink https://doaj.org/article/8fedf2af48b443eeb954bfb07969c3fc
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_8fedf2af48b443eeb954bfb07969c3fc
crossref_citationtrail_10_1016_j_visinf_2021_10_003
crossref_primary_10_1016_j_visinf_2021_10_003
elsevier_sciencedirect_doi_10_1016_j_visinf_2021_10_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2021
2021-12-00
2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationTitle Visual informatics (Online)
PublicationYear 2021
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Lombardi, Simon, Saragih, Schwartz, Lehrmann, Sheikh (b47) 2019
Kanazawa, Black, Jacobs, Malik (b34) 2018
Yu, A., Ye, V., Tancik, M., Kanazawa, A., 2021. pixelnerf: Neural radiance fields from one or few images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4578–4587.
Xu, Chatterjee, Zollhöfer, Rhodin, Mehta, Seidel, Theobalt (b78) 2018; 37
Gilbert, A., Volino, M., Collomosse, J., Hilton, A., 2018. Volumetric performance capture from minimal camera viewpoints. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 566–581.
Jiang, Kolotouros, Pavlakos, Zhou, Daniilidis (b32) 2020
Collet, Chuang, Sweeney, Gillett, Evseev, Calabrese, Hoppe, Kirk, Sullivan (b13) 2015
Dong, Shuai, Zhang, Liu, Zhou, Bao (b18) 2020
Deng, Lewis, Jeruzalski, Pons-Moll, Hinton, Norouzi, Tagliasacchi (b15) 2020
Zheng, Shao, Zhang, Yu, Zheng, Dai, Liu (b89) 2021
Xiang, Prada, Bagautdinov, Xu, Dong, Wen, Hodgins, Wu (b77) 2021
Yu, Li, Tancik, Li, Ng, Kanazawa (b82) 2021
Bozic, A., Palafox, P., Zollhofer, M., Thies, J., Dai, A., Nieß ner, M., 2021. Neural deformation graphs for globally-consistent non-rigid reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1450–1459.
Joo, Simon, Sheikh (b33) 2018
Chibane, J., Alldieck, T., Pons-Moll, G., 2020. Implicit functions in feature space for 3d shape reconstruction and completion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6970–6981.
Zhang, Srinivasan, Deng, Debevec, Freeman, Barron (b87) 2021
Liu, S., Li, T., Chen, W., Li, H., 2019. Soft rasterizer: A differentiable renderer for image-based 3d reasoning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7708–7717.
Li, Z., Niklaus, S., Snavely, N., Wang, O., 2021. Neural scene flow fields for space-time view synthesis of dynamic scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6498–6508.
Zhou, Tucker, Flynn, Fyffe, Snavely (b92) 2018
Berretti, Daoudi, Turaga, Basu (b3) 2018; 14
Genova, K., Cole, F., Sud, A., Sarna, A., Funkhouser, T., 2020. Local deep implicit functions for 3d shape. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4857–4866.
Schönberger, Zheng, Frahm, Pollefeys (b65) 2016
Pavlakos, Choutas, Ghorbani, Bolkart, Osman, Tzionas, Black (b56) 2019
Yariv, Gu, Kasten, Lipman (b80) 2021
Zhang, Liu, Ye, Zhao, Zhang, Wu, Zhang, Xu, Yu (b86) 2021; 40
Kocabas, M., Athanasiou, N., Black, M.J., 2020. Vibe: Video inference for human body pose and shape estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5253–5263.
Karras, T., Laine, S., Aila, T., 2019. A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4401–4410.
Varol, G., Ceylan, D., Russell, B., Yang, J., Yumer, E., Laptev, I., Schmid, C., 2018. Bodynet: Volumetric inference of 3d human body shapes. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 20–36.
Dou, Khamis, Degtyarev, Davidson, Fanello, Kowdle, Escolano, Rhemann, Kim, Taylor (b19) 2016
Han, Laga, Bennamoun (b27) 2019; 43
Sun, Chen, Chen, Pang, Lin, Jiang, Xu, Wang, Yu (b71) 2021
Loper, Mahmood, Romero, Pons-Moll, Black (b48) 2015; 34
Schonberger, Frahm (b64) 2016
Yu, Guibas, Wu (b81) 2021
Newcombe, Fox, Seitz (b52) 2015
Peng, Dong, Wang, Zhang, Shuai, Bao, Zhou (b58) 2021
Soltanpour, Boufama, Wu (b66) 2017; 72
Zheng, Z., Yu, T., Wei, Y., Dai, Q., Liu, Y., 2019. Deephuman: 3d human reconstruction from a single image. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7739–7749.
Zheng, E., Dunn, E., Jojic, V., Frahm, J.-M., 2014. Patchmatch based joint view selection and depthmap estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1510–1517.
Bhatnagar, Sminchisescu, Theobalt, Pons-Moll (b4) 2020
Alldieck, Magnor, Xu, Theobalt, Pons-Moll (b1) 2018
He, Collomosse, Jin, Soatto (b28) 2020
Kato, H., Ushiku, Y., Harada, T., 2018. Neural 3d mesh renderer. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3907–3916.
Bi, Xu, Srinivasan, Mildenhall, Sunkavalli, Hašan, Hold-Geoffroy, Kriegman, Ramamoorthi (b5) 2020
Dong, J., Jiang, W., Huang, Q., Bao, H., Zhou, X., 2019. Fast and robust multi-person 3d pose estimation from multiple views. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7792–7801.
Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T., 2020. Analyzing and improving the image quality of stylegan. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8110–8119.
Su, Xu, Zheng, Yu, Liu (b68) 2020
Bogo, Kanazawa, Lassner, Gehler, Romero, Black (b7) 2016
Natsume, R., Saito, S., Huang, Z., Chen, W., Ma, C., Li, H., Morishima, S., 2019. Siclope: Silhouette-based clothed people. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4480–4490.
Zhu, Rematas, Curless, Seitz, Kemelmacher-Shlizerman (b93) 2020
Huang, Z., Xu, Y., Lassner, C., Li, H., Tung, T., 2020. Arch: Animatable reconstruction of clothed humans. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3093–3102.
Lior, Yoni, Dror, Meirav, Matan, Ronen, Yaron (b43) 2020
Garbin, Kowalski, Johnson, Shotton, Valentin (b20) 2021
Graham, van der Maaten (b23) 2017
Park, K., Sinha, U., Barron, J.T., Bouaziz, S., Goldman, D.B., Seitz, S.M., Martin-Brualla, R., 2021. Nerfies: Deformable neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5865–5874.
Kolotouros, Pavlakos, Daniilidis (b40) 2019
Pumarola, A., Corona, E., Pons-Moll, G., Moreno-Noguer, F., 2021. D-nerf: Neural radiance fields for dynamic scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10318–10327.
Suo, X., Jiang, Y., Lin, P., Zhang, Y., Wu, M., Guo, K., Xu, L., 2021. NeuralHumanFVV: Real-Time Neural Volumetric Human Performance Rendering using RGB Cameras. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6226–6237.
Yang, Z., Wang, S., Manivasagam, S., Huang, Z., Ma, W.-C., Yan, X., Yumer, E., Urtasun, R., 2021. S3: Neural shape, skeleton, and skinning fields for 3D human modeling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13284–13293.
Hong, Y., Zhang, J., Jiang, B., Guo, Y., Liu, L., Bao, H., 2021. StereoPIFu: Depth aware clothed human digitization via stereo vision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 535–545.
Park, Sinha, Hedman, Barron, Bouaziz, Goldman, Martin-Brualla, Seitz (b55) 2021
Li, Xiu, Saito, Huang, Olszewski, Li (b42) 2020
Wang, Liu, Liu, Theobalt, Komura, Wang (b75) 2021
Bi, Xu, Sunkavalli, Hašan, Hold-Geoffroy, Kriegman, Ramamoorthi (b6) 2020
Masi, Wu, Hassner, Natarajan (b49) 2018
Habermann, Xu, Zollhoefer, Pons-Moll, Theobalt (b25) 2019; 38
Niemeyer, Mescheder, Oechsle, Geiger (b53) 2020
Pavlakos, Zhu, Zhou, Daniilidis (b57) 2018
Su, Yu, Zollhoefer, Rhodin (b69) 2021
Liu, Habermann, Rudnev, Sarkar, Gu, Theobalt (b44) 2021
Chen, Tian, He (b10) 2020; 192
Habermann, M., Xu, W., Zollhofer, M., Pons-Moll, G., Theobalt, C., 2020. Deepcap: Monocular human performance capture using weak supervision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5052–5063.
Srinivasan, P.P., Deng, B., Zhang, X., Tancik, M., Mildenhall, B., Barron, J.T., 2021. Nerv: Neural reflectance and visibility fields for relighting and view synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7495–7504.
Yu, Zheng, Guo, Zhao, Dai, Li, Pons-Moll, Liu (b84) 2018
Saito, S., Simon, T., Saragih, J., Joo, H., 2020. Pifuhd: Multi-level pixel-aligned implicit function for high-resolution 3d human digitization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 84–93.
Zheng, Yu, Liu, Dai (b90) 2021
Su, Yu, Zollhöfer, Rhodin (b70) 2021
Boss, Braun, Jampani, Barron, Liu, Lensch (b8) 2020
Liu, Zhang, Peng, Shi, Pollefeys, Cui (b46) 2020
Peng, S., Zhang, Y., Xu, Y., Wang, Q., Shuai, Q., Bao, H., Zhou, X., 2021. Neural body: Implicit neural representations with structured latent codes for novel view synthesis of dynamic humans. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9054–9063.
Mildenhall, Srinivasan, Tancik, Barron, Ramamoorthi, Ng (b50) 2020
Tancik, M., Mildenhall, B., Wang, T., Schmidt, D., Srinivasan, P.P., Barron, J.T., Ng, R., 2021. Learned initializations for optimizing coordinate-based neural representations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2846–2855.
Zhang, Y., An, L., Yu, T., Li, X., Li, K., Liu, Y., 2020. 4D association graph for realtime multi-person motion capture using multiple video cameras. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1324–1333.
Saito, S., Huang, Z., Natsume, R., Morishima, S., Kanazawa, A., Li, H., 2019. Pifu: Pixel-aligned implicit function for high-resolution clothed human digitization. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2304–2314.
Guo, Lincoln, Davidson, Busch, Yu, Whalen, Harvey, Orts-Escolano, Pandey, Dourgarian (b24) 2019
Alldieck, T., Pons-Moll, G., Theobalt, C., Magnor, M., 2019. Tex2shape: Detailed full human body geometry from a single image. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2293–2303.
Wang, Q., Wang, Z., Genova, K., Srinivasan, P.P., Zhou, H., Barron, J.T., Martin-Brualla, R., Snavely, N., Funkhouser, T., 2021. Ibrnet: Learning
Chen (10.1016/j.visinf.2021.10.003_b10) 2020; 192
Park (10.1016/j.visinf.2021.10.003_b55) 2021
Chen (10.1016/j.visinf.2021.10.003_b11) 2021
Guo (10.1016/j.visinf.2021.10.003_b24) 2019
10.1016/j.visinf.2021.10.003_b60
10.1016/j.visinf.2021.10.003_b61
10.1016/j.visinf.2021.10.003_b62
Yu (10.1016/j.visinf.2021.10.003_b84) 2018
Lior (10.1016/j.visinf.2021.10.003_b43) 2020
10.1016/j.visinf.2021.10.003_b63
10.1016/j.visinf.2021.10.003_b21
Newcombe (10.1016/j.visinf.2021.10.003_b52) 2015
10.1016/j.visinf.2021.10.003_b22
Li (10.1016/j.visinf.2021.10.003_b42) 2020
Garbin (10.1016/j.visinf.2021.10.003_b20) 2021
10.1016/j.visinf.2021.10.003_b67
Zhu (10.1016/j.visinf.2021.10.003_b93) 2020
Graham (10.1016/j.visinf.2021.10.003_b23) 2017
10.1016/j.visinf.2021.10.003_b26
Loper (10.1016/j.visinf.2021.10.003_b48) 2015; 34
Debevec (10.1016/j.visinf.2021.10.003_b14) 2000
10.1016/j.visinf.2021.10.003_b29
Xiang (10.1016/j.visinf.2021.10.003_b77) 2021
Yu (10.1016/j.visinf.2021.10.003_b81) 2021
Zheng (10.1016/j.visinf.2021.10.003_b89) 2021
Desmarais (10.1016/j.visinf.2021.10.003_b16) 2021
Bi (10.1016/j.visinf.2021.10.003_b6) 2020
10.1016/j.visinf.2021.10.003_b2
Kanazawa (10.1016/j.visinf.2021.10.003_b34) 2018
10.1016/j.visinf.2021.10.003_b9
Yariv (10.1016/j.visinf.2021.10.003_b80) 2021
Su (10.1016/j.visinf.2021.10.003_b70) 2021
10.1016/j.visinf.2021.10.003_b72
Zhou (10.1016/j.visinf.2021.10.003_b92) 2018
10.1016/j.visinf.2021.10.003_b73
10.1016/j.visinf.2021.10.003_b30
10.1016/j.visinf.2021.10.003_b74
10.1016/j.visinf.2021.10.003_b31
Yu (10.1016/j.visinf.2021.10.003_b82) 2021
10.1016/j.visinf.2021.10.003_b76
10.1016/j.visinf.2021.10.003_b35
10.1016/j.visinf.2021.10.003_b79
10.1016/j.visinf.2021.10.003_b36
10.1016/j.visinf.2021.10.003_b37
10.1016/j.visinf.2021.10.003_b38
10.1016/j.visinf.2021.10.003_b39
Su (10.1016/j.visinf.2021.10.003_b69) 2021
Jiang (10.1016/j.visinf.2021.10.003_b32) 2020
Mildenhall (10.1016/j.visinf.2021.10.003_b50) 2020
Masi (10.1016/j.visinf.2021.10.003_b49) 2018
Sun (10.1016/j.visinf.2021.10.003_b71) 2021
Zheng (10.1016/j.visinf.2021.10.003_b90) 2021
Deng (10.1016/j.visinf.2021.10.003_b15) 2020
10.1016/j.visinf.2021.10.003_b83
10.1016/j.visinf.2021.10.003_b41
10.1016/j.visinf.2021.10.003_b85
Joo (10.1016/j.visinf.2021.10.003_b33) 2018
10.1016/j.visinf.2021.10.003_b88
Alldieck (10.1016/j.visinf.2021.10.003_b1) 2018
10.1016/j.visinf.2021.10.003_b45
Lombardi (10.1016/j.visinf.2021.10.003_b47) 2019
Han (10.1016/j.visinf.2021.10.003_b27) 2019; 43
Collet (10.1016/j.visinf.2021.10.003_b13) 2015
Boss (10.1016/j.visinf.2021.10.003_b8) 2020
Bhatnagar (10.1016/j.visinf.2021.10.003_b4) 2020
Su (10.1016/j.visinf.2021.10.003_b68) 2020
Bogo (10.1016/j.visinf.2021.10.003_b7) 2016
Niemeyer (10.1016/j.visinf.2021.10.003_b53) 2020
Dong (10.1016/j.visinf.2021.10.003_b18) 2020
Pavlakos (10.1016/j.visinf.2021.10.003_b56) 2019
Berretti (10.1016/j.visinf.2021.10.003_b3) 2018; 14
Schonberger (10.1016/j.visinf.2021.10.003_b64) 2016
Wang (10.1016/j.visinf.2021.10.003_b75) 2021
He (10.1016/j.visinf.2021.10.003_b28) 2020
Xu (10.1016/j.visinf.2021.10.003_b78) 2018; 37
Liu (10.1016/j.visinf.2021.10.003_b44) 2021
10.1016/j.visinf.2021.10.003_b91
10.1016/j.visinf.2021.10.003_b51
Liu (10.1016/j.visinf.2021.10.003_b46) 2020
10.1016/j.visinf.2021.10.003_b54
Peng (10.1016/j.visinf.2021.10.003_b58) 2021
Zhang (10.1016/j.visinf.2021.10.003_b87) 2021
Zhang (10.1016/j.visinf.2021.10.003_b86) 2021; 40
10.1016/j.visinf.2021.10.003_b12
Habermann (10.1016/j.visinf.2021.10.003_b25) 2019; 38
Soltanpour (10.1016/j.visinf.2021.10.003_b66) 2017; 72
10.1016/j.visinf.2021.10.003_b59
10.1016/j.visinf.2021.10.003_b17
Pavlakos (10.1016/j.visinf.2021.10.003_b57) 2018
Dou (10.1016/j.visinf.2021.10.003_b19) 2016
Kolotouros (10.1016/j.visinf.2021.10.003_b40) 2019
Bi (10.1016/j.visinf.2021.10.003_b5) 2020
Schönberger (10.1016/j.visinf.2021.10.003_b65) 2016
References_xml – reference: Tancik, M., Mildenhall, B., Wang, T., Schmidt, D., Srinivasan, P.P., Barron, J.T., Ng, R., 2021. Learned initializations for optimizing coordinate-based neural representations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2846–2855.
– year: 2017
  ident: b23
  article-title: Submanifold sparse convolutional networks
– reference: Habermann, M., Xu, W., Zollhofer, M., Pons-Moll, G., Theobalt, C., 2020. Deepcap: Monocular human performance capture using weak supervision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5052–5063.
– reference: Genova, K., Cole, F., Sud, A., Sarna, A., Funkhouser, T., 2020. Local deep implicit functions for 3d shape. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4857–4866.
– volume: 43
  start-page: 1578
  year: 2019
  end-page: 1604
  ident: b27
  article-title: Image-based 3D object reconstruction: State-of-the-art and trends in the deep learning era
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: Gilbert, A., Volino, M., Collomosse, J., Hilton, A., 2018. Volumetric performance capture from minimal camera viewpoints. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 566–581.
– reference: Huang, Z., Li, T., Chen, W., Zhao, Y., Xing, J., LeGendre, C., Luo, L., Ma, C., Li, H., 2018. Deep volumetric video from very sparse multi-view performance capture. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 336–354.
– reference: Zheng, Z., Yu, T., Wei, Y., Dai, Q., Liu, Y., 2019. Deephuman: 3d human reconstruction from a single image. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7739–7749.
– volume: 192
  year: 2020
  ident: b10
  article-title: Monocular human pose estimation: A survey of deep learning-based methods
  publication-title: Comput. Vis. Image Underst.
– start-page: 471
  year: 2018
  end-page: 478
  ident: b49
  article-title: Deep face recognition: A survey
  publication-title: 2018 31st SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI)
– year: 2021
  ident: b70
  article-title: A-nerf: A-nerf: Articulated neural radiance fields for learning human shape, appearance, and pose
  publication-title: Advances in Neural Information Processing Systems
– start-page: 49
  year: 2020
  end-page: 67
  ident: b42
  article-title: Monocular real-time volumetric performance capture
  publication-title: European Conference on Computer Vision
– reference: Park, K., Sinha, U., Barron, J.T., Bouaziz, S., Goldman, D.B., Seitz, S.M., Martin-Brualla, R., 2021. Nerfies: Deformable neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5865–5874.
– reference: Kanazawa, A., Zhang, J.Y., Felsen, P., Malik, J., 2019. Learning 3d human dynamics from video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5614–5623.
– start-page: 294
  year: 2020
  end-page: 311
  ident: b6
  article-title: Deep reflectance volumes: Relightable reconstructions from multi-view photometric images
  publication-title: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part III 16
– year: 2015
  ident: b52
  article-title: Dynamicfusion: Reconstruction and tracking of non-rigid scenes in real-time
  publication-title: CVPR
– year: 2019
  ident: b56
  article-title: Expressive body capture: 3D hands, face, and body from a single image
  publication-title: CVPR
– reference: Saito, S., Yang, J., Ma, Q., Black, M.J., 2021. SCANimate: Weakly supervised learning of skinned clothed avatar networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2886–2897.
– year: 2018
  ident: b33
  article-title: Total capture: A 3d deformation model for tracking faces, hands, and bodies
  publication-title: CVPR
– start-page: 98
  year: 2018
  end-page: 109
  ident: b1
  article-title: Detailed human avatars from monocular video
  publication-title: 2018 International Conference on 3D Vision (3DV)
– reference: Yu, A., Ye, V., Tancik, M., Kanazawa, A., 2021. pixelnerf: Neural radiance fields from one or few images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4578–4587.
– year: 2016
  ident: b65
  article-title: Pixelwise view selection for unstructured multi-view stereo
  publication-title: ECCV
– year: 2021
  ident: b81
  article-title: Unsupervised discovery of object radiance fields
– year: 2021
  ident: b20
  article-title: Fastnerf: High-fidelity neural rendering at 200fps
– year: 2021
  ident: b44
  article-title: Neural actor: Neural free-view synthesis of human actors with pose control
– volume: 37
  start-page: 1
  year: 2018
  end-page: 15
  ident: b78
  article-title: Monoperfcap: Human performance capture from monocular video
  publication-title: ACM Trans. Graphics (ToG)
– volume: 14
  year: 2018
  ident: b3
  article-title: Representation, analysis, and recognition of 3D humans: A survey
  publication-title: ACM Trans. Multimedia Comput. Commun. Appl.
– reference: Varol, G., Ceylan, D., Russell, B., Yang, J., Yumer, E., Laptev, I., Schmid, C., 2018. Bodynet: Volumetric inference of 3d human body shapes. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 20–36.
– reference: Bozic, A., Palafox, P., Zollhofer, M., Thies, J., Dai, A., Nieß ner, M., 2021. Neural deformation graphs for globally-consistent non-rigid reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1450–1459.
– year: 2021
  ident: b16
  article-title: A review of 3D human pose estimation algorithms for markerless motion capture
  publication-title: Comput. Vis. Image Underst.
– year: 2020
  ident: b46
  article-title: Dist: Rendering deep implicit signed distance function with differentiable sphere tracing
  publication-title: CVPR
– reference: Zhang, Y., An, L., Yu, T., Li, X., Li, K., Liu, Y., 2020. 4D association graph for realtime multi-person motion capture using multiple video cameras. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1324–1333.
– year: 2020
  ident: b18
  article-title: Motion capture from internet videos
  publication-title: ECCV
– reference: Natsume, R., Saito, S., Huang, Z., Chen, W., Ma, C., Li, H., Morishima, S., 2019. Siclope: Silhouette-based clothed people. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4480–4490.
– reference: Kocabas, M., Athanasiou, N., Black, M.J., 2020. Vibe: Video inference for human body pose and shape estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5253–5263.
– year: 2020
  ident: b32
  article-title: Coherent reconstruction of multiple humans from a single image
  publication-title: CVPR
– reference: Chibane, J., Alldieck, T., Pons-Moll, G., 2020. Implicit functions in feature space for 3d shape reconstruction and completion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6970–6981.
– reference: Alldieck, T., Pons-Moll, G., Theobalt, C., Magnor, M., 2019. Tex2shape: Detailed full human body geometry from a single image. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2293–2303.
– reference: Hong, Y., Zhang, J., Jiang, B., Guo, Y., Liu, L., Bao, H., 2021. StereoPIFu: Depth aware clothed human digitization via stereo vision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 535–545.
– year: 2018
  ident: b34
  article-title: End-to-end recovery of human shape and pose
  publication-title: CVPR
– reference: Karras, T., Laine, S., Aila, T., 2019. A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4401–4410.
– reference: Wang, Q., Wang, Z., Genova, K., Srinivasan, P.P., Zhou, H., Barron, J.T., Martin-Brualla, R., Snavely, N., Funkhouser, T., 2021. Ibrnet: Learning multi-view image-based rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4690–4699.
– start-page: 561
  year: 2016
  end-page: 578
  ident: b7
  article-title: Keep it SMPL: Automatic estimation of 3D human pose and shape from a single image
  publication-title: European Conference on Computer Vision
– start-page: 612
  year: 2020
  end-page: 628
  ident: b15
  article-title: Nasa neural articulated shape approximation
  publication-title: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part VII 16
– reference: Peng, S., Zhang, Y., Xu, Y., Wang, Q., Shuai, Q., Bao, H., Zhou, X., 2021. Neural body: Implicit neural representations with structured latent codes for novel view synthesis of dynamic humans. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9054–9063.
– reference: Srinivasan, P.P., Deng, B., Zhang, X., Tancik, M., Mildenhall, B., Barron, J.T., 2021. Nerv: Neural reflectance and visibility fields for relighting and view synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7495–7504.
– year: 2020
  ident: b8
  article-title: Nerd: Neural reflectance decomposition from image collections
– year: 2021
  ident: b71
  article-title: Neural free-viewpoint performance rendering under ComplexHuman-object interactions
– volume: 40
  start-page: 1
  year: 2021
  end-page: 18
  ident: b86
  article-title: Editable free-viewpoint video using a layered neural representation
  publication-title: ACM Trans. Graph.
– year: 2021
  ident: b55
  article-title: Hypernerf: A higher-dimensional representation for topologically varying neural radiance fields
– year: 2019
  ident: b24
  article-title: The relightables: Volumetric performance capture of humans with realistic relighting
  publication-title: ACM TOG
– reference: Pumarola, A., Corona, E., Pons-Moll, G., Moreno-Noguer, F., 2021. D-nerf: Neural radiance fields for dynamic scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10318–10327.
– reference: Kato, H., Ushiku, Y., Harada, T., 2018. Neural 3d mesh renderer. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3907–3916.
– year: 2021
  ident: b82
  article-title: Plenoctrees for real-time rendering of neural radiance fields
– year: 2020
  ident: b68
  article-title: Robustfusion: Human volumetric capture with data-driven visual cues using a RGBD camera
  publication-title: ECCV
– year: 2018
  ident: b84
  article-title: Doublefusion: Real-time capture of human performances with inner body shapes from a single depth sensor
  publication-title: CVPR
– year: 2000
  ident: b14
  article-title: Acquiring the reflectance field of a human face
  publication-title: SIGGRAPH
– year: 2016
  ident: b19
  article-title: Fusion4d: Real-time performance capture of challenging scenes
  publication-title: ACM TOG
– year: 2018
  ident: b92
  article-title: Stereo magnification: Learning view synthesis using multiplane images
– reference: Huang, Z., Xu, Y., Lassner, C., Li, H., Tung, T., 2020. Arch: Animatable reconstruction of clothed humans. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3093–3102.
– volume: 38
  start-page: 1
  year: 2019
  end-page: 17
  ident: b25
  article-title: Livecap: Real-time human performance capture from monocular video
  publication-title: ACM Trans. Graph.
– year: 2021
  ident: b77
  article-title: Explicit clothing modeling for an animatable full-body avatar
– reference: Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T., 2020. Analyzing and improving the image quality of stylegan. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8110–8119.
– reference: Dong, J., Jiang, W., Huang, Q., Bao, H., Zhou, X., 2019. Fast and robust multi-person 3d pose estimation from multiple views. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7792–7801.
– year: 2019
  ident: b40
  article-title: Convolutional mesh regression for single-image human shape reconstruction
  publication-title: CVPR
– year: 2020
  ident: b28
  article-title: Geo-pifu: Geometry and pixel aligned implicit functions for single-view human reconstruction
– reference: Saito, S., Simon, T., Saragih, J., Joo, H., 2020. Pifuhd: Multi-level pixel-aligned implicit function for high-resolution 3d human digitization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 84–93.
– reference: Liu, S., Li, T., Chen, W., Li, H., 2019. Soft rasterizer: A differentiable renderer for image-based 3d reasoning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7708–7717.
– year: 2021
  ident: b89
  article-title: Deepmulticap: Performance capture of multiple characters using sparse multiview cameras
– reference: Suo, X., Jiang, Y., Lin, P., Zhang, Y., Wu, M., Guo, K., Xu, L., 2021. NeuralHumanFVV: Real-Time Neural Volumetric Human Performance Rendering using RGB Cameras. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6226–6237.
– year: 2021
  ident: b75
  article-title: Neus: Learning neural implicit surfaces by volume rendering for multi-view reconstruction
– year: 2021
  ident: b69
  article-title: A-nerf: Surface-free human 3D pose refinement via neural rendering
– year: 2021
  ident: b87
  article-title: Nerfactor: Neural factorization of shape and reflectance under an unknown illumination
– start-page: 177
  year: 2020
  end-page: 194
  ident: b93
  article-title: Reconstructing nba players
  publication-title: European Conference on Computer Vision
– year: 2020
  ident: b50
  article-title: Nerf: Representing scenes as neural radiance fields for view synthesis
  publication-title: ECCV
– reference: Yang, Z., Wang, S., Manivasagam, S., Huang, Z., Ma, W.-C., Yan, X., Yumer, E., Urtasun, R., 2021. S3: Neural shape, skeleton, and skinning fields for 3D human modeling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13284–13293.
– volume: 34
  start-page: 1
  year: 2015
  end-page: 16
  ident: b48
  article-title: Smpl: A skinned multi-person linear model
  publication-title: ACM Trans. Graph.
– year: 2021
  ident: b11
  article-title: Snarf: Differentiable forward skinning for animating non-rigid neural implicit shapes
– year: 2020
  ident: b43
  article-title: Multiview neural surface reconstruction by disentangling geometry and appearance
  publication-title: NeurIPS
– year: 2015
  ident: b13
  article-title: High-quality streamable free-viewpoint video
  publication-title: ACM TOG
– year: 2020
  ident: b53
  article-title: Differentiable volumetric rendering: Learning implicit 3d representations without 3d supervision
  publication-title: CVPR
– year: 2021
  ident: b80
  article-title: Volume rendering of neural implicit surfaces
– volume: 72
  start-page: 391
  year: 2017
  end-page: 406
  ident: b66
  article-title: A survey of local feature methods for 3D face recognition
  publication-title: Pattern Recognit.
– year: 2019
  ident: b47
  article-title: Neural volumes: Learning dynamic renderable volumes from images
  publication-title: SIGGRAPH
– year: 2021
  ident: b58
  article-title: Animatable neural radiance fields for human body modeling
  publication-title: ICCV
– start-page: 311
  year: 2020
  end-page: 329
  ident: b4
  article-title: Combining implicit function learning and parametric models for 3d human reconstruction
  publication-title: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part II 16
– year: 2021
  ident: b90
  article-title: Pamir: Parametric model-conditioned implicit representation for image-based human reconstruction
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2016
  ident: b64
  article-title: Structure-from-motion revisited
  publication-title: CVPR
– reference: Li, Z., Niklaus, S., Snavely, N., Wang, O., 2021. Neural scene flow fields for space-time view synthesis of dynamic scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6498–6508.
– year: 2020
  ident: b5
  article-title: Neural reflectance fields for appearance acquisition
– reference: Zheng, E., Dunn, E., Jojic, V., Frahm, J.-M., 2014. Patchmatch based joint view selection and depthmap estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1510–1517.
– year: 2018
  ident: b57
  article-title: Learning to estimate 3D human pose and shape from a single color image
  publication-title: CVPR
– reference: Saito, S., Huang, Z., Natsume, R., Morishima, S., Kanazawa, A., Li, H., 2019. Pifu: Pixel-aligned implicit function for high-resolution clothed human digitization. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2304–2314.
– ident: 10.1016/j.visinf.2021.10.003_b60
  doi: 10.1109/CVPR46437.2021.01018
– ident: 10.1016/j.visinf.2021.10.003_b38
  doi: 10.1109/CVPR.2018.00411
– year: 2019
  ident: 10.1016/j.visinf.2021.10.003_b47
  article-title: Neural volumes: Learning dynamic renderable volumes from images
– start-page: 612
  year: 2020
  ident: 10.1016/j.visinf.2021.10.003_b15
  article-title: Nasa neural articulated shape approximation
– year: 2021
  ident: 10.1016/j.visinf.2021.10.003_b81
– ident: 10.1016/j.visinf.2021.10.003_b17
  doi: 10.1109/CVPR.2019.00798
– year: 2018
  ident: 10.1016/j.visinf.2021.10.003_b34
  article-title: End-to-end recovery of human shape and pose
– start-page: 49
  year: 2020
  ident: 10.1016/j.visinf.2021.10.003_b42
  article-title: Monocular real-time volumetric performance capture
– year: 2019
  ident: 10.1016/j.visinf.2021.10.003_b24
  article-title: The relightables: Volumetric performance capture of humans with realistic relighting
  publication-title: ACM TOG
  doi: 10.1145/3355089.3356571
– ident: 10.1016/j.visinf.2021.10.003_b59
  doi: 10.1109/CVPR46437.2021.00894
– year: 2021
  ident: 10.1016/j.visinf.2021.10.003_b69
– year: 2021
  ident: 10.1016/j.visinf.2021.10.003_b89
– volume: 43
  start-page: 1578
  issue: 5
  year: 2019
  ident: 10.1016/j.visinf.2021.10.003_b27
  article-title: Image-based 3D object reconstruction: State-of-the-art and trends in the deep learning era
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2019.2954885
– ident: 10.1016/j.visinf.2021.10.003_b37
  doi: 10.1109/CVPR42600.2020.00813
– year: 2020
  ident: 10.1016/j.visinf.2021.10.003_b53
  article-title: Differentiable volumetric rendering: Learning implicit 3d representations without 3d supervision
– year: 2017
  ident: 10.1016/j.visinf.2021.10.003_b23
– ident: 10.1016/j.visinf.2021.10.003_b76
  doi: 10.1109/CVPR46437.2021.00466
– ident: 10.1016/j.visinf.2021.10.003_b51
  doi: 10.1109/CVPR.2019.00461
– year: 2020
  ident: 10.1016/j.visinf.2021.10.003_b46
  article-title: Dist: Rendering deep implicit signed distance function with differentiable sphere tracing
– ident: 10.1016/j.visinf.2021.10.003_b39
  doi: 10.1109/CVPR42600.2020.00530
– ident: 10.1016/j.visinf.2021.10.003_b74
  doi: 10.1007/978-3-030-01234-2_2
– year: 2020
  ident: 10.1016/j.visinf.2021.10.003_b43
  article-title: Multiview neural surface reconstruction by disentangling geometry and appearance
– year: 2019
  ident: 10.1016/j.visinf.2021.10.003_b56
  article-title: Expressive body capture: 3D hands, face, and body from a single image
– year: 2021
  ident: 10.1016/j.visinf.2021.10.003_b90
  article-title: Pamir: Parametric model-conditioned implicit representation for image-based human reconstruction
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– ident: 10.1016/j.visinf.2021.10.003_b67
  doi: 10.1109/CVPR46437.2021.00741
– year: 2021
  ident: 10.1016/j.visinf.2021.10.003_b80
– year: 2020
  ident: 10.1016/j.visinf.2021.10.003_b5
– ident: 10.1016/j.visinf.2021.10.003_b62
  doi: 10.1109/CVPR42600.2020.00016
– ident: 10.1016/j.visinf.2021.10.003_b9
  doi: 10.1109/CVPR46437.2021.00150
– year: 2016
  ident: 10.1016/j.visinf.2021.10.003_b65
  article-title: Pixelwise view selection for unstructured multi-view stereo
– start-page: 177
  year: 2020
  ident: 10.1016/j.visinf.2021.10.003_b93
  article-title: Reconstructing nba players
– ident: 10.1016/j.visinf.2021.10.003_b85
  doi: 10.1109/CVPR42600.2020.00140
– ident: 10.1016/j.visinf.2021.10.003_b36
  doi: 10.1109/CVPR.2019.00453
– ident: 10.1016/j.visinf.2021.10.003_b72
  doi: 10.1109/CVPR46437.2021.00616
– year: 2018
  ident: 10.1016/j.visinf.2021.10.003_b33
  article-title: Total capture: A 3d deformation model for tracking faces, hands, and bodies
– year: 2021
  ident: 10.1016/j.visinf.2021.10.003_b82
– year: 2000
  ident: 10.1016/j.visinf.2021.10.003_b14
  article-title: Acquiring the reflectance field of a human face
– ident: 10.1016/j.visinf.2021.10.003_b88
  doi: 10.1109/CVPR.2014.196
– volume: 192
  year: 2020
  ident: 10.1016/j.visinf.2021.10.003_b10
  article-title: Monocular human pose estimation: A survey of deep learning-based methods
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2019.102897
– ident: 10.1016/j.visinf.2021.10.003_b26
  doi: 10.1109/CVPR42600.2020.00510
– year: 2018
  ident: 10.1016/j.visinf.2021.10.003_b92
– year: 2021
  ident: 10.1016/j.visinf.2021.10.003_b55
– start-page: 471
  year: 2018
  ident: 10.1016/j.visinf.2021.10.003_b49
  article-title: Deep face recognition: A survey
– ident: 10.1016/j.visinf.2021.10.003_b63
  doi: 10.1109/CVPR46437.2021.00291
– volume: 34
  start-page: 1
  issue: 6
  year: 2015
  ident: 10.1016/j.visinf.2021.10.003_b48
  article-title: Smpl: A skinned multi-person linear model
  publication-title: ACM Trans. Graph.
  doi: 10.1145/2816795.2818013
– start-page: 98
  year: 2018
  ident: 10.1016/j.visinf.2021.10.003_b1
  article-title: Detailed human avatars from monocular video
– year: 2020
  ident: 10.1016/j.visinf.2021.10.003_b68
  article-title: Robustfusion: Human volumetric capture with data-driven visual cues using a RGBD camera
– ident: 10.1016/j.visinf.2021.10.003_b22
  doi: 10.1007/978-3-030-01252-6_35
– start-page: 561
  year: 2016
  ident: 10.1016/j.visinf.2021.10.003_b7
  article-title: Keep it SMPL: Automatic estimation of 3D human pose and shape from a single image
– year: 2020
  ident: 10.1016/j.visinf.2021.10.003_b50
  article-title: Nerf: Representing scenes as neural radiance fields for view synthesis
– ident: 10.1016/j.visinf.2021.10.003_b73
  doi: 10.1109/CVPR46437.2021.00287
– year: 2020
  ident: 10.1016/j.visinf.2021.10.003_b18
  article-title: Motion capture from internet videos
– year: 2018
  ident: 10.1016/j.visinf.2021.10.003_b84
  article-title: Doublefusion: Real-time capture of human performances with inner body shapes from a single depth sensor
– ident: 10.1016/j.visinf.2021.10.003_b35
  doi: 10.1109/CVPR.2019.00576
– ident: 10.1016/j.visinf.2021.10.003_b54
  doi: 10.1109/ICCV48922.2021.00581
– year: 2020
  ident: 10.1016/j.visinf.2021.10.003_b28
– year: 2021
  ident: 10.1016/j.visinf.2021.10.003_b71
– year: 2020
  ident: 10.1016/j.visinf.2021.10.003_b32
  article-title: Coherent reconstruction of multiple humans from a single image
– ident: 10.1016/j.visinf.2021.10.003_b79
  doi: 10.1109/CVPR46437.2021.01308
– ident: 10.1016/j.visinf.2021.10.003_b12
  doi: 10.1109/CVPR42600.2020.00700
– volume: 40
  start-page: 1
  issue: 4
  year: 2021
  ident: 10.1016/j.visinf.2021.10.003_b86
  article-title: Editable free-viewpoint video using a layered neural representation
  publication-title: ACM Trans. Graph.
  doi: 10.1145/3450626.3459783
– ident: 10.1016/j.visinf.2021.10.003_b30
  doi: 10.1007/978-3-030-01270-0_21
– ident: 10.1016/j.visinf.2021.10.003_b29
  doi: 10.1109/CVPR46437.2021.00060
– volume: 37
  start-page: 1
  issue: 2
  year: 2018
  ident: 10.1016/j.visinf.2021.10.003_b78
  article-title: Monoperfcap: Human performance capture from monocular video
  publication-title: ACM Trans. Graphics (ToG)
  doi: 10.1145/3181973
– ident: 10.1016/j.visinf.2021.10.003_b83
  doi: 10.1109/CVPR46437.2021.00455
– year: 2021
  ident: 10.1016/j.visinf.2021.10.003_b87
– ident: 10.1016/j.visinf.2021.10.003_b45
  doi: 10.1109/ICCV.2019.00780
– ident: 10.1016/j.visinf.2021.10.003_b61
  doi: 10.1109/ICCV.2019.00239
– start-page: 294
  year: 2020
  ident: 10.1016/j.visinf.2021.10.003_b6
  article-title: Deep reflectance volumes: Relightable reconstructions from multi-view photometric images
– year: 2021
  ident: 10.1016/j.visinf.2021.10.003_b77
– year: 2015
  ident: 10.1016/j.visinf.2021.10.003_b13
  article-title: High-quality streamable free-viewpoint video
  publication-title: ACM TOG
  doi: 10.1145/2766945
– ident: 10.1016/j.visinf.2021.10.003_b41
  doi: 10.1109/CVPR46437.2021.00643
– year: 2021
  ident: 10.1016/j.visinf.2021.10.003_b11
– year: 2021
  ident: 10.1016/j.visinf.2021.10.003_b20
– year: 2018
  ident: 10.1016/j.visinf.2021.10.003_b57
  article-title: Learning to estimate 3D human pose and shape from a single color image
– year: 2021
  ident: 10.1016/j.visinf.2021.10.003_b44
– volume: 14
  issue: 1s
  year: 2018
  ident: 10.1016/j.visinf.2021.10.003_b3
  article-title: Representation, analysis, and recognition of 3D humans: A survey
  publication-title: ACM Trans. Multimedia Comput. Commun. Appl.
– ident: 10.1016/j.visinf.2021.10.003_b31
  doi: 10.1109/CVPR42600.2020.00316
– year: 2021
  ident: 10.1016/j.visinf.2021.10.003_b58
  article-title: Animatable neural radiance fields for human body modeling
– year: 2020
  ident: 10.1016/j.visinf.2021.10.003_b8
– year: 2016
  ident: 10.1016/j.visinf.2021.10.003_b64
  article-title: Structure-from-motion revisited
– volume: 72
  start-page: 391
  year: 2017
  ident: 10.1016/j.visinf.2021.10.003_b66
  article-title: A survey of local feature methods for 3D face recognition
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.08.003
– year: 2021
  ident: 10.1016/j.visinf.2021.10.003_b16
  article-title: A review of 3D human pose estimation algorithms for markerless motion capture
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2021.103275
– year: 2015
  ident: 10.1016/j.visinf.2021.10.003_b52
  article-title: Dynamicfusion: Reconstruction and tracking of non-rigid scenes in real-time
– year: 2021
  ident: 10.1016/j.visinf.2021.10.003_b70
  article-title: A-nerf: A-nerf: Articulated neural radiance fields for learning human shape, appearance, and pose
– ident: 10.1016/j.visinf.2021.10.003_b91
  doi: 10.1109/ICCV.2019.00783
– ident: 10.1016/j.visinf.2021.10.003_b2
  doi: 10.1109/ICCV.2019.00238
– volume: 38
  start-page: 1
  issue: 2
  year: 2019
  ident: 10.1016/j.visinf.2021.10.003_b25
  article-title: Livecap: Real-time human performance capture from monocular video
  publication-title: ACM Trans. Graph.
  doi: 10.1145/3311970
– year: 2021
  ident: 10.1016/j.visinf.2021.10.003_b75
– start-page: 311
  year: 2020
  ident: 10.1016/j.visinf.2021.10.003_b4
  article-title: Combining implicit function learning and parametric models for 3d human reconstruction
– year: 2016
  ident: 10.1016/j.visinf.2021.10.003_b19
  article-title: Fusion4d: Real-time performance capture of challenging scenes
  publication-title: ACM TOG
  doi: 10.1145/2897824.2925969
– ident: 10.1016/j.visinf.2021.10.003_b21
  doi: 10.1109/CVPR42600.2020.00491
– year: 2019
  ident: 10.1016/j.visinf.2021.10.003_b40
  article-title: Convolutional mesh regression for single-image human shape reconstruction
SSID ssj0002810111
Score 2.3147945
SecondaryResourceType review_article
Snippet Reconstructing 3D digital models of humans from sensory data is a long-standing problem in computer vision and graphics with a variety of applications in...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 11
SubjectTerms 3D human reconstruction
Differentiable rendering
Neural representation
Title Towards efficient and photorealistic 3D human reconstruction: A brief survey
URI https://dx.doi.org/10.1016/j.visinf.2021.10.003
https://doaj.org/article/8fedf2af48b443eeb954bfb07969c3fc
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwsCAaK85IE10DhO4rCVR1UhYGqlbpEfZ0GF0ooWJP49d05ShYUujLEcOzmf_d0ld98xdpnhkZeqrIgK4_JIAq6FdiAjEPSPS1phHOUOP79ko4l8nKbTTqkvigmr6YFrwV0rD84L7aUyUiYApkil8aafF1lhE2_p9EXM6zhTs_DJKKYi6lRZLqQW9cW0zZsLwV2UuF0Rg6eIr0JwV_ILlwJ9fweeOpAz3GO7ja3IB_Uz7rMtqA7Y0zgEui45BPIHxAyuK8cXr3P0noHoDLE3T-55qL7Hg8O7Jom94QNu0Dn2fPn58QXfh2wyfBjfjaKmJEJkZaxWUS4zn3ptCjQjPAgjnLH49t4hrOcOd6dVeAHO9CGxmXTa4abNKUEaYd6haXfEtqt5BceMe0VsYgbiJFNSW6HxsXOpdBw7A9K6HktagZS24QunshXvZRsYNitrMZYkRmpFMfZYtL5rUfNlbOh_S7Je9yW269CAOlA2OlBu0oEey9uVKhvDoTYIcKi3P6c_-Y_pT9kODVkHuZyxbVxTOEdTZWUuglb-ACVu6Es
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+efficient+and+photorealistic+3D+human+reconstruction%3A+A+brief+survey&rft.jtitle=Visual+informatics+%28Online%29&rft.au=Chen%2C+Lu&rft.au=Peng%2C+Sida&rft.au=Zhou%2C+Xiaowei&rft.date=2021-12-01&rft.pub=Elsevier+B.V&rft.issn=2468-502X&rft.eissn=2468-502X&rft.volume=5&rft.issue=4&rft.spage=11&rft.epage=19&rft_id=info:doi/10.1016%2Fj.visinf.2021.10.003&rft.externalDocID=S2468502X21000413
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2468-502X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2468-502X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2468-502X&client=summon