River stream flow prediction through advanced machine learning models for enhanced accuracy

The Narmada River basin, a significant water resource in central India, plays a crucial role in supporting agricultural, industrial, and domestic water supply. Effective management of this basin requires accurate streamflow forecasting, which has become increasingly important. This study delves into...

Full description

Saved in:
Bibliographic Details
Published inResults in engineering Vol. 22; p. 102215
Main Authors Kedam, Naresh, Tiwari, Deepak Kumar, Kumar, Vijendra, Khedher, Khaled Mohamed, Salem, Mohamed Abdelaziz
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2024
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Narmada River basin, a significant water resource in central India, plays a crucial role in supporting agricultural, industrial, and domestic water supply. Effective management of this basin requires accurate streamflow forecasting, which has become increasingly important. This study delves into streamflow forecasting using historical data from five major river stations, covering the upper reaches in the East and middle sections. The dataset spans from 1978 to 2020 and undergoes rigorous screening and preparation, including normalization using StandardScaler. The research adopts a comprehensive approach, developing models for training on 70 % of historical data, validation on the most current 15 %, and testing against future targets with another 15 % of the data. To achieve precise predictions, a suite of machine learning models is employed, including CatBoost, LGBM (Light Gradient Boosting Machine), Random Forest, and XGBoost. Performance evaluation of these models relies on key indices such as mean squared error (MSE), mean absolute error (MAE), root mean square error (RMSE), root mean square percent error (RMSPE), normalized root mean squared error (NRMSE), and R-squared (R2). Notably, among these models, Random Forest emerges as the most robust for streamflow prediction, showcasing its effectiveness in handling the complexities of hydrological forecasting. This research contributes significantly to the field of streamflow forecasting in the Narmada River basin by providing insights into the performance of various machine learning models. The findings not only enhance our understanding of watershed dynamics but also highlight the pivotal role that machine learning can play in improving hydrological forecasting for sustainable watershed management. •Advanced ML models predict Narmada River stream flow accurately.•Random Forest excels in testing, surpassing other models.•Watershed management in the Narmada River basin.•Practical model selection: XGBoost for accuracy, Random Forest for versatility.
AbstractList The Narmada River basin, a significant water resource in central India, plays a crucial role in supporting agricultural, industrial, and domestic water supply. Effective management of this basin requires accurate streamflow forecasting, which has become increasingly important. This study delves into streamflow forecasting using historical data from five major river stations, covering the upper reaches in the East and middle sections. The dataset spans from 1978 to 2020 and undergoes rigorous screening and preparation, including normalization using StandardScaler. The research adopts a comprehensive approach, developing models for training on 70 % of historical data, validation on the most current 15 %, and testing against future targets with another 15 % of the data. To achieve precise predictions, a suite of machine learning models is employed, including CatBoost, LGBM (Light Gradient Boosting Machine), Random Forest, and XGBoost. Performance evaluation of these models relies on key indices such as mean squared error (MSE), mean absolute error (MAE), root mean square error (RMSE), root mean square percent error (RMSPE), normalized root mean squared error (NRMSE), and R-squared (R2). Notably, among these models, Random Forest emerges as the most robust for streamflow prediction, showcasing its effectiveness in handling the complexities of hydrological forecasting. This research contributes significantly to the field of streamflow forecasting in the Narmada River basin by providing insights into the performance of various machine learning models. The findings not only enhance our understanding of watershed dynamics but also highlight the pivotal role that machine learning can play in improving hydrological forecasting for sustainable watershed management. •Advanced ML models predict Narmada River stream flow accurately.•Random Forest excels in testing, surpassing other models.•Watershed management in the Narmada River basin.•Practical model selection: XGBoost for accuracy, Random Forest for versatility.
The Narmada River basin, a significant water resource in central India, plays a crucial role in supporting agricultural, industrial, and domestic water supply. Effective management of this basin requires accurate streamflow forecasting, which has become increasingly important. This study delves into streamflow forecasting using historical data from five major river stations, covering the upper reaches in the East and middle sections. The dataset spans from 1978 to 2020 and undergoes rigorous screening and preparation, including normalization using StandardScaler. The research adopts a comprehensive approach, developing models for training on 70 % of historical data, validation on the most current 15 %, and testing against future targets with another 15 % of the data. To achieve precise predictions, a suite of machine learning models is employed, including CatBoost, LGBM (Light Gradient Boosting Machine), Random Forest, and XGBoost. Performance evaluation of these models relies on key indices such as mean squared error (MSE), mean absolute error (MAE), root mean square error (RMSE), root mean square percent error (RMSPE), normalized root mean squared error (NRMSE), and R-squared (R2). Notably, among these models, Random Forest emerges as the most robust for streamflow prediction, showcasing its effectiveness in handling the complexities of hydrological forecasting. This research contributes significantly to the field of streamflow forecasting in the Narmada River basin by providing insights into the performance of various machine learning models. The findings not only enhance our understanding of watershed dynamics but also highlight the pivotal role that machine learning can play in improving hydrological forecasting for sustainable watershed management.
ArticleNumber 102215
Author Kumar, Vijendra
Kedam, Naresh
Salem, Mohamed Abdelaziz
Tiwari, Deepak Kumar
Khedher, Khaled Mohamed
Author_xml – sequence: 1
  givenname: Naresh
  surname: Kedam
  fullname: Kedam, Naresh
  organization: Department of Thermal Engineering and Thermal Engines, Samara National Research University, Mos-kovskoye shosse, 34, Samara, 443086, Russia
– sequence: 2
  givenname: Deepak Kumar
  surname: Tiwari
  fullname: Tiwari, Deepak Kumar
  organization: Department of Civil Engineering, GLA University, Mathura, UP, 281406, India
– sequence: 3
  givenname: Vijendra
  orcidid: 0000-0002-0053-1210
  surname: Kumar
  fullname: Kumar, Vijendra
  email: vijendra.kumar@mitwpu.edu.in
  organization: Department of Civil Engineering, Dr. Vishwanath Karad MIT World Peace University, Kothrud, Pune, Maharashtra, 411038, India
– sequence: 4
  givenname: Khaled Mohamed
  surname: Khedher
  fullname: Khedher, Khaled Mohamed
  organization: Department of Civil Engineering, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
– sequence: 5
  givenname: Mohamed Abdelaziz
  surname: Salem
  fullname: Salem, Mohamed Abdelaziz
  organization: Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
BookMark eNqFkE1r3DAQhkVIIJ__oAf9gd1Isq21cwiU0DaBQCG0px7EaDTa1eKVwtjZkn9fb51C6aE5SbzoeTXznIvjXDIJ8UGrpVbaXm-XnDLl9dIoU0-RMbo5Emem6dRCm0od_3U_FVfDsFVKmXZiq9WZ-PGU9sRyGJlgJ2NffspnppBwTCXLccPlZb2REPaQkYLcAW6m32RPwDnltdyVQP0gY2FJeTM_AsQXBny9FCcR-oGu3s4L8f3zp29394vHr18e7j4-LrDW7biwETuIK9UFbU3XVJ4sKq9VbFcNhq6zuok2Gltrr1u0sQJtvUXvg9E-VKG6EA9zbyiwdc-cdsCvrkByv4PCawc8JuzJYUQwra2Mj6auTQBSBCYaqqGKvlFT183chVyGgSk6TCMcZIwMqXdauYN1t3WzdXew7mbrE1z_A_8Z5h3sdsYmk7RPxG7ARAeViQnHaYv0_4JfeVWhzw
CitedBy_id crossref_primary_10_1007_s11269_025_04105_w
crossref_primary_10_1016_j_rineng_2024_103048
crossref_primary_10_2166_hydro_2025_131
crossref_primary_10_1016_j_rineng_2025_104446
crossref_primary_10_1007_s11269_024_04052_y
crossref_primary_10_1007_s44290_024_00143_2
crossref_primary_10_2166_wcc_2024_054
crossref_primary_10_29109_gujsc_1555448
crossref_primary_10_1016_j_rineng_2024_103319
crossref_primary_10_2166_wcc_2024_052
crossref_primary_10_1016_j_rineng_2025_104146
crossref_primary_10_1016_j_jhydrol_2025_132883
crossref_primary_10_1016_j_rineng_2025_104079
crossref_primary_10_1016_j_ejrh_2025_102191
crossref_primary_10_1016_j_lwt_2024_116324
crossref_primary_10_1016_j_rineng_2024_102682
Cites_doi 10.1007/s12145-022-00896-3
10.1016/j.scs.2020.102562
10.1016/j.rineng.2023.101079
10.1016/j.rineng.2023.101665
10.1002/eco.251
10.1155/2022/1860460
10.1002/hyp.1425
10.1016/j.rineng.2024.102017
10.1016/j.rineng.2023.101571
10.1016/j.jhydrol.2011.10.039
10.3390/su151813724
10.1109/ACCESS.2021.3077703
10.1080/02626667.2019.1680846
10.3390/su14063352
10.1016/j.jhydrol.2021.126086
10.1371/journal.pone.0282847
10.1016/j.envsoft.2020.104761
10.1016/j.jhydrol.2022.128608
10.1007/s11269-021-02937-w
10.1155/2020/8881118
10.1016/j.neucom.2023.02.040
10.1016/j.rineng.2023.100951
10.1007/s11269-020-02659-5
10.1007/s00521-011-0735-y
10.1016/j.advwatres.2021.103920
10.3390/hydrology9030048
10.1007/s11269-019-02399-1
10.1109/ACCESS.2020.2974406
10.1002/for.2564
10.1080/02626667.2020.1828889
10.1016/j.asoc.2023.110722
10.1016/j.neucom.2017.01.026
10.1016/j.jhydrol.2021.126636
ContentType Journal Article
Copyright 2024 The Authors
Copyright_xml – notice: 2024 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.rineng.2024.102215
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ: Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2590-1230
ExternalDocumentID oai_doaj_org_article_cfca28632bf2442dae0ea2f2e4a3fb50
10_1016_j_rineng_2024_102215
S2590123024004705
GroupedDBID 0R~
6I.
AAEDW
AAFTH
AALRI
AAXUO
ADBBV
ADVLN
AEXQZ
AFJKZ
AFTJW
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BCNDV
EBS
FDB
GROUPED_DOAJ
M41
M~E
OK1
ROL
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
ID FETCH-LOGICAL-c418t-6fc9af709d162953be6c0b10f875cd99615f6f2641b18c6f3a16b6cbbd21bd3d3
IEDL.DBID DOA
ISSN 2590-1230
IngestDate Wed Aug 27 01:14:38 EDT 2025
Thu Apr 24 23:12:13 EDT 2025
Tue Aug 05 12:07:00 EDT 2025
Sat Apr 26 15:41:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Random forest
Narmada river basin
LGBM
Stream flow forecasting
XGBoost
CatBoost
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-6fc9af709d162953be6c0b10f875cd99615f6f2641b18c6f3a16b6cbbd21bd3d3
ORCID 0000-0002-0053-1210
OpenAccessLink https://doaj.org/article/cfca28632bf2442dae0ea2f2e4a3fb50
ParticipantIDs doaj_primary_oai_doaj_org_article_cfca28632bf2442dae0ea2f2e4a3fb50
crossref_citationtrail_10_1016_j_rineng_2024_102215
crossref_primary_10_1016_j_rineng_2024_102215
elsevier_sciencedirect_doi_10_1016_j_rineng_2024_102215
PublicationCentury 2000
PublicationDate June 2024
2024-06-00
2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: June 2024
PublicationDecade 2020
PublicationTitle Results in engineering
PublicationYear 2024
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Li, Wang, Qiu (bib32) 2019; 38
Rathnayake, Rathnayake, Chathuranika, Dang, Hoshino (bib36) 2023; 147
Rahimzad, Moghaddam Nia, Zolfonoon, Soltani, Danandeh Mehr, Kwon (bib20) 2021; 35
Xiang, Demir (bib31) 2020; 131
Bai, Bezak, Sapač, Klun, Zhang (bib26) 2019; 33
Kilinc, Yurtsever (bib29) 2022; 14
Rasouli, Hsieh, Cannon (bib17) 2012; 414–415
Kisi, Mohammad Azamathulla, Cevat, Kulls, Kuhdaragh, Fuladipanah (bib23) 2024; 22
Mehta, Dhabuwala, Yadav, Kumar, Azamathulla (bib7) 2023; 20
Samui, Yesilyurt, Dalkilic, Yaseen, Roy, Kumar (bib24) 2023; 16
Hasan, Mondol Nilay, Jibon, Rahman (bib33) 2023; 18
Ghobadi, Kang (bib34) 2022; 615
Fu, Fan, Ding, Salih, Al-Ansari, Yaseen (bib18) 2020; 8
Niu, Feng (bib1) 2021; 64
Kumar, Kedam, Sharma, Mehta, Caloiero (bib8) 2023; 15
Parisouj, Mohebzadeh, Lee (bib15) 2020; 34
Hagen, Leblois, Lawrence, Solomatine, Sorteberg (bib21) 2021; 596
Achieng (bib22) 2021
Wegayehu, Muluneh (bib28) 2022; 2022
Lisboa, Saralajew, Vellido, Fernández-Domenech, Villmann (bib13) 2023; 535
Niu, Feng, Yang, Zhang (bib30) 2020; 65
Le, Nguyen, Jung, Yeon, Lee (bib19) 2021; 9
Lin, Wang, Wang, Qiu, Long, Du, Xie, Wei, Shangguan, Dai (bib16) 2021; 601
Olden, Kennard, Pusey (bib11) 2012; 5
Gandomi, Alavi (bib4) 2012; 21
Gunathilake, Karunanayake, Gunathilake, Marasingha, Samarasinghe, Bandara, Rathnayake (bib12) 2021; 2021
Zhou, Pan, Wang, Vasilakos (bib10) 2017; 237
Chathuranika, Gunathilake, Azamathulla, Rathnayake (bib6) 2022; 9
Kumar, Kedam, Sharma, Khedher, Alluqmani (bib14) 2023; 15
Gharib, Davies (bib9) 2021; 152
Sivapalan, Blöschl, Zhang, Vertessy (bib5) 2003; 17
Rathnayake, Rathnayake, Dang, Hoshino (bib35) 2023; 18
Gunathilake, Amaratunga, Perera, Chathuranika, Gunathilake, Rathnayake (bib2) 2020; 2020
Yaseen (bib3) 2024; 21
Li, Sha, Wang (bib25) 2019; 64
Ruma, Adnan, Dewan, Rahman (bib27) 2023; 17
Kilinc (10.1016/j.rineng.2024.102215_bib29) 2022; 14
Hasan (10.1016/j.rineng.2024.102215_bib33) 2023; 18
Sivapalan (10.1016/j.rineng.2024.102215_bib5) 2003; 17
Zhou (10.1016/j.rineng.2024.102215_bib10) 2017; 237
Kisi (10.1016/j.rineng.2024.102215_bib23) 2024; 22
Ruma (10.1016/j.rineng.2024.102215_bib27) 2023; 17
Rathnayake (10.1016/j.rineng.2024.102215_bib35) 2023; 18
Bai (10.1016/j.rineng.2024.102215_bib26) 2019; 33
Rasouli (10.1016/j.rineng.2024.102215_bib17) 2012; 414–415
Samui (10.1016/j.rineng.2024.102215_bib24) 2023; 16
Yaseen (10.1016/j.rineng.2024.102215_bib3) 2024; 21
Parisouj (10.1016/j.rineng.2024.102215_bib15) 2020; 34
Gharib (10.1016/j.rineng.2024.102215_bib9) 2021; 152
Rathnayake (10.1016/j.rineng.2024.102215_bib36) 2023; 147
Lisboa (10.1016/j.rineng.2024.102215_bib13) 2023; 535
Kumar (10.1016/j.rineng.2024.102215_bib14) 2023; 15
Achieng (10.1016/j.rineng.2024.102215_bib22) 2021
Li (10.1016/j.rineng.2024.102215_bib25) 2019; 64
Kumar (10.1016/j.rineng.2024.102215_bib8) 2023; 15
Xiang (10.1016/j.rineng.2024.102215_bib31) 2020; 131
Li (10.1016/j.rineng.2024.102215_bib32) 2019; 38
Rahimzad (10.1016/j.rineng.2024.102215_bib20) 2021; 35
Niu (10.1016/j.rineng.2024.102215_bib30) 2020; 65
Gunathilake (10.1016/j.rineng.2024.102215_bib12) 2021; 2021
Ghobadi (10.1016/j.rineng.2024.102215_bib34) 2022; 615
Hagen (10.1016/j.rineng.2024.102215_bib21) 2021; 596
Le (10.1016/j.rineng.2024.102215_bib19) 2021; 9
Olden (10.1016/j.rineng.2024.102215_bib11) 2012; 5
Lin (10.1016/j.rineng.2024.102215_bib16) 2021; 601
Niu (10.1016/j.rineng.2024.102215_bib1) 2021; 64
Fu (10.1016/j.rineng.2024.102215_bib18) 2020; 8
Chathuranika (10.1016/j.rineng.2024.102215_bib6) 2022; 9
Mehta (10.1016/j.rineng.2024.102215_bib7) 2023; 20
Gunathilake (10.1016/j.rineng.2024.102215_bib2) 2020; 2020
Wegayehu (10.1016/j.rineng.2024.102215_bib28) 2022; 2022
Gandomi (10.1016/j.rineng.2024.102215_bib4) 2012; 21
References_xml – volume: 64
  year: 2021
  ident: bib1
  article-title: Evaluating the performances of several artificial intelligence methods in forecasting daily streamflow time series for sustainable water resources management
  publication-title: Sustain. Cities Soc.
– volume: 21
  start-page: 189
  year: 2012
  end-page: 201
  ident: bib4
  article-title: A new multi-gene genetic programming approach to non-linear system modeling. Part II: geotechnical and earthquake engineering problems
  publication-title: Neural Comput. Appl.
– volume: 5
  start-page: 503
  year: 2012
  end-page: 518
  ident: bib11
  article-title: A framework for hydrologic classification with a review of methodologies and applications in ecohydrology
  publication-title: Ecohydrology
– volume: 17
  year: 2023
  ident: bib27
  article-title: Particle swarm optimization based LSTM networks for water level forecasting: a case study on Bangladesh river network
  publication-title: Results Eng.
– volume: 64
  start-page: 1857
  year: 2019
  end-page: 1866
  ident: bib25
  article-title: Comparison of daily streamflow forecasts using extreme learning machines and the random forest method
  publication-title: Hydrol. Sci. J.
– volume: 34
  start-page: 4113
  year: 2020
  end-page: 4131
  ident: bib15
  article-title: Employing machine learning algorithms for streamflow prediction: a case study of four river basins with different climatic zones in the United States
  publication-title: Water Resour. Manag.
– volume: 131
  year: 2020
  ident: bib31
  article-title: Distributed long-term hourly streamflow predictions using deep learning – a case study for State of Iowa
  publication-title: Environ. Model. Software
– volume: 35
  start-page: 4167
  year: 2021
  end-page: 4187
  ident: bib20
  article-title: Performance comparison of an LSTM-based deep learning model versus conventional machine learning algorithms for streamflow forecasting
  publication-title: Water Resour. Manag.
– volume: 15
  start-page: 2572
  year: 2023
  ident: bib8
  article-title: Advanced machine learning techniques to improve hydrological prediction: a comparative analysis of streamflow prediction models
  publication-title: Water (Basel)
– volume: 18
  year: 2023
  ident: bib33
  article-title: LULC changes to riverine flooding: a case study on the Jamuna River, Bangladesh using the multilayer perceptron model
  publication-title: Results Eng.
– volume: 22
  year: 2024
  ident: bib23
  article-title: Enhancing river flow predictions: comparative analysis of machine learning approaches in modeling stage-discharge relationship
  publication-title: Results Eng.
– volume: 18
  year: 2023
  ident: bib35
  article-title: Water level prediction using soft computing techniques: a case study in the Malwathu Oya, Sri Lanka
  publication-title: PLoS One
– volume: 38
  start-page: 192
  year: 2019
  end-page: 206
  ident: bib32
  article-title: Long‐term streamflow forecasting using artificial neural network based on preprocessing technique
  publication-title: J. Forecast.
– volume: 9
  start-page: 48
  year: 2022
  ident: bib6
  article-title: Evaluation of future streamflow in the upper part of the Nilwala River Basin (Sri Lanka) under climate change
  publication-title: Hydrology
– volume: 2020
  start-page: 1
  year: 2020
  end-page: 15
  ident: bib2
  article-title: Evaluation of future climate and potential impact on streamflow in the upper nan River Basin of Northern Thailand
  publication-title: Adv. Meteorol.
– volume: 33
  start-page: 4783
  year: 2019
  end-page: 4797
  ident: bib26
  article-title: Short-term streamflow forecasting using the feature-enhanced regression model
  publication-title: Water Resour. Manag.
– volume: 535
  start-page: 25
  year: 2023
  end-page: 39
  ident: bib13
  article-title: The coming of age of interpretable and explainable machine learning models
  publication-title: Neurocomputing
– volume: 237
  start-page: 350
  year: 2017
  end-page: 361
  ident: bib10
  article-title: Machine learning on big data: opportunities and challenges
  publication-title: Neurocomputing
– start-page: 239
  year: 2021
  end-page: 262
  ident: bib22
  article-title: Averaging multiclimate model prediction of streamflow in the machine learning paradigm
  publication-title: Advances in Streamflow Forecasting
– volume: 20
  year: 2023
  ident: bib7
  article-title: Improving flood forecasting in Narmada river basin using hierarchical clustering and hydrological modelling
  publication-title: Results Eng.
– volume: 152
  year: 2021
  ident: bib9
  article-title: A workflow to address pitfalls and challenges in applying machine learning models to hydrology
  publication-title: Adv. Water Resour.
– volume: 17
  start-page: 2101
  year: 2003
  end-page: 2111
  ident: bib5
  article-title: Downward approach to hydrological prediction
  publication-title: Hydrol. Process.
– volume: 147
  year: 2023
  ident: bib36
  article-title: Cascaded-ANFIS to simulate nonlinear rainfall–runoff relationship
  publication-title: Appl. Soft Comput.
– volume: 15
  year: 2023
  ident: bib14
  article-title: A comparison of machine learning models for predicting rainfall in urban metropolitan cities
  publication-title: Sustainability
– volume: 596
  year: 2021
  ident: bib21
  article-title: Identifying major drivers of daily streamflow from large-scale atmospheric circulation with machine learning
  publication-title: J. Hydrol. (Amst.)
– volume: 414–415
  start-page: 284
  year: 2012
  end-page: 293
  ident: bib17
  article-title: Daily streamflow forecasting by machine learning methods with weather and climate inputs
  publication-title: J. Hydrol. (Amst.)
– volume: 2022
  start-page: 1
  year: 2022
  end-page: 21
  ident: bib28
  article-title: Short-term daily univariate streamflow forecasting using deep learning models
  publication-title: Adv. Meteorol.
– volume: 14
  start-page: 3352
  year: 2022
  ident: bib29
  article-title: Short-term streamflow forecasting using hybrid deep learning model based on grey wolf algorithm for hydrological time series
  publication-title: Sustainability
– volume: 2021
  start-page: 1
  year: 2021
  end-page: 9
  ident: bib12
  article-title: Hydrological models and artificial neural networks (ANNs) to simulate streamflow in a tropical catchment of Sri Lanka
  publication-title: Appl. Comput. Intell. Soft Comput.
– volume: 8
  start-page: 32632
  year: 2020
  end-page: 32651
  ident: bib18
  article-title: Deep learning data-intelligence model based on adjusted forecasting window scale: application in daily streamflow simulation
  publication-title: IEEE Access
– volume: 9
  start-page: 71805
  year: 2021
  end-page: 71820
  ident: bib19
  article-title: Comparison of deep learning techniques for river streamflow forecasting
  publication-title: IEEE Access
– volume: 601
  year: 2021
  ident: bib16
  article-title: A hybrid deep learning algorithm and its application to streamflow prediction
  publication-title: J. Hydrol. (Amst.)
– volume: 21
  year: 2024
  ident: bib3
  article-title: Flood hazards and susceptibility detection for Ganga river, Bihar state, India: employment of remote sensing and statistical approaches
  publication-title: Results Eng.
– volume: 16
  start-page: 533
  year: 2023
  end-page: 548
  ident: bib24
  article-title: Comparison of different optimized machine learning algorithms for daily river flow forecasting
  publication-title: Earth Sci Inform
– volume: 65
  start-page: 2590
  year: 2020
  end-page: 2603
  ident: bib30
  article-title: Short-term streamflow time series prediction model by machine learning tool based on data preprocessing technique and swarm intelligence algorithm
  publication-title: Hydrol. Sci. J.
– volume: 615
  year: 2022
  ident: bib34
  article-title: Improving long-term streamflow prediction in a poorly gauged basin using geo-spatiotemporal mesoscale data and attention-based deep learning: a comparative study
  publication-title: J. Hydrol. (Amst.)
– volume: 16
  start-page: 533
  year: 2023
  ident: 10.1016/j.rineng.2024.102215_bib24
  article-title: Comparison of different optimized machine learning algorithms for daily river flow forecasting
  publication-title: Earth Sci Inform
  doi: 10.1007/s12145-022-00896-3
– volume: 64
  year: 2021
  ident: 10.1016/j.rineng.2024.102215_bib1
  article-title: Evaluating the performances of several artificial intelligence methods in forecasting daily streamflow time series for sustainable water resources management
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2020.102562
– volume: 2021
  start-page: 1
  year: 2021
  ident: 10.1016/j.rineng.2024.102215_bib12
  article-title: Hydrological models and artificial neural networks (ANNs) to simulate streamflow in a tropical catchment of Sri Lanka
  publication-title: Appl. Comput. Intell. Soft Comput.
– start-page: 239
  year: 2021
  ident: 10.1016/j.rineng.2024.102215_bib22
  article-title: Averaging multiclimate model prediction of streamflow in the machine learning paradigm
– volume: 15
  start-page: 2572
  year: 2023
  ident: 10.1016/j.rineng.2024.102215_bib8
  article-title: Advanced machine learning techniques to improve hydrological prediction: a comparative analysis of streamflow prediction models
  publication-title: Water (Basel)
– volume: 18
  year: 2023
  ident: 10.1016/j.rineng.2024.102215_bib33
  article-title: LULC changes to riverine flooding: a case study on the Jamuna River, Bangladesh using the multilayer perceptron model
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2023.101079
– volume: 21
  year: 2024
  ident: 10.1016/j.rineng.2024.102215_bib3
  article-title: Flood hazards and susceptibility detection for Ganga river, Bihar state, India: employment of remote sensing and statistical approaches
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2023.101665
– volume: 5
  start-page: 503
  year: 2012
  ident: 10.1016/j.rineng.2024.102215_bib11
  article-title: A framework for hydrologic classification with a review of methodologies and applications in ecohydrology
  publication-title: Ecohydrology
  doi: 10.1002/eco.251
– volume: 2022
  start-page: 1
  year: 2022
  ident: 10.1016/j.rineng.2024.102215_bib28
  article-title: Short-term daily univariate streamflow forecasting using deep learning models
  publication-title: Adv. Meteorol.
  doi: 10.1155/2022/1860460
– volume: 17
  start-page: 2101
  year: 2003
  ident: 10.1016/j.rineng.2024.102215_bib5
  article-title: Downward approach to hydrological prediction
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.1425
– volume: 22
  year: 2024
  ident: 10.1016/j.rineng.2024.102215_bib23
  article-title: Enhancing river flow predictions: comparative analysis of machine learning approaches in modeling stage-discharge relationship
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2024.102017
– volume: 20
  year: 2023
  ident: 10.1016/j.rineng.2024.102215_bib7
  article-title: Improving flood forecasting in Narmada river basin using hierarchical clustering and hydrological modelling
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2023.101571
– volume: 414–415
  start-page: 284
  year: 2012
  ident: 10.1016/j.rineng.2024.102215_bib17
  article-title: Daily streamflow forecasting by machine learning methods with weather and climate inputs
  publication-title: J. Hydrol. (Amst.)
  doi: 10.1016/j.jhydrol.2011.10.039
– volume: 15
  year: 2023
  ident: 10.1016/j.rineng.2024.102215_bib14
  article-title: A comparison of machine learning models for predicting rainfall in urban metropolitan cities
  publication-title: Sustainability
  doi: 10.3390/su151813724
– volume: 9
  start-page: 71805
  year: 2021
  ident: 10.1016/j.rineng.2024.102215_bib19
  article-title: Comparison of deep learning techniques for river streamflow forecasting
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3077703
– volume: 64
  start-page: 1857
  year: 2019
  ident: 10.1016/j.rineng.2024.102215_bib25
  article-title: Comparison of daily streamflow forecasts using extreme learning machines and the random forest method
  publication-title: Hydrol. Sci. J.
  doi: 10.1080/02626667.2019.1680846
– volume: 14
  start-page: 3352
  year: 2022
  ident: 10.1016/j.rineng.2024.102215_bib29
  article-title: Short-term streamflow forecasting using hybrid deep learning model based on grey wolf algorithm for hydrological time series
  publication-title: Sustainability
  doi: 10.3390/su14063352
– volume: 596
  year: 2021
  ident: 10.1016/j.rineng.2024.102215_bib21
  article-title: Identifying major drivers of daily streamflow from large-scale atmospheric circulation with machine learning
  publication-title: J. Hydrol. (Amst.)
  doi: 10.1016/j.jhydrol.2021.126086
– volume: 18
  year: 2023
  ident: 10.1016/j.rineng.2024.102215_bib35
  article-title: Water level prediction using soft computing techniques: a case study in the Malwathu Oya, Sri Lanka
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0282847
– volume: 131
  year: 2020
  ident: 10.1016/j.rineng.2024.102215_bib31
  article-title: Distributed long-term hourly streamflow predictions using deep learning – a case study for State of Iowa
  publication-title: Environ. Model. Software
  doi: 10.1016/j.envsoft.2020.104761
– volume: 615
  year: 2022
  ident: 10.1016/j.rineng.2024.102215_bib34
  article-title: Improving long-term streamflow prediction in a poorly gauged basin using geo-spatiotemporal mesoscale data and attention-based deep learning: a comparative study
  publication-title: J. Hydrol. (Amst.)
  doi: 10.1016/j.jhydrol.2022.128608
– volume: 35
  start-page: 4167
  year: 2021
  ident: 10.1016/j.rineng.2024.102215_bib20
  article-title: Performance comparison of an LSTM-based deep learning model versus conventional machine learning algorithms for streamflow forecasting
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-021-02937-w
– volume: 2020
  start-page: 1
  year: 2020
  ident: 10.1016/j.rineng.2024.102215_bib2
  article-title: Evaluation of future climate and potential impact on streamflow in the upper nan River Basin of Northern Thailand
  publication-title: Adv. Meteorol.
  doi: 10.1155/2020/8881118
– volume: 535
  start-page: 25
  year: 2023
  ident: 10.1016/j.rineng.2024.102215_bib13
  article-title: The coming of age of interpretable and explainable machine learning models
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2023.02.040
– volume: 17
  year: 2023
  ident: 10.1016/j.rineng.2024.102215_bib27
  article-title: Particle swarm optimization based LSTM networks for water level forecasting: a case study on Bangladesh river network
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2023.100951
– volume: 34
  start-page: 4113
  year: 2020
  ident: 10.1016/j.rineng.2024.102215_bib15
  article-title: Employing machine learning algorithms for streamflow prediction: a case study of four river basins with different climatic zones in the United States
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-020-02659-5
– volume: 21
  start-page: 189
  year: 2012
  ident: 10.1016/j.rineng.2024.102215_bib4
  article-title: A new multi-gene genetic programming approach to non-linear system modeling. Part II: geotechnical and earthquake engineering problems
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-011-0735-y
– volume: 152
  year: 2021
  ident: 10.1016/j.rineng.2024.102215_bib9
  article-title: A workflow to address pitfalls and challenges in applying machine learning models to hydrology
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2021.103920
– volume: 9
  start-page: 48
  year: 2022
  ident: 10.1016/j.rineng.2024.102215_bib6
  article-title: Evaluation of future streamflow in the upper part of the Nilwala River Basin (Sri Lanka) under climate change
  publication-title: Hydrology
  doi: 10.3390/hydrology9030048
– volume: 33
  start-page: 4783
  year: 2019
  ident: 10.1016/j.rineng.2024.102215_bib26
  article-title: Short-term streamflow forecasting using the feature-enhanced regression model
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-019-02399-1
– volume: 8
  start-page: 32632
  year: 2020
  ident: 10.1016/j.rineng.2024.102215_bib18
  article-title: Deep learning data-intelligence model based on adjusted forecasting window scale: application in daily streamflow simulation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2974406
– volume: 38
  start-page: 192
  year: 2019
  ident: 10.1016/j.rineng.2024.102215_bib32
  article-title: Long‐term streamflow forecasting using artificial neural network based on preprocessing technique
  publication-title: J. Forecast.
  doi: 10.1002/for.2564
– volume: 65
  start-page: 2590
  year: 2020
  ident: 10.1016/j.rineng.2024.102215_bib30
  article-title: Short-term streamflow time series prediction model by machine learning tool based on data preprocessing technique and swarm intelligence algorithm
  publication-title: Hydrol. Sci. J.
  doi: 10.1080/02626667.2020.1828889
– volume: 147
  year: 2023
  ident: 10.1016/j.rineng.2024.102215_bib36
  article-title: Cascaded-ANFIS to simulate nonlinear rainfall–runoff relationship
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2023.110722
– volume: 237
  start-page: 350
  year: 2017
  ident: 10.1016/j.rineng.2024.102215_bib10
  article-title: Machine learning on big data: opportunities and challenges
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.01.026
– volume: 601
  year: 2021
  ident: 10.1016/j.rineng.2024.102215_bib16
  article-title: A hybrid deep learning algorithm and its application to streamflow prediction
  publication-title: J. Hydrol. (Amst.)
  doi: 10.1016/j.jhydrol.2021.126636
SSID ssj0002810137
Score 2.4076586
Snippet The Narmada River basin, a significant water resource in central India, plays a crucial role in supporting agricultural, industrial, and domestic water supply....
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 102215
SubjectTerms CatBoost
LGBM
Narmada river basin
Random forest
Stream flow forecasting
XGBoost
Title River stream flow prediction through advanced machine learning models for enhanced accuracy
URI https://dx.doi.org/10.1016/j.rineng.2024.102215
https://doaj.org/article/cfca28632bf2442dae0ea2f2e4a3fb50
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIpygveWCNiO3EbUZArSqkMiAqVWKw_CxUbVqVVoiF347PTqpMdGHJEDl29PmUu4vvvg-h25ylWqmU-a9fkDBjPJGa0cRyZZkzQFoHvwYGz7w_zJ5G-agh9QU1YZEeOAJ3p52WtMMZVc57ImqkTa2kjtpMMqditu59XiOZmoRfRgS49OpeuVDQBd105dinhDQDwgIKSrgNXxQo-xsuqeFmeofooIoP8X18ryO0Y8tjtN9gDTxBby9QS4Ghy0POsJvOv_BiCectgDGuhHdwfbiPZ6Fc0uJKH2KMg_jNJ_bRKrblexwktV4vpf4-RcNe9_Wxn1QaCYnOSGeVcKcL6dppYQinRc6U5TpVJHU-D9HGJzMkd9z5qIco0tHcMUm44n57DCXKMMPO0G45L-05wjrPqUfXaN7OMsUK5ZMxB-dosoD-26KFWI2W0BWBOOhYTEVdKTYREWMBGIuIcQslm6cWkUBjy_gH2IjNWKC_Dje8UYjKKMQ2o2ihdr2NoookYoTgp_r4c_mL_1j-Eu3BlLGi7ArtrpZre-1jl5W6CWbqr4Of7i9p7-_n
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=River+stream+flow+prediction+through+advanced+machine+learning+models+for+enhanced+accuracy&rft.jtitle=Results+in+engineering&rft.au=Naresh+Kedam&rft.au=Deepak+Kumar+Tiwari&rft.au=Vijendra+Kumar&rft.au=Khaled+Mohamed+Khedher&rft.date=2024-06-01&rft.pub=Elsevier&rft.eissn=2590-1230&rft.volume=22&rft.spage=102215&rft_id=info:doi/10.1016%2Fj.rineng.2024.102215&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_cfca28632bf2442dae0ea2f2e4a3fb50
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-1230&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-1230&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-1230&client=summon