High-resolution studies of the Majorana atomic chain platform
Ordered assemblies of magnetic atoms on the surface of conventional superconductors can be used to engineer topological superconducting phases and realize Majorana fermion quasiparticles (MQPs) in a condensed matter setting. Recent experiments have shown that chains of Fe atoms on Pb generically hav...
Saved in:
Published in | Nature physics Vol. 13; no. 3; pp. 286 - 291 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.03.2017
Nature Publishing Group Nature Publishing Group (NPG) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ordered assemblies of magnetic atoms on the surface of conventional superconductors can be used to engineer topological superconducting phases and realize Majorana fermion quasiparticles (MQPs) in a condensed matter setting. Recent experiments have shown that chains of Fe atoms on Pb generically have the required electronic characteristics to form a one-dimensional topological superconductor and have revealed spatially resolved signatures of localized MQPs at the ends of such chains. Here we report higher-resolution measurements of the same atomic chain system performed using a dilution refrigerator scanning tunnelling microscope (STM). With significantly better energy resolution than previous studies, we show that the zero-bias peak (ZBP) in Fe chains has no detectable splitting from hybridization with other states. The measurements also reveal that the ZBP exhibits a distinctive ‘double eye’ spatial pattern on nanometre length scales. Theoretically we show that this is a general consequence of STM measurements of MQPs with substantial spectral weight in the superconducting substrate, a conclusion further supported by measurements of Pb overlayers deposited on top of the Fe chains. Finally, we report experiments performed with superconducting tips in search of the particle–hole symmetric MQP signature expected in such measurements.
High-resolution scanning tunnelling microscopy measurements show that chains of magnetic atoms on the surface of a superconductor provide a promising platform for realizing and manipulating Majorana fermion quasiparticles. |
---|---|
AbstractList | Ordered assemblies of magnetic atoms on the surface of conventional superconductors can be used to engineer topological superconducting phases and realize Majorana fermion quasiparticles (MQPs) in a condensed matter setting. Recent experiments have shown that chains of Fe atoms on Pb generically have the required electronic characteristics to form a one-dimensional topological superconductor and have revealed spatially resolved signatures of localized MQPs at the ends of such chains. Here we report higher-resolution measurements of the same atomic chain system performed using a dilution refrigerator scanning tunnelling microscope (STM). With significantly better energy resolution than previous studies, we show that the zero-bias peak (ZBP) in Fe chains has no detectable splitting from hybridization with other states. The measurements also reveal that the ZBP exhibits a distinctive 'double eye' spatial pattern on nanometre length scales. Theoretically we show that this is a general consequence of STM measurements of MQPs with substantial spectral weight in the superconducting substrate, a conclusion further supported by measurements of Pb overlayers deposited on top of the Fe chains. Finally, we report experiments performed with superconducting tips in search of the particle-hole symmetric MQP signature expected in such measurements. Ordered assemblies of magnetic atoms on the surface of conventional superconductors can be used to engineer topological superconducting phases and realize Majorana fermion quasiparticles (MQPs) in a condensed matter setting. Recent experiments have shown that chains of Fe atoms on Pb generically have the required electronic characteristics to form a one-dimensional topological superconductor and have revealed spatially resolved signatures of localized MQPs at the ends of such chains. Here we report higher-resolution measurements of the same atomic chain system performed using a dilution refrigerator scanning tunnelling microscope (STM). With significantly better energy resolution than previous studies, we show that the zero-bias peak (ZBP) in Fe chains has no detectable splitting from hybridization with other states. The measurements also reveal that the ZBP exhibits a distinctive ‘double eye’ spatial pattern on nanometre length scales. Theoretically we show that this is a general consequence of STM measurements of MQPs with substantial spectral weight in the superconducting substrate, a conclusion further supported by measurements of Pb overlayers deposited on top of the Fe chains. Finally, we report experiments performed with superconducting tips in search of the particle–hole symmetric MQP signature expected in such measurements. High-resolution scanning tunnelling microscopy measurements show that chains of magnetic atoms on the surface of a superconductor provide a promising platform for realizing and manipulating Majorana fermion quasiparticles. Not provided. |
Author | Randeria, Mallika T. Wang, Zhijun Drozdov, Ilya K. Feldman, Benjamin E. Xie, Yonglong Yazdani, Ali Li, Jian Jeon, Sangjun Andrei Bernevig, B. |
Author_xml | – sequence: 1 givenname: Benjamin E. orcidid: 0000-0002-4962-0548 surname: Feldman fullname: Feldman, Benjamin E. organization: Joseph Henry Laboratories and Department of Physics, Princeton University – sequence: 2 givenname: Mallika T. orcidid: 0000-0002-1300-8621 surname: Randeria fullname: Randeria, Mallika T. organization: Joseph Henry Laboratories and Department of Physics, Princeton University – sequence: 3 givenname: Jian orcidid: 0000-0003-0297-6528 surname: Li fullname: Li, Jian organization: Joseph Henry Laboratories and Department of Physics, Princeton University – sequence: 4 givenname: Sangjun surname: Jeon fullname: Jeon, Sangjun organization: Joseph Henry Laboratories and Department of Physics, Princeton University – sequence: 5 givenname: Yonglong surname: Xie fullname: Xie, Yonglong organization: Joseph Henry Laboratories and Department of Physics, Princeton University – sequence: 6 givenname: Zhijun orcidid: 0000-0003-2169-8068 surname: Wang fullname: Wang, Zhijun organization: Joseph Henry Laboratories and Department of Physics, Princeton University – sequence: 7 givenname: Ilya K. surname: Drozdov fullname: Drozdov, Ilya K. organization: Joseph Henry Laboratories and Department of Physics, Princeton University, Present address: Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA – sequence: 8 givenname: B. surname: Andrei Bernevig fullname: Andrei Bernevig, B. organization: Joseph Henry Laboratories and Department of Physics, Princeton University – sequence: 9 givenname: Ali surname: Yazdani fullname: Yazdani, Ali email: yazdani@princeton.edu organization: Joseph Henry Laboratories and Department of Physics, Princeton University |
BackLink | https://www.osti.gov/biblio/1535089$$D View this record in Osti.gov |
BookMark | eNpt0E9LwzAYBvAgE9ymB79B0YsKdfnXpT14kKFOmHjRc0jTZM1ok5qkh317OyZDpqe8h9_78OaZgJF1VgFwieA9giSf2a7eBlJQdgLGiNEsxTRHo8PMyBmYhLCBkOI5ImPwsDTrOvUquKaPxtkkxL4yKiROJ7FWyZvYOC-sSER0rZGJrIWxSdeIqJ1vz8GpFk1QFz_vFHw-P30slunq_eV18bhKJUV5TOcaZaTUhCjJcCEopbDKiKQakZJlrBoOLzNd4VKwCiNZlkWJtZJIM5nnWBRkCq72uS5Ew4M0UclaOmuVjHzIzmC-Qzd71Hn31asQeWuCVE0jrHJ94KiAFBX5nOGBXh_Rjeu9Hb7AUV6ggkIMd-p2r6R3IXileedNK_yWI8h3bfND24OdHdnhSLFrNHphmn837vYbYUi1a-V_3fAHfwPBt5Ky |
CitedBy_id | crossref_primary_10_1103_PhysRevB_105_054507 crossref_primary_10_1103_PhysRevB_96_195307 crossref_primary_10_1103_PhysRevB_107_214505 crossref_primary_10_1103_PhysRevLett_120_156803 crossref_primary_10_1016_j_ppnp_2019_04_004 crossref_primary_10_1103_PhysRevB_102_245403 crossref_primary_10_1103_PhysRevB_107_115421 crossref_primary_10_1038_s41467_019_10397_5 crossref_primary_10_1016_j_physrep_2024_10_005 crossref_primary_10_1103_PhysRevB_103_125110 crossref_primary_10_1103_PhysRevB_96_195430 crossref_primary_10_1103_PhysRevB_102_085411 crossref_primary_10_1016_j_physleta_2022_128475 crossref_primary_10_1103_PhysRevB_109_054515 crossref_primary_10_1103_PhysRevB_96_235411 crossref_primary_10_1103_RevModPhys_91_041001 crossref_primary_10_1103_PhysRevB_97_235139 crossref_primary_10_1007_s11433_021_1773_3 crossref_primary_10_1038_s41467_022_31948_3 crossref_primary_10_1016_j_cap_2024_08_011 crossref_primary_10_1063_5_0232158 crossref_primary_10_1103_PhysRevApplied_20_044081 crossref_primary_10_1088_2515_7639_ad5763 crossref_primary_10_1103_PhysRevB_101_014504 crossref_primary_10_3762_bjnano_13_1 crossref_primary_10_1088_1361_648X_aa93ab crossref_primary_10_1103_PhysRevB_110_L041110 crossref_primary_10_1103_PhysRevB_102_045413 crossref_primary_10_1063_1_5132872 crossref_primary_10_1103_PhysRevB_103_075115 crossref_primary_10_1103_PhysRevLett_125_187702 crossref_primary_10_1038_s41535_019_0179_7 crossref_primary_10_1103_PhysRevLett_121_227701 crossref_primary_10_1103_PhysRevB_103_235437 crossref_primary_10_7498_aps_69_20200812 crossref_primary_10_1088_1361_648X_ad3093 crossref_primary_10_1038_s41467_020_18540_3 crossref_primary_10_1038_s42005_023_01201_4 crossref_primary_10_1103_PhysRevLett_119_197002 crossref_primary_10_1103_PhysRevB_102_125407 crossref_primary_10_1103_PhysRevB_103_214514 crossref_primary_10_1088_1361_648X_ac413f crossref_primary_10_1007_s00339_022_05644_4 crossref_primary_10_1126_science_aao1797 crossref_primary_10_1088_1367_2630_ab82bb crossref_primary_10_1038_s41467_023_36201_z crossref_primary_10_1002_adma_202008029 crossref_primary_10_1021_acs_nanolett_9b04187 crossref_primary_10_1103_PhysRevResearch_2_023197 crossref_primary_10_1103_PhysRevB_109_064518 crossref_primary_10_1088_1367_2630_acc1ff crossref_primary_10_1126_science_aan3670 crossref_primary_10_1016_j_progsurf_2018_01_001 crossref_primary_10_1088_1674_1056_ad498a crossref_primary_10_1002_advs_202200186 crossref_primary_10_1088_1367_2630_acc607 crossref_primary_10_1103_PhysRevB_110_155427 crossref_primary_10_1103_PhysRevB_96_134501 crossref_primary_10_1103_PhysRevB_103_205424 crossref_primary_10_1103_PhysRevB_106_064505 crossref_primary_10_1103_PhysRevB_97_214507 crossref_primary_10_1038_s42005_022_00920_4 crossref_primary_10_1103_PhysRevB_104_L121406 crossref_primary_10_1103_PhysRevB_105_144503 crossref_primary_10_1021_acsnano_4c10395 crossref_primary_10_1002_adma_202306689 crossref_primary_10_1103_PhysRevB_105_214525 crossref_primary_10_1038_s42254_021_00328_z crossref_primary_10_1103_PhysRevMaterials_2_024801 crossref_primary_10_1103_PhysRevMaterials_2_014201 crossref_primary_10_1103_PhysRevB_96_024516 crossref_primary_10_1088_1361_6633_aa7e1a crossref_primary_10_1002_qute_202200080 crossref_primary_10_1088_1361_648X_aad659 crossref_primary_10_1103_PhysRevB_107_045401 crossref_primary_10_1103_PhysRevResearch_3_023007 crossref_primary_10_1088_1361_6668_ad883c crossref_primary_10_1103_PhysRevB_104_024508 crossref_primary_10_1103_PhysRevLett_129_277001 crossref_primary_10_1103_PhysRevB_100_094507 crossref_primary_10_1103_PhysRevLett_128_036801 crossref_primary_10_1038_s41565_022_01078_4 crossref_primary_10_1103_PhysRevB_100_235412 crossref_primary_10_1103_PhysRevB_107_184507 crossref_primary_10_1088_0256_307X_39_5_057301 crossref_primary_10_1103_PhysRevB_97_064519 crossref_primary_10_1103_PhysRevB_105_L100406 crossref_primary_10_1103_PhysRevB_96_121119 crossref_primary_10_1103_PhysRevB_97_195429 crossref_primary_10_1103_PhysRevLett_126_027001 crossref_primary_10_1103_PhysRevB_102_134504 crossref_primary_10_1088_1367_2630_ad96da crossref_primary_10_1038_s41567_020_0971_0 crossref_primary_10_1103_PhysRevB_98_201110 crossref_primary_10_1103_PhysRevMaterials_6_094010 crossref_primary_10_1103_PhysRevB_100_214504 crossref_primary_10_1088_0256_307X_38_7_077302 crossref_primary_10_1088_1674_1056_acaa29 crossref_primary_10_1103_PhysRevB_104_214506 crossref_primary_10_1038_s41467_024_54525_2 crossref_primary_10_1088_1361_648X_ad32de crossref_primary_10_1103_PhysRevB_98_201109 crossref_primary_10_1038_s41567_020_0972_z crossref_primary_10_1063_5_0043694 crossref_primary_10_1088_2515_7639_ad1c04 crossref_primary_10_1103_PhysRevB_109_165302 crossref_primary_10_1103_PhysRevA_98_033604 crossref_primary_10_1038_s41598_019_49227_5 crossref_primary_10_3762_bjnano_9_158 crossref_primary_10_1038_s41467_023_38369_w crossref_primary_10_1103_PhysRevB_101_085402 crossref_primary_10_1021_acs_nanolett_1c03856 crossref_primary_10_1103_PhysRevB_96_121113 crossref_primary_10_1038_s41467_023_39109_w crossref_primary_10_1038_s41535_022_00530_x crossref_primary_10_1063_5_0050532 crossref_primary_10_1103_PhysRevB_110_L241409 crossref_primary_10_1103_PhysRevB_96_094307 crossref_primary_10_1007_s11433_022_2015_y crossref_primary_10_1103_PhysRevB_101_245427 crossref_primary_10_1063_5_0102999 crossref_primary_10_1103_PhysRevB_100_075420 crossref_primary_10_1103_PhysRevB_97_184506 crossref_primary_10_1103_PhysRevB_97_184503 crossref_primary_10_1088_1367_2630_abd8c1 crossref_primary_10_3762_bjnano_9_50 crossref_primary_10_1088_1367_2630_abb514 crossref_primary_10_1103_PhysRevResearch_1_033212 crossref_primary_10_1038_s41567_021_01234_y crossref_primary_10_1103_PhysRevB_99_235430 crossref_primary_10_1103_PhysRevB_103_235149 crossref_primary_10_1021_acs_nanolett_2c03952 crossref_primary_10_1038_s41578_021_00336_6 crossref_primary_10_1073_pnas_2024837118 crossref_primary_10_1103_PhysRevB_106_024501 crossref_primary_10_1063_1_5020045 crossref_primary_10_1103_PhysRevB_95_174515 crossref_primary_10_1103_PhysRevB_100_144510 crossref_primary_10_1103_PhysRevB_104_245133 crossref_primary_10_1103_PhysRevB_96_020507 crossref_primary_10_1021_acs_nanolett_7b01728 crossref_primary_10_1103_PhysRevB_100_155111 crossref_primary_10_1103_PhysRevB_107_014202 crossref_primary_10_1103_PhysRevB_103_165403 crossref_primary_10_1103_PhysRevB_111_014501 crossref_primary_10_1103_PhysRevB_99_104510 crossref_primary_10_1038_s41467_018_05701_8 crossref_primary_10_1103_PhysRevB_97_125119 crossref_primary_10_1103_PhysRevResearch_4_043087 crossref_primary_10_1126_sciadv_aar5251 crossref_primary_10_1103_PhysRevB_99_165413 crossref_primary_10_1103_PhysRevB_107_L060304 crossref_primary_10_1103_PhysRevB_97_035311 crossref_primary_10_1088_1361_648X_ab03bf crossref_primary_10_1007_s10948_021_06029_z crossref_primary_10_1103_PhysRevLett_125_117003 crossref_primary_10_1146_annurev_conmatphys_031218_013618 crossref_primary_10_1002_pssb_201800492 crossref_primary_10_1088_1674_1056_abd762 crossref_primary_10_1007_s11433_021_1737_4 crossref_primary_10_1016_j_cpc_2021_108135 crossref_primary_10_1103_PhysRevB_101_205143 crossref_primary_10_1103_PhysRevResearch_3_013262 crossref_primary_10_1103_PhysRevB_99_220506 crossref_primary_10_1080_23746149_2017_1327329 crossref_primary_10_1103_PhysRevB_98_085143 crossref_primary_10_3390_nano14030254 crossref_primary_10_1080_23746149_2019_1651672 crossref_primary_10_1103_PhysRevB_98_165426 crossref_primary_10_1103_PhysRevB_107_075410 crossref_primary_10_1007_s40766_024_00060_1 crossref_primary_10_1103_PhysRevB_100_235110 crossref_primary_10_1021_acs_nanolett_1c00387 crossref_primary_10_1073_pnas_1919753117 crossref_primary_10_7498_aps_69_20200831 crossref_primary_10_1103_PhysRevB_106_104503 crossref_primary_10_1126_science_ade0850 crossref_primary_10_1103_PhysRevB_102_161102 crossref_primary_10_3367_UFNe_2021_03_038950 crossref_primary_10_1016_j_cap_2018_08_001 crossref_primary_10_1103_PhysRevResearch_4_033182 crossref_primary_10_1103_PhysRevB_96_224408 crossref_primary_10_1063_1_5024045 crossref_primary_10_1063_5_0055997 crossref_primary_10_1126_science_abq5769 crossref_primary_10_1038_s41467_022_29879_0 crossref_primary_10_1103_PhysRevB_105_174517 crossref_primary_10_3390_nano9060894 crossref_primary_10_1103_PhysRevB_100_045301 crossref_primary_10_1103_PhysRevB_100_235131 crossref_primary_10_1103_PhysRevApplied_12_034048 crossref_primary_10_1103_PhysRevB_95_184511 crossref_primary_10_1038_s41598_019_42558_3 crossref_primary_10_1103_PhysRevB_104_235414 |
Cites_doi | 10.1103/PhysRevLett.115.266804 10.1126/science.1259327 10.1103/PhysRevLett.100.096407 10.1038/nature17162 10.1103/PhysRevB.90.235433 10.1070/1063-7869/44/10S/S29 10.1103/PhysRevB.88.180503 10.1103/PhysRevLett.111.186805 10.1103/PhysRevB.87.241401 10.1103/PhysRevLett.114.106801 10.1103/PhysRevLett.116.257003 10.1103/RevModPhys.80.1083 10.1103/PhysRevB.37.9298 10.1103/PhysRevLett.115.197204 10.1146/annurev-conmatphys-030212-184337 10.1038/nphys2429 10.1103/PhysRevB.91.094505 10.1007/BF02961314 10.1103/PhysRevLett.105.177002 10.1103/PhysRevB.92.064503 10.1016/S0003-4916(02)00018-0 10.1103/PhysRevB.88.155420 10.1103/PhysRevLett.115.127003 10.1088/1367-2630/14/12/125011 10.1103/PhysRevB.86.100503 10.1016/0550-3213(91)90407-O 10.1103/PhysRevLett.105.077001 10.1103/PhysRevLett.86.268 10.1103/PhysRevB.84.195442 10.1103/PhysRevLett.103.237001 10.1038/ncomms10395 10.1103/PhysRevLett.110.126406 10.1103/PhysRevLett.111.206802 10.1021/nl303758w 10.1103/PhysRevLett.114.157001 10.1038/nphys2479 10.1103/PhysRevB.85.020503 10.1063/1.4822271 10.1103/PhysRevLett.109.267002 10.1103/PhysRevLett.111.147202 10.1126/science.1222360 10.1103/PhysRevB.61.10267 10.1103/PhysRevLett.114.236803 10.1088/0034-4885/75/7/076501 10.1143/PTP.40.435 10.1103/PhysRevB.88.020407 10.1103/PhysRevLett.109.186802 10.1038/nmat4176 10.7498/aps.21.75 10.1038/npjqi.2016.35 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2016 Copyright Nature Publishing Group Mar 2017 |
Copyright_xml | – notice: Springer Nature Limited 2016 – notice: Copyright Nature Publishing Group Mar 2017 |
CorporateAuthor | Princeton Univ., NJ (United States) |
CorporateAuthor_xml | – name: Princeton Univ., NJ (United States) |
DBID | AAYXX CITATION 3V. 7U5 7XB 88I 8FD 8FE 8FG 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO GNUQQ HCIFZ L7M M2P P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI Q9U OTOTI |
DOI | 10.1038/nphys3947 |
DatabaseName | CrossRef ProQuest Central (Corporate) Solid State and Superconductivity Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One ProQuest Central ProQuest Central Student ProQuest SciTech Premium Collection Advanced Technologies Database with Aerospace Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic OSTI.GOV |
DatabaseTitle | CrossRef ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | Technology Research Database ProQuest Central Student |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1745-2481 |
EndPage | 291 |
ExternalDocumentID | 1535089 4321997805 10_1038_nphys3947 |
GroupedDBID | 0R~ 123 29M 39C 3V. 4.4 5BI 5M7 6OB 70F 88I 8FE 8FG 8FH 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJNI ABLJU ABUWG ABZEH ACBWK ACGFO ACGFS ACGOD ACMJI ACUHS ADBBV ADFRT AENEX AEUYN AFBBN AFKRA AFSHS AFWHJ AGAYW AGHTU AHBCP AHOSX AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BENPR BGLVJ BHPHI BKKNO BKSAR BPHCQ CCPQU DB5 DU5 DWQXO EBS EE. EJD ESX EXGXG F5P FEDTE FQGFK FSGXE GNUQQ HCIFZ HVGLF HZ~ I-F LGEZI LK5 LOTEE M2P M7R N9A NADUK NNMJJ NXXTH O9- ODYON P2P P62 PCBAR PQQKQ PROAC Q2X RNS RNT RNTTT SHXYY SIXXV SJN SNYQT SOJ TAOOD TBHMF TDRGL TSG TUS ~8M AAYXX ACMFV ACSTC AFANA ALPWD ATHPR CITATION PHGZM PHGZT 7U5 7XB 8FD 8FK L7M PKEHL PQEST PQGLB PQUKI Q9U AADEA AADWK AAEXX AAJMP AAPBV AAYJO ABEEJ ABGIJ ABPTK ABVXF ACBMV ACBRV ACBYP ACIGE ACTTH ACVWB ADMDM ADQMX ADZGE AEDAW AEFTE AGEZK AGGBP AHGBK AJDOV NYICJ OTOTI |
ID | FETCH-LOGICAL-c418t-6f153bf33ec729a4440d53c4f13b757d038b5fd2ba7d21cbb9b2fec1f7c882a93 |
IEDL.DBID | BENPR |
ISSN | 1745-2473 |
IngestDate | Fri May 19 02:19:09 EDT 2023 Fri Jul 11 03:46:27 EDT 2025 Sat Aug 23 12:37:06 EDT 2025 Tue Jul 01 00:25:38 EDT 2025 Thu Apr 24 22:52:14 EDT 2025 Fri Feb 21 02:38:28 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c418t-6f153bf33ec729a4440d53c4f13b757d038b5fd2ba7d21cbb9b2fec1f7c882a93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 SC0016239 USDOE Office of Science (SC) |
ORCID | 0000-0002-1300-8621 0000-0002-4962-0548 0000-0003-0297-6528 0000-0003-2169-8068 0000000302976528 0000000249620548 0000000213008621 0000000321698068 |
PQID | 1891940202 |
PQPubID | 27545 |
PageCount | 6 |
ParticipantIDs | osti_scitechconnect_1535089 proquest_miscellaneous_1904198672 proquest_journals_1891940202 crossref_primary_10_1038_nphys3947 crossref_citationtrail_10_1038_nphys3947 springer_journals_10_1038_nphys3947 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-03-01 |
PublicationDateYYYYMMDD | 2017-03-01 |
PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: United States |
PublicationTitle | Nature physics |
PublicationTitleAbbrev | Nature Phys |
PublicationYear | 2017 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Publishing Group (NPG) |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Publishing Group (NPG) |
References | Salomaa, Volovik (CR7) 1988; 37 Choy, Edge, Akhmerov, Beenakker (CR14) 2011; 84 Rusinov (CR44) 1969; 29 Lutchyn, Sau, Das Sarma (CR12) 2010; 105 Alicea (CR2) 2012; 75 Nadj-Perge (CR23) 2014; 346 Das (CR27) 2012; 8 CR38 CR37 Misra (CR46) 2013; 84 Nakosai, Tanaka, Nagaosa (CR21) 2013; 88 Sun (CR26) 2016; 116 Yu (CR42) 1965; 21 Kells, Meidan, Brouwer (CR36) 2012; 86 Rontynen, Ojanen (CR22) 2015; 114 Moore, Read (CR9) 1991; 360 Shiba (CR43) 1968; 40 Lee (CR33) 2012; 109 Deng (CR28) 2012; 12 Ruby (CR39) 2015; 115 Albrecht (CR31) 2016; 531 Peng, Pientka, Vinkler-Aviv, Glazman, von Oppen (CR45) 2015; 115 Nayak, Simon, Stern, Freedman, Das Sarma (CR6) 2008; 80 Ivanov (CR8) 2001; 86 Beenakker (CR3) 2013; 4 Ruby, Heinrich, Pascual, Franke (CR47) 2015; 114 Law, Lee, Ng (CR48) 2009; 103 Braunecker, Simon (CR19) 2013; 111 Kjaergaard, Wölms, Flensberg (CR15) 2012; 85 Meng, Klinovaja, Hoffman, Simon, Loss (CR50) 2015; 92 Finck, Van Harlingen, Mohseni, Jung, Li (CR29) 2013; 110 Nadj-Perge, Drozdov, Bernevig, Yazdani (CR16) 2013; 88 Majorana (CR4) 1937; 14 Kitaev (CR1) 2001; 44 Krogstrup (CR51) 2015; 14 Read, Green (CR10) 2000; 61 Oreg, Refael, von Oppen (CR13) 2010; 105 Rokhinson, Liu, Furdyna (CR30) 2012; 8 Dumitrescu, Roberts, Tewari, Sau, DasSarma (CR40) 2015; 91 Mourik (CR25) 2012; 336 Churchill (CR34) 2013; 87 Pikulin, Dahlhaus, Wimmer, Schomerus, Beenakker (CR35) 2012; 14 Fu, Kane (CR11) 2008; 100 Li (CR24) 2014; 90 Vazifeh, Franz (CR20) 2013; 111 Peng, Pientka, Glazman, von Oppen (CR41) 2015; 114 Klinovaja, Stano, Yazdani, Loss (CR18) 2013; 111 Kitaev (CR5) 2003; 303 Liu, Potter, Law, Lee (CR32) 2012; 109 Sau, Brydon (CR49) 2015; 115 Pientka, Glazman, von Oppen (CR17) 2013; 88 Li, Neupert, Bernevig, Yazdani (CR52) 2016; 7 DI Pikulin (BFnphys3947_CR35) 2012; 14 Y Oreg (BFnphys3947_CR13) 2010; 105 MT Deng (BFnphys3947_CR28) 2012; 12 E Dumitrescu (BFnphys3947_CR40) 2015; 91 S Misra (BFnphys3947_CR46) 2013; 84 H-H Sun (BFnphys3947_CR26) 2016; 116 N Read (BFnphys3947_CR10) 2000; 61 SM Albrecht (BFnphys3947_CR31) 2016; 531 LP Rokhinson (BFnphys3947_CR30) 2012; 8 P Krogstrup (BFnphys3947_CR51) 2015; 14 L Fu (BFnphys3947_CR11) 2008; 100 RM Lutchyn (BFnphys3947_CR12) 2010; 105 E Majorana (BFnphys3947_CR4) 1937; 14 M Ruby (BFnphys3947_CR47) 2015; 114 AY Kitaev (BFnphys3947_CR1) 2001; 44 S Nakosai (BFnphys3947_CR21) 2013; 88 J Rontynen (BFnphys3947_CR22) 2015; 114 J Klinovaja (BFnphys3947_CR18) 2013; 111 V Mourik (BFnphys3947_CR25) 2012; 336 J Liu (BFnphys3947_CR32) 2012; 109 B Braunecker (BFnphys3947_CR19) 2013; 111 ADK Finck (BFnphys3947_CR29) 2013; 110 HOH Churchill (BFnphys3947_CR34) 2013; 87 DA Ivanov (BFnphys3947_CR8) 2001; 86 J Li (BFnphys3947_CR52) 2016; 7 M Kjaergaard (BFnphys3947_CR15) 2012; 85 F Pientka (BFnphys3947_CR17) 2013; 88 T Meng (BFnphys3947_CR50) 2015; 92 EJH Lee (BFnphys3947_CR33) 2012; 109 AI Rusinov (BFnphys3947_CR44) 1969; 29 Y Peng (BFnphys3947_CR41) 2015; 114 CWJ Beenakker (BFnphys3947_CR3) 2013; 4 G Kells (BFnphys3947_CR36) 2012; 86 J Alicea (BFnphys3947_CR2) 2012; 75 MM Vazifeh (BFnphys3947_CR20) 2013; 111 JD Sau (BFnphys3947_CR49) 2015; 115 BFnphys3947_CR37 BFnphys3947_CR38 L Yu (BFnphys3947_CR42) 1965; 21 AY Kitaev (BFnphys3947_CR5) 2003; 303 TP Choy (BFnphys3947_CR14) 2011; 84 S Nadj-Perge (BFnphys3947_CR16) 2013; 88 G Moore (BFnphys3947_CR9) 1991; 360 A Das (BFnphys3947_CR27) 2012; 8 H Shiba (BFnphys3947_CR43) 1968; 40 MM Salomaa (BFnphys3947_CR7) 1988; 37 J Li (BFnphys3947_CR24) 2014; 90 Y Peng (BFnphys3947_CR45) 2015; 115 S Nadj-Perge (BFnphys3947_CR23) 2014; 346 C Nayak (BFnphys3947_CR6) 2008; 80 M Ruby (BFnphys3947_CR39) 2015; 115 KT Law (BFnphys3947_CR48) 2009; 103 |
References_xml | – volume: 115 start-page: 266804 year: 2015 ident: CR45 article-title: Robust Majorana conductance peaks for a superconducting lead publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.266804 – volume: 346 start-page: 602 year: 2014 end-page: 607 ident: CR23 article-title: Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor publication-title: Science doi: 10.1126/science.1259327 – volume: 100 start-page: 096407 year: 2008 ident: CR11 article-title: Superconducting proximity effect and Majorana fermions at the surface of a topological insulator publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.096407 – volume: 531 start-page: 206 year: 2016 end-page: 209 ident: CR31 article-title: Exponential protection of zero modes in Majorana islands publication-title: Nature doi: 10.1038/nature17162 – volume: 90 start-page: 235433 year: 2014 ident: CR24 article-title: Topological superconductivity induced by ferromagnetic metal chains publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.90.235433 – volume: 44 start-page: 131 year: 2001 end-page: 136 ident: CR1 article-title: Unpaired Majorana fermions in quantum wires publication-title: Phys.-Usp. doi: 10.1070/1063-7869/44/10S/S29 – volume: 88 start-page: 180503 year: 2013 ident: CR21 article-title: Two-dimensional -wave superconducting states with magnetic moments on a conventional -wave superconductor publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.180503 – volume: 111 start-page: 186805 year: 2013 ident: CR18 article-title: Topological superconductivity and Majorana fermions in RKKY systems publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.186805 – volume: 87 start-page: 241401 year: 2013 ident: CR34 article-title: Superconductor-nanowire devices from tunneling to the multichannel regime: zero-bias oscillations and magnetoconductance crossover publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.87.241401 – volume: 114 start-page: 106801 year: 2015 ident: CR41 article-title: Strong localization of Majorana end states in chains of magnetic adatoms publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.106801 – volume: 116 start-page: 257003 year: 2016 ident: CR26 article-title: Majorana zero mode detected with spin selective Andreev reflection in the vortex of a topological superconductor publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.257003 – volume: 80 start-page: 1083 year: 2008 end-page: 1159 ident: CR6 article-title: Non-Abelian anyons and topological quantum computation publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.80.1083 – volume: 37 start-page: 9298 year: 1988 end-page: 9311 ident: CR7 article-title: Cosmiclike domain walls in superfluid He- : instantons and diabolical points in ( , ) space publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.37.9298 – volume: 115 start-page: 197204 year: 2015 ident: CR39 article-title: End states and subgap structure in proximity-coupled chains of magnetic adatoms publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.197204 – volume: 4 start-page: 113 year: 2013 end-page: 136 ident: CR3 article-title: Search for Majorana fermions in superconductors publication-title: Ann. Rev. Condens. Matter Phys. doi: 10.1146/annurev-conmatphys-030212-184337 – volume: 8 start-page: 795 year: 2012 end-page: 799 ident: CR30 article-title: The fractional a.c. Josephson effect in a semiconductor–superconductor nanowire as a signature of Majorana particles publication-title: Nat. Phys. doi: 10.1038/nphys2429 – volume: 91 start-page: 094505 year: 2015 ident: CR40 article-title: Majorana fermions in chiral topological ferromagnetic nanowires publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.91.094505 – volume: 14 start-page: 171 year: 1937 end-page: 184 ident: CR4 article-title: Teoria simmetrica dell’elettrone e del positrone publication-title: Il Nuovo Cimento doi: 10.1007/BF02961314 – volume: 105 start-page: 177002 year: 2010 ident: CR13 article-title: Helical liquids and Majorana bound states in quantum wires publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.177002 – volume: 29 start-page: 1101 year: 1969 end-page: 1106 ident: CR44 article-title: On theory of gapless superconductivity in alloys containing paramagnetic impurities publication-title: Sov. Phys. Jetp-Ussr – volume: 92 start-page: 064503 year: 2015 ident: CR50 article-title: Superconducting gap renormalization around two magnetic impurities: from Shiba to Andreev bound states publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.92.064503 – volume: 303 start-page: 2 year: 2003 end-page: 30 ident: CR5 article-title: Fault-tolerant quantum computation by anyons publication-title: Ann. Phys. doi: 10.1016/S0003-4916(02)00018-0 – volume: 88 start-page: 155420 year: 2013 ident: CR17 article-title: Topological superconducting phase in helical Shiba chains publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.155420 – volume: 115 start-page: 127003 year: 2015 ident: CR49 article-title: Bound states of a ferromagnetic wire in a superconductor publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.127003 – ident: CR37 – volume: 14 start-page: 125011 year: 2012 ident: CR35 article-title: A zero-voltage conductance peak from weak antilocalization in a Majorana nanowire publication-title: New J. Phys. doi: 10.1088/1367-2630/14/12/125011 – volume: 86 start-page: 100503 year: 2012 ident: CR36 article-title: Near-zero-energy end states in topologically trivial spin–orbit coupled superconducting nanowires with a smooth confinement publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.86.100503 – volume: 360 start-page: 362 year: 1991 end-page: 396 ident: CR9 article-title: Nonabelions in the fractional quantum Hall-effect publication-title: Nuclear Phys. B doi: 10.1016/0550-3213(91)90407-O – volume: 105 start-page: 077001 year: 2010 ident: CR12 article-title: Majorana fermions and a topological phase transition in semiconductor–superconductor heterostructures publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.077001 – volume: 86 start-page: 268 year: 2001 end-page: 271 ident: CR8 article-title: Non-abelian statistics of half-quantum vortices in -wave superconductors publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.86.268 – volume: 84 start-page: 195442 year: 2011 ident: CR14 article-title: Majorana fermions emerging from magnetic nanoparticles on a superconductor without spin–orbit coupling publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.195442 – volume: 103 start-page: 237001 year: 2009 ident: CR48 article-title: Majorana fermion induced resonant Andreev reflection publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.237001 – volume: 7 start-page: 10395 year: 2016 ident: CR52 article-title: Manipulating Majorana zero modes on atomic rings with an external magnetic field publication-title: Nat. Commun. doi: 10.1038/ncomms10395 – volume: 110 start-page: 126406 year: 2013 ident: CR29 article-title: Anomalous modulation of a zero-bias peak in a hybrid nanowire-superconductor device publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.126406 – volume: 111 start-page: 206802 year: 2013 ident: CR20 article-title: Self-organized topological state with Majorana fermions publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.206802 – volume: 12 start-page: 6414 year: 2012 end-page: 6419 ident: CR28 article-title: Anomalous zero-bias conductance peak in a Nb–InSb nanowire–Nb hybrid device publication-title: Nano Lett. doi: 10.1021/nl303758w – volume: 114 start-page: 157001 year: 2015 ident: CR47 article-title: Experimental demonstration of a two-band superconducting state for lead using scanning tunneling spectroscopy publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.157001 – volume: 21 start-page: 75 year: 1965 end-page: 91 ident: CR42 article-title: Bound state in superconductors with paramagnetic impurities publication-title: Acta Phys. Sin. – volume: 8 start-page: 887 year: 2012 end-page: 895 ident: CR27 article-title: Zero-bias peaks and splitting in an Al–InAs nanowire topological superconductor as a signature of Majorana fermions publication-title: Nat. Phys. doi: 10.1038/nphys2479 – volume: 85 start-page: 020503 year: 2012 ident: CR15 article-title: Majorana fermions in superconducting nanowires without spin–orbit coupling publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.020503 – ident: CR38 – volume: 84 start-page: 103903 year: 2013 ident: CR46 article-title: Design and performance of an ultra-high vacuum scanning tunneling microscope operating at dilution refrigerator temperatures and high magnetic fields publication-title: Rev. Sci. Instrum. doi: 10.1063/1.4822271 – volume: 109 start-page: 267002 year: 2012 ident: CR32 article-title: Zero-Bias peaks in the tunneling conductance of spin-orbit-coupled superconducting wires with and without Majorana end-states publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.267002 – volume: 111 start-page: 147202 year: 2013 ident: CR19 article-title: Interplay between classical magnetic moments and superconductivity in quantum one-dimensional conductors: toward a self-sustained topological Majorana phase publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.147202 – volume: 336 start-page: 1003 year: 2012 end-page: 1007 ident: CR25 article-title: Signatures of Majorana fermions in hybrid superconductor–semiconductor nanowire devices publication-title: Science doi: 10.1126/science.1222360 – volume: 61 start-page: 10267 year: 2000 end-page: 10297 ident: CR10 article-title: Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.61.10267 – volume: 114 start-page: 236803 year: 2015 ident: CR22 article-title: Topological superconductivity and high Chern numbers in 2D ferromagnetic Shiba lattices publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.236803 – volume: 75 start-page: 076501 year: 2012 ident: CR2 article-title: New directions in the pursuit of Majorana fermions in solid state systems publication-title: Rep. Progr. Phys. doi: 10.1088/0034-4885/75/7/076501 – volume: 40 start-page: 435 year: 1968 end-page: 451 ident: CR43 article-title: Classical spins in superconductors publication-title: Progr. Theor. Phys. doi: 10.1143/PTP.40.435 – volume: 88 start-page: 020407 year: 2013 ident: CR16 article-title: Proposal for realizing Majorana fermions in chains of magnetic atoms on a superconductor publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.020407 – volume: 109 start-page: 186802 year: 2012 ident: CR33 article-title: Zero-bias anomaly in a nanowire quantum dot coupled to superconductors publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.186802 – volume: 14 start-page: 400 year: 2015 end-page: 406 ident: CR51 article-title: Epitaxy of semiconductor–superconductor nanowires publication-title: Nat. Mater. doi: 10.1038/nmat4176 – volume: 29 start-page: 1101 year: 1969 ident: BFnphys3947_CR44 publication-title: Sov. Phys. Jetp-Ussr – volume: 80 start-page: 1083 year: 2008 ident: BFnphys3947_CR6 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.80.1083 – volume: 84 start-page: 195442 year: 2011 ident: BFnphys3947_CR14 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.195442 – volume: 85 start-page: 020503 year: 2012 ident: BFnphys3947_CR15 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.020503 – volume: 14 start-page: 125011 year: 2012 ident: BFnphys3947_CR35 publication-title: New J. Phys. doi: 10.1088/1367-2630/14/12/125011 – volume: 61 start-page: 10267 year: 2000 ident: BFnphys3947_CR10 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.61.10267 – volume: 12 start-page: 6414 year: 2012 ident: BFnphys3947_CR28 publication-title: Nano Lett. doi: 10.1021/nl303758w – volume: 84 start-page: 103903 year: 2013 ident: BFnphys3947_CR46 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.4822271 – volume: 111 start-page: 147202 year: 2013 ident: BFnphys3947_CR19 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.147202 – volume: 14 start-page: 400 year: 2015 ident: BFnphys3947_CR51 publication-title: Nat. Mater. doi: 10.1038/nmat4176 – volume: 105 start-page: 077001 year: 2010 ident: BFnphys3947_CR12 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.077001 – volume: 90 start-page: 235433 year: 2014 ident: BFnphys3947_CR24 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.90.235433 – volume: 105 start-page: 177002 year: 2010 ident: BFnphys3947_CR13 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.177002 – volume: 115 start-page: 197204 year: 2015 ident: BFnphys3947_CR39 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.197204 – volume: 21 start-page: 75 year: 1965 ident: BFnphys3947_CR42 publication-title: Acta Phys. Sin. doi: 10.7498/aps.21.75 – volume: 111 start-page: 186805 year: 2013 ident: BFnphys3947_CR18 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.186805 – volume: 109 start-page: 267002 year: 2012 ident: BFnphys3947_CR32 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.267002 – volume: 531 start-page: 206 year: 2016 ident: BFnphys3947_CR31 publication-title: Nature doi: 10.1038/nature17162 – volume: 111 start-page: 206802 year: 2013 ident: BFnphys3947_CR20 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.206802 – volume: 303 start-page: 2 year: 2003 ident: BFnphys3947_CR5 publication-title: Ann. Phys. doi: 10.1016/S0003-4916(02)00018-0 – volume: 116 start-page: 257003 year: 2016 ident: BFnphys3947_CR26 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.257003 – volume: 87 start-page: 241401 year: 2013 ident: BFnphys3947_CR34 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.87.241401 – volume: 88 start-page: 155420 year: 2013 ident: BFnphys3947_CR17 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.155420 – volume: 115 start-page: 266804 year: 2015 ident: BFnphys3947_CR45 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.266804 – volume: 336 start-page: 1003 year: 2012 ident: BFnphys3947_CR25 publication-title: Science doi: 10.1126/science.1222360 – volume: 8 start-page: 887 year: 2012 ident: BFnphys3947_CR27 publication-title: Nat. Phys. doi: 10.1038/nphys2479 – volume: 115 start-page: 127003 year: 2015 ident: BFnphys3947_CR49 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.127003 – volume: 4 start-page: 113 year: 2013 ident: BFnphys3947_CR3 publication-title: Ann. Rev. Condens. Matter Phys. doi: 10.1146/annurev-conmatphys-030212-184337 – volume: 44 start-page: 131 year: 2001 ident: BFnphys3947_CR1 publication-title: Phys.-Usp. doi: 10.1070/1063-7869/44/10S/S29 – volume: 14 start-page: 171 year: 1937 ident: BFnphys3947_CR4 publication-title: Il Nuovo Cimento doi: 10.1007/BF02961314 – volume: 346 start-page: 602 year: 2014 ident: BFnphys3947_CR23 publication-title: Science doi: 10.1126/science.1259327 – volume: 100 start-page: 096407 year: 2008 ident: BFnphys3947_CR11 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.096407 – volume: 86 start-page: 268 year: 2001 ident: BFnphys3947_CR8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.86.268 – volume: 110 start-page: 126406 year: 2013 ident: BFnphys3947_CR29 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.126406 – volume: 88 start-page: 180503 year: 2013 ident: BFnphys3947_CR21 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.180503 – volume: 114 start-page: 157001 year: 2015 ident: BFnphys3947_CR47 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.157001 – volume: 40 start-page: 435 year: 1968 ident: BFnphys3947_CR43 publication-title: Progr. Theor. Phys. doi: 10.1143/PTP.40.435 – volume: 360 start-page: 362 year: 1991 ident: BFnphys3947_CR9 publication-title: Nuclear Phys. B doi: 10.1016/0550-3213(91)90407-O – volume: 7 start-page: 10395 year: 2016 ident: BFnphys3947_CR52 publication-title: Nat. Commun. doi: 10.1038/ncomms10395 – volume: 8 start-page: 795 year: 2012 ident: BFnphys3947_CR30 publication-title: Nat. Phys. doi: 10.1038/nphys2429 – volume: 88 start-page: 020407 year: 2013 ident: BFnphys3947_CR16 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.020407 – ident: BFnphys3947_CR37 – volume: 37 start-page: 9298 year: 1988 ident: BFnphys3947_CR7 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.37.9298 – volume: 92 start-page: 064503 year: 2015 ident: BFnphys3947_CR50 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.92.064503 – volume: 91 start-page: 094505 year: 2015 ident: BFnphys3947_CR40 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.91.094505 – volume: 114 start-page: 236803 year: 2015 ident: BFnphys3947_CR22 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.236803 – volume: 103 start-page: 237001 year: 2009 ident: BFnphys3947_CR48 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.237001 – ident: BFnphys3947_CR38 doi: 10.1038/npjqi.2016.35 – volume: 75 start-page: 076501 year: 2012 ident: BFnphys3947_CR2 publication-title: Rep. Progr. Phys. doi: 10.1088/0034-4885/75/7/076501 – volume: 109 start-page: 186802 year: 2012 ident: BFnphys3947_CR33 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.186802 – volume: 86 start-page: 100503 year: 2012 ident: BFnphys3947_CR36 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.86.100503 – volume: 114 start-page: 106801 year: 2015 ident: BFnphys3947_CR41 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.106801 |
SSID | ssj0042613 |
Score | 2.6373696 |
Snippet | Ordered assemblies of magnetic atoms on the surface of conventional superconductors can be used to engineer topological superconducting phases and realize... Not provided. |
SourceID | osti proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 286 |
SubjectTerms | 639/766/119/1003 639/766/119/995 Atomic Atoms & subatomic particles Chains Classical and Continuum Physics Complex Systems Condensed matter Condensed Matter Physics Electric properties Hybridization Mathematical and Computational Physics Microscopy Molecular Optical and Plasma Physics Physics Refrigerators Searching Signatures Superconductivity Superconductors Theoretical Topology |
Title | High-resolution studies of the Majorana atomic chain platform |
URI | https://link.springer.com/article/10.1038/nphys3947 https://www.proquest.com/docview/1891940202 https://www.proquest.com/docview/1904198672 https://www.osti.gov/biblio/1535089 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ZS8QwEB50RfBFPHG9iMeDL8Ftkx55EhVXERQRBd9KTlS0Xd36_5206XogPndom5lk5psjMwD7aJRM4pylqTGGcmsdlbHh1EqphHXMth34rq7Ti3t--ZA8hIDbOJRVdjqxUdSm0j5GfhjlAv1tBDfx0eiN-qlRPrsaRmhMwwyq4Bydr5mTs-ub204Xe_-AtVciExrzjHW9hVh-WPrQARN-rso3i9Sr8GT9QJu_EqSN3RkuwHwAjOS4lfAiTNlyCWabwk09XgYfM36k6DOHLUTGbWEgqRxBbEeu5DMKuZQEnevXJ030o3wqyehF1h6trsD98Ozu9IKGkQhU8yivaepQQynHmNWIiiXnfGASprmLmMqSzODCVOJMrGRm4kgrJVTsrI5cphFKS8FWoVdWpV0DwlObKCuFU6njmfCN4kwecRTOIEV3e9CHg44thQ79wv3YipeiyVuzvJhwsA-7E9JR2yTjL6INz9sCLbtvT6t9HY-uC1wPYkTRh82O5UU4RePiS-Z92Jk8xv3vkxqytNUH0ogBj0SeZkiz14nq2yt-_8b6_x_agLnYG-6mymwTevX7h91C2FGrbZjOh-fbYYd9Akq_2oo |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLaqRQguiKdYWmB4SVxGTWYmjzkghIBlS7s9tVJvYZ5qq5IsbCrEn-I3YuexlApx6zlWHp7Pns9jxwZ4iZuSz2IMPPfecxVC5EZ4xYMxVocoQ9-Bb7Gfzw_V56PsaAN-jf_CUFnl6BM7R-0bR2fk22mpMd5GciPeLr9xmhpF2dVxhEYPi93w8weGbKs3Ox9wfV8JMft48H7Oh6kC3Km0bHke0chtlDI4JJZGKZX4TDoVU2mLrPCJLG0WvbCm8CJ11morYnBpLByyUUPNl9DlX1NSarKocvZp9PwUjcj-B8yMC1XIsZORLLdrOqiQmqa4XNj_Jg3a8V_c9lI6ttvlZrfh1kBP2bseT3dgI9R34XpXJupW94BOqI85RugDYNmqL0NkTWTIJNnCnCKkasMwlP964pg7Nic1W56ZlrjxfTi8ElU9gEnd1OEhMJWHzAajo82jKjS1pfNlqhAKSY7BfTKF16NaKjd0J6chGWdVlyWXZbXW4BSer0WXfUuOfwltkm4r5BHUDNdR1ZBrK_weZKR6ClujyqvBZlfVH4RN4dn6MlobpVBMHZpzlNGJSnWZFyjzYlyqC7e4_BqP_v-gp3BjfrDYq_Z29nc34aYgytDVt23BpP1-Hh4j4Wntkw5lDL5cNax_A1HdFg0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZSxxBEC5kJSEvEnOQ9exckJdmZ7p7jn4Q0eiiMS4SIvg26RMVM7PJjkj-Wn6d1XNsjIS8-TzFHNVfdX3VVVMF8A6dkk28dzS11lLhnKeKWUGdUlo6z13bge94kh6cik9nydkC_O7_hQlllf2e2GzUtjLhjHwU5xLjbSQ3bOS7soiTvfH29AcNE6RCprUfp9FC5Mj9usHwbbZ1uIdr_Z6x8f7Xjwe0mzBAjYjzmqYeDV57zp1BkqmEEJFNuBE-5jpLMhvxXCfeMq0yy2KjtdTMOxP7zCAzVaERE27_ixlGRdEAFnf3Jydfej8QYhPe_o6ZUCYy3vc14vmoDMcWXIaZLne84aBCq_6L6d5LzjY-b_wUljqySnZadC3DgiufwaOmaNTMnkM4rz6nGK938CWztiiRVJ4gryTH6hIBViqCgf33C0PMubooyfRK1YEpv4DTB1HWSxiUVeleARGpS7RT0uvUi0yGJnU2jwUCI0ox1I-G8KFXS2G6XuVhZMZV0eTMeV7MNTiEN3PRadug419Cq0G3BbKK0BrXhBoiUxf4PchP5RDWepUXnQXPij94G8Lr-WW0vZBQUaWrrlFGRiKWeZqhzNt-qe7c4v5rrPz_QZvwGCFdfD6cHK3CExb4Q1PstgaD-ue1W0f2U-uNDmYEvj00sm8BqH8bnw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-resolution+studies+of+the+Majorana+atomic+chain+platform&rft.jtitle=Nature+physics&rft.au=Feldman%2C+Benjamin+E.&rft.au=Randeria%2C+Mallika+T.&rft.au=Li%2C+Jian&rft.au=Jeon%2C+Sangjun&rft.date=2017-03-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1745-2473&rft.eissn=1745-2481&rft.volume=13&rft.issue=3&rft.spage=286&rft.epage=291&rft_id=info:doi/10.1038%2Fnphys3947&rft.externalDocID=10_1038_nphys3947 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2473&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2473&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2473&client=summon |