High-resolution studies of the Majorana atomic chain platform

Ordered assemblies of magnetic atoms on the surface of conventional superconductors can be used to engineer topological superconducting phases and realize Majorana fermion quasiparticles (MQPs) in a condensed matter setting. Recent experiments have shown that chains of Fe atoms on Pb generically hav...

Full description

Saved in:
Bibliographic Details
Published inNature physics Vol. 13; no. 3; pp. 286 - 291
Main Authors Feldman, Benjamin E., Randeria, Mallika T., Li, Jian, Jeon, Sangjun, Xie, Yonglong, Wang, Zhijun, Drozdov, Ilya K., Andrei Bernevig, B., Yazdani, Ali
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.03.2017
Nature Publishing Group
Nature Publishing Group (NPG)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ordered assemblies of magnetic atoms on the surface of conventional superconductors can be used to engineer topological superconducting phases and realize Majorana fermion quasiparticles (MQPs) in a condensed matter setting. Recent experiments have shown that chains of Fe atoms on Pb generically have the required electronic characteristics to form a one-dimensional topological superconductor and have revealed spatially resolved signatures of localized MQPs at the ends of such chains. Here we report higher-resolution measurements of the same atomic chain system performed using a dilution refrigerator scanning tunnelling microscope (STM). With significantly better energy resolution than previous studies, we show that the zero-bias peak (ZBP) in Fe chains has no detectable splitting from hybridization with other states. The measurements also reveal that the ZBP exhibits a distinctive ‘double eye’ spatial pattern on nanometre length scales. Theoretically we show that this is a general consequence of STM measurements of MQPs with substantial spectral weight in the superconducting substrate, a conclusion further supported by measurements of Pb overlayers deposited on top of the Fe chains. Finally, we report experiments performed with superconducting tips in search of the particle–hole symmetric MQP signature expected in such measurements. High-resolution scanning tunnelling microscopy measurements show that chains of magnetic atoms on the surface of a superconductor provide a promising platform for realizing and manipulating Majorana fermion quasiparticles.
AbstractList Ordered assemblies of magnetic atoms on the surface of conventional superconductors can be used to engineer topological superconducting phases and realize Majorana fermion quasiparticles (MQPs) in a condensed matter setting. Recent experiments have shown that chains of Fe atoms on Pb generically have the required electronic characteristics to form a one-dimensional topological superconductor and have revealed spatially resolved signatures of localized MQPs at the ends of such chains. Here we report higher-resolution measurements of the same atomic chain system performed using a dilution refrigerator scanning tunnelling microscope (STM). With significantly better energy resolution than previous studies, we show that the zero-bias peak (ZBP) in Fe chains has no detectable splitting from hybridization with other states. The measurements also reveal that the ZBP exhibits a distinctive 'double eye' spatial pattern on nanometre length scales. Theoretically we show that this is a general consequence of STM measurements of MQPs with substantial spectral weight in the superconducting substrate, a conclusion further supported by measurements of Pb overlayers deposited on top of the Fe chains. Finally, we report experiments performed with superconducting tips in search of the particle-hole symmetric MQP signature expected in such measurements.
Ordered assemblies of magnetic atoms on the surface of conventional superconductors can be used to engineer topological superconducting phases and realize Majorana fermion quasiparticles (MQPs) in a condensed matter setting. Recent experiments have shown that chains of Fe atoms on Pb generically have the required electronic characteristics to form a one-dimensional topological superconductor and have revealed spatially resolved signatures of localized MQPs at the ends of such chains. Here we report higher-resolution measurements of the same atomic chain system performed using a dilution refrigerator scanning tunnelling microscope (STM). With significantly better energy resolution than previous studies, we show that the zero-bias peak (ZBP) in Fe chains has no detectable splitting from hybridization with other states. The measurements also reveal that the ZBP exhibits a distinctive ‘double eye’ spatial pattern on nanometre length scales. Theoretically we show that this is a general consequence of STM measurements of MQPs with substantial spectral weight in the superconducting substrate, a conclusion further supported by measurements of Pb overlayers deposited on top of the Fe chains. Finally, we report experiments performed with superconducting tips in search of the particle–hole symmetric MQP signature expected in such measurements. High-resolution scanning tunnelling microscopy measurements show that chains of magnetic atoms on the surface of a superconductor provide a promising platform for realizing and manipulating Majorana fermion quasiparticles.
Not provided.
Author Randeria, Mallika T.
Wang, Zhijun
Drozdov, Ilya K.
Feldman, Benjamin E.
Xie, Yonglong
Yazdani, Ali
Li, Jian
Jeon, Sangjun
Andrei Bernevig, B.
Author_xml – sequence: 1
  givenname: Benjamin E.
  orcidid: 0000-0002-4962-0548
  surname: Feldman
  fullname: Feldman, Benjamin E.
  organization: Joseph Henry Laboratories and Department of Physics, Princeton University
– sequence: 2
  givenname: Mallika T.
  orcidid: 0000-0002-1300-8621
  surname: Randeria
  fullname: Randeria, Mallika T.
  organization: Joseph Henry Laboratories and Department of Physics, Princeton University
– sequence: 3
  givenname: Jian
  orcidid: 0000-0003-0297-6528
  surname: Li
  fullname: Li, Jian
  organization: Joseph Henry Laboratories and Department of Physics, Princeton University
– sequence: 4
  givenname: Sangjun
  surname: Jeon
  fullname: Jeon, Sangjun
  organization: Joseph Henry Laboratories and Department of Physics, Princeton University
– sequence: 5
  givenname: Yonglong
  surname: Xie
  fullname: Xie, Yonglong
  organization: Joseph Henry Laboratories and Department of Physics, Princeton University
– sequence: 6
  givenname: Zhijun
  orcidid: 0000-0003-2169-8068
  surname: Wang
  fullname: Wang, Zhijun
  organization: Joseph Henry Laboratories and Department of Physics, Princeton University
– sequence: 7
  givenname: Ilya K.
  surname: Drozdov
  fullname: Drozdov, Ilya K.
  organization: Joseph Henry Laboratories and Department of Physics, Princeton University, Present address: Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
– sequence: 8
  givenname: B.
  surname: Andrei Bernevig
  fullname: Andrei Bernevig, B.
  organization: Joseph Henry Laboratories and Department of Physics, Princeton University
– sequence: 9
  givenname: Ali
  surname: Yazdani
  fullname: Yazdani, Ali
  email: yazdani@princeton.edu
  organization: Joseph Henry Laboratories and Department of Physics, Princeton University
BackLink https://www.osti.gov/biblio/1535089$$D View this record in Osti.gov
BookMark eNpt0E9LwzAYBvAgE9ymB79B0YsKdfnXpT14kKFOmHjRc0jTZM1ok5qkh317OyZDpqe8h9_78OaZgJF1VgFwieA9giSf2a7eBlJQdgLGiNEsxTRHo8PMyBmYhLCBkOI5ImPwsDTrOvUquKaPxtkkxL4yKiROJ7FWyZvYOC-sSER0rZGJrIWxSdeIqJ1vz8GpFk1QFz_vFHw-P30slunq_eV18bhKJUV5TOcaZaTUhCjJcCEopbDKiKQakZJlrBoOLzNd4VKwCiNZlkWJtZJIM5nnWBRkCq72uS5Ew4M0UclaOmuVjHzIzmC-Qzd71Hn31asQeWuCVE0jrHJ94KiAFBX5nOGBXh_Rjeu9Hb7AUV6ggkIMd-p2r6R3IXileedNK_yWI8h3bfND24OdHdnhSLFrNHphmn837vYbYUi1a-V_3fAHfwPBt5Ky
CitedBy_id crossref_primary_10_1103_PhysRevB_105_054507
crossref_primary_10_1103_PhysRevB_96_195307
crossref_primary_10_1103_PhysRevB_107_214505
crossref_primary_10_1103_PhysRevLett_120_156803
crossref_primary_10_1016_j_ppnp_2019_04_004
crossref_primary_10_1103_PhysRevB_102_245403
crossref_primary_10_1103_PhysRevB_107_115421
crossref_primary_10_1038_s41467_019_10397_5
crossref_primary_10_1016_j_physrep_2024_10_005
crossref_primary_10_1103_PhysRevB_103_125110
crossref_primary_10_1103_PhysRevB_96_195430
crossref_primary_10_1103_PhysRevB_102_085411
crossref_primary_10_1016_j_physleta_2022_128475
crossref_primary_10_1103_PhysRevB_109_054515
crossref_primary_10_1103_PhysRevB_96_235411
crossref_primary_10_1103_RevModPhys_91_041001
crossref_primary_10_1103_PhysRevB_97_235139
crossref_primary_10_1007_s11433_021_1773_3
crossref_primary_10_1038_s41467_022_31948_3
crossref_primary_10_1016_j_cap_2024_08_011
crossref_primary_10_1063_5_0232158
crossref_primary_10_1103_PhysRevApplied_20_044081
crossref_primary_10_1088_2515_7639_ad5763
crossref_primary_10_1103_PhysRevB_101_014504
crossref_primary_10_3762_bjnano_13_1
crossref_primary_10_1088_1361_648X_aa93ab
crossref_primary_10_1103_PhysRevB_110_L041110
crossref_primary_10_1103_PhysRevB_102_045413
crossref_primary_10_1063_1_5132872
crossref_primary_10_1103_PhysRevB_103_075115
crossref_primary_10_1103_PhysRevLett_125_187702
crossref_primary_10_1038_s41535_019_0179_7
crossref_primary_10_1103_PhysRevLett_121_227701
crossref_primary_10_1103_PhysRevB_103_235437
crossref_primary_10_7498_aps_69_20200812
crossref_primary_10_1088_1361_648X_ad3093
crossref_primary_10_1038_s41467_020_18540_3
crossref_primary_10_1038_s42005_023_01201_4
crossref_primary_10_1103_PhysRevLett_119_197002
crossref_primary_10_1103_PhysRevB_102_125407
crossref_primary_10_1103_PhysRevB_103_214514
crossref_primary_10_1088_1361_648X_ac413f
crossref_primary_10_1007_s00339_022_05644_4
crossref_primary_10_1126_science_aao1797
crossref_primary_10_1088_1367_2630_ab82bb
crossref_primary_10_1038_s41467_023_36201_z
crossref_primary_10_1002_adma_202008029
crossref_primary_10_1021_acs_nanolett_9b04187
crossref_primary_10_1103_PhysRevResearch_2_023197
crossref_primary_10_1103_PhysRevB_109_064518
crossref_primary_10_1088_1367_2630_acc1ff
crossref_primary_10_1126_science_aan3670
crossref_primary_10_1016_j_progsurf_2018_01_001
crossref_primary_10_1088_1674_1056_ad498a
crossref_primary_10_1002_advs_202200186
crossref_primary_10_1088_1367_2630_acc607
crossref_primary_10_1103_PhysRevB_110_155427
crossref_primary_10_1103_PhysRevB_96_134501
crossref_primary_10_1103_PhysRevB_103_205424
crossref_primary_10_1103_PhysRevB_106_064505
crossref_primary_10_1103_PhysRevB_97_214507
crossref_primary_10_1038_s42005_022_00920_4
crossref_primary_10_1103_PhysRevB_104_L121406
crossref_primary_10_1103_PhysRevB_105_144503
crossref_primary_10_1021_acsnano_4c10395
crossref_primary_10_1002_adma_202306689
crossref_primary_10_1103_PhysRevB_105_214525
crossref_primary_10_1038_s42254_021_00328_z
crossref_primary_10_1103_PhysRevMaterials_2_024801
crossref_primary_10_1103_PhysRevMaterials_2_014201
crossref_primary_10_1103_PhysRevB_96_024516
crossref_primary_10_1088_1361_6633_aa7e1a
crossref_primary_10_1002_qute_202200080
crossref_primary_10_1088_1361_648X_aad659
crossref_primary_10_1103_PhysRevB_107_045401
crossref_primary_10_1103_PhysRevResearch_3_023007
crossref_primary_10_1088_1361_6668_ad883c
crossref_primary_10_1103_PhysRevB_104_024508
crossref_primary_10_1103_PhysRevLett_129_277001
crossref_primary_10_1103_PhysRevB_100_094507
crossref_primary_10_1103_PhysRevLett_128_036801
crossref_primary_10_1038_s41565_022_01078_4
crossref_primary_10_1103_PhysRevB_100_235412
crossref_primary_10_1103_PhysRevB_107_184507
crossref_primary_10_1088_0256_307X_39_5_057301
crossref_primary_10_1103_PhysRevB_97_064519
crossref_primary_10_1103_PhysRevB_105_L100406
crossref_primary_10_1103_PhysRevB_96_121119
crossref_primary_10_1103_PhysRevB_97_195429
crossref_primary_10_1103_PhysRevLett_126_027001
crossref_primary_10_1103_PhysRevB_102_134504
crossref_primary_10_1088_1367_2630_ad96da
crossref_primary_10_1038_s41567_020_0971_0
crossref_primary_10_1103_PhysRevB_98_201110
crossref_primary_10_1103_PhysRevMaterials_6_094010
crossref_primary_10_1103_PhysRevB_100_214504
crossref_primary_10_1088_0256_307X_38_7_077302
crossref_primary_10_1088_1674_1056_acaa29
crossref_primary_10_1103_PhysRevB_104_214506
crossref_primary_10_1038_s41467_024_54525_2
crossref_primary_10_1088_1361_648X_ad32de
crossref_primary_10_1103_PhysRevB_98_201109
crossref_primary_10_1038_s41567_020_0972_z
crossref_primary_10_1063_5_0043694
crossref_primary_10_1088_2515_7639_ad1c04
crossref_primary_10_1103_PhysRevB_109_165302
crossref_primary_10_1103_PhysRevA_98_033604
crossref_primary_10_1038_s41598_019_49227_5
crossref_primary_10_3762_bjnano_9_158
crossref_primary_10_1038_s41467_023_38369_w
crossref_primary_10_1103_PhysRevB_101_085402
crossref_primary_10_1021_acs_nanolett_1c03856
crossref_primary_10_1103_PhysRevB_96_121113
crossref_primary_10_1038_s41467_023_39109_w
crossref_primary_10_1038_s41535_022_00530_x
crossref_primary_10_1063_5_0050532
crossref_primary_10_1103_PhysRevB_110_L241409
crossref_primary_10_1103_PhysRevB_96_094307
crossref_primary_10_1007_s11433_022_2015_y
crossref_primary_10_1103_PhysRevB_101_245427
crossref_primary_10_1063_5_0102999
crossref_primary_10_1103_PhysRevB_100_075420
crossref_primary_10_1103_PhysRevB_97_184506
crossref_primary_10_1103_PhysRevB_97_184503
crossref_primary_10_1088_1367_2630_abd8c1
crossref_primary_10_3762_bjnano_9_50
crossref_primary_10_1088_1367_2630_abb514
crossref_primary_10_1103_PhysRevResearch_1_033212
crossref_primary_10_1038_s41567_021_01234_y
crossref_primary_10_1103_PhysRevB_99_235430
crossref_primary_10_1103_PhysRevB_103_235149
crossref_primary_10_1021_acs_nanolett_2c03952
crossref_primary_10_1038_s41578_021_00336_6
crossref_primary_10_1073_pnas_2024837118
crossref_primary_10_1103_PhysRevB_106_024501
crossref_primary_10_1063_1_5020045
crossref_primary_10_1103_PhysRevB_95_174515
crossref_primary_10_1103_PhysRevB_100_144510
crossref_primary_10_1103_PhysRevB_104_245133
crossref_primary_10_1103_PhysRevB_96_020507
crossref_primary_10_1021_acs_nanolett_7b01728
crossref_primary_10_1103_PhysRevB_100_155111
crossref_primary_10_1103_PhysRevB_107_014202
crossref_primary_10_1103_PhysRevB_103_165403
crossref_primary_10_1103_PhysRevB_111_014501
crossref_primary_10_1103_PhysRevB_99_104510
crossref_primary_10_1038_s41467_018_05701_8
crossref_primary_10_1103_PhysRevB_97_125119
crossref_primary_10_1103_PhysRevResearch_4_043087
crossref_primary_10_1126_sciadv_aar5251
crossref_primary_10_1103_PhysRevB_99_165413
crossref_primary_10_1103_PhysRevB_107_L060304
crossref_primary_10_1103_PhysRevB_97_035311
crossref_primary_10_1088_1361_648X_ab03bf
crossref_primary_10_1007_s10948_021_06029_z
crossref_primary_10_1103_PhysRevLett_125_117003
crossref_primary_10_1146_annurev_conmatphys_031218_013618
crossref_primary_10_1002_pssb_201800492
crossref_primary_10_1088_1674_1056_abd762
crossref_primary_10_1007_s11433_021_1737_4
crossref_primary_10_1016_j_cpc_2021_108135
crossref_primary_10_1103_PhysRevB_101_205143
crossref_primary_10_1103_PhysRevResearch_3_013262
crossref_primary_10_1103_PhysRevB_99_220506
crossref_primary_10_1080_23746149_2017_1327329
crossref_primary_10_1103_PhysRevB_98_085143
crossref_primary_10_3390_nano14030254
crossref_primary_10_1080_23746149_2019_1651672
crossref_primary_10_1103_PhysRevB_98_165426
crossref_primary_10_1103_PhysRevB_107_075410
crossref_primary_10_1007_s40766_024_00060_1
crossref_primary_10_1103_PhysRevB_100_235110
crossref_primary_10_1021_acs_nanolett_1c00387
crossref_primary_10_1073_pnas_1919753117
crossref_primary_10_7498_aps_69_20200831
crossref_primary_10_1103_PhysRevB_106_104503
crossref_primary_10_1126_science_ade0850
crossref_primary_10_1103_PhysRevB_102_161102
crossref_primary_10_3367_UFNe_2021_03_038950
crossref_primary_10_1016_j_cap_2018_08_001
crossref_primary_10_1103_PhysRevResearch_4_033182
crossref_primary_10_1103_PhysRevB_96_224408
crossref_primary_10_1063_1_5024045
crossref_primary_10_1063_5_0055997
crossref_primary_10_1126_science_abq5769
crossref_primary_10_1038_s41467_022_29879_0
crossref_primary_10_1103_PhysRevB_105_174517
crossref_primary_10_3390_nano9060894
crossref_primary_10_1103_PhysRevB_100_045301
crossref_primary_10_1103_PhysRevB_100_235131
crossref_primary_10_1103_PhysRevApplied_12_034048
crossref_primary_10_1103_PhysRevB_95_184511
crossref_primary_10_1038_s41598_019_42558_3
crossref_primary_10_1103_PhysRevB_104_235414
Cites_doi 10.1103/PhysRevLett.115.266804
10.1126/science.1259327
10.1103/PhysRevLett.100.096407
10.1038/nature17162
10.1103/PhysRevB.90.235433
10.1070/1063-7869/44/10S/S29
10.1103/PhysRevB.88.180503
10.1103/PhysRevLett.111.186805
10.1103/PhysRevB.87.241401
10.1103/PhysRevLett.114.106801
10.1103/PhysRevLett.116.257003
10.1103/RevModPhys.80.1083
10.1103/PhysRevB.37.9298
10.1103/PhysRevLett.115.197204
10.1146/annurev-conmatphys-030212-184337
10.1038/nphys2429
10.1103/PhysRevB.91.094505
10.1007/BF02961314
10.1103/PhysRevLett.105.177002
10.1103/PhysRevB.92.064503
10.1016/S0003-4916(02)00018-0
10.1103/PhysRevB.88.155420
10.1103/PhysRevLett.115.127003
10.1088/1367-2630/14/12/125011
10.1103/PhysRevB.86.100503
10.1016/0550-3213(91)90407-O
10.1103/PhysRevLett.105.077001
10.1103/PhysRevLett.86.268
10.1103/PhysRevB.84.195442
10.1103/PhysRevLett.103.237001
10.1038/ncomms10395
10.1103/PhysRevLett.110.126406
10.1103/PhysRevLett.111.206802
10.1021/nl303758w
10.1103/PhysRevLett.114.157001
10.1038/nphys2479
10.1103/PhysRevB.85.020503
10.1063/1.4822271
10.1103/PhysRevLett.109.267002
10.1103/PhysRevLett.111.147202
10.1126/science.1222360
10.1103/PhysRevB.61.10267
10.1103/PhysRevLett.114.236803
10.1088/0034-4885/75/7/076501
10.1143/PTP.40.435
10.1103/PhysRevB.88.020407
10.1103/PhysRevLett.109.186802
10.1038/nmat4176
10.7498/aps.21.75
10.1038/npjqi.2016.35
ContentType Journal Article
Copyright Springer Nature Limited 2016
Copyright Nature Publishing Group Mar 2017
Copyright_xml – notice: Springer Nature Limited 2016
– notice: Copyright Nature Publishing Group Mar 2017
CorporateAuthor Princeton Univ., NJ (United States)
CorporateAuthor_xml – name: Princeton Univ., NJ (United States)
DBID AAYXX
CITATION
3V.
7U5
7XB
88I
8FD
8FE
8FG
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
GNUQQ
HCIFZ
L7M
M2P
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
OTOTI
DOI 10.1038/nphys3947
DatabaseName CrossRef
ProQuest Central (Corporate)
Solid State and Superconductivity Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
ProQuest SciTech Premium Collection
Advanced Technologies Database with Aerospace
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
OSTI.GOV
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Technology Research Database


ProQuest Central Student
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1745-2481
EndPage 291
ExternalDocumentID 1535089
4321997805
10_1038_nphys3947
GroupedDBID 0R~
123
29M
39C
3V.
4.4
5BI
5M7
6OB
70F
88I
8FE
8FG
8FH
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJNI
ABLJU
ABUWG
ABZEH
ACBWK
ACGFO
ACGFS
ACGOD
ACMJI
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFBBN
AFKRA
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHOSX
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BENPR
BGLVJ
BHPHI
BKKNO
BKSAR
BPHCQ
CCPQU
DB5
DU5
DWQXO
EBS
EE.
EJD
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
GNUQQ
HCIFZ
HVGLF
HZ~
I-F
LGEZI
LK5
LOTEE
M2P
M7R
N9A
NADUK
NNMJJ
NXXTH
O9-
ODYON
P2P
P62
PCBAR
PQQKQ
PROAC
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SJN
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
TUS
~8M
AAYXX
ACMFV
ACSTC
AFANA
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
7U5
7XB
8FD
8FK
L7M
PKEHL
PQEST
PQGLB
PQUKI
Q9U
AADEA
AADWK
AAEXX
AAJMP
AAPBV
AAYJO
ABEEJ
ABGIJ
ABPTK
ABVXF
ACBMV
ACBRV
ACBYP
ACIGE
ACTTH
ACVWB
ADMDM
ADQMX
ADZGE
AEDAW
AEFTE
AGEZK
AGGBP
AHGBK
AJDOV
NYICJ
OTOTI
ID FETCH-LOGICAL-c418t-6f153bf33ec729a4440d53c4f13b757d038b5fd2ba7d21cbb9b2fec1f7c882a93
IEDL.DBID BENPR
ISSN 1745-2473
IngestDate Fri May 19 02:19:09 EDT 2023
Fri Jul 11 03:46:27 EDT 2025
Sat Aug 23 12:37:06 EDT 2025
Tue Jul 01 00:25:38 EDT 2025
Thu Apr 24 22:52:14 EDT 2025
Fri Feb 21 02:38:28 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-6f153bf33ec729a4440d53c4f13b757d038b5fd2ba7d21cbb9b2fec1f7c882a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
SC0016239
USDOE Office of Science (SC)
ORCID 0000-0002-1300-8621
0000-0002-4962-0548
0000-0003-0297-6528
0000-0003-2169-8068
0000000302976528
0000000249620548
0000000213008621
0000000321698068
PQID 1891940202
PQPubID 27545
PageCount 6
ParticipantIDs osti_scitechconnect_1535089
proquest_miscellaneous_1904198672
proquest_journals_1891940202
crossref_primary_10_1038_nphys3947
crossref_citationtrail_10_1038_nphys3947
springer_journals_10_1038_nphys3947
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-03-01
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: United States
PublicationTitle Nature physics
PublicationTitleAbbrev Nature Phys
PublicationYear 2017
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Publishing Group (NPG)
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Publishing Group (NPG)
References Salomaa, Volovik (CR7) 1988; 37
Choy, Edge, Akhmerov, Beenakker (CR14) 2011; 84
Rusinov (CR44) 1969; 29
Lutchyn, Sau, Das Sarma (CR12) 2010; 105
Alicea (CR2) 2012; 75
Nadj-Perge (CR23) 2014; 346
Das (CR27) 2012; 8
CR38
CR37
Misra (CR46) 2013; 84
Nakosai, Tanaka, Nagaosa (CR21) 2013; 88
Sun (CR26) 2016; 116
Yu (CR42) 1965; 21
Kells, Meidan, Brouwer (CR36) 2012; 86
Rontynen, Ojanen (CR22) 2015; 114
Moore, Read (CR9) 1991; 360
Shiba (CR43) 1968; 40
Lee (CR33) 2012; 109
Deng (CR28) 2012; 12
Ruby (CR39) 2015; 115
Albrecht (CR31) 2016; 531
Peng, Pientka, Vinkler-Aviv, Glazman, von Oppen (CR45) 2015; 115
Nayak, Simon, Stern, Freedman, Das Sarma (CR6) 2008; 80
Ivanov (CR8) 2001; 86
Beenakker (CR3) 2013; 4
Ruby, Heinrich, Pascual, Franke (CR47) 2015; 114
Law, Lee, Ng (CR48) 2009; 103
Braunecker, Simon (CR19) 2013; 111
Kjaergaard, Wölms, Flensberg (CR15) 2012; 85
Meng, Klinovaja, Hoffman, Simon, Loss (CR50) 2015; 92
Finck, Van Harlingen, Mohseni, Jung, Li (CR29) 2013; 110
Nadj-Perge, Drozdov, Bernevig, Yazdani (CR16) 2013; 88
Majorana (CR4) 1937; 14
Kitaev (CR1) 2001; 44
Krogstrup (CR51) 2015; 14
Read, Green (CR10) 2000; 61
Oreg, Refael, von Oppen (CR13) 2010; 105
Rokhinson, Liu, Furdyna (CR30) 2012; 8
Dumitrescu, Roberts, Tewari, Sau, DasSarma (CR40) 2015; 91
Mourik (CR25) 2012; 336
Churchill (CR34) 2013; 87
Pikulin, Dahlhaus, Wimmer, Schomerus, Beenakker (CR35) 2012; 14
Fu, Kane (CR11) 2008; 100
Li (CR24) 2014; 90
Vazifeh, Franz (CR20) 2013; 111
Peng, Pientka, Glazman, von Oppen (CR41) 2015; 114
Klinovaja, Stano, Yazdani, Loss (CR18) 2013; 111
Kitaev (CR5) 2003; 303
Liu, Potter, Law, Lee (CR32) 2012; 109
Sau, Brydon (CR49) 2015; 115
Pientka, Glazman, von Oppen (CR17) 2013; 88
Li, Neupert, Bernevig, Yazdani (CR52) 2016; 7
DI Pikulin (BFnphys3947_CR35) 2012; 14
Y Oreg (BFnphys3947_CR13) 2010; 105
MT Deng (BFnphys3947_CR28) 2012; 12
E Dumitrescu (BFnphys3947_CR40) 2015; 91
S Misra (BFnphys3947_CR46) 2013; 84
H-H Sun (BFnphys3947_CR26) 2016; 116
N Read (BFnphys3947_CR10) 2000; 61
SM Albrecht (BFnphys3947_CR31) 2016; 531
LP Rokhinson (BFnphys3947_CR30) 2012; 8
P Krogstrup (BFnphys3947_CR51) 2015; 14
L Fu (BFnphys3947_CR11) 2008; 100
RM Lutchyn (BFnphys3947_CR12) 2010; 105
E Majorana (BFnphys3947_CR4) 1937; 14
M Ruby (BFnphys3947_CR47) 2015; 114
AY Kitaev (BFnphys3947_CR1) 2001; 44
S Nakosai (BFnphys3947_CR21) 2013; 88
J Rontynen (BFnphys3947_CR22) 2015; 114
J Klinovaja (BFnphys3947_CR18) 2013; 111
V Mourik (BFnphys3947_CR25) 2012; 336
J Liu (BFnphys3947_CR32) 2012; 109
B Braunecker (BFnphys3947_CR19) 2013; 111
ADK Finck (BFnphys3947_CR29) 2013; 110
HOH Churchill (BFnphys3947_CR34) 2013; 87
DA Ivanov (BFnphys3947_CR8) 2001; 86
J Li (BFnphys3947_CR52) 2016; 7
M Kjaergaard (BFnphys3947_CR15) 2012; 85
F Pientka (BFnphys3947_CR17) 2013; 88
T Meng (BFnphys3947_CR50) 2015; 92
EJH Lee (BFnphys3947_CR33) 2012; 109
AI Rusinov (BFnphys3947_CR44) 1969; 29
Y Peng (BFnphys3947_CR41) 2015; 114
CWJ Beenakker (BFnphys3947_CR3) 2013; 4
G Kells (BFnphys3947_CR36) 2012; 86
J Alicea (BFnphys3947_CR2) 2012; 75
MM Vazifeh (BFnphys3947_CR20) 2013; 111
JD Sau (BFnphys3947_CR49) 2015; 115
BFnphys3947_CR37
BFnphys3947_CR38
L Yu (BFnphys3947_CR42) 1965; 21
AY Kitaev (BFnphys3947_CR5) 2003; 303
TP Choy (BFnphys3947_CR14) 2011; 84
S Nadj-Perge (BFnphys3947_CR16) 2013; 88
G Moore (BFnphys3947_CR9) 1991; 360
A Das (BFnphys3947_CR27) 2012; 8
H Shiba (BFnphys3947_CR43) 1968; 40
MM Salomaa (BFnphys3947_CR7) 1988; 37
J Li (BFnphys3947_CR24) 2014; 90
Y Peng (BFnphys3947_CR45) 2015; 115
S Nadj-Perge (BFnphys3947_CR23) 2014; 346
C Nayak (BFnphys3947_CR6) 2008; 80
M Ruby (BFnphys3947_CR39) 2015; 115
KT Law (BFnphys3947_CR48) 2009; 103
References_xml – volume: 115
  start-page: 266804
  year: 2015
  ident: CR45
  article-title: Robust Majorana conductance peaks for a superconducting lead
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.266804
– volume: 346
  start-page: 602
  year: 2014
  end-page: 607
  ident: CR23
  article-title: Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor
  publication-title: Science
  doi: 10.1126/science.1259327
– volume: 100
  start-page: 096407
  year: 2008
  ident: CR11
  article-title: Superconducting proximity effect and Majorana fermions at the surface of a topological insulator
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.096407
– volume: 531
  start-page: 206
  year: 2016
  end-page: 209
  ident: CR31
  article-title: Exponential protection of zero modes in Majorana islands
  publication-title: Nature
  doi: 10.1038/nature17162
– volume: 90
  start-page: 235433
  year: 2014
  ident: CR24
  article-title: Topological superconductivity induced by ferromagnetic metal chains
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.90.235433
– volume: 44
  start-page: 131
  year: 2001
  end-page: 136
  ident: CR1
  article-title: Unpaired Majorana fermions in quantum wires
  publication-title: Phys.-Usp.
  doi: 10.1070/1063-7869/44/10S/S29
– volume: 88
  start-page: 180503
  year: 2013
  ident: CR21
  article-title: Two-dimensional -wave superconducting states with magnetic moments on a conventional -wave superconductor
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.180503
– volume: 111
  start-page: 186805
  year: 2013
  ident: CR18
  article-title: Topological superconductivity and Majorana fermions in RKKY systems
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.186805
– volume: 87
  start-page: 241401
  year: 2013
  ident: CR34
  article-title: Superconductor-nanowire devices from tunneling to the multichannel regime: zero-bias oscillations and magnetoconductance crossover
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.241401
– volume: 114
  start-page: 106801
  year: 2015
  ident: CR41
  article-title: Strong localization of Majorana end states in chains of magnetic adatoms
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.106801
– volume: 116
  start-page: 257003
  year: 2016
  ident: CR26
  article-title: Majorana zero mode detected with spin selective Andreev reflection in the vortex of a topological superconductor
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.257003
– volume: 80
  start-page: 1083
  year: 2008
  end-page: 1159
  ident: CR6
  article-title: Non-Abelian anyons and topological quantum computation
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.80.1083
– volume: 37
  start-page: 9298
  year: 1988
  end-page: 9311
  ident: CR7
  article-title: Cosmiclike domain walls in superfluid He- : instantons and diabolical points in ( , ) space
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.37.9298
– volume: 115
  start-page: 197204
  year: 2015
  ident: CR39
  article-title: End states and subgap structure in proximity-coupled chains of magnetic adatoms
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.197204
– volume: 4
  start-page: 113
  year: 2013
  end-page: 136
  ident: CR3
  article-title: Search for Majorana fermions in superconductors
  publication-title: Ann. Rev. Condens. Matter Phys.
  doi: 10.1146/annurev-conmatphys-030212-184337
– volume: 8
  start-page: 795
  year: 2012
  end-page: 799
  ident: CR30
  article-title: The fractional a.c. Josephson effect in a semiconductor–superconductor nanowire as a signature of Majorana particles
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2429
– volume: 91
  start-page: 094505
  year: 2015
  ident: CR40
  article-title: Majorana fermions in chiral topological ferromagnetic nanowires
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.91.094505
– volume: 14
  start-page: 171
  year: 1937
  end-page: 184
  ident: CR4
  article-title: Teoria simmetrica dell’elettrone e del positrone
  publication-title: Il Nuovo Cimento
  doi: 10.1007/BF02961314
– volume: 105
  start-page: 177002
  year: 2010
  ident: CR13
  article-title: Helical liquids and Majorana bound states in quantum wires
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.177002
– volume: 29
  start-page: 1101
  year: 1969
  end-page: 1106
  ident: CR44
  article-title: On theory of gapless superconductivity in alloys containing paramagnetic impurities
  publication-title: Sov. Phys. Jetp-Ussr
– volume: 92
  start-page: 064503
  year: 2015
  ident: CR50
  article-title: Superconducting gap renormalization around two magnetic impurities: from Shiba to Andreev bound states
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.92.064503
– volume: 303
  start-page: 2
  year: 2003
  end-page: 30
  ident: CR5
  article-title: Fault-tolerant quantum computation by anyons
  publication-title: Ann. Phys.
  doi: 10.1016/S0003-4916(02)00018-0
– volume: 88
  start-page: 155420
  year: 2013
  ident: CR17
  article-title: Topological superconducting phase in helical Shiba chains
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.155420
– volume: 115
  start-page: 127003
  year: 2015
  ident: CR49
  article-title: Bound states of a ferromagnetic wire in a superconductor
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.127003
– ident: CR37
– volume: 14
  start-page: 125011
  year: 2012
  ident: CR35
  article-title: A zero-voltage conductance peak from weak antilocalization in a Majorana nanowire
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/14/12/125011
– volume: 86
  start-page: 100503
  year: 2012
  ident: CR36
  article-title: Near-zero-energy end states in topologically trivial spin–orbit coupled superconducting nanowires with a smooth confinement
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.86.100503
– volume: 360
  start-page: 362
  year: 1991
  end-page: 396
  ident: CR9
  article-title: Nonabelions in the fractional quantum Hall-effect
  publication-title: Nuclear Phys. B
  doi: 10.1016/0550-3213(91)90407-O
– volume: 105
  start-page: 077001
  year: 2010
  ident: CR12
  article-title: Majorana fermions and a topological phase transition in semiconductor–superconductor heterostructures
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.077001
– volume: 86
  start-page: 268
  year: 2001
  end-page: 271
  ident: CR8
  article-title: Non-abelian statistics of half-quantum vortices in -wave superconductors
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.86.268
– volume: 84
  start-page: 195442
  year: 2011
  ident: CR14
  article-title: Majorana fermions emerging from magnetic nanoparticles on a superconductor without spin–orbit coupling
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.195442
– volume: 103
  start-page: 237001
  year: 2009
  ident: CR48
  article-title: Majorana fermion induced resonant Andreev reflection
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.237001
– volume: 7
  start-page: 10395
  year: 2016
  ident: CR52
  article-title: Manipulating Majorana zero modes on atomic rings with an external magnetic field
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10395
– volume: 110
  start-page: 126406
  year: 2013
  ident: CR29
  article-title: Anomalous modulation of a zero-bias peak in a hybrid nanowire-superconductor device
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.126406
– volume: 111
  start-page: 206802
  year: 2013
  ident: CR20
  article-title: Self-organized topological state with Majorana fermions
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.206802
– volume: 12
  start-page: 6414
  year: 2012
  end-page: 6419
  ident: CR28
  article-title: Anomalous zero-bias conductance peak in a Nb–InSb nanowire–Nb hybrid device
  publication-title: Nano Lett.
  doi: 10.1021/nl303758w
– volume: 114
  start-page: 157001
  year: 2015
  ident: CR47
  article-title: Experimental demonstration of a two-band superconducting state for lead using scanning tunneling spectroscopy
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.157001
– volume: 21
  start-page: 75
  year: 1965
  end-page: 91
  ident: CR42
  article-title: Bound state in superconductors with paramagnetic impurities
  publication-title: Acta Phys. Sin.
– volume: 8
  start-page: 887
  year: 2012
  end-page: 895
  ident: CR27
  article-title: Zero-bias peaks and splitting in an Al–InAs nanowire topological superconductor as a signature of Majorana fermions
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2479
– volume: 85
  start-page: 020503
  year: 2012
  ident: CR15
  article-title: Majorana fermions in superconducting nanowires without spin–orbit coupling
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.020503
– ident: CR38
– volume: 84
  start-page: 103903
  year: 2013
  ident: CR46
  article-title: Design and performance of an ultra-high vacuum scanning tunneling microscope operating at dilution refrigerator temperatures and high magnetic fields
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.4822271
– volume: 109
  start-page: 267002
  year: 2012
  ident: CR32
  article-title: Zero-Bias peaks in the tunneling conductance of spin-orbit-coupled superconducting wires with and without Majorana end-states
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.267002
– volume: 111
  start-page: 147202
  year: 2013
  ident: CR19
  article-title: Interplay between classical magnetic moments and superconductivity in quantum one-dimensional conductors: toward a self-sustained topological Majorana phase
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.147202
– volume: 336
  start-page: 1003
  year: 2012
  end-page: 1007
  ident: CR25
  article-title: Signatures of Majorana fermions in hybrid superconductor–semiconductor nanowire devices
  publication-title: Science
  doi: 10.1126/science.1222360
– volume: 61
  start-page: 10267
  year: 2000
  end-page: 10297
  ident: CR10
  article-title: Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.61.10267
– volume: 114
  start-page: 236803
  year: 2015
  ident: CR22
  article-title: Topological superconductivity and high Chern numbers in 2D ferromagnetic Shiba lattices
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.236803
– volume: 75
  start-page: 076501
  year: 2012
  ident: CR2
  article-title: New directions in the pursuit of Majorana fermions in solid state systems
  publication-title: Rep. Progr. Phys.
  doi: 10.1088/0034-4885/75/7/076501
– volume: 40
  start-page: 435
  year: 1968
  end-page: 451
  ident: CR43
  article-title: Classical spins in superconductors
  publication-title: Progr. Theor. Phys.
  doi: 10.1143/PTP.40.435
– volume: 88
  start-page: 020407
  year: 2013
  ident: CR16
  article-title: Proposal for realizing Majorana fermions in chains of magnetic atoms on a superconductor
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.020407
– volume: 109
  start-page: 186802
  year: 2012
  ident: CR33
  article-title: Zero-bias anomaly in a nanowire quantum dot coupled to superconductors
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.186802
– volume: 14
  start-page: 400
  year: 2015
  end-page: 406
  ident: CR51
  article-title: Epitaxy of semiconductor–superconductor nanowires
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4176
– volume: 29
  start-page: 1101
  year: 1969
  ident: BFnphys3947_CR44
  publication-title: Sov. Phys. Jetp-Ussr
– volume: 80
  start-page: 1083
  year: 2008
  ident: BFnphys3947_CR6
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.80.1083
– volume: 84
  start-page: 195442
  year: 2011
  ident: BFnphys3947_CR14
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.195442
– volume: 85
  start-page: 020503
  year: 2012
  ident: BFnphys3947_CR15
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.020503
– volume: 14
  start-page: 125011
  year: 2012
  ident: BFnphys3947_CR35
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/14/12/125011
– volume: 61
  start-page: 10267
  year: 2000
  ident: BFnphys3947_CR10
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.61.10267
– volume: 12
  start-page: 6414
  year: 2012
  ident: BFnphys3947_CR28
  publication-title: Nano Lett.
  doi: 10.1021/nl303758w
– volume: 84
  start-page: 103903
  year: 2013
  ident: BFnphys3947_CR46
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.4822271
– volume: 111
  start-page: 147202
  year: 2013
  ident: BFnphys3947_CR19
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.147202
– volume: 14
  start-page: 400
  year: 2015
  ident: BFnphys3947_CR51
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4176
– volume: 105
  start-page: 077001
  year: 2010
  ident: BFnphys3947_CR12
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.077001
– volume: 90
  start-page: 235433
  year: 2014
  ident: BFnphys3947_CR24
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.90.235433
– volume: 105
  start-page: 177002
  year: 2010
  ident: BFnphys3947_CR13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.177002
– volume: 115
  start-page: 197204
  year: 2015
  ident: BFnphys3947_CR39
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.197204
– volume: 21
  start-page: 75
  year: 1965
  ident: BFnphys3947_CR42
  publication-title: Acta Phys. Sin.
  doi: 10.7498/aps.21.75
– volume: 111
  start-page: 186805
  year: 2013
  ident: BFnphys3947_CR18
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.186805
– volume: 109
  start-page: 267002
  year: 2012
  ident: BFnphys3947_CR32
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.267002
– volume: 531
  start-page: 206
  year: 2016
  ident: BFnphys3947_CR31
  publication-title: Nature
  doi: 10.1038/nature17162
– volume: 111
  start-page: 206802
  year: 2013
  ident: BFnphys3947_CR20
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.206802
– volume: 303
  start-page: 2
  year: 2003
  ident: BFnphys3947_CR5
  publication-title: Ann. Phys.
  doi: 10.1016/S0003-4916(02)00018-0
– volume: 116
  start-page: 257003
  year: 2016
  ident: BFnphys3947_CR26
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.257003
– volume: 87
  start-page: 241401
  year: 2013
  ident: BFnphys3947_CR34
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.241401
– volume: 88
  start-page: 155420
  year: 2013
  ident: BFnphys3947_CR17
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.155420
– volume: 115
  start-page: 266804
  year: 2015
  ident: BFnphys3947_CR45
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.266804
– volume: 336
  start-page: 1003
  year: 2012
  ident: BFnphys3947_CR25
  publication-title: Science
  doi: 10.1126/science.1222360
– volume: 8
  start-page: 887
  year: 2012
  ident: BFnphys3947_CR27
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2479
– volume: 115
  start-page: 127003
  year: 2015
  ident: BFnphys3947_CR49
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.127003
– volume: 4
  start-page: 113
  year: 2013
  ident: BFnphys3947_CR3
  publication-title: Ann. Rev. Condens. Matter Phys.
  doi: 10.1146/annurev-conmatphys-030212-184337
– volume: 44
  start-page: 131
  year: 2001
  ident: BFnphys3947_CR1
  publication-title: Phys.-Usp.
  doi: 10.1070/1063-7869/44/10S/S29
– volume: 14
  start-page: 171
  year: 1937
  ident: BFnphys3947_CR4
  publication-title: Il Nuovo Cimento
  doi: 10.1007/BF02961314
– volume: 346
  start-page: 602
  year: 2014
  ident: BFnphys3947_CR23
  publication-title: Science
  doi: 10.1126/science.1259327
– volume: 100
  start-page: 096407
  year: 2008
  ident: BFnphys3947_CR11
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.096407
– volume: 86
  start-page: 268
  year: 2001
  ident: BFnphys3947_CR8
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.86.268
– volume: 110
  start-page: 126406
  year: 2013
  ident: BFnphys3947_CR29
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.126406
– volume: 88
  start-page: 180503
  year: 2013
  ident: BFnphys3947_CR21
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.180503
– volume: 114
  start-page: 157001
  year: 2015
  ident: BFnphys3947_CR47
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.157001
– volume: 40
  start-page: 435
  year: 1968
  ident: BFnphys3947_CR43
  publication-title: Progr. Theor. Phys.
  doi: 10.1143/PTP.40.435
– volume: 360
  start-page: 362
  year: 1991
  ident: BFnphys3947_CR9
  publication-title: Nuclear Phys. B
  doi: 10.1016/0550-3213(91)90407-O
– volume: 7
  start-page: 10395
  year: 2016
  ident: BFnphys3947_CR52
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10395
– volume: 8
  start-page: 795
  year: 2012
  ident: BFnphys3947_CR30
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2429
– volume: 88
  start-page: 020407
  year: 2013
  ident: BFnphys3947_CR16
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.020407
– ident: BFnphys3947_CR37
– volume: 37
  start-page: 9298
  year: 1988
  ident: BFnphys3947_CR7
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.37.9298
– volume: 92
  start-page: 064503
  year: 2015
  ident: BFnphys3947_CR50
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.92.064503
– volume: 91
  start-page: 094505
  year: 2015
  ident: BFnphys3947_CR40
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.91.094505
– volume: 114
  start-page: 236803
  year: 2015
  ident: BFnphys3947_CR22
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.236803
– volume: 103
  start-page: 237001
  year: 2009
  ident: BFnphys3947_CR48
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.237001
– ident: BFnphys3947_CR38
  doi: 10.1038/npjqi.2016.35
– volume: 75
  start-page: 076501
  year: 2012
  ident: BFnphys3947_CR2
  publication-title: Rep. Progr. Phys.
  doi: 10.1088/0034-4885/75/7/076501
– volume: 109
  start-page: 186802
  year: 2012
  ident: BFnphys3947_CR33
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.186802
– volume: 86
  start-page: 100503
  year: 2012
  ident: BFnphys3947_CR36
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.86.100503
– volume: 114
  start-page: 106801
  year: 2015
  ident: BFnphys3947_CR41
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.106801
SSID ssj0042613
Score 2.6373696
Snippet Ordered assemblies of magnetic atoms on the surface of conventional superconductors can be used to engineer topological superconducting phases and realize...
Not provided.
SourceID osti
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 286
SubjectTerms 639/766/119/1003
639/766/119/995
Atomic
Atoms & subatomic particles
Chains
Classical and Continuum Physics
Complex Systems
Condensed matter
Condensed Matter Physics
Electric properties
Hybridization
Mathematical and Computational Physics
Microscopy
Molecular
Optical and Plasma Physics
Physics
Refrigerators
Searching
Signatures
Superconductivity
Superconductors
Theoretical
Topology
Title High-resolution studies of the Majorana atomic chain platform
URI https://link.springer.com/article/10.1038/nphys3947
https://www.proquest.com/docview/1891940202
https://www.proquest.com/docview/1904198672
https://www.osti.gov/biblio/1535089
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ZS8QwEB50RfBFPHG9iMeDL8Ftkx55EhVXERQRBd9KTlS0Xd36_5206XogPndom5lk5psjMwD7aJRM4pylqTGGcmsdlbHh1EqphHXMth34rq7Ti3t--ZA8hIDbOJRVdjqxUdSm0j5GfhjlAv1tBDfx0eiN-qlRPrsaRmhMwwyq4Bydr5mTs-ub204Xe_-AtVciExrzjHW9hVh-WPrQARN-rso3i9Sr8GT9QJu_EqSN3RkuwHwAjOS4lfAiTNlyCWabwk09XgYfM36k6DOHLUTGbWEgqRxBbEeu5DMKuZQEnevXJ030o3wqyehF1h6trsD98Ozu9IKGkQhU8yivaepQQynHmNWIiiXnfGASprmLmMqSzODCVOJMrGRm4kgrJVTsrI5cphFKS8FWoVdWpV0DwlObKCuFU6njmfCN4kwecRTOIEV3e9CHg44thQ79wv3YipeiyVuzvJhwsA-7E9JR2yTjL6INz9sCLbtvT6t9HY-uC1wPYkTRh82O5UU4RePiS-Z92Jk8xv3vkxqytNUH0ogBj0SeZkiz14nq2yt-_8b6_x_agLnYG-6mymwTevX7h91C2FGrbZjOh-fbYYd9Akq_2oo
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLaqRQguiKdYWmB4SVxGTWYmjzkghIBlS7s9tVJvYZ5qq5IsbCrEn-I3YuexlApx6zlWHp7Pns9jxwZ4iZuSz2IMPPfecxVC5EZ4xYMxVocoQ9-Bb7Gfzw_V56PsaAN-jf_CUFnl6BM7R-0bR2fk22mpMd5GciPeLr9xmhpF2dVxhEYPi93w8weGbKs3Ox9wfV8JMft48H7Oh6kC3Km0bHke0chtlDI4JJZGKZX4TDoVU2mLrPCJLG0WvbCm8CJ11morYnBpLByyUUPNl9DlX1NSarKocvZp9PwUjcj-B8yMC1XIsZORLLdrOqiQmqa4XNj_Jg3a8V_c9lI6ttvlZrfh1kBP2bseT3dgI9R34XpXJupW94BOqI85RugDYNmqL0NkTWTIJNnCnCKkasMwlP964pg7Nic1W56ZlrjxfTi8ElU9gEnd1OEhMJWHzAajo82jKjS1pfNlqhAKSY7BfTKF16NaKjd0J6chGWdVlyWXZbXW4BSer0WXfUuOfwltkm4r5BHUDNdR1ZBrK_weZKR6ClujyqvBZlfVH4RN4dn6MlobpVBMHZpzlNGJSnWZFyjzYlyqC7e4_BqP_v-gp3BjfrDYq_Z29nc34aYgytDVt23BpP1-Hh4j4Wntkw5lDL5cNax_A1HdFg0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZSxxBEC5kJSEvEnOQ9exckJdmZ7p7jn4Q0eiiMS4SIvg26RMVM7PJjkj-Wn6d1XNsjIS8-TzFHNVfdX3VVVMF8A6dkk28dzS11lLhnKeKWUGdUlo6z13bge94kh6cik9nydkC_O7_hQlllf2e2GzUtjLhjHwU5xLjbSQ3bOS7soiTvfH29AcNE6RCprUfp9FC5Mj9usHwbbZ1uIdr_Z6x8f7Xjwe0mzBAjYjzmqYeDV57zp1BkqmEEJFNuBE-5jpLMhvxXCfeMq0yy2KjtdTMOxP7zCAzVaERE27_ixlGRdEAFnf3Jydfej8QYhPe_o6ZUCYy3vc14vmoDMcWXIaZLne84aBCq_6L6d5LzjY-b_wUljqySnZadC3DgiufwaOmaNTMnkM4rz6nGK938CWztiiRVJ4gryTH6hIBViqCgf33C0PMubooyfRK1YEpv4DTB1HWSxiUVeleARGpS7RT0uvUi0yGJnU2jwUCI0ox1I-G8KFXS2G6XuVhZMZV0eTMeV7MNTiEN3PRadug419Cq0G3BbKK0BrXhBoiUxf4PchP5RDWepUXnQXPij94G8Lr-WW0vZBQUaWrrlFGRiKWeZqhzNt-qe7c4v5rrPz_QZvwGCFdfD6cHK3CExb4Q1PstgaD-ue1W0f2U-uNDmYEvj00sm8BqH8bnw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-resolution+studies+of+the+Majorana+atomic+chain+platform&rft.jtitle=Nature+physics&rft.au=Feldman%2C+Benjamin+E.&rft.au=Randeria%2C+Mallika+T.&rft.au=Li%2C+Jian&rft.au=Jeon%2C+Sangjun&rft.date=2017-03-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1745-2473&rft.eissn=1745-2481&rft.volume=13&rft.issue=3&rft.spage=286&rft.epage=291&rft_id=info:doi/10.1038%2Fnphys3947&rft.externalDocID=10_1038_nphys3947
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2473&client=summon