Emotion recognition based on EEG feature maps through deep learning network

Emotion recognition using electroencephalogram (EEG) signals is getting more and more attention in recent years. Since the EEG signals are noisy, non-linear and have non-stationary properties, it is a challenging task to develop an intelligent framework that can provide high accuracy for emotion rec...

Full description

Saved in:
Bibliographic Details
Published inEngineering science and technology, an international journal Vol. 24; no. 6; pp. 1442 - 1454
Main Authors Topic, Ante, Russo, Mladen
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2021
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Emotion recognition using electroencephalogram (EEG) signals is getting more and more attention in recent years. Since the EEG signals are noisy, non-linear and have non-stationary properties, it is a challenging task to develop an intelligent framework that can provide high accuracy for emotion recognition. In this paper, we propose a new model for emotion recognition that will be based on the creation of feature maps based on the topographic (TOPO-FM) and holographic (HOLO-FM) representation of EEG signal characteristics. Deep learning has been utilized as a feature extractor method on feature maps, and afterward extracted features are fused together for the classification process to recognize different kinds of emotions. The experiments are conducted on the four publicly available emotion datasets: DEAP, SEED, DREAMER, and AMIGOS. We demonstrated the effectiveness of our approaches in comparison with studies where authors used EEG signals that classify human emotions in the two-dimensional space. Experimental results show that the proposed methods can improve the emotion recognition rate on the different size datasets.
AbstractList Emotion recognition using electroencephalogram (EEG) signals is getting more and more attention in recent years. Since the EEG signals are noisy, non-linear and have non-stationary properties, it is a challenging task to develop an intelligent framework that can provide high accuracy for emotion recognition. In this paper, we propose a new model for emotion recognition that will be based on the creation of feature maps based on the topographic (TOPO-FM) and holographic (HOLO-FM) representation of EEG signal characteristics. Deep learning has been utilized as a feature extractor method on feature maps, and afterward extracted features are fused together for the classification process to recognize different kinds of emotions. The experiments are conducted on the four publicly available emotion datasets: DEAP, SEED, DREAMER, and AMIGOS. We demonstrated the effectiveness of our approaches in comparison with studies where authors used EEG signals that classify human emotions in the two-dimensional space. Experimental results show that the proposed methods can improve the emotion recognition rate on the different size datasets.
Author Russo, Mladen
Topic, Ante
Author_xml – sequence: 1
  givenname: Ante
  surname: Topic
  fullname: Topic, Ante
  email: atopic@fesb.hr
– sequence: 2
  givenname: Mladen
  surname: Russo
  fullname: Russo, Mladen
BookMark eNqFkU2LFDEQhoOs4LruP_DQf2DaVL4m7UGQZVwXF7zoOVQnlZm0M50hySr---3ZEREPeqqXgveBeuolu5jzTIy9Bt4DB_Nm6ieqze96wQX0XPYcxDN2KQToFR-sufgjv2DXtU6ccxgEgDaX7NPmkFvKc1fI5-2cnvKIlUK3hM3mtouE7aFQd8Bj7dqu5IftrgtEx25PWOY0b7uZ2o9cvr1izyPuK13_mlfs64fNl5uPq_vPt3c37-9XXoFtKzNqRV6iCUKtpdWAKozeyBE1jjoQRFjHtV5rC2KIRg1KjcpqLiXJIL2UV-zuzA0ZJ3cs6YDlp8uY3NMil63D0pLfk_MWI1glYjSoEJSVZvAijBEWpLQnljqzfMm1Foq_ecDdya-b3NmvO_l1XLrF71J7-1fNp4Ynea1g2v-v_O5cpkXS90TFVZ9o9hTS8oW2XJH-DXgE4vmaUA
CitedBy_id crossref_primary_10_1016_j_bspc_2025_107541
crossref_primary_10_3389_fpsyg_2023_1126994
crossref_primary_10_3389_fnins_2024_1320645
crossref_primary_10_1007_s11571_024_10162_5
crossref_primary_10_3233_IDT_220263
crossref_primary_10_1080_10255842_2024_2369257
crossref_primary_10_1109_TIM_2022_3205894
crossref_primary_10_1109_TCDS_2021_3079712
crossref_primary_10_1007_s11571_024_10114_z
crossref_primary_10_1109_LSP_2024_3353679
crossref_primary_10_1016_j_compbiomed_2022_105303
crossref_primary_10_1109_ACCESS_2025_3525996
crossref_primary_10_2478_jsiot_2022_0003
crossref_primary_10_1109_TII_2022_3170422
crossref_primary_10_3233_JIFS_237884
crossref_primary_10_3389_fncom_2021_758212
crossref_primary_10_1109_ACCESS_2022_3201342
crossref_primary_10_1007_s10639_024_13279_6
crossref_primary_10_1109_JSEN_2022_3168572
crossref_primary_10_1109_JSEN_2023_3335229
crossref_primary_10_1007_s11277_024_11656_5
crossref_primary_10_1080_27706710_2023_2222159
crossref_primary_10_1007_s11042_024_20119_9
crossref_primary_10_1109_TIM_2023_3302938
crossref_primary_10_2139_ssrn_4180761
crossref_primary_10_1016_j_asej_2025_103264
crossref_primary_10_1007_s12144_024_06618_w
crossref_primary_10_3389_fnsys_2021_729707
crossref_primary_10_1155_2024_5581443
crossref_primary_10_1109_ACCESS_2024_3463746
crossref_primary_10_1142_S0129065722500216
crossref_primary_10_1007_s11571_023_10034_4
crossref_primary_10_3389_fpsyg_2022_864047
crossref_primary_10_1080_03772063_2022_2038705
crossref_primary_10_1038_s41598_023_40786_2
crossref_primary_10_1109_ACCESS_2024_3409384
crossref_primary_10_3233_THC_220458
crossref_primary_10_1109_TAFFC_2022_3170369
crossref_primary_10_1080_00140139_2024_2324007
crossref_primary_10_1088_1757_899X_1187_1_012012
crossref_primary_10_1109_ACCESS_2024_3447901
crossref_primary_10_1109_ACCESS_2023_3264845
crossref_primary_10_1088_1742_6596_2078_1_012028
crossref_primary_10_3934_mbe_2024210
crossref_primary_10_1186_s13634_024_01146_y
crossref_primary_10_1016_j_eswa_2023_120883
crossref_primary_10_1007_s00521_022_07292_4
crossref_primary_10_3389_fncom_2022_1019776
crossref_primary_10_1016_j_iswa_2023_200212
crossref_primary_10_3389_frsip_2022_936790
crossref_primary_10_1108_ACI_05_2021_0130
crossref_primary_10_1007_s11042_024_19467_3
crossref_primary_10_1007_s42600_024_00391_2
crossref_primary_10_1109_TAFFC_2021_3130387
crossref_primary_10_1155_2023_9223599
crossref_primary_10_1007_s10462_023_10606_0
crossref_primary_10_1016_j_cogsys_2023_101152
crossref_primary_10_1016_j_measurement_2022_111724
crossref_primary_10_1109_TNNLS_2023_3265730
crossref_primary_10_3390_electronics10192405
crossref_primary_10_1007_s00034_022_02164_7
crossref_primary_10_1080_21681163_2023_2299096
crossref_primary_10_1016_j_tbs_2024_100937
crossref_primary_10_1142_S0129065725500029
crossref_primary_10_1109_ACCESS_2023_3266117
crossref_primary_10_1016_j_heliyon_2024_e31485
crossref_primary_10_1109_ACCESS_2024_3434675
Cites_doi 10.1038/s41598-018-35274-x
10.1109/TBME.2019.2897651
10.1016/j.asoc.2015.01.007
10.1016/0013-4694(70)90143-4
10.1007/s00521-018-3358-8
10.1088/1741-2552/ab0ab5
10.1007/BF02229025
10.3390/s20072034
10.3390/brainsci10010008
10.3390/s17051014
10.1109/ACCESS.2019.2915291
10.1109/SOFTCOM.2016.7772186
10.1109/TAFFC.2014.2339834
10.1109/TII.2016.2550535
10.1016/j.chb.2016.08.029
10.3390/s19214736
10.1109/TNNLS.2020.3008938
10.1109/TAFFC.2019.2916015
10.3390/s20030718
10.1109/ACCESS.2020.2966144
10.1155/2020/6816502
10.3390/app7101060
10.1016/0167-2789(88)90081-4
10.1109/TCDS.2018.2826840
10.3389/fnins.2018.00162
10.1511/2001.4.344
10.1016/0013-4694(93)90061-Y
10.1038/161777a0
10.1080/02699939208411068
10.1007/BF00994018
10.4236/jbise.2010.34054
10.1037/h0077714
10.1007/BF02471106
10.1126/sciadv.1700606
10.1016/j.neuropsychologia.2020.107506
10.3390/e21121228
10.3390/s19092212
10.1109/ACCESS.2020.2971064
10.1109/BIBM.2016.7822545
10.1016/j.eswa.2015.10.049
10.3390/s18072074
10.1016/j.ipm.2019.102185
10.1109/TAFFC.2017.2712143
10.1016/j.jestch.2018.08.010
10.1109/TAFFC.2020.3025777
10.1109/ICT4M.2010.5971942
10.1109/T-AFFC.2011.15
10.3390/s20030592
10.1109/JBHI.2017.2688239
10.1007/978-3-319-92007-8_22
10.1109/ACCESS.2019.2936124
10.3390/s20133620
10.1109/TCYB.2018.2797176
10.1016/j.eswa.2017.09.062
10.1016/j.inffus.2018.09.001
10.1109/TAFFC.2017.2714671
10.12720/ijeee.2.2.106-110
10.1109/TAMD.2015.2431497
10.1109/ACCESS.2019.2963113
10.1109/TCDS.2020.2976112
10.1109/ACCESS.2019.2944273
ContentType Journal Article
Copyright 2021 Karabuk University
Copyright_xml – notice: 2021 Karabuk University
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.jestch.2021.03.012
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2215-0986
EndPage 1454
ExternalDocumentID oai_doaj_org_article_c8af1842ff6a4a148369c2dbf1b48383
10_1016_j_jestch_2021_03_012
S2215098621000768
GroupedDBID 0R~
0SF
4.4
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
M~E
NCXOZ
O9-
OK1
RIG
ROL
SSZ
AAYWO
AAYXX
ADVLN
AFJKZ
APXCP
CITATION
ID FETCH-LOGICAL-c418t-6b54ec3a6d2473851a4dbc63ba5ab5de1f17f75758129f64944b485033e3d3c33
IEDL.DBID DOA
ISSN 2215-0986
IngestDate Wed Aug 27 01:25:13 EDT 2025
Tue Jul 01 03:14:36 EDT 2025
Thu Apr 24 23:05:40 EDT 2025
Wed May 17 02:09:30 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Brain-computer interface
Deep learning
Emotion recognition
Electroencephalogram
Valence-arousal model
Computer-generated holography
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-6b54ec3a6d2473851a4dbc63ba5ab5de1f17f75758129f64944b485033e3d3c33
OpenAccessLink https://doaj.org/article/c8af1842ff6a4a148369c2dbf1b48383
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_c8af1842ff6a4a148369c2dbf1b48383
crossref_primary_10_1016_j_jestch_2021_03_012
crossref_citationtrail_10_1016_j_jestch_2021_03_012
elsevier_sciencedirect_doi_10_1016_j_jestch_2021_03_012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2021
2021-12-00
2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationTitle Engineering science and technology, an international journal
PublicationYear 2021
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Morris (b0280) 1995; 35
Khalil, Jones, Babar, Jan, Zafar, Alhussain (b0005) 2019; 7
Koelstra, Muhl, Soleymani, Lee, Yazdani, Ebrahimi, Pun, Nijholt, Patras (b0235) 2012; 3
Chai, Wang, Zhao, Li, Liu, Liu, Bai (b0310) 2017; 17
Keshmiri, Shiomi, Ishiguro (b0190) 2019; 10
Russell (b0060) 1980; 38
Vahora, Chauhan (b0110) 2019; 22
Chao, Dong, Liu, Lu (b0155) 2019; 19
Nakisa, Rastgoo, Tjondronegoro, Chandran (b0375) 2018; 93
Ruiz-Garcia, Elshaw, Altahhan, Palade (b0120) 2018; 29
Musha, Terasaki, Haque, Ivamitsky (b0355) 1997; 1
Towle, Bolanos, Suarez, Tan, Grzeszczuk, Levin, Cakmur, Frank, Spire (b0255) 1993; 86
Zheng, W.; Liu, W.; Lu, Y.; Lu, B.; Cichocki, A. EmotionMeter: A Multimodal Framework for Recognizing Human Emotions. IEEE Transactions on Cybernetics March 2019, 49 (3), 1110-1122.
Bos (b0360) 2006; 56
Khosrowabadi, R.; Rahman, A. W. b. A. Classification of EEG correlates on emotion using features from Gaussian mixtures of EEG spectrogram. Proceeding of the 3rd International Conference on Information and Communication Technology for the Moslem World (ICT4M) 2010, E102-E107.
Zheng, Zhu, Lu (b0180) 2019; 10
Li, Bao, Li, Zhao (b0205) 2020; 57
Dzedzickis, Kaklauskas, Bucinskas (b0340) 2020; 20
Hwang, Hong, Son, Byun (b0200) 2019
Cortes, Vapnik (b0390) 1995; 20
Kim, Wang, Zhao, Im, Min, Choi, Tadros, Choi, Castro, Weissleder, Lee (b0230) 2018; 8
Singh, Fioravanti, Elshahabi, Ruiz, Sitaram, Braun (b0035) 2020; 222
Plutchik (b0055) 2001; 89
Liu, Zheng, Lu (b0135) 2016
Gao, Li, Yang, Dong, Yang, Grebogi (b0095) 2019
Alarcão, Fonseca (b0380) 2019; 10
Chao, Dong, Liu, Lu (b0130) 2020
Ahmed, Bari, Gavrilova (b0015) 2020; 8
Chen, Zhang, Sun, Zhang (b0300) 2020; 8
Guo, Mei, Xie, Xu (b0125) May 2019; 1
Keshmiri, Shiomi, Ishiguro (b0185) 2019; 21
Hjorth (b0330) 1970; 29
Kanjo, Younis, Ang (b0140) 2019; 49
Lobaz, Tools (b0220) 2018, 2018
Miranda-Correa, Abadi, Sebe, Patras (b0250) 2018
Shu, Xie, Yang, Li, Li, Liao, Xu, Yang (b0025) 2018; 18
Murugappan, Ramachandran, Sazali (b0290) 2010; 3
Mehrabian (b0065) 1997; 19
Murugappan, Rizon, Nagarajan, Yaacob (b0370) 2010; 48
Craik, He, Contreras-Vidal (b0090) 2019; 16
Tsang, Poon (b0215) 2016; 12
Zhu, Chen, Ye (b0115) 2020; 8
Alreshidi, Ullah (b0010) 2020; 6
Katsigiannis, Ramzan (b0245) 2018; 22
Shu, Yu, Chen, Hua, Li, Jin, Xu (b0020) 2020; 20
Jenke, Peer, Buss (b0080) 2014; 5
Pandey, Seeja (b0270) 2020
Oh, Lee, Kim (b0335) 2014; 2
Chen, Zeng, Shi, Deng, Ma (b0030) 2019; 7
Sourina, Liu (b0315) 2011
Chamola, Vineet, Nayyar, Hossain (b0040) 2020; 20
Li, Song, Zhang, Zhang, Hou, Hu (b0265) 2018; 12
Li, Liu, Si, Li, Li, Zhu, Xu (b0175) 2019; 66
Song, Zheng, Song, Cui (b0350) 2018
Wang, Hu, Song (b0165) 2019; 7
Li, Huang, Zhou, Zhong (b0150) 2017; 7
Jo, Park, Jung, Yoon, Joo, Kim, Kang, Choi, Lee, Park (b0225) 2017; 3
Higuchi (b0325) 1988; 31
Bhatti, Majid, Anwar, Khan (b0345) 2016; 65
Gao, Wang, Yang, Li, Ma, Chen (b0085) 2020
Khare, S. K.; Bajaj, V. Time-frequency representation and convolutional neural network-based emotion recognition. IEEE transactions on neural networks and learning systems 2020.
Zheng, Lu (b0240) 2015; 7
Tao, Li, Song, Cheng, Liu, Wan, Chen (b0145) 2020
Wang, Li, Chang, (Andy) Wu, A.-Y. (b0285) 2018
Wang, Wu, Zhang, Xu, Zhang, Wu, Coleman (b0195) 2020; 146
Vapnik (b0385) 1995
Udovicic, G.; Topic, A.; Russo, M. Wearable technologies for smart environments: A review with emphasis on BCI. 24th International Conference on Software, Telecommunications and Computer Networks (SoftCOM), Split, 2016; pp 1-9.
Yang, Han, Min (b0105) 2019; 19
Atkinson, Campos (b0295) 2016; 47
Chen, Hu, Moore, Zhang, Ma (b0075) 2015; 30
Abdul-Latif, Cosic, Kumar, Polus, Da Costa (b0365) 2004
Chen, M.; Hao, Y. Label-less Learning for Emotion Cognition. IEEE Transactions on Neural Networks and Learning Systems July 2020, 31 (7), 2430-2440.
Lan, Sourina, Wang, Scherer, Müller-Putz (b0260) 2018; 11
Cimtay, Ekmekcioglu (b0275) 2020; 20
Siddharth, Jung, Sejnowski (b0170) 2019
Li, Song, Zhang, Yu, Hou, Hu (b0160) 2016
Ekman (b0050) 1992; 6
Gabor (b0210) 1948; 161
Khalil (10.1016/j.jestch.2021.03.012_b0005) 2019; 7
Li (10.1016/j.jestch.2021.03.012_b0205) 2020; 57
Atkinson (10.1016/j.jestch.2021.03.012_b0295) 2016; 47
Singh (10.1016/j.jestch.2021.03.012_b0035) 2020; 222
Chai (10.1016/j.jestch.2021.03.012_b0310) 2017; 17
Ekman (10.1016/j.jestch.2021.03.012_b0050) 1992; 6
Gao (10.1016/j.jestch.2021.03.012_b0095) 2019
Morris (10.1016/j.jestch.2021.03.012_b0280) 1995; 35
Guo (10.1016/j.jestch.2021.03.012_b0125) 2019; 1
Li (10.1016/j.jestch.2021.03.012_b0175) 2019; 66
10.1016/j.jestch.2021.03.012_b0305
Higuchi (10.1016/j.jestch.2021.03.012_b0325) 1988; 31
Dzedzickis (10.1016/j.jestch.2021.03.012_b0340) 2020; 20
Wang (10.1016/j.jestch.2021.03.012_b0285) 2018
Lobaz (10.1016/j.jestch.2021.03.012_b0220) 2018
Chamola (10.1016/j.jestch.2021.03.012_b0040) 2020; 20
Abdul-Latif (10.1016/j.jestch.2021.03.012_b0365) 2004
Shu (10.1016/j.jestch.2021.03.012_b0020) 2020; 20
10.1016/j.jestch.2021.03.012_b0100
Lan (10.1016/j.jestch.2021.03.012_b0260) 2018; 11
Craik (10.1016/j.jestch.2021.03.012_b0090) 2019; 16
Kanjo (10.1016/j.jestch.2021.03.012_b0140) 2019; 49
Gao (10.1016/j.jestch.2021.03.012_b0085) 2020
Zheng (10.1016/j.jestch.2021.03.012_b0180) 2019; 10
Song (10.1016/j.jestch.2021.03.012_b0350) 2018
Pandey (10.1016/j.jestch.2021.03.012_b0270) 2020
Alreshidi (10.1016/j.jestch.2021.03.012_b0010) 2020; 6
Cortes (10.1016/j.jestch.2021.03.012_b0390) 1995; 20
Chen (10.1016/j.jestch.2021.03.012_b0030) 2019; 7
Ahmed (10.1016/j.jestch.2021.03.012_b0015) 2020; 8
Russell (10.1016/j.jestch.2021.03.012_b0060) 1980; 38
Sourina (10.1016/j.jestch.2021.03.012_b0315) 2011
Miranda-Correa (10.1016/j.jestch.2021.03.012_b0250) 2018
Wang (10.1016/j.jestch.2021.03.012_b0195) 2020; 146
Chen (10.1016/j.jestch.2021.03.012_b0300) 2020; 8
10.1016/j.jestch.2021.03.012_b0070
Keshmiri (10.1016/j.jestch.2021.03.012_b0185) 2019; 21
Alarcão (10.1016/j.jestch.2021.03.012_b0380) 2019; 10
Ruiz-Garcia (10.1016/j.jestch.2021.03.012_b0120) 2018; 29
Jo (10.1016/j.jestch.2021.03.012_b0225) 2017; 3
Tsang (10.1016/j.jestch.2021.03.012_b0215) 2016; 12
Tao (10.1016/j.jestch.2021.03.012_b0145) 2020
Li (10.1016/j.jestch.2021.03.012_b0265) 2018; 12
Zheng (10.1016/j.jestch.2021.03.012_b0240) 2015; 7
Plutchik (10.1016/j.jestch.2021.03.012_b0055) 2001; 89
Mehrabian (10.1016/j.jestch.2021.03.012_b0065) 1997; 19
Kim (10.1016/j.jestch.2021.03.012_b0230) 2018; 8
Hjorth (10.1016/j.jestch.2021.03.012_b0330) 1970; 29
Vapnik (10.1016/j.jestch.2021.03.012_b0385) 1995
10.1016/j.jestch.2021.03.012_b0045
Jenke (10.1016/j.jestch.2021.03.012_b0080) 2014; 5
10.1016/j.jestch.2021.03.012_b0320
Cimtay (10.1016/j.jestch.2021.03.012_b0275) 2020; 20
Liu (10.1016/j.jestch.2021.03.012_b0135) 2016
Musha (10.1016/j.jestch.2021.03.012_b0355) 1997; 1
Towle (10.1016/j.jestch.2021.03.012_b0255) 1993; 86
Oh (10.1016/j.jestch.2021.03.012_b0335) 2014; 2
Katsigiannis (10.1016/j.jestch.2021.03.012_b0245) 2018; 22
Chao (10.1016/j.jestch.2021.03.012_b0130) 2020
Gabor (10.1016/j.jestch.2021.03.012_b0210) 1948; 161
Murugappan (10.1016/j.jestch.2021.03.012_b0370) 2010; 48
Li (10.1016/j.jestch.2021.03.012_b0160) 2016
Hwang (10.1016/j.jestch.2021.03.012_b0200) 2019
Zhu (10.1016/j.jestch.2021.03.012_b0115) 2020; 8
Bhatti (10.1016/j.jestch.2021.03.012_b0345) 2016; 65
Chao (10.1016/j.jestch.2021.03.012_b0155) 2019; 19
Koelstra (10.1016/j.jestch.2021.03.012_b0235) 2012; 3
Yang (10.1016/j.jestch.2021.03.012_b0105) 2019; 19
Shu (10.1016/j.jestch.2021.03.012_b0025) 2018; 18
Siddharth (10.1016/j.jestch.2021.03.012_b0170) 2019
Chen (10.1016/j.jestch.2021.03.012_b0075) 2015; 30
Wang (10.1016/j.jestch.2021.03.012_b0165) 2019; 7
Li (10.1016/j.jestch.2021.03.012_b0150) 2017; 7
Keshmiri (10.1016/j.jestch.2021.03.012_b0190) 2019; 10
Nakisa (10.1016/j.jestch.2021.03.012_b0375) 2018; 93
Bos (10.1016/j.jestch.2021.03.012_b0360) 2006; 56
Vahora (10.1016/j.jestch.2021.03.012_b0110) 2019; 22
Murugappan (10.1016/j.jestch.2021.03.012_b0290) 2010; 3
References_xml – volume: 48
  start-page: 281
  year: 2010
  end-page: 299
  ident: b0370
  article-title: Inferring of human emotional states using multichannel EEG
  publication-title: European Journal of Scientific Research
– volume: 6
  start-page: 7
  year: 2020
  ident: b0010
  article-title: Facial Emotion Recognition Using Hybrid Features
  publication-title: Informatics
– volume: 86
  start-page: 1
  year: 1993
  end-page: 6
  ident: b0255
  article-title: The spatial location of EEG electrodes: Locating the best-fitting sphere relative to cortical anatomy
– year: 2019
  ident: b0200
  article-title: Learning CNN features from DE features for EEG-based emotion recognition
  publication-title: Pattern Anal. Appl.
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: b0390
  article-title: Support vector networks
  publication-title: Machine Learning
– year: 2019
  ident: b0170
  article-title: Utilizing deep learning towards multi-modal bio-sensing and vision-based affective computing
  publication-title: IEEE Trans. Affective Comput.
– volume: 22
  start-page: 98
  year: 2018
  end-page: 107
  ident: b0245
  article-title: DREAMER: A Database for Emotion Recognition Through EEG and ECG Signals from Wireless Low-cost Off-the-Shelf Devices
– start-page: 531
  year: 2004
  end-page: 534
  ident: b0365
  article-title: Power changes of EEG signals associated with muscle fatigue: the root mean square analysis of EEG bands
  publication-title: Proceedings of the 2004 Intelligent Sensors, Sensor Networks and Information Processing Conference
– year: 1995
  ident: b0385
  article-title: The nature of statistical learning theory
– volume: 3
  year: 2017
  ident: b0225
  article-title: Holographic deep learning for rapid optical screening of anthrax spores
  publication-title: Sci. Adv.
– volume: 47
  start-page: 35
  year: 2016
  end-page: 41
  ident: b0295
  article-title: Improving BCI-based emotion recognition by combining EEG feature selection and kernel classifiers
  publication-title: Expert Syst. Appl.
– volume: 56
  start-page: 1
  year: 2006
  end-page: 17
  ident: b0360
  article-title: EEG-based emotion recognition
  publication-title: The Influence of Visual and Auditory Stimuli
– volume: 30
  start-page: 663
  year: 2015
  end-page: 674
  ident: b0075
  article-title: Electroencephalogram-based emotion assessment system using ontology and data mining techniques
  publication-title: Appl. Soft Comput.
– volume: 5
  start-page: 327
  year: 2014
  end-page: 339
  ident: b0080
  article-title: Feature extraction and selection for emotion recognition from EEG
  publication-title: IEEE Trans. Affective Comput.
– volume: 10
  start-page: 374
  year: 2019
  end-page: 393
  ident: b0380
  article-title: Emotions Recognition Using EEG Signals: A Survey
  publication-title: IEEE Trans. Affective Comput.
– volume: 20
  start-page: 718
  year: 2020
  ident: b0020
  article-title: Wearable Emotion Recognition Using Heart Rate Data from a Smart Bracelet
  publication-title: Sensors
– volume: 7
  start-page: 117327
  year: 2019
  end-page: 117345
  ident: b0005
  article-title: Speech emotion recognition using deep learning techniques: A review
  publication-title: IEEE Access
– volume: 89
  start-page: 344
  year: 2001
  end-page: 350
  ident: b0055
  article-title: The nature of emotions
  publication-title: Am. Sci.
– volume: 16
  year: 2019
  ident: b0090
  article-title: Deep learning for electroencephalogram (EEG) classification tasks: a review
  publication-title: J. Neural Eng.
– volume: 3
  start-page: 18
  year: 2012
  end-page: 31
  ident: b0235
  article-title: DEAP: A database for emotion analysis; using physiological signals
  publication-title: IEEE Trans. Affective Comput.
– volume: 20
  start-page: 3620
  year: 2020
  ident: b0040
  article-title: Brain-Computer Interface-Based Humanoid Control: A Review
  publication-title: Sensors
– volume: 3
  start-page: 390
  year: 2010
  ident: b0290
  article-title: Classification of human emotion from EEG using discrete wavelet transform
  publication-title: J. Biomed. Sci. Eng.
– volume: 8
  start-page: 11907
  year: 2020
  end-page: 11916
  ident: b0300
  article-title: Emotion Feature Analysis and Recognition Based on Reconstructed EEG Sources
  publication-title: IEEE Access
– start-page: 159
  year: 2018, 2018,
  end-page: 165
  ident: b0220
  article-title: Getting started in computer generated display holography
  publication-title: Proceedings of the 11th International Symposium on Display Holography -
– volume: 93
  start-page: 143
  year: 2018
  end-page: 155
  ident: b0375
  article-title: Evolutionary computation algorithms for feature selection of EEG-based emotion recognition using mobile sensors
  publication-title: Expert Syst. Appl.
– reference: Zheng, W.; Liu, W.; Lu, Y.; Lu, B.; Cichocki, A. EmotionMeter: A Multimodal Framework for Recognizing Human Emotions. IEEE Transactions on Cybernetics March 2019, 49 (3), 1110-1122.
– volume: 1
  start-page: 1
  year: May 2019
  end-page: 4
  ident: b0125
  article-title: A Convolutional Neural Network Feature Fusion Framework with Ensemble Learning for EEG-based Emotion Classification
  publication-title: IEEE MTT-S International Microwave Biomedical Conference (IMBioC)
– volume: 146
  year: 2020
  ident: b0195
  article-title: Emotion recognition with convolutional neural network and EEG-based EFDMs
  publication-title: Neuropsychologia
– volume: 7
  start-page: 162
  year: 2015
  end-page: 175
  ident: b0240
  article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks
– year: 2020
  ident: b0085
  article-title: A Channel-fused Dense Convolutional Network for EEG-based Emotion Recognition
  publication-title: IEEE Transactions on Cognitive and Developmental Systems
– volume: 57
  year: 2020
  ident: b0205
  article-title: Exploring temporal representations by leveraging attention-based bidirectional LSTM-RNNs for multi-modal emotion recognition
  publication-title: Inf. Process. Manage.
– volume: 20
  start-page: 2034
  year: 2020
  ident: b0275
  article-title: Investigating the Use of Pretrained Convolutional Neural Network on Cross-Subject and Cross-Dataset EEG Emotion Recognition
  publication-title: Sensors (Basel, Switzerland)
– volume: 12
  start-page: 886
  year: 2016
  end-page: 901
  ident: b0215
  article-title: Review on the State-of-the-Art Technologies for Acquisition and Display of Digital Holograms
  publication-title: IEEE Trans. Ind. Inf.
– volume: 20
  start-page: 592
  year: 2020
  ident: b0340
  article-title: Human Emotion Recognition: Review of Sensors and Methods
  publication-title: Sensors
– year: 2020
  ident: b0130
  article-title: Improved Deep Feature Learning by Synchronization Measurements for Multi-Channel EEG Emotion Recognition
  publication-title: Complexity
– volume: 10
  start-page: 417
  year: 2019
  end-page: 429
  ident: b0180
  article-title: Identifying Stable Patterns over Time for Emotion Recognition from EEG
  publication-title: IEEE Trans. Affective Comput.
– year: 2018
  ident: b0350
  article-title: EEG Emotion Recognition Using Dynamical Graph Convolutional Neural Networks
  publication-title: IEEE Trans. Affective Comput.
– year: 2018
  ident: b0250
  article-title: AMIGOS: A Dataset for Affect
– volume: 6
  start-page: 169
  year: 1992
  end-page: 200
  ident: b0050
  article-title: An argument for basic emotions
  publication-title: Cogn. Emot.
– year: 2019
  ident: b0095
  article-title: A Coincidence Filtering-based Approach for CNNs in EEG-based Recognition
  publication-title: IEEE Trans. Ind. Inf.
– volume: 19
  start-page: 4736
  year: 2019
  ident: b0105
  article-title: A multi-column CNN model for emotion recognition from EEG signals
  publication-title: Sensors
– volume: 10
  start-page: 8
  year: 2019
  ident: b0190
  article-title: Emergence of the Affect from the Variation in the Whole-Brain Flow of Information
  publication-title: Brain sciences
– volume: 1
  start-page: 15
  year: 1997
  end-page: 19
  ident: b0355
  article-title: Feature extraction from EEGs associated with emotions
  publication-title: Artificial Life and Robotics
– reference: Khare, S. K.; Bajaj, V. Time-frequency representation and convolutional neural network-based emotion recognition. IEEE transactions on neural networks and learning systems 2020.
– volume: 222
  year: 2020
  ident: b0035
  article-title: Involvement of top-down networks in the perception of facial emotions: A magnetoencephalographic investigation
  publication-title: NeuroImage
– volume: 66
  start-page: 2869
  year: 2019
  end-page: 2881
  ident: b0175
  article-title: EEG based emotion recognition by combining functional connectivity network and local activations
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 19
  start-page: 331
  year: 1997
  end-page: 357
  ident: b0065
  article-title: Comparison of the PAD and PANAS as models for describing emotions and for differentiating anxiety from depression
  publication-title: Journal of Psychopathology and Behavioral Assessment
– reference: Chen, M.; Hao, Y. Label-less Learning for Emotion Cognition. IEEE Transactions on Neural Networks and Learning Systems July 2020, 31 (7), 2430-2440.
– volume: 7
  start-page: 143303
  year: 2019
  end-page: 143311
  ident: b0165
  article-title: Channel Selection Method for EEG Emotion Recognition Using Normalized Mutual Information
  publication-title: IEEE Access
– reference: Khosrowabadi, R.; Rahman, A. W. b. A. Classification of EEG correlates on emotion using features from Gaussian mixtures of EEG spectrogram. Proceeding of the 3rd International Conference on Information and Communication Technology for the Moslem World (ICT4M) 2010, E102-E107.
– volume: 7
  start-page: 1060
  year: 2017
  ident: b0150
  article-title: Human emotion recognition with electroencephalographic multidimensional features by hybrid deep neural networks
  publication-title: Applied Sciences
– volume: 8
  start-page: 24713
  year: 2020
  end-page: 24720
  ident: b0115
  article-title: A Hybrid CNN–LSTM Network for the Classification of Human Activities Based on Micro-Doppler Radar
  publication-title: IEEE Access
– year: 2020
  ident: b0270
  article-title: Subject independent emotion recognition system for people with facial deformity: an EEG based approach.
  publication-title: Computing
– year: 2020
  ident: b0145
  article-title: EEG-based emotion recognition via channel-wise attention and self attention
  publication-title: IEEE Trans. Affective Comput.
– volume: 17
  start-page: 1014
  year: 2017
  ident: b0310
  article-title: A Fast, Efficient Domain Adaptation Technique for Cross-Domain Electroencephalography (EEG)-Based Emotion Recognition
  publication-title: Sensors (Basel)
– start-page: 352
  year: 2016
  end-page: 359
  ident: b0160
  article-title: Emotion recognition from multi-channel EEG data through Convolutional Recurrent Neural Network
  publication-title: IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
– volume: 35
  start-page: 63
  year: 1995
  end-page: 68
  ident: b0280
  article-title: Observations: Sam: The self-assessment manikin; an efficient cross-cultural measurement of emotional response
– volume: 29
  start-page: 306
  year: 1970
  end-page: 310
  ident: b0330
  article-title: EEG analysis based on time domain properties
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 49
  start-page: 46
  year: 2019
  end-page: 56
  ident: b0140
  article-title: Deep learning analysis of mobile physiological, environmental and location sensor data for emotion detection
  publication-title: Information Fusion
– start-page: 249
  year: 2018
  end-page: 260
  ident: b0285
  article-title: Entropy-Assisted Emotion Recognition of Valence and Arousal Using XGBoost Classifier
  publication-title: Artificial Intelligence Applications and Innovations (AIAI)
– volume: 29
  start-page: 359
  year: 2018
  end-page: 373
  ident: b0120
  article-title: A hybrid deep learning neural approach for emotion recognition from facial expressions for socially assistive robots
  publication-title: Neural Comput. Appl.
– volume: 18
  start-page: 2074
  year: 2018
  ident: b0025
  article-title: A Review of Emotion Recognition Using Physiological Signals
  publication-title: Sensors
– start-page: 521
  year: 2016
  end-page: 529
  ident: b0135
  article-title: Emotion recognition using multimodal deep learning
  publication-title: International conference on neural information processing
– volume: 2
  start-page: 106
  year: 2014
  end-page: 110
  ident: b0335
  article-title: A novel EEG feature extraction method using Hjorth parameter
  publication-title: International Journal of Electronics and Electrical Engineering
– volume: 31
  start-page: 277
  year: 1988
  end-page: 283
  ident: b0325
  article-title: Approach to an irregular time series on the basis of the fractal theory
  publication-title: Physica D
– volume: 21
  start-page: 1228
  year: 2019
  ident: b0185
  article-title: Entropy of the Multi-Channel EEG Recordings Identifies the Distributed Signatures of Negative, Neutral and Positive Affect in Whole-Brain Variability
  publication-title: Entropy
– volume: 22
  start-page: 47
  year: 2019
  end-page: 54
  ident: b0110
  article-title: Deep neural network model for group activity recognition using contextual relationship
  publication-title: Engineering Science and Technology, an International Journal
– volume: 161
  start-page: 777
  year: 1948
  end-page: 778
  ident: b0210
  publication-title: A New Microscopic Principle.
– volume: 19
  start-page: 2212
  year: 2019
  ident: b0155
  article-title: Emotion recognition from multiband EEG signals using CapsNet
  publication-title: Sensors
– start-page: 209
  year: 2011
  end-page: 214
  ident: b0315
  article-title: A fractal-based algorithm of emotion recognition from EEG using arousal-valence model
  publication-title: International Conference on Bio-inspired Systems and Signal Processing
– volume: 11
  start-page: 85
  year: 2018
  end-page: 94
  ident: b0260
  article-title: Domain adaptation techniques for EEG-based emotion recognition: a comparative study on two public datasets
  publication-title: IEEE Transactions on Cognitive and Developmental Systems
– volume: 12
  start-page: 162
  year: 2018
  ident: b0265
  article-title: Exploring EEG features in cross-subject emotion recognition
  publication-title: Front. Neurosci.
– volume: 38
  start-page: 1161
  year: 1980
  end-page: 1178
  ident: b0060
  article-title: A circumplex model of affect
– reference: Udovicic, G.; Topic, A.; Russo, M. Wearable technologies for smart environments: A review with emphasis on BCI. 24th International Conference on Software, Telecommunications and Computer Networks (SoftCOM), Split, 2016; pp 1-9.
– volume: 7
  start-page: 59944
  year: 2019
  end-page: 59950
  ident: b0030
  article-title: Intrinsic Prior Knowledge Driven CICA fMRI Data Analysis for Emotion Recognition Classification
  publication-title: IEEE Access
– volume: 65
  start-page: 267
  year: 2016
  end-page: 275
  ident: b0345
  article-title: Human emotion recognition and analysis in response to audio music using brain signals
  publication-title: Comput. Hum. Behav.
– volume: 8
  start-page: 11761
  year: 2020
  end-page: 11781
  ident: b0015
  article-title: Emotion Recognition From Body Movement
  publication-title: IEEE Access
– volume: 8
  start-page: 1
  year: 2018
  end-page: 12
  ident: b0230
  article-title: Deep transfer learning-based hologram classification for molecular diagnostics
  publication-title: Sci. Rep.
– year: 2018
  ident: 10.1016/j.jestch.2021.03.012_b0250
– volume: 8
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.jestch.2021.03.012_b0230
  article-title: Deep transfer learning-based hologram classification for molecular diagnostics
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-35274-x
– volume: 6
  start-page: 7
  year: 2020
  ident: 10.1016/j.jestch.2021.03.012_b0010
  article-title: Facial Emotion Recognition Using Hybrid Features
  publication-title: Informatics
– volume: 66
  start-page: 2869
  issue: 10
  year: 2019
  ident: 10.1016/j.jestch.2021.03.012_b0175
  article-title: EEG based emotion recognition by combining functional connectivity network and local activations
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2019.2897651
– start-page: 209
  year: 2011
  ident: 10.1016/j.jestch.2021.03.012_b0315
  article-title: A fractal-based algorithm of emotion recognition from EEG using arousal-valence model
  publication-title: International Conference on Bio-inspired Systems and Signal Processing
– volume: 30
  start-page: 663
  year: 2015
  ident: 10.1016/j.jestch.2021.03.012_b0075
  article-title: Electroencephalogram-based emotion assessment system using ontology and data mining techniques
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.01.007
– volume: 29
  start-page: 306
  year: 1970
  ident: 10.1016/j.jestch.2021.03.012_b0330
  article-title: EEG analysis based on time domain properties
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(70)90143-4
– volume: 222
  year: 2020
  ident: 10.1016/j.jestch.2021.03.012_b0035
  article-title: Involvement of top-down networks in the perception of facial emotions: A magnetoencephalographic investigation
  publication-title: NeuroImage
– volume: 29
  start-page: 359
  issue: 7
  year: 2018
  ident: 10.1016/j.jestch.2021.03.012_b0120
  article-title: A hybrid deep learning neural approach for emotion recognition from facial expressions for socially assistive robots
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-018-3358-8
– volume: 16
  issue: 3
  year: 2019
  ident: 10.1016/j.jestch.2021.03.012_b0090
  article-title: Deep learning for electroencephalogram (EEG) classification tasks: a review
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab0ab5
– volume: 19
  start-page: 331
  year: 1997
  ident: 10.1016/j.jestch.2021.03.012_b0065
  article-title: Comparison of the PAD and PANAS as models for describing emotions and for differentiating anxiety from depression
  publication-title: Journal of Psychopathology and Behavioral Assessment
  doi: 10.1007/BF02229025
– volume: 20
  start-page: 2034
  issue: 7
  year: 2020
  ident: 10.1016/j.jestch.2021.03.012_b0275
  article-title: Investigating the Use of Pretrained Convolutional Neural Network on Cross-Subject and Cross-Dataset EEG Emotion Recognition
  publication-title: Sensors (Basel, Switzerland)
  doi: 10.3390/s20072034
– volume: 10
  start-page: 8
  issue: 1
  year: 2019
  ident: 10.1016/j.jestch.2021.03.012_b0190
  article-title: Emergence of the Affect from the Variation in the Whole-Brain Flow of Information
  publication-title: Brain sciences
  doi: 10.3390/brainsci10010008
– volume: 17
  start-page: 1014
  issue: 5
  year: 2017
  ident: 10.1016/j.jestch.2021.03.012_b0310
  article-title: A Fast, Efficient Domain Adaptation Technique for Cross-Domain Electroencephalography (EEG)-Based Emotion Recognition
  publication-title: Sensors (Basel)
  doi: 10.3390/s17051014
– volume: 7
  start-page: 59944
  year: 2019
  ident: 10.1016/j.jestch.2021.03.012_b0030
  article-title: Intrinsic Prior Knowledge Driven CICA fMRI Data Analysis for Emotion Recognition Classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2915291
– ident: 10.1016/j.jestch.2021.03.012_b0045
  doi: 10.1109/SOFTCOM.2016.7772186
– volume: 5
  start-page: 327
  issue: 3
  year: 2014
  ident: 10.1016/j.jestch.2021.03.012_b0080
  article-title: Feature extraction and selection for emotion recognition from EEG
  publication-title: IEEE Trans. Affective Comput.
  doi: 10.1109/TAFFC.2014.2339834
– volume: 12
  start-page: 886
  issue: 3
  year: 2016
  ident: 10.1016/j.jestch.2021.03.012_b0215
  article-title: Review on the State-of-the-Art Technologies for Acquisition and Display of Digital Holograms
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2016.2550535
– volume: 65
  start-page: 267
  year: 2016
  ident: 10.1016/j.jestch.2021.03.012_b0345
  article-title: Human emotion recognition and analysis in response to audio music using brain signals
  publication-title: Comput. Hum. Behav.
  doi: 10.1016/j.chb.2016.08.029
– volume: 19
  start-page: 4736
  issue: 21
  year: 2019
  ident: 10.1016/j.jestch.2021.03.012_b0105
  article-title: A multi-column CNN model for emotion recognition from EEG signals
  publication-title: Sensors
  doi: 10.3390/s19214736
– ident: 10.1016/j.jestch.2021.03.012_b0100
  doi: 10.1109/TNNLS.2020.3008938
– year: 2019
  ident: 10.1016/j.jestch.2021.03.012_b0200
  article-title: Learning CNN features from DE features for EEG-based emotion recognition
  publication-title: Pattern Anal. Appl.
– year: 2019
  ident: 10.1016/j.jestch.2021.03.012_b0170
  article-title: Utilizing deep learning towards multi-modal bio-sensing and vision-based affective computing
  publication-title: IEEE Trans. Affective Comput.
  doi: 10.1109/TAFFC.2019.2916015
– volume: 20
  start-page: 718
  year: 2020
  ident: 10.1016/j.jestch.2021.03.012_b0020
  article-title: Wearable Emotion Recognition Using Heart Rate Data from a Smart Bracelet
  publication-title: Sensors
  doi: 10.3390/s20030718
– volume: 8
  start-page: 11907
  year: 2020
  ident: 10.1016/j.jestch.2021.03.012_b0300
  article-title: Emotion Feature Analysis and Recognition Based on Reconstructed EEG Sources
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2966144
– year: 2020
  ident: 10.1016/j.jestch.2021.03.012_b0130
  article-title: Improved Deep Feature Learning by Synchronization Measurements for Multi-Channel EEG Emotion Recognition
  publication-title: Complexity
  doi: 10.1155/2020/6816502
– volume: 7
  start-page: 1060
  issue: 10
  year: 2017
  ident: 10.1016/j.jestch.2021.03.012_b0150
  article-title: Human emotion recognition with electroencephalographic multidimensional features by hybrid deep neural networks
  publication-title: Applied Sciences
  doi: 10.3390/app7101060
– volume: 31
  start-page: 277
  issue: 2
  year: 1988
  ident: 10.1016/j.jestch.2021.03.012_b0325
  article-title: Approach to an irregular time series on the basis of the fractal theory
  publication-title: Physica D
  doi: 10.1016/0167-2789(88)90081-4
– volume: 11
  start-page: 85
  issue: 1
  year: 2018
  ident: 10.1016/j.jestch.2021.03.012_b0260
  article-title: Domain adaptation techniques for EEG-based emotion recognition: a comparative study on two public datasets
  publication-title: IEEE Transactions on Cognitive and Developmental Systems
  doi: 10.1109/TCDS.2018.2826840
– volume: 56
  start-page: 1
  issue: 3
  year: 2006
  ident: 10.1016/j.jestch.2021.03.012_b0360
  article-title: EEG-based emotion recognition
  publication-title: The Influence of Visual and Auditory Stimuli
– ident: 10.1016/j.jestch.2021.03.012_b0070
– volume: 12
  start-page: 162
  year: 2018
  ident: 10.1016/j.jestch.2021.03.012_b0265
  article-title: Exploring EEG features in cross-subject emotion recognition
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2018.00162
– start-page: 531
  year: 2004
  ident: 10.1016/j.jestch.2021.03.012_b0365
  article-title: Power changes of EEG signals associated with muscle fatigue: the root mean square analysis of EEG bands
– volume: 89
  start-page: 344
  issue: 4
  year: 2001
  ident: 10.1016/j.jestch.2021.03.012_b0055
  article-title: The nature of emotions
  publication-title: Am. Sci.
  doi: 10.1511/2001.4.344
– volume: 86
  start-page: 1
  issue: 1
  year: 1993
  ident: 10.1016/j.jestch.2021.03.012_b0255
  article-title: The spatial location of EEG electrodes: Locating the best-fitting sphere relative to cortical anatomy
  publication-title: Electroencephalogr. Clin. Neurophysiol. Jan.
  doi: 10.1016/0013-4694(93)90061-Y
– volume: 161
  start-page: 777
  year: 1948
  ident: 10.1016/j.jestch.2021.03.012_b0210
  publication-title: A New Microscopic Principle. Nature
  doi: 10.1038/161777a0
– volume: 6
  start-page: 169
  issue: 3–4
  year: 1992
  ident: 10.1016/j.jestch.2021.03.012_b0050
  article-title: An argument for basic emotions
  publication-title: Cogn. Emot.
  doi: 10.1080/02699939208411068
– volume: 20
  start-page: 273
  year: 1995
  ident: 10.1016/j.jestch.2021.03.012_b0390
  article-title: Support vector networks
  publication-title: Machine Learning
  doi: 10.1007/BF00994018
– volume: 3
  start-page: 390
  issue: 4
  year: 2010
  ident: 10.1016/j.jestch.2021.03.012_b0290
  article-title: Classification of human emotion from EEG using discrete wavelet transform
  publication-title: J. Biomed. Sci. Eng.
  doi: 10.4236/jbise.2010.34054
– start-page: 521
  year: 2016
  ident: 10.1016/j.jestch.2021.03.012_b0135
  article-title: Emotion recognition using multimodal deep learning
  publication-title: International conference on neural information processing
– volume: 38
  start-page: 1161
  issue: 6
  year: 1980
  ident: 10.1016/j.jestch.2021.03.012_b0060
  article-title: A circumplex model of affect
  publication-title: J. Pers. Soc. Psychol. Dec.
  doi: 10.1037/h0077714
– volume: 35
  start-page: 63
  issue: 8
  year: 1995
  ident: 10.1016/j.jestch.2021.03.012_b0280
  article-title: Observations: Sam: The self-assessment manikin; an efficient cross-cultural measurement of emotional response
  publication-title: Journal of Advertising Research Jan.
– volume: 1
  start-page: 15
  issue: 1
  year: 1997
  ident: 10.1016/j.jestch.2021.03.012_b0355
  article-title: Feature extraction from EEGs associated with emotions
  publication-title: Artificial Life and Robotics
  doi: 10.1007/BF02471106
– volume: 3
  issue: 8
  year: 2017
  ident: 10.1016/j.jestch.2021.03.012_b0225
  article-title: Holographic deep learning for rapid optical screening of anthrax spores
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1700606
– year: 2019
  ident: 10.1016/j.jestch.2021.03.012_b0095
  article-title: A Coincidence Filtering-based Approach for CNNs in EEG-based Recognition
  publication-title: IEEE Trans. Ind. Inf.
– volume: 146
  year: 2020
  ident: 10.1016/j.jestch.2021.03.012_b0195
  article-title: Emotion recognition with convolutional neural network and EEG-based EFDMs
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2020.107506
– volume: 21
  start-page: 1228
  issue: 12
  year: 2019
  ident: 10.1016/j.jestch.2021.03.012_b0185
  article-title: Entropy of the Multi-Channel EEG Recordings Identifies the Distributed Signatures of Negative, Neutral and Positive Affect in Whole-Brain Variability
  publication-title: Entropy
  doi: 10.3390/e21121228
– volume: 19
  start-page: 2212
  issue: 9
  year: 2019
  ident: 10.1016/j.jestch.2021.03.012_b0155
  article-title: Emotion recognition from multiband EEG signals using CapsNet
  publication-title: Sensors
  doi: 10.3390/s19092212
– year: 1995
  ident: 10.1016/j.jestch.2021.03.012_b0385
– volume: 8
  start-page: 24713
  year: 2020
  ident: 10.1016/j.jestch.2021.03.012_b0115
  article-title: A Hybrid CNN–LSTM Network for the Classification of Human Activities Based on Micro-Doppler Radar
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2971064
– start-page: 352
  year: 2016
  ident: 10.1016/j.jestch.2021.03.012_b0160
  article-title: Emotion recognition from multi-channel EEG data through Convolutional Recurrent Neural Network
  publication-title: IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
  doi: 10.1109/BIBM.2016.7822545
– volume: 47
  start-page: 35
  year: 2016
  ident: 10.1016/j.jestch.2021.03.012_b0295
  article-title: Improving BCI-based emotion recognition by combining EEG feature selection and kernel classifiers
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.10.049
– volume: 18
  start-page: 2074
  year: 2018
  ident: 10.1016/j.jestch.2021.03.012_b0025
  article-title: A Review of Emotion Recognition Using Physiological Signals
  publication-title: Sensors
  doi: 10.3390/s18072074
– volume: 57
  issue: 3
  year: 2020
  ident: 10.1016/j.jestch.2021.03.012_b0205
  article-title: Exploring temporal representations by leveraging attention-based bidirectional LSTM-RNNs for multi-modal emotion recognition
  publication-title: Inf. Process. Manage.
  doi: 10.1016/j.ipm.2019.102185
– volume: 10
  start-page: 417
  issue: 3
  year: 2019
  ident: 10.1016/j.jestch.2021.03.012_b0180
  article-title: Identifying Stable Patterns over Time for Emotion Recognition from EEG
  publication-title: IEEE Trans. Affective Comput.
  doi: 10.1109/TAFFC.2017.2712143
– year: 2018
  ident: 10.1016/j.jestch.2021.03.012_b0350
  article-title: EEG Emotion Recognition Using Dynamical Graph Convolutional Neural Networks
  publication-title: IEEE Trans. Affective Comput.
– volume: 22
  start-page: 47
  issue: 1
  year: 2019
  ident: 10.1016/j.jestch.2021.03.012_b0110
  article-title: Deep neural network model for group activity recognition using contextual relationship
  publication-title: Engineering Science and Technology, an International Journal
  doi: 10.1016/j.jestch.2018.08.010
– year: 2020
  ident: 10.1016/j.jestch.2021.03.012_b0145
  article-title: EEG-based emotion recognition via channel-wise attention and self attention
  publication-title: IEEE Trans. Affective Comput.
  doi: 10.1109/TAFFC.2020.3025777
– ident: 10.1016/j.jestch.2021.03.012_b0320
  doi: 10.1109/ICT4M.2010.5971942
– volume: 3
  start-page: 18
  issue: 1
  year: 2012
  ident: 10.1016/j.jestch.2021.03.012_b0235
  article-title: DEAP: A database for emotion analysis; using physiological signals
  publication-title: IEEE Trans. Affective Comput.
  doi: 10.1109/T-AFFC.2011.15
– volume: 20
  start-page: 592
  issue: 3
  year: 2020
  ident: 10.1016/j.jestch.2021.03.012_b0340
  article-title: Human Emotion Recognition: Review of Sensors and Methods
  publication-title: Sensors
  doi: 10.3390/s20030592
– volume: 22
  start-page: 98
  issue: 1
  year: 2018
  ident: 10.1016/j.jestch.2021.03.012_b0245
  article-title: DREAMER: A Database for Emotion Recognition Through EEG and ECG Signals from Wireless Low-cost Off-the-Shelf Devices
  publication-title: IEEE J. Biomed. Health. Inf. Jan.
  doi: 10.1109/JBHI.2017.2688239
– start-page: 249
  year: 2018
  ident: 10.1016/j.jestch.2021.03.012_b0285
  article-title: Entropy-Assisted Emotion Recognition of Valence and Arousal Using XGBoost Classifier
  publication-title: Artificial Intelligence Applications and Innovations (AIAI)
  doi: 10.1007/978-3-319-92007-8_22
– volume: 48
  start-page: 281
  issue: 2
  year: 2010
  ident: 10.1016/j.jestch.2021.03.012_b0370
  article-title: Inferring of human emotional states using multichannel EEG
  publication-title: European Journal of Scientific Research
– volume: 7
  start-page: 117327
  year: 2019
  ident: 10.1016/j.jestch.2021.03.012_b0005
  article-title: Speech emotion recognition using deep learning techniques: A review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2936124
– volume: 20
  start-page: 3620
  year: 2020
  ident: 10.1016/j.jestch.2021.03.012_b0040
  article-title: Brain-Computer Interface-Based Humanoid Control: A Review
  publication-title: Sensors
  doi: 10.3390/s20133620
– ident: 10.1016/j.jestch.2021.03.012_b0305
  doi: 10.1109/TCYB.2018.2797176
– volume: 93
  start-page: 143
  year: 2018
  ident: 10.1016/j.jestch.2021.03.012_b0375
  article-title: Evolutionary computation algorithms for feature selection of EEG-based emotion recognition using mobile sensors
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.09.062
– volume: 1
  start-page: 1
  year: 2019
  ident: 10.1016/j.jestch.2021.03.012_b0125
  article-title: A Convolutional Neural Network Feature Fusion Framework with Ensemble Learning for EEG-based Emotion Classification
  publication-title: IEEE MTT-S International Microwave Biomedical Conference (IMBioC)
– volume: 49
  start-page: 46
  year: 2019
  ident: 10.1016/j.jestch.2021.03.012_b0140
  article-title: Deep learning analysis of mobile physiological, environmental and location sensor data for emotion detection
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2018.09.001
– year: 2020
  ident: 10.1016/j.jestch.2021.03.012_b0270
  article-title: Subject independent emotion recognition system for people with facial deformity: an EEG based approach. Journal of Ambient Intelligence and Humanized
  publication-title: Computing
– volume: 10
  start-page: 374
  issue: 3
  year: 2019
  ident: 10.1016/j.jestch.2021.03.012_b0380
  article-title: Emotions Recognition Using EEG Signals: A Survey
  publication-title: IEEE Trans. Affective Comput.
  doi: 10.1109/TAFFC.2017.2714671
– volume: 2
  start-page: 106
  issue: 2
  year: 2014
  ident: 10.1016/j.jestch.2021.03.012_b0335
  article-title: A novel EEG feature extraction method using Hjorth parameter
  publication-title: International Journal of Electronics and Electrical Engineering
  doi: 10.12720/ijeee.2.2.106-110
– start-page: 159
  year: 2018
  ident: 10.1016/j.jestch.2021.03.012_b0220
  article-title: Getting started in computer generated display holography
– volume: 7
  start-page: 162
  issue: 3
  year: 2015
  ident: 10.1016/j.jestch.2021.03.012_b0240
  article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks
  publication-title: IEEE Trans. Auton. Ment. Dev. Sep.
  doi: 10.1109/TAMD.2015.2431497
– volume: 8
  start-page: 11761
  year: 2020
  ident: 10.1016/j.jestch.2021.03.012_b0015
  article-title: Emotion Recognition From Body Movement
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2963113
– year: 2020
  ident: 10.1016/j.jestch.2021.03.012_b0085
  article-title: A Channel-fused Dense Convolutional Network for EEG-based Emotion Recognition
  publication-title: IEEE Transactions on Cognitive and Developmental Systems
  doi: 10.1109/TCDS.2020.2976112
– volume: 7
  start-page: 143303
  year: 2019
  ident: 10.1016/j.jestch.2021.03.012_b0165
  article-title: Channel Selection Method for EEG Emotion Recognition Using Normalized Mutual Information
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2944273
SSID ssj0001921156
Score 2.5472288
Snippet Emotion recognition using electroencephalogram (EEG) signals is getting more and more attention in recent years. Since the EEG signals are noisy, non-linear...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 1442
SubjectTerms Brain-computer interface
Computer-generated holography
Deep learning
Electroencephalogram
Emotion recognition
Valence-arousal model
SummonAdditionalLinks – databaseName: Elsevier Free Content
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqTjAgnqK85IE1amI7jjMCKlQgWKBSN8tPVAShKuX_c3acUhaQ2BzLlzhn6x723XcInSuvuTDEZc7kOTgoVmQqVy5jjCkijNIkHrjdP_DxhN1Oy2kPXXW5MCGsMsn-VqZHaZ16hombw_lsNnwkoK3yGizyor1PAjlMmYhJfNPL73OWGlycWMQ1jM8CQZdBF8O8XkD4xlsJUkS004L80FARyH9NUa0pn-tttJWsRnzRTmwH9VyzizbXsAT30N2oLciDVyFB0A46ymJojEY32LsI4onf1PwDp_o82Do3x6l0xDNu2qDwfTS5Hj1djbNUKSEzrBDLjOuSOUMVt4QFeJpCMasNp1qVSpfWFb6ofAWWGajz2nNWM6aZCDeYjlpqKD1A_ea9cYcIV8woIQyvXW1ZBc6Zop7msNRU1ZwQPUC04440CUY8VLN4lV282ItseSoDT2VOJfB0gLIV1byF0fhj_GVg_GpsAMGOHe-LZ5l2gTRCeXBQifdcMQV-HeW1IVb7An4OPO8Bqrplkz_2FLxq9uvnj_5NeYw2wlMb8HKC-svFpzsFs2Wpz-K-_AJOBeo5
  priority: 102
  providerName: Elsevier
Title Emotion recognition based on EEG feature maps through deep learning network
URI https://dx.doi.org/10.1016/j.jestch.2021.03.012
https://doaj.org/article/c8af1842ff6a4a148369c2dbf1b48383
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8sAakdiO44wUpbwEE5W6WX4iKigVlP_P2U6qsNCFJbIix47Op9x39uX7ELpQXnNhiMucyXNIUKzIVK5cxhhTRBilSdxwe3zitxN2Py2nPamvUBOW6IGT4S6NUB6yEOI9V0wBeKe8NsRqX2hoi8jzCTGvl0zNEm4BqBOV5SCmZXktePffXCzumsEnN55FkCJynBbkV1yK9P298NQLOeMdtN1iRXyV3nEXbbj5HtrqMQjuo4cmyfDgVSEQtENkshgaTXODvYvUnfhdLb5wq8qDrXML3ApGvOB5KgU_QJNx83x9m7X6CJlhhVhmXJfMGaq4JSyQ0hSKWW041apUurSu8EXlK8BjEMRrz1nNGNgsnFs6aqmh9BAN5h9zd4RwxYwSwvDa1ZZVkJIp6mkOC0xVzQnRQ0Q760jTkocHDYs32VWJzWSyqQw2lTmVYNMhylZPLRJ5xpr-o2D4Vd9AfR1vgEPI1iHkOocYoqpbNtmiiIQOYKjXP6c__o_pT9BmGDJVvJyiwfLz250Bblnq8-iicL2bjn4AKTrqKA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT-swEB7x4AAcEMt7oqw-cI2a2K6THAEVynoBpN4sr6gISgXl_zN2nFIuIL1b5HiyjK1Z7PH3ARwpr0VlqMucyXNMUGyVqVy5jHOuaGWUpnHB7eZWDB745bA3XIDT9ixMKKtMtr-x6dFap5Zu0mZ3Mhp17yh6q7zGiLxo9pP-wBJGA2Xgb7gYnnwttNSY40QW1yCQBYn2CF2s83pC6xu3JWgR4U4L-s1FRST_OU81533O1mEthY3kuPmyDVhw401YnQMT3IKrfsPIQ2Y1QXgdnJQleNHvnxPvIooneVGTd5IIeoh1bkISd8QjGTdV4X_h4ax_fzrIElVCZnhRTTOhe9wZpoSlPODTFIpbbQTTqqd0z7rCF6UvMTRDf157wWvONa_CFqZjlhnG_sHi-HXstoGU3KiqMqJ2teUlZmeKeZbjWDNVC0p1B1irHWkSjnigs3iWbcHYk2x0KoNOZc4k6rQD2Uxq0uBo_NL_JCh-1jegYMeG17dHmaaBNJXymKFS74XiChM7JmpDrfYF_hym3h0o22GT3yYVPmr04-t3_lvyEJYH9zfX8vri9moXVsKdpvplDxanbx9uH2OYqT6Ic_QTHCDtWA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emotion+recognition+based+on+EEG+feature+maps+through+deep+learning+network&rft.jtitle=Engineering+science+and+technology%2C+an+international+journal&rft.au=Ante+Topic&rft.au=Mladen+Russo&rft.date=2021-12-01&rft.pub=Elsevier&rft.issn=2215-0986&rft.eissn=2215-0986&rft.volume=24&rft.issue=6&rft.spage=1442&rft.epage=1454&rft_id=info:doi/10.1016%2Fj.jestch.2021.03.012&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c8af1842ff6a4a148369c2dbf1b48383
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2215-0986&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2215-0986&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2215-0986&client=summon