Emotion recognition based on EEG feature maps through deep learning network
Emotion recognition using electroencephalogram (EEG) signals is getting more and more attention in recent years. Since the EEG signals are noisy, non-linear and have non-stationary properties, it is a challenging task to develop an intelligent framework that can provide high accuracy for emotion rec...
Saved in:
Published in | Engineering science and technology, an international journal Vol. 24; no. 6; pp. 1442 - 1454 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2021
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Emotion recognition using electroencephalogram (EEG) signals is getting more and more attention in recent years. Since the EEG signals are noisy, non-linear and have non-stationary properties, it is a challenging task to develop an intelligent framework that can provide high accuracy for emotion recognition. In this paper, we propose a new model for emotion recognition that will be based on the creation of feature maps based on the topographic (TOPO-FM) and holographic (HOLO-FM) representation of EEG signal characteristics. Deep learning has been utilized as a feature extractor method on feature maps, and afterward extracted features are fused together for the classification process to recognize different kinds of emotions. The experiments are conducted on the four publicly available emotion datasets: DEAP, SEED, DREAMER, and AMIGOS. We demonstrated the effectiveness of our approaches in comparison with studies where authors used EEG signals that classify human emotions in the two-dimensional space. Experimental results show that the proposed methods can improve the emotion recognition rate on the different size datasets. |
---|---|
AbstractList | Emotion recognition using electroencephalogram (EEG) signals is getting more and more attention in recent years. Since the EEG signals are noisy, non-linear and have non-stationary properties, it is a challenging task to develop an intelligent framework that can provide high accuracy for emotion recognition. In this paper, we propose a new model for emotion recognition that will be based on the creation of feature maps based on the topographic (TOPO-FM) and holographic (HOLO-FM) representation of EEG signal characteristics. Deep learning has been utilized as a feature extractor method on feature maps, and afterward extracted features are fused together for the classification process to recognize different kinds of emotions. The experiments are conducted on the four publicly available emotion datasets: DEAP, SEED, DREAMER, and AMIGOS. We demonstrated the effectiveness of our approaches in comparison with studies where authors used EEG signals that classify human emotions in the two-dimensional space. Experimental results show that the proposed methods can improve the emotion recognition rate on the different size datasets. |
Author | Russo, Mladen Topic, Ante |
Author_xml | – sequence: 1 givenname: Ante surname: Topic fullname: Topic, Ante email: atopic@fesb.hr – sequence: 2 givenname: Mladen surname: Russo fullname: Russo, Mladen |
BookMark | eNqFkU2LFDEQhoOs4LruP_DQf2DaVL4m7UGQZVwXF7zoOVQnlZm0M50hySr---3ZEREPeqqXgveBeuolu5jzTIy9Bt4DB_Nm6ieqze96wQX0XPYcxDN2KQToFR-sufgjv2DXtU6ccxgEgDaX7NPmkFvKc1fI5-2cnvKIlUK3hM3mtouE7aFQd8Bj7dqu5IftrgtEx25PWOY0b7uZ2o9cvr1izyPuK13_mlfs64fNl5uPq_vPt3c37-9XXoFtKzNqRV6iCUKtpdWAKozeyBE1jjoQRFjHtV5rC2KIRg1KjcpqLiXJIL2UV-zuzA0ZJ3cs6YDlp8uY3NMil63D0pLfk_MWI1glYjSoEJSVZvAijBEWpLQnljqzfMm1Foq_ecDdya-b3NmvO_l1XLrF71J7-1fNp4Ynea1g2v-v_O5cpkXS90TFVZ9o9hTS8oW2XJH-DXgE4vmaUA |
CitedBy_id | crossref_primary_10_1016_j_bspc_2025_107541 crossref_primary_10_3389_fpsyg_2023_1126994 crossref_primary_10_3389_fnins_2024_1320645 crossref_primary_10_1007_s11571_024_10162_5 crossref_primary_10_3233_IDT_220263 crossref_primary_10_1080_10255842_2024_2369257 crossref_primary_10_1109_TIM_2022_3205894 crossref_primary_10_1109_TCDS_2021_3079712 crossref_primary_10_1007_s11571_024_10114_z crossref_primary_10_1109_LSP_2024_3353679 crossref_primary_10_1016_j_compbiomed_2022_105303 crossref_primary_10_1109_ACCESS_2025_3525996 crossref_primary_10_2478_jsiot_2022_0003 crossref_primary_10_1109_TII_2022_3170422 crossref_primary_10_3233_JIFS_237884 crossref_primary_10_3389_fncom_2021_758212 crossref_primary_10_1109_ACCESS_2022_3201342 crossref_primary_10_1007_s10639_024_13279_6 crossref_primary_10_1109_JSEN_2022_3168572 crossref_primary_10_1109_JSEN_2023_3335229 crossref_primary_10_1007_s11277_024_11656_5 crossref_primary_10_1080_27706710_2023_2222159 crossref_primary_10_1007_s11042_024_20119_9 crossref_primary_10_1109_TIM_2023_3302938 crossref_primary_10_2139_ssrn_4180761 crossref_primary_10_1016_j_asej_2025_103264 crossref_primary_10_1007_s12144_024_06618_w crossref_primary_10_3389_fnsys_2021_729707 crossref_primary_10_1155_2024_5581443 crossref_primary_10_1109_ACCESS_2024_3463746 crossref_primary_10_1142_S0129065722500216 crossref_primary_10_1007_s11571_023_10034_4 crossref_primary_10_3389_fpsyg_2022_864047 crossref_primary_10_1080_03772063_2022_2038705 crossref_primary_10_1038_s41598_023_40786_2 crossref_primary_10_1109_ACCESS_2024_3409384 crossref_primary_10_3233_THC_220458 crossref_primary_10_1109_TAFFC_2022_3170369 crossref_primary_10_1080_00140139_2024_2324007 crossref_primary_10_1088_1757_899X_1187_1_012012 crossref_primary_10_1109_ACCESS_2024_3447901 crossref_primary_10_1109_ACCESS_2023_3264845 crossref_primary_10_1088_1742_6596_2078_1_012028 crossref_primary_10_3934_mbe_2024210 crossref_primary_10_1186_s13634_024_01146_y crossref_primary_10_1016_j_eswa_2023_120883 crossref_primary_10_1007_s00521_022_07292_4 crossref_primary_10_3389_fncom_2022_1019776 crossref_primary_10_1016_j_iswa_2023_200212 crossref_primary_10_3389_frsip_2022_936790 crossref_primary_10_1108_ACI_05_2021_0130 crossref_primary_10_1007_s11042_024_19467_3 crossref_primary_10_1007_s42600_024_00391_2 crossref_primary_10_1109_TAFFC_2021_3130387 crossref_primary_10_1155_2023_9223599 crossref_primary_10_1007_s10462_023_10606_0 crossref_primary_10_1016_j_cogsys_2023_101152 crossref_primary_10_1016_j_measurement_2022_111724 crossref_primary_10_1109_TNNLS_2023_3265730 crossref_primary_10_3390_electronics10192405 crossref_primary_10_1007_s00034_022_02164_7 crossref_primary_10_1080_21681163_2023_2299096 crossref_primary_10_1016_j_tbs_2024_100937 crossref_primary_10_1142_S0129065725500029 crossref_primary_10_1109_ACCESS_2023_3266117 crossref_primary_10_1016_j_heliyon_2024_e31485 crossref_primary_10_1109_ACCESS_2024_3434675 |
Cites_doi | 10.1038/s41598-018-35274-x 10.1109/TBME.2019.2897651 10.1016/j.asoc.2015.01.007 10.1016/0013-4694(70)90143-4 10.1007/s00521-018-3358-8 10.1088/1741-2552/ab0ab5 10.1007/BF02229025 10.3390/s20072034 10.3390/brainsci10010008 10.3390/s17051014 10.1109/ACCESS.2019.2915291 10.1109/SOFTCOM.2016.7772186 10.1109/TAFFC.2014.2339834 10.1109/TII.2016.2550535 10.1016/j.chb.2016.08.029 10.3390/s19214736 10.1109/TNNLS.2020.3008938 10.1109/TAFFC.2019.2916015 10.3390/s20030718 10.1109/ACCESS.2020.2966144 10.1155/2020/6816502 10.3390/app7101060 10.1016/0167-2789(88)90081-4 10.1109/TCDS.2018.2826840 10.3389/fnins.2018.00162 10.1511/2001.4.344 10.1016/0013-4694(93)90061-Y 10.1038/161777a0 10.1080/02699939208411068 10.1007/BF00994018 10.4236/jbise.2010.34054 10.1037/h0077714 10.1007/BF02471106 10.1126/sciadv.1700606 10.1016/j.neuropsychologia.2020.107506 10.3390/e21121228 10.3390/s19092212 10.1109/ACCESS.2020.2971064 10.1109/BIBM.2016.7822545 10.1016/j.eswa.2015.10.049 10.3390/s18072074 10.1016/j.ipm.2019.102185 10.1109/TAFFC.2017.2712143 10.1016/j.jestch.2018.08.010 10.1109/TAFFC.2020.3025777 10.1109/ICT4M.2010.5971942 10.1109/T-AFFC.2011.15 10.3390/s20030592 10.1109/JBHI.2017.2688239 10.1007/978-3-319-92007-8_22 10.1109/ACCESS.2019.2936124 10.3390/s20133620 10.1109/TCYB.2018.2797176 10.1016/j.eswa.2017.09.062 10.1016/j.inffus.2018.09.001 10.1109/TAFFC.2017.2714671 10.12720/ijeee.2.2.106-110 10.1109/TAMD.2015.2431497 10.1109/ACCESS.2019.2963113 10.1109/TCDS.2020.2976112 10.1109/ACCESS.2019.2944273 |
ContentType | Journal Article |
Copyright | 2021 Karabuk University |
Copyright_xml | – notice: 2021 Karabuk University |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.jestch.2021.03.012 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2215-0986 |
EndPage | 1454 |
ExternalDocumentID | oai_doaj_org_article_c8af1842ff6a4a148369c2dbf1b48383 10_1016_j_jestch_2021_03_012 S2215098621000768 |
GroupedDBID | 0R~ 0SF 4.4 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 M~E NCXOZ O9- OK1 RIG ROL SSZ AAYWO AAYXX ADVLN AFJKZ APXCP CITATION |
ID | FETCH-LOGICAL-c418t-6b54ec3a6d2473851a4dbc63ba5ab5de1f17f75758129f64944b485033e3d3c33 |
IEDL.DBID | DOA |
ISSN | 2215-0986 |
IngestDate | Wed Aug 27 01:25:13 EDT 2025 Tue Jul 01 03:14:36 EDT 2025 Thu Apr 24 23:05:40 EDT 2025 Wed May 17 02:09:30 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Brain-computer interface Deep learning Emotion recognition Electroencephalogram Valence-arousal model Computer-generated holography |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c418t-6b54ec3a6d2473851a4dbc63ba5ab5de1f17f75758129f64944b485033e3d3c33 |
OpenAccessLink | https://doaj.org/article/c8af1842ff6a4a148369c2dbf1b48383 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c8af1842ff6a4a148369c2dbf1b48383 crossref_primary_10_1016_j_jestch_2021_03_012 crossref_citationtrail_10_1016_j_jestch_2021_03_012 elsevier_sciencedirect_doi_10_1016_j_jestch_2021_03_012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2021 2021-12-00 2021-12-01 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
PublicationDecade | 2020 |
PublicationTitle | Engineering science and technology, an international journal |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Morris (b0280) 1995; 35 Khalil, Jones, Babar, Jan, Zafar, Alhussain (b0005) 2019; 7 Koelstra, Muhl, Soleymani, Lee, Yazdani, Ebrahimi, Pun, Nijholt, Patras (b0235) 2012; 3 Chai, Wang, Zhao, Li, Liu, Liu, Bai (b0310) 2017; 17 Keshmiri, Shiomi, Ishiguro (b0190) 2019; 10 Russell (b0060) 1980; 38 Vahora, Chauhan (b0110) 2019; 22 Chao, Dong, Liu, Lu (b0155) 2019; 19 Nakisa, Rastgoo, Tjondronegoro, Chandran (b0375) 2018; 93 Ruiz-Garcia, Elshaw, Altahhan, Palade (b0120) 2018; 29 Musha, Terasaki, Haque, Ivamitsky (b0355) 1997; 1 Towle, Bolanos, Suarez, Tan, Grzeszczuk, Levin, Cakmur, Frank, Spire (b0255) 1993; 86 Zheng, W.; Liu, W.; Lu, Y.; Lu, B.; Cichocki, A. EmotionMeter: A Multimodal Framework for Recognizing Human Emotions. IEEE Transactions on Cybernetics March 2019, 49 (3), 1110-1122. Bos (b0360) 2006; 56 Khosrowabadi, R.; Rahman, A. W. b. A. Classification of EEG correlates on emotion using features from Gaussian mixtures of EEG spectrogram. Proceeding of the 3rd International Conference on Information and Communication Technology for the Moslem World (ICT4M) 2010, E102-E107. Zheng, Zhu, Lu (b0180) 2019; 10 Li, Bao, Li, Zhao (b0205) 2020; 57 Dzedzickis, Kaklauskas, Bucinskas (b0340) 2020; 20 Hwang, Hong, Son, Byun (b0200) 2019 Cortes, Vapnik (b0390) 1995; 20 Kim, Wang, Zhao, Im, Min, Choi, Tadros, Choi, Castro, Weissleder, Lee (b0230) 2018; 8 Singh, Fioravanti, Elshahabi, Ruiz, Sitaram, Braun (b0035) 2020; 222 Plutchik (b0055) 2001; 89 Liu, Zheng, Lu (b0135) 2016 Gao, Li, Yang, Dong, Yang, Grebogi (b0095) 2019 Alarcão, Fonseca (b0380) 2019; 10 Chao, Dong, Liu, Lu (b0130) 2020 Ahmed, Bari, Gavrilova (b0015) 2020; 8 Chen, Zhang, Sun, Zhang (b0300) 2020; 8 Guo, Mei, Xie, Xu (b0125) May 2019; 1 Keshmiri, Shiomi, Ishiguro (b0185) 2019; 21 Hjorth (b0330) 1970; 29 Kanjo, Younis, Ang (b0140) 2019; 49 Lobaz, Tools (b0220) 2018, 2018 Miranda-Correa, Abadi, Sebe, Patras (b0250) 2018 Shu, Xie, Yang, Li, Li, Liao, Xu, Yang (b0025) 2018; 18 Murugappan, Ramachandran, Sazali (b0290) 2010; 3 Mehrabian (b0065) 1997; 19 Murugappan, Rizon, Nagarajan, Yaacob (b0370) 2010; 48 Craik, He, Contreras-Vidal (b0090) 2019; 16 Tsang, Poon (b0215) 2016; 12 Zhu, Chen, Ye (b0115) 2020; 8 Alreshidi, Ullah (b0010) 2020; 6 Katsigiannis, Ramzan (b0245) 2018; 22 Shu, Yu, Chen, Hua, Li, Jin, Xu (b0020) 2020; 20 Jenke, Peer, Buss (b0080) 2014; 5 Pandey, Seeja (b0270) 2020 Oh, Lee, Kim (b0335) 2014; 2 Chen, Zeng, Shi, Deng, Ma (b0030) 2019; 7 Sourina, Liu (b0315) 2011 Chamola, Vineet, Nayyar, Hossain (b0040) 2020; 20 Li, Song, Zhang, Zhang, Hou, Hu (b0265) 2018; 12 Li, Liu, Si, Li, Li, Zhu, Xu (b0175) 2019; 66 Song, Zheng, Song, Cui (b0350) 2018 Wang, Hu, Song (b0165) 2019; 7 Li, Huang, Zhou, Zhong (b0150) 2017; 7 Jo, Park, Jung, Yoon, Joo, Kim, Kang, Choi, Lee, Park (b0225) 2017; 3 Higuchi (b0325) 1988; 31 Bhatti, Majid, Anwar, Khan (b0345) 2016; 65 Gao, Wang, Yang, Li, Ma, Chen (b0085) 2020 Khare, S. K.; Bajaj, V. Time-frequency representation and convolutional neural network-based emotion recognition. IEEE transactions on neural networks and learning systems 2020. Zheng, Lu (b0240) 2015; 7 Tao, Li, Song, Cheng, Liu, Wan, Chen (b0145) 2020 Wang, Li, Chang, (Andy) Wu, A.-Y. (b0285) 2018 Wang, Wu, Zhang, Xu, Zhang, Wu, Coleman (b0195) 2020; 146 Vapnik (b0385) 1995 Udovicic, G.; Topic, A.; Russo, M. Wearable technologies for smart environments: A review with emphasis on BCI. 24th International Conference on Software, Telecommunications and Computer Networks (SoftCOM), Split, 2016; pp 1-9. Yang, Han, Min (b0105) 2019; 19 Atkinson, Campos (b0295) 2016; 47 Chen, Hu, Moore, Zhang, Ma (b0075) 2015; 30 Abdul-Latif, Cosic, Kumar, Polus, Da Costa (b0365) 2004 Chen, M.; Hao, Y. Label-less Learning for Emotion Cognition. IEEE Transactions on Neural Networks and Learning Systems July 2020, 31 (7), 2430-2440. Lan, Sourina, Wang, Scherer, Müller-Putz (b0260) 2018; 11 Cimtay, Ekmekcioglu (b0275) 2020; 20 Siddharth, Jung, Sejnowski (b0170) 2019 Li, Song, Zhang, Yu, Hou, Hu (b0160) 2016 Ekman (b0050) 1992; 6 Gabor (b0210) 1948; 161 Khalil (10.1016/j.jestch.2021.03.012_b0005) 2019; 7 Li (10.1016/j.jestch.2021.03.012_b0205) 2020; 57 Atkinson (10.1016/j.jestch.2021.03.012_b0295) 2016; 47 Singh (10.1016/j.jestch.2021.03.012_b0035) 2020; 222 Chai (10.1016/j.jestch.2021.03.012_b0310) 2017; 17 Ekman (10.1016/j.jestch.2021.03.012_b0050) 1992; 6 Gao (10.1016/j.jestch.2021.03.012_b0095) 2019 Morris (10.1016/j.jestch.2021.03.012_b0280) 1995; 35 Guo (10.1016/j.jestch.2021.03.012_b0125) 2019; 1 Li (10.1016/j.jestch.2021.03.012_b0175) 2019; 66 10.1016/j.jestch.2021.03.012_b0305 Higuchi (10.1016/j.jestch.2021.03.012_b0325) 1988; 31 Dzedzickis (10.1016/j.jestch.2021.03.012_b0340) 2020; 20 Wang (10.1016/j.jestch.2021.03.012_b0285) 2018 Lobaz (10.1016/j.jestch.2021.03.012_b0220) 2018 Chamola (10.1016/j.jestch.2021.03.012_b0040) 2020; 20 Abdul-Latif (10.1016/j.jestch.2021.03.012_b0365) 2004 Shu (10.1016/j.jestch.2021.03.012_b0020) 2020; 20 10.1016/j.jestch.2021.03.012_b0100 Lan (10.1016/j.jestch.2021.03.012_b0260) 2018; 11 Craik (10.1016/j.jestch.2021.03.012_b0090) 2019; 16 Kanjo (10.1016/j.jestch.2021.03.012_b0140) 2019; 49 Gao (10.1016/j.jestch.2021.03.012_b0085) 2020 Zheng (10.1016/j.jestch.2021.03.012_b0180) 2019; 10 Song (10.1016/j.jestch.2021.03.012_b0350) 2018 Pandey (10.1016/j.jestch.2021.03.012_b0270) 2020 Alreshidi (10.1016/j.jestch.2021.03.012_b0010) 2020; 6 Cortes (10.1016/j.jestch.2021.03.012_b0390) 1995; 20 Chen (10.1016/j.jestch.2021.03.012_b0030) 2019; 7 Ahmed (10.1016/j.jestch.2021.03.012_b0015) 2020; 8 Russell (10.1016/j.jestch.2021.03.012_b0060) 1980; 38 Sourina (10.1016/j.jestch.2021.03.012_b0315) 2011 Miranda-Correa (10.1016/j.jestch.2021.03.012_b0250) 2018 Wang (10.1016/j.jestch.2021.03.012_b0195) 2020; 146 Chen (10.1016/j.jestch.2021.03.012_b0300) 2020; 8 10.1016/j.jestch.2021.03.012_b0070 Keshmiri (10.1016/j.jestch.2021.03.012_b0185) 2019; 21 Alarcão (10.1016/j.jestch.2021.03.012_b0380) 2019; 10 Ruiz-Garcia (10.1016/j.jestch.2021.03.012_b0120) 2018; 29 Jo (10.1016/j.jestch.2021.03.012_b0225) 2017; 3 Tsang (10.1016/j.jestch.2021.03.012_b0215) 2016; 12 Tao (10.1016/j.jestch.2021.03.012_b0145) 2020 Li (10.1016/j.jestch.2021.03.012_b0265) 2018; 12 Zheng (10.1016/j.jestch.2021.03.012_b0240) 2015; 7 Plutchik (10.1016/j.jestch.2021.03.012_b0055) 2001; 89 Mehrabian (10.1016/j.jestch.2021.03.012_b0065) 1997; 19 Kim (10.1016/j.jestch.2021.03.012_b0230) 2018; 8 Hjorth (10.1016/j.jestch.2021.03.012_b0330) 1970; 29 Vapnik (10.1016/j.jestch.2021.03.012_b0385) 1995 10.1016/j.jestch.2021.03.012_b0045 Jenke (10.1016/j.jestch.2021.03.012_b0080) 2014; 5 10.1016/j.jestch.2021.03.012_b0320 Cimtay (10.1016/j.jestch.2021.03.012_b0275) 2020; 20 Liu (10.1016/j.jestch.2021.03.012_b0135) 2016 Musha (10.1016/j.jestch.2021.03.012_b0355) 1997; 1 Towle (10.1016/j.jestch.2021.03.012_b0255) 1993; 86 Oh (10.1016/j.jestch.2021.03.012_b0335) 2014; 2 Katsigiannis (10.1016/j.jestch.2021.03.012_b0245) 2018; 22 Chao (10.1016/j.jestch.2021.03.012_b0130) 2020 Gabor (10.1016/j.jestch.2021.03.012_b0210) 1948; 161 Murugappan (10.1016/j.jestch.2021.03.012_b0370) 2010; 48 Li (10.1016/j.jestch.2021.03.012_b0160) 2016 Hwang (10.1016/j.jestch.2021.03.012_b0200) 2019 Zhu (10.1016/j.jestch.2021.03.012_b0115) 2020; 8 Bhatti (10.1016/j.jestch.2021.03.012_b0345) 2016; 65 Chao (10.1016/j.jestch.2021.03.012_b0155) 2019; 19 Koelstra (10.1016/j.jestch.2021.03.012_b0235) 2012; 3 Yang (10.1016/j.jestch.2021.03.012_b0105) 2019; 19 Shu (10.1016/j.jestch.2021.03.012_b0025) 2018; 18 Siddharth (10.1016/j.jestch.2021.03.012_b0170) 2019 Chen (10.1016/j.jestch.2021.03.012_b0075) 2015; 30 Wang (10.1016/j.jestch.2021.03.012_b0165) 2019; 7 Li (10.1016/j.jestch.2021.03.012_b0150) 2017; 7 Keshmiri (10.1016/j.jestch.2021.03.012_b0190) 2019; 10 Nakisa (10.1016/j.jestch.2021.03.012_b0375) 2018; 93 Bos (10.1016/j.jestch.2021.03.012_b0360) 2006; 56 Vahora (10.1016/j.jestch.2021.03.012_b0110) 2019; 22 Murugappan (10.1016/j.jestch.2021.03.012_b0290) 2010; 3 |
References_xml | – volume: 48 start-page: 281 year: 2010 end-page: 299 ident: b0370 article-title: Inferring of human emotional states using multichannel EEG publication-title: European Journal of Scientific Research – volume: 6 start-page: 7 year: 2020 ident: b0010 article-title: Facial Emotion Recognition Using Hybrid Features publication-title: Informatics – volume: 86 start-page: 1 year: 1993 end-page: 6 ident: b0255 article-title: The spatial location of EEG electrodes: Locating the best-fitting sphere relative to cortical anatomy – year: 2019 ident: b0200 article-title: Learning CNN features from DE features for EEG-based emotion recognition publication-title: Pattern Anal. Appl. – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: b0390 article-title: Support vector networks publication-title: Machine Learning – year: 2019 ident: b0170 article-title: Utilizing deep learning towards multi-modal bio-sensing and vision-based affective computing publication-title: IEEE Trans. Affective Comput. – volume: 22 start-page: 98 year: 2018 end-page: 107 ident: b0245 article-title: DREAMER: A Database for Emotion Recognition Through EEG and ECG Signals from Wireless Low-cost Off-the-Shelf Devices – start-page: 531 year: 2004 end-page: 534 ident: b0365 article-title: Power changes of EEG signals associated with muscle fatigue: the root mean square analysis of EEG bands publication-title: Proceedings of the 2004 Intelligent Sensors, Sensor Networks and Information Processing Conference – year: 1995 ident: b0385 article-title: The nature of statistical learning theory – volume: 3 year: 2017 ident: b0225 article-title: Holographic deep learning for rapid optical screening of anthrax spores publication-title: Sci. Adv. – volume: 47 start-page: 35 year: 2016 end-page: 41 ident: b0295 article-title: Improving BCI-based emotion recognition by combining EEG feature selection and kernel classifiers publication-title: Expert Syst. Appl. – volume: 56 start-page: 1 year: 2006 end-page: 17 ident: b0360 article-title: EEG-based emotion recognition publication-title: The Influence of Visual and Auditory Stimuli – volume: 30 start-page: 663 year: 2015 end-page: 674 ident: b0075 article-title: Electroencephalogram-based emotion assessment system using ontology and data mining techniques publication-title: Appl. Soft Comput. – volume: 5 start-page: 327 year: 2014 end-page: 339 ident: b0080 article-title: Feature extraction and selection for emotion recognition from EEG publication-title: IEEE Trans. Affective Comput. – volume: 10 start-page: 374 year: 2019 end-page: 393 ident: b0380 article-title: Emotions Recognition Using EEG Signals: A Survey publication-title: IEEE Trans. Affective Comput. – volume: 20 start-page: 718 year: 2020 ident: b0020 article-title: Wearable Emotion Recognition Using Heart Rate Data from a Smart Bracelet publication-title: Sensors – volume: 7 start-page: 117327 year: 2019 end-page: 117345 ident: b0005 article-title: Speech emotion recognition using deep learning techniques: A review publication-title: IEEE Access – volume: 89 start-page: 344 year: 2001 end-page: 350 ident: b0055 article-title: The nature of emotions publication-title: Am. Sci. – volume: 16 year: 2019 ident: b0090 article-title: Deep learning for electroencephalogram (EEG) classification tasks: a review publication-title: J. Neural Eng. – volume: 3 start-page: 18 year: 2012 end-page: 31 ident: b0235 article-title: DEAP: A database for emotion analysis; using physiological signals publication-title: IEEE Trans. Affective Comput. – volume: 20 start-page: 3620 year: 2020 ident: b0040 article-title: Brain-Computer Interface-Based Humanoid Control: A Review publication-title: Sensors – volume: 3 start-page: 390 year: 2010 ident: b0290 article-title: Classification of human emotion from EEG using discrete wavelet transform publication-title: J. Biomed. Sci. Eng. – volume: 8 start-page: 11907 year: 2020 end-page: 11916 ident: b0300 article-title: Emotion Feature Analysis and Recognition Based on Reconstructed EEG Sources publication-title: IEEE Access – start-page: 159 year: 2018, 2018, end-page: 165 ident: b0220 article-title: Getting started in computer generated display holography publication-title: Proceedings of the 11th International Symposium on Display Holography - – volume: 93 start-page: 143 year: 2018 end-page: 155 ident: b0375 article-title: Evolutionary computation algorithms for feature selection of EEG-based emotion recognition using mobile sensors publication-title: Expert Syst. Appl. – reference: Zheng, W.; Liu, W.; Lu, Y.; Lu, B.; Cichocki, A. EmotionMeter: A Multimodal Framework for Recognizing Human Emotions. IEEE Transactions on Cybernetics March 2019, 49 (3), 1110-1122. – volume: 1 start-page: 1 year: May 2019 end-page: 4 ident: b0125 article-title: A Convolutional Neural Network Feature Fusion Framework with Ensemble Learning for EEG-based Emotion Classification publication-title: IEEE MTT-S International Microwave Biomedical Conference (IMBioC) – volume: 146 year: 2020 ident: b0195 article-title: Emotion recognition with convolutional neural network and EEG-based EFDMs publication-title: Neuropsychologia – volume: 7 start-page: 162 year: 2015 end-page: 175 ident: b0240 article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks – year: 2020 ident: b0085 article-title: A Channel-fused Dense Convolutional Network for EEG-based Emotion Recognition publication-title: IEEE Transactions on Cognitive and Developmental Systems – volume: 57 year: 2020 ident: b0205 article-title: Exploring temporal representations by leveraging attention-based bidirectional LSTM-RNNs for multi-modal emotion recognition publication-title: Inf. Process. Manage. – volume: 20 start-page: 2034 year: 2020 ident: b0275 article-title: Investigating the Use of Pretrained Convolutional Neural Network on Cross-Subject and Cross-Dataset EEG Emotion Recognition publication-title: Sensors (Basel, Switzerland) – volume: 12 start-page: 886 year: 2016 end-page: 901 ident: b0215 article-title: Review on the State-of-the-Art Technologies for Acquisition and Display of Digital Holograms publication-title: IEEE Trans. Ind. Inf. – volume: 20 start-page: 592 year: 2020 ident: b0340 article-title: Human Emotion Recognition: Review of Sensors and Methods publication-title: Sensors – year: 2020 ident: b0130 article-title: Improved Deep Feature Learning by Synchronization Measurements for Multi-Channel EEG Emotion Recognition publication-title: Complexity – volume: 10 start-page: 417 year: 2019 end-page: 429 ident: b0180 article-title: Identifying Stable Patterns over Time for Emotion Recognition from EEG publication-title: IEEE Trans. Affective Comput. – year: 2018 ident: b0350 article-title: EEG Emotion Recognition Using Dynamical Graph Convolutional Neural Networks publication-title: IEEE Trans. Affective Comput. – year: 2018 ident: b0250 article-title: AMIGOS: A Dataset for Affect – volume: 6 start-page: 169 year: 1992 end-page: 200 ident: b0050 article-title: An argument for basic emotions publication-title: Cogn. Emot. – year: 2019 ident: b0095 article-title: A Coincidence Filtering-based Approach for CNNs in EEG-based Recognition publication-title: IEEE Trans. Ind. Inf. – volume: 19 start-page: 4736 year: 2019 ident: b0105 article-title: A multi-column CNN model for emotion recognition from EEG signals publication-title: Sensors – volume: 10 start-page: 8 year: 2019 ident: b0190 article-title: Emergence of the Affect from the Variation in the Whole-Brain Flow of Information publication-title: Brain sciences – volume: 1 start-page: 15 year: 1997 end-page: 19 ident: b0355 article-title: Feature extraction from EEGs associated with emotions publication-title: Artificial Life and Robotics – reference: Khare, S. K.; Bajaj, V. Time-frequency representation and convolutional neural network-based emotion recognition. IEEE transactions on neural networks and learning systems 2020. – volume: 222 year: 2020 ident: b0035 article-title: Involvement of top-down networks in the perception of facial emotions: A magnetoencephalographic investigation publication-title: NeuroImage – volume: 66 start-page: 2869 year: 2019 end-page: 2881 ident: b0175 article-title: EEG based emotion recognition by combining functional connectivity network and local activations publication-title: IEEE Trans. Biomed. Eng. – volume: 19 start-page: 331 year: 1997 end-page: 357 ident: b0065 article-title: Comparison of the PAD and PANAS as models for describing emotions and for differentiating anxiety from depression publication-title: Journal of Psychopathology and Behavioral Assessment – reference: Chen, M.; Hao, Y. Label-less Learning for Emotion Cognition. IEEE Transactions on Neural Networks and Learning Systems July 2020, 31 (7), 2430-2440. – volume: 7 start-page: 143303 year: 2019 end-page: 143311 ident: b0165 article-title: Channel Selection Method for EEG Emotion Recognition Using Normalized Mutual Information publication-title: IEEE Access – reference: Khosrowabadi, R.; Rahman, A. W. b. A. Classification of EEG correlates on emotion using features from Gaussian mixtures of EEG spectrogram. Proceeding of the 3rd International Conference on Information and Communication Technology for the Moslem World (ICT4M) 2010, E102-E107. – volume: 7 start-page: 1060 year: 2017 ident: b0150 article-title: Human emotion recognition with electroencephalographic multidimensional features by hybrid deep neural networks publication-title: Applied Sciences – volume: 8 start-page: 24713 year: 2020 end-page: 24720 ident: b0115 article-title: A Hybrid CNN–LSTM Network for the Classification of Human Activities Based on Micro-Doppler Radar publication-title: IEEE Access – year: 2020 ident: b0270 article-title: Subject independent emotion recognition system for people with facial deformity: an EEG based approach. publication-title: Computing – year: 2020 ident: b0145 article-title: EEG-based emotion recognition via channel-wise attention and self attention publication-title: IEEE Trans. Affective Comput. – volume: 17 start-page: 1014 year: 2017 ident: b0310 article-title: A Fast, Efficient Domain Adaptation Technique for Cross-Domain Electroencephalography (EEG)-Based Emotion Recognition publication-title: Sensors (Basel) – start-page: 352 year: 2016 end-page: 359 ident: b0160 article-title: Emotion recognition from multi-channel EEG data through Convolutional Recurrent Neural Network publication-title: IEEE International Conference on Bioinformatics and Biomedicine (BIBM) – volume: 35 start-page: 63 year: 1995 end-page: 68 ident: b0280 article-title: Observations: Sam: The self-assessment manikin; an efficient cross-cultural measurement of emotional response – volume: 29 start-page: 306 year: 1970 end-page: 310 ident: b0330 article-title: EEG analysis based on time domain properties publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 49 start-page: 46 year: 2019 end-page: 56 ident: b0140 article-title: Deep learning analysis of mobile physiological, environmental and location sensor data for emotion detection publication-title: Information Fusion – start-page: 249 year: 2018 end-page: 260 ident: b0285 article-title: Entropy-Assisted Emotion Recognition of Valence and Arousal Using XGBoost Classifier publication-title: Artificial Intelligence Applications and Innovations (AIAI) – volume: 29 start-page: 359 year: 2018 end-page: 373 ident: b0120 article-title: A hybrid deep learning neural approach for emotion recognition from facial expressions for socially assistive robots publication-title: Neural Comput. Appl. – volume: 18 start-page: 2074 year: 2018 ident: b0025 article-title: A Review of Emotion Recognition Using Physiological Signals publication-title: Sensors – start-page: 521 year: 2016 end-page: 529 ident: b0135 article-title: Emotion recognition using multimodal deep learning publication-title: International conference on neural information processing – volume: 2 start-page: 106 year: 2014 end-page: 110 ident: b0335 article-title: A novel EEG feature extraction method using Hjorth parameter publication-title: International Journal of Electronics and Electrical Engineering – volume: 31 start-page: 277 year: 1988 end-page: 283 ident: b0325 article-title: Approach to an irregular time series on the basis of the fractal theory publication-title: Physica D – volume: 21 start-page: 1228 year: 2019 ident: b0185 article-title: Entropy of the Multi-Channel EEG Recordings Identifies the Distributed Signatures of Negative, Neutral and Positive Affect in Whole-Brain Variability publication-title: Entropy – volume: 22 start-page: 47 year: 2019 end-page: 54 ident: b0110 article-title: Deep neural network model for group activity recognition using contextual relationship publication-title: Engineering Science and Technology, an International Journal – volume: 161 start-page: 777 year: 1948 end-page: 778 ident: b0210 publication-title: A New Microscopic Principle. – volume: 19 start-page: 2212 year: 2019 ident: b0155 article-title: Emotion recognition from multiband EEG signals using CapsNet publication-title: Sensors – start-page: 209 year: 2011 end-page: 214 ident: b0315 article-title: A fractal-based algorithm of emotion recognition from EEG using arousal-valence model publication-title: International Conference on Bio-inspired Systems and Signal Processing – volume: 11 start-page: 85 year: 2018 end-page: 94 ident: b0260 article-title: Domain adaptation techniques for EEG-based emotion recognition: a comparative study on two public datasets publication-title: IEEE Transactions on Cognitive and Developmental Systems – volume: 12 start-page: 162 year: 2018 ident: b0265 article-title: Exploring EEG features in cross-subject emotion recognition publication-title: Front. Neurosci. – volume: 38 start-page: 1161 year: 1980 end-page: 1178 ident: b0060 article-title: A circumplex model of affect – reference: Udovicic, G.; Topic, A.; Russo, M. Wearable technologies for smart environments: A review with emphasis on BCI. 24th International Conference on Software, Telecommunications and Computer Networks (SoftCOM), Split, 2016; pp 1-9. – volume: 7 start-page: 59944 year: 2019 end-page: 59950 ident: b0030 article-title: Intrinsic Prior Knowledge Driven CICA fMRI Data Analysis for Emotion Recognition Classification publication-title: IEEE Access – volume: 65 start-page: 267 year: 2016 end-page: 275 ident: b0345 article-title: Human emotion recognition and analysis in response to audio music using brain signals publication-title: Comput. Hum. Behav. – volume: 8 start-page: 11761 year: 2020 end-page: 11781 ident: b0015 article-title: Emotion Recognition From Body Movement publication-title: IEEE Access – volume: 8 start-page: 1 year: 2018 end-page: 12 ident: b0230 article-title: Deep transfer learning-based hologram classification for molecular diagnostics publication-title: Sci. Rep. – year: 2018 ident: 10.1016/j.jestch.2021.03.012_b0250 – volume: 8 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.jestch.2021.03.012_b0230 article-title: Deep transfer learning-based hologram classification for molecular diagnostics publication-title: Sci. Rep. doi: 10.1038/s41598-018-35274-x – volume: 6 start-page: 7 year: 2020 ident: 10.1016/j.jestch.2021.03.012_b0010 article-title: Facial Emotion Recognition Using Hybrid Features publication-title: Informatics – volume: 66 start-page: 2869 issue: 10 year: 2019 ident: 10.1016/j.jestch.2021.03.012_b0175 article-title: EEG based emotion recognition by combining functional connectivity network and local activations publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2019.2897651 – start-page: 209 year: 2011 ident: 10.1016/j.jestch.2021.03.012_b0315 article-title: A fractal-based algorithm of emotion recognition from EEG using arousal-valence model publication-title: International Conference on Bio-inspired Systems and Signal Processing – volume: 30 start-page: 663 year: 2015 ident: 10.1016/j.jestch.2021.03.012_b0075 article-title: Electroencephalogram-based emotion assessment system using ontology and data mining techniques publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.01.007 – volume: 29 start-page: 306 year: 1970 ident: 10.1016/j.jestch.2021.03.012_b0330 article-title: EEG analysis based on time domain properties publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(70)90143-4 – volume: 222 year: 2020 ident: 10.1016/j.jestch.2021.03.012_b0035 article-title: Involvement of top-down networks in the perception of facial emotions: A magnetoencephalographic investigation publication-title: NeuroImage – volume: 29 start-page: 359 issue: 7 year: 2018 ident: 10.1016/j.jestch.2021.03.012_b0120 article-title: A hybrid deep learning neural approach for emotion recognition from facial expressions for socially assistive robots publication-title: Neural Comput. Appl. doi: 10.1007/s00521-018-3358-8 – volume: 16 issue: 3 year: 2019 ident: 10.1016/j.jestch.2021.03.012_b0090 article-title: Deep learning for electroencephalogram (EEG) classification tasks: a review publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ab0ab5 – volume: 19 start-page: 331 year: 1997 ident: 10.1016/j.jestch.2021.03.012_b0065 article-title: Comparison of the PAD and PANAS as models for describing emotions and for differentiating anxiety from depression publication-title: Journal of Psychopathology and Behavioral Assessment doi: 10.1007/BF02229025 – volume: 20 start-page: 2034 issue: 7 year: 2020 ident: 10.1016/j.jestch.2021.03.012_b0275 article-title: Investigating the Use of Pretrained Convolutional Neural Network on Cross-Subject and Cross-Dataset EEG Emotion Recognition publication-title: Sensors (Basel, Switzerland) doi: 10.3390/s20072034 – volume: 10 start-page: 8 issue: 1 year: 2019 ident: 10.1016/j.jestch.2021.03.012_b0190 article-title: Emergence of the Affect from the Variation in the Whole-Brain Flow of Information publication-title: Brain sciences doi: 10.3390/brainsci10010008 – volume: 17 start-page: 1014 issue: 5 year: 2017 ident: 10.1016/j.jestch.2021.03.012_b0310 article-title: A Fast, Efficient Domain Adaptation Technique for Cross-Domain Electroencephalography (EEG)-Based Emotion Recognition publication-title: Sensors (Basel) doi: 10.3390/s17051014 – volume: 7 start-page: 59944 year: 2019 ident: 10.1016/j.jestch.2021.03.012_b0030 article-title: Intrinsic Prior Knowledge Driven CICA fMRI Data Analysis for Emotion Recognition Classification publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2915291 – ident: 10.1016/j.jestch.2021.03.012_b0045 doi: 10.1109/SOFTCOM.2016.7772186 – volume: 5 start-page: 327 issue: 3 year: 2014 ident: 10.1016/j.jestch.2021.03.012_b0080 article-title: Feature extraction and selection for emotion recognition from EEG publication-title: IEEE Trans. Affective Comput. doi: 10.1109/TAFFC.2014.2339834 – volume: 12 start-page: 886 issue: 3 year: 2016 ident: 10.1016/j.jestch.2021.03.012_b0215 article-title: Review on the State-of-the-Art Technologies for Acquisition and Display of Digital Holograms publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2016.2550535 – volume: 65 start-page: 267 year: 2016 ident: 10.1016/j.jestch.2021.03.012_b0345 article-title: Human emotion recognition and analysis in response to audio music using brain signals publication-title: Comput. Hum. Behav. doi: 10.1016/j.chb.2016.08.029 – volume: 19 start-page: 4736 issue: 21 year: 2019 ident: 10.1016/j.jestch.2021.03.012_b0105 article-title: A multi-column CNN model for emotion recognition from EEG signals publication-title: Sensors doi: 10.3390/s19214736 – ident: 10.1016/j.jestch.2021.03.012_b0100 doi: 10.1109/TNNLS.2020.3008938 – year: 2019 ident: 10.1016/j.jestch.2021.03.012_b0200 article-title: Learning CNN features from DE features for EEG-based emotion recognition publication-title: Pattern Anal. Appl. – year: 2019 ident: 10.1016/j.jestch.2021.03.012_b0170 article-title: Utilizing deep learning towards multi-modal bio-sensing and vision-based affective computing publication-title: IEEE Trans. Affective Comput. doi: 10.1109/TAFFC.2019.2916015 – volume: 20 start-page: 718 year: 2020 ident: 10.1016/j.jestch.2021.03.012_b0020 article-title: Wearable Emotion Recognition Using Heart Rate Data from a Smart Bracelet publication-title: Sensors doi: 10.3390/s20030718 – volume: 8 start-page: 11907 year: 2020 ident: 10.1016/j.jestch.2021.03.012_b0300 article-title: Emotion Feature Analysis and Recognition Based on Reconstructed EEG Sources publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2966144 – year: 2020 ident: 10.1016/j.jestch.2021.03.012_b0130 article-title: Improved Deep Feature Learning by Synchronization Measurements for Multi-Channel EEG Emotion Recognition publication-title: Complexity doi: 10.1155/2020/6816502 – volume: 7 start-page: 1060 issue: 10 year: 2017 ident: 10.1016/j.jestch.2021.03.012_b0150 article-title: Human emotion recognition with electroencephalographic multidimensional features by hybrid deep neural networks publication-title: Applied Sciences doi: 10.3390/app7101060 – volume: 31 start-page: 277 issue: 2 year: 1988 ident: 10.1016/j.jestch.2021.03.012_b0325 article-title: Approach to an irregular time series on the basis of the fractal theory publication-title: Physica D doi: 10.1016/0167-2789(88)90081-4 – volume: 11 start-page: 85 issue: 1 year: 2018 ident: 10.1016/j.jestch.2021.03.012_b0260 article-title: Domain adaptation techniques for EEG-based emotion recognition: a comparative study on two public datasets publication-title: IEEE Transactions on Cognitive and Developmental Systems doi: 10.1109/TCDS.2018.2826840 – volume: 56 start-page: 1 issue: 3 year: 2006 ident: 10.1016/j.jestch.2021.03.012_b0360 article-title: EEG-based emotion recognition publication-title: The Influence of Visual and Auditory Stimuli – ident: 10.1016/j.jestch.2021.03.012_b0070 – volume: 12 start-page: 162 year: 2018 ident: 10.1016/j.jestch.2021.03.012_b0265 article-title: Exploring EEG features in cross-subject emotion recognition publication-title: Front. Neurosci. doi: 10.3389/fnins.2018.00162 – start-page: 531 year: 2004 ident: 10.1016/j.jestch.2021.03.012_b0365 article-title: Power changes of EEG signals associated with muscle fatigue: the root mean square analysis of EEG bands – volume: 89 start-page: 344 issue: 4 year: 2001 ident: 10.1016/j.jestch.2021.03.012_b0055 article-title: The nature of emotions publication-title: Am. Sci. doi: 10.1511/2001.4.344 – volume: 86 start-page: 1 issue: 1 year: 1993 ident: 10.1016/j.jestch.2021.03.012_b0255 article-title: The spatial location of EEG electrodes: Locating the best-fitting sphere relative to cortical anatomy publication-title: Electroencephalogr. Clin. Neurophysiol. Jan. doi: 10.1016/0013-4694(93)90061-Y – volume: 161 start-page: 777 year: 1948 ident: 10.1016/j.jestch.2021.03.012_b0210 publication-title: A New Microscopic Principle. Nature doi: 10.1038/161777a0 – volume: 6 start-page: 169 issue: 3–4 year: 1992 ident: 10.1016/j.jestch.2021.03.012_b0050 article-title: An argument for basic emotions publication-title: Cogn. Emot. doi: 10.1080/02699939208411068 – volume: 20 start-page: 273 year: 1995 ident: 10.1016/j.jestch.2021.03.012_b0390 article-title: Support vector networks publication-title: Machine Learning doi: 10.1007/BF00994018 – volume: 3 start-page: 390 issue: 4 year: 2010 ident: 10.1016/j.jestch.2021.03.012_b0290 article-title: Classification of human emotion from EEG using discrete wavelet transform publication-title: J. Biomed. Sci. Eng. doi: 10.4236/jbise.2010.34054 – start-page: 521 year: 2016 ident: 10.1016/j.jestch.2021.03.012_b0135 article-title: Emotion recognition using multimodal deep learning publication-title: International conference on neural information processing – volume: 38 start-page: 1161 issue: 6 year: 1980 ident: 10.1016/j.jestch.2021.03.012_b0060 article-title: A circumplex model of affect publication-title: J. Pers. Soc. Psychol. Dec. doi: 10.1037/h0077714 – volume: 35 start-page: 63 issue: 8 year: 1995 ident: 10.1016/j.jestch.2021.03.012_b0280 article-title: Observations: Sam: The self-assessment manikin; an efficient cross-cultural measurement of emotional response publication-title: Journal of Advertising Research Jan. – volume: 1 start-page: 15 issue: 1 year: 1997 ident: 10.1016/j.jestch.2021.03.012_b0355 article-title: Feature extraction from EEGs associated with emotions publication-title: Artificial Life and Robotics doi: 10.1007/BF02471106 – volume: 3 issue: 8 year: 2017 ident: 10.1016/j.jestch.2021.03.012_b0225 article-title: Holographic deep learning for rapid optical screening of anthrax spores publication-title: Sci. Adv. doi: 10.1126/sciadv.1700606 – year: 2019 ident: 10.1016/j.jestch.2021.03.012_b0095 article-title: A Coincidence Filtering-based Approach for CNNs in EEG-based Recognition publication-title: IEEE Trans. Ind. Inf. – volume: 146 year: 2020 ident: 10.1016/j.jestch.2021.03.012_b0195 article-title: Emotion recognition with convolutional neural network and EEG-based EFDMs publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2020.107506 – volume: 21 start-page: 1228 issue: 12 year: 2019 ident: 10.1016/j.jestch.2021.03.012_b0185 article-title: Entropy of the Multi-Channel EEG Recordings Identifies the Distributed Signatures of Negative, Neutral and Positive Affect in Whole-Brain Variability publication-title: Entropy doi: 10.3390/e21121228 – volume: 19 start-page: 2212 issue: 9 year: 2019 ident: 10.1016/j.jestch.2021.03.012_b0155 article-title: Emotion recognition from multiband EEG signals using CapsNet publication-title: Sensors doi: 10.3390/s19092212 – year: 1995 ident: 10.1016/j.jestch.2021.03.012_b0385 – volume: 8 start-page: 24713 year: 2020 ident: 10.1016/j.jestch.2021.03.012_b0115 article-title: A Hybrid CNN–LSTM Network for the Classification of Human Activities Based on Micro-Doppler Radar publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2971064 – start-page: 352 year: 2016 ident: 10.1016/j.jestch.2021.03.012_b0160 article-title: Emotion recognition from multi-channel EEG data through Convolutional Recurrent Neural Network publication-title: IEEE International Conference on Bioinformatics and Biomedicine (BIBM) doi: 10.1109/BIBM.2016.7822545 – volume: 47 start-page: 35 year: 2016 ident: 10.1016/j.jestch.2021.03.012_b0295 article-title: Improving BCI-based emotion recognition by combining EEG feature selection and kernel classifiers publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.10.049 – volume: 18 start-page: 2074 year: 2018 ident: 10.1016/j.jestch.2021.03.012_b0025 article-title: A Review of Emotion Recognition Using Physiological Signals publication-title: Sensors doi: 10.3390/s18072074 – volume: 57 issue: 3 year: 2020 ident: 10.1016/j.jestch.2021.03.012_b0205 article-title: Exploring temporal representations by leveraging attention-based bidirectional LSTM-RNNs for multi-modal emotion recognition publication-title: Inf. Process. Manage. doi: 10.1016/j.ipm.2019.102185 – volume: 10 start-page: 417 issue: 3 year: 2019 ident: 10.1016/j.jestch.2021.03.012_b0180 article-title: Identifying Stable Patterns over Time for Emotion Recognition from EEG publication-title: IEEE Trans. Affective Comput. doi: 10.1109/TAFFC.2017.2712143 – year: 2018 ident: 10.1016/j.jestch.2021.03.012_b0350 article-title: EEG Emotion Recognition Using Dynamical Graph Convolutional Neural Networks publication-title: IEEE Trans. Affective Comput. – volume: 22 start-page: 47 issue: 1 year: 2019 ident: 10.1016/j.jestch.2021.03.012_b0110 article-title: Deep neural network model for group activity recognition using contextual relationship publication-title: Engineering Science and Technology, an International Journal doi: 10.1016/j.jestch.2018.08.010 – year: 2020 ident: 10.1016/j.jestch.2021.03.012_b0145 article-title: EEG-based emotion recognition via channel-wise attention and self attention publication-title: IEEE Trans. Affective Comput. doi: 10.1109/TAFFC.2020.3025777 – ident: 10.1016/j.jestch.2021.03.012_b0320 doi: 10.1109/ICT4M.2010.5971942 – volume: 3 start-page: 18 issue: 1 year: 2012 ident: 10.1016/j.jestch.2021.03.012_b0235 article-title: DEAP: A database for emotion analysis; using physiological signals publication-title: IEEE Trans. Affective Comput. doi: 10.1109/T-AFFC.2011.15 – volume: 20 start-page: 592 issue: 3 year: 2020 ident: 10.1016/j.jestch.2021.03.012_b0340 article-title: Human Emotion Recognition: Review of Sensors and Methods publication-title: Sensors doi: 10.3390/s20030592 – volume: 22 start-page: 98 issue: 1 year: 2018 ident: 10.1016/j.jestch.2021.03.012_b0245 article-title: DREAMER: A Database for Emotion Recognition Through EEG and ECG Signals from Wireless Low-cost Off-the-Shelf Devices publication-title: IEEE J. Biomed. Health. Inf. Jan. doi: 10.1109/JBHI.2017.2688239 – start-page: 249 year: 2018 ident: 10.1016/j.jestch.2021.03.012_b0285 article-title: Entropy-Assisted Emotion Recognition of Valence and Arousal Using XGBoost Classifier publication-title: Artificial Intelligence Applications and Innovations (AIAI) doi: 10.1007/978-3-319-92007-8_22 – volume: 48 start-page: 281 issue: 2 year: 2010 ident: 10.1016/j.jestch.2021.03.012_b0370 article-title: Inferring of human emotional states using multichannel EEG publication-title: European Journal of Scientific Research – volume: 7 start-page: 117327 year: 2019 ident: 10.1016/j.jestch.2021.03.012_b0005 article-title: Speech emotion recognition using deep learning techniques: A review publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2936124 – volume: 20 start-page: 3620 year: 2020 ident: 10.1016/j.jestch.2021.03.012_b0040 article-title: Brain-Computer Interface-Based Humanoid Control: A Review publication-title: Sensors doi: 10.3390/s20133620 – ident: 10.1016/j.jestch.2021.03.012_b0305 doi: 10.1109/TCYB.2018.2797176 – volume: 93 start-page: 143 year: 2018 ident: 10.1016/j.jestch.2021.03.012_b0375 article-title: Evolutionary computation algorithms for feature selection of EEG-based emotion recognition using mobile sensors publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.09.062 – volume: 1 start-page: 1 year: 2019 ident: 10.1016/j.jestch.2021.03.012_b0125 article-title: A Convolutional Neural Network Feature Fusion Framework with Ensemble Learning for EEG-based Emotion Classification publication-title: IEEE MTT-S International Microwave Biomedical Conference (IMBioC) – volume: 49 start-page: 46 year: 2019 ident: 10.1016/j.jestch.2021.03.012_b0140 article-title: Deep learning analysis of mobile physiological, environmental and location sensor data for emotion detection publication-title: Information Fusion doi: 10.1016/j.inffus.2018.09.001 – year: 2020 ident: 10.1016/j.jestch.2021.03.012_b0270 article-title: Subject independent emotion recognition system for people with facial deformity: an EEG based approach. Journal of Ambient Intelligence and Humanized publication-title: Computing – volume: 10 start-page: 374 issue: 3 year: 2019 ident: 10.1016/j.jestch.2021.03.012_b0380 article-title: Emotions Recognition Using EEG Signals: A Survey publication-title: IEEE Trans. Affective Comput. doi: 10.1109/TAFFC.2017.2714671 – volume: 2 start-page: 106 issue: 2 year: 2014 ident: 10.1016/j.jestch.2021.03.012_b0335 article-title: A novel EEG feature extraction method using Hjorth parameter publication-title: International Journal of Electronics and Electrical Engineering doi: 10.12720/ijeee.2.2.106-110 – start-page: 159 year: 2018 ident: 10.1016/j.jestch.2021.03.012_b0220 article-title: Getting started in computer generated display holography – volume: 7 start-page: 162 issue: 3 year: 2015 ident: 10.1016/j.jestch.2021.03.012_b0240 article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks publication-title: IEEE Trans. Auton. Ment. Dev. Sep. doi: 10.1109/TAMD.2015.2431497 – volume: 8 start-page: 11761 year: 2020 ident: 10.1016/j.jestch.2021.03.012_b0015 article-title: Emotion Recognition From Body Movement publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2963113 – year: 2020 ident: 10.1016/j.jestch.2021.03.012_b0085 article-title: A Channel-fused Dense Convolutional Network for EEG-based Emotion Recognition publication-title: IEEE Transactions on Cognitive and Developmental Systems doi: 10.1109/TCDS.2020.2976112 – volume: 7 start-page: 143303 year: 2019 ident: 10.1016/j.jestch.2021.03.012_b0165 article-title: Channel Selection Method for EEG Emotion Recognition Using Normalized Mutual Information publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2944273 |
SSID | ssj0001921156 |
Score | 2.5472288 |
Snippet | Emotion recognition using electroencephalogram (EEG) signals is getting more and more attention in recent years. Since the EEG signals are noisy, non-linear... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 1442 |
SubjectTerms | Brain-computer interface Computer-generated holography Deep learning Electroencephalogram Emotion recognition Valence-arousal model |
SummonAdditionalLinks | – databaseName: Elsevier Free Content dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqTjAgnqK85IE1amI7jjMCKlQgWKBSN8tPVAShKuX_c3acUhaQ2BzLlzhn6x723XcInSuvuTDEZc7kOTgoVmQqVy5jjCkijNIkHrjdP_DxhN1Oy2kPXXW5MCGsMsn-VqZHaZ16hombw_lsNnwkoK3yGizyor1PAjlMmYhJfNPL73OWGlycWMQ1jM8CQZdBF8O8XkD4xlsJUkS004L80FARyH9NUa0pn-tttJWsRnzRTmwH9VyzizbXsAT30N2oLciDVyFB0A46ymJojEY32LsI4onf1PwDp_o82Do3x6l0xDNu2qDwfTS5Hj1djbNUKSEzrBDLjOuSOUMVt4QFeJpCMasNp1qVSpfWFb6ofAWWGajz2nNWM6aZCDeYjlpqKD1A_ea9cYcIV8woIQyvXW1ZBc6Zop7msNRU1ZwQPUC04440CUY8VLN4lV282ItseSoDT2VOJfB0gLIV1byF0fhj_GVg_GpsAMGOHe-LZ5l2gTRCeXBQifdcMQV-HeW1IVb7An4OPO8Bqrplkz_2FLxq9uvnj_5NeYw2wlMb8HKC-svFpzsFs2Wpz-K-_AJOBeo5 priority: 102 providerName: Elsevier |
Title | Emotion recognition based on EEG feature maps through deep learning network |
URI | https://dx.doi.org/10.1016/j.jestch.2021.03.012 https://doaj.org/article/c8af1842ff6a4a148369c2dbf1b48383 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8sAakdiO44wUpbwEE5W6WX4iKigVlP_P2U6qsNCFJbIix47Op9x39uX7ELpQXnNhiMucyXNIUKzIVK5cxhhTRBilSdxwe3zitxN2Py2nPamvUBOW6IGT4S6NUB6yEOI9V0wBeKe8NsRqX2hoi8jzCTGvl0zNEm4BqBOV5SCmZXktePffXCzumsEnN55FkCJynBbkV1yK9P298NQLOeMdtN1iRXyV3nEXbbj5HtrqMQjuo4cmyfDgVSEQtENkshgaTXODvYvUnfhdLb5wq8qDrXML3ApGvOB5KgU_QJNx83x9m7X6CJlhhVhmXJfMGaq4JSyQ0hSKWW041apUurSu8EXlK8BjEMRrz1nNGNgsnFs6aqmh9BAN5h9zd4RwxYwSwvDa1ZZVkJIp6mkOC0xVzQnRQ0Q760jTkocHDYs32VWJzWSyqQw2lTmVYNMhylZPLRJ5xpr-o2D4Vd9AfR1vgEPI1iHkOocYoqpbNtmiiIQOYKjXP6c__o_pT9BmGDJVvJyiwfLz250Bblnq8-iicL2bjn4AKTrqKA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT-swEB7x4AAcEMt7oqw-cI2a2K6THAEVynoBpN4sr6gISgXl_zN2nFIuIL1b5HiyjK1Z7PH3ARwpr0VlqMucyXNMUGyVqVy5jHOuaGWUpnHB7eZWDB745bA3XIDT9ixMKKtMtr-x6dFap5Zu0mZ3Mhp17yh6q7zGiLxo9pP-wBJGA2Xgb7gYnnwttNSY40QW1yCQBYn2CF2s83pC6xu3JWgR4U4L-s1FRST_OU81533O1mEthY3kuPmyDVhw401YnQMT3IKrfsPIQ2Y1QXgdnJQleNHvnxPvIooneVGTd5IIeoh1bkISd8QjGTdV4X_h4ax_fzrIElVCZnhRTTOhe9wZpoSlPODTFIpbbQTTqqd0z7rCF6UvMTRDf157wWvONa_CFqZjlhnG_sHi-HXstoGU3KiqMqJ2teUlZmeKeZbjWDNVC0p1B1irHWkSjnigs3iWbcHYk2x0KoNOZc4k6rQD2Uxq0uBo_NL_JCh-1jegYMeG17dHmaaBNJXymKFS74XiChM7JmpDrfYF_hym3h0o22GT3yYVPmr04-t3_lvyEJYH9zfX8vri9moXVsKdpvplDxanbx9uH2OYqT6Ic_QTHCDtWA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emotion+recognition+based+on+EEG+feature+maps+through+deep+learning+network&rft.jtitle=Engineering+science+and+technology%2C+an+international+journal&rft.au=Ante+Topic&rft.au=Mladen+Russo&rft.date=2021-12-01&rft.pub=Elsevier&rft.issn=2215-0986&rft.eissn=2215-0986&rft.volume=24&rft.issue=6&rft.spage=1442&rft.epage=1454&rft_id=info:doi/10.1016%2Fj.jestch.2021.03.012&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c8af1842ff6a4a148369c2dbf1b48383 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2215-0986&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2215-0986&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2215-0986&client=summon |