Two differentially expressed MATE factor genes from apple complement the Arabidopsis transparent testa12 mutant

Proanthocyanidins (PAs) are a class of flavonoids with numerous functions in plant ecology and development, including protection against microbial infection, animal foraging and damage by UV light. PAs are also beneficial in the human diet and livestock farming, preventing diseases of the cardiovasc...

Full description

Saved in:
Bibliographic Details
Published inPlant biology (Stuttgart, Germany) Vol. 13; no. 1; pp. 42 - 50
Main Authors Frank, S., Keck, M., Sagasser, M., Niehaus, K., Weisshaar, B., Stracke, R.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.01.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Proanthocyanidins (PAs) are a class of flavonoids with numerous functions in plant ecology and development, including protection against microbial infection, animal foraging and damage by UV light. PAs are also beneficial in the human diet and livestock farming, preventing diseases of the cardiovascular system and lowering the risk of cancer, asthma and diabetes. Apples (Malus x domestica Borkh.) are naturally rich in flavonoids, but the flavonoid content and composition varies significantly between cultivars. In this work, we applied knowledge from the model plant Arabidopsis thaliana, for which the main features of flavonoid biosynthesis have been elucidated, to investigate PA accumulation in apple. We identified functional homologues of the Multidrug And Toxic compound Extrusion (MATE) gene TRANSPARENT TESTA12 from A. thaliana using a comparative genomics approach. MdMATE1 and MdMATE2 were differentially expressed, and the function of the encoded proteins was verified by complementation of the respective A. thaliana mutant. In addition, MdMATE genes have a different gene structure in comparison to homologues from other species. Based on our findings, we propose that MdMATE1 and MdMATE2 are vacuolar flavonoid/H(+) -antiporters, active in PA accumulating cells of apple fruit. The identification of these flavonoid transporter genes expands our understanding of secondary metabolite biosynthesis and transport in apple, and is a prerequisite to improve the nutritional value of apples and apple-derived beverages.
AbstractList Abstract Proanthocyanidins (PAs) are a class of flavonoids with numerous functions in plant ecology and development, including protection against microbial infection, animal foraging and damage by UV light. PAs are also beneficial in the human diet and livestock farming, preventing diseases of the cardiovascular system and lowering the risk of cancer, asthma and diabetes. Apples ( Malus x domestica Borkh.) are naturally rich in flavonoids, but the flavonoid content and composition varies significantly between cultivars. In this work, we applied knowledge from the model plant Arabidopsis thaliana , for which the main features of flavonoid biosynthesis have been elucidated, to investigate PA accumulation in apple. We identified functional homologues of the Multidrug And Toxic compound Extrusion (MATE) gene TRANSPARENT TESTA12 from A. thaliana using a comparative genomics approach. MdMATE1 and MdMATE2 were differentially expressed, and the function of the encoded proteins was verified by complementation of the respective A. thaliana mutant. In addition, MdMATE genes have a different gene structure in comparison to homologues from other species. Based on our findings, we propose that Md MATE1 and Md MATE2 are vacuolar flavonoid/H + ‐antiporters, active in PA accumulating cells of apple fruit. The identification of these flavonoid transporter genes expands our understanding of secondary metabolite biosynthesis and transport in apple, and is a prerequisite to improve the nutritional value of apples and apple‐derived beverages.
Proanthocyanidins (PAs) are a class of flavonoids with numerous functions in plant ecology and development, including protection against microbial infection, animal foraging and damage by UV light. PAs are also beneficial in the human diet and livestock farming, preventing diseases of the cardiovascular system and lowering the risk of cancer, asthma and diabetes. Apples (Malus x domestica Borkh.) are naturally rich in flavonoids, but the flavonoid content and composition varies significantly between cultivars. In this work, we applied knowledge from the model plant Arabidopsis thaliana, for which the main features of flavonoid biosynthesis have been elucidated, to investigate PA accumulation in apple. We identified functional homologues of the Multidrug And Toxic compound Extrusion (MATE) gene TRANSPARENT TESTA12 from A. thaliana using a comparative genomics approach. MdMATE1 and MdMATE2 were differentially expressed, and the function of the encoded proteins was verified by complementation of the respective A. thaliana mutant. In addition, MdMATE genes have a different gene structure in comparison to homologues from other species. Based on our findings, we propose that MdMATE1 and MdMATE2 are vacuolar flavonoid/H(+) -antiporters, active in PA accumulating cells of apple fruit. The identification of these flavonoid transporter genes expands our understanding of secondary metabolite biosynthesis and transport in apple, and is a prerequisite to improve the nutritional value of apples and apple-derived beverages.
Author Sagasser, M.
Keck, M.
Weisshaar, B.
Niehaus, K.
Stracke, R.
Frank, S.
Author_xml – sequence: 1
  givenname: S.
  surname: Frank
  fullname: Frank, S.
  organization:  Bielefeld University, Department of Biology, Genome Research, Bielefeld, Germany
– sequence: 2
  givenname: M.
  surname: Keck
  fullname: Keck, M.
  organization:  Bielefeld University, Department of Biology, Metabolome and Proteome Research, Bielefeld, Germany
– sequence: 3
  givenname: M.
  surname: Sagasser
  fullname: Sagasser, M.
  organization:  Bielefeld University, Department of Biology, Genome Research, Bielefeld, Germany
– sequence: 4
  givenname: K.
  surname: Niehaus
  fullname: Niehaus, K.
  organization:  Bielefeld University, Department of Biology, Metabolome and Proteome Research, Bielefeld, Germany
– sequence: 5
  givenname: B.
  surname: Weisshaar
  fullname: Weisshaar, B.
  organization:  Bielefeld University, Department of Biology, Genome Research, Bielefeld, Germany
– sequence: 6
  givenname: R.
  surname: Stracke
  fullname: Stracke, R.
  organization:  Bielefeld University, Department of Biology, Genome Research, Bielefeld, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21143724$$D View this record in MEDLINE/PubMed
BookMark eNo9kMtOwzAQRS1URB_wC8g_kGInzmtZVX0gFdgUsbSceAwpSRzZrkj_HqeFzmau5s4djc4UjVrdAkKYkjn19XSYUxZlQZak6TwkfkpIFJN5f4MmV2N01rHXJBqjqbUHQijLCb1D45B6Kw3ZBOn9j8ayUgoMtK4SdX3C0HcGrAWJXxb7FVaidNrgT2jBYmV0g0XX1YBL3fjW-Bh2X4AXRhSV1J2tLHZGtLYT5uyBdYKGuDk60bp7dKtEbeHhr8_Q-3q1X26D3dvmebnYBSWjmQuSRMVJHKu4FJT6n4lMiFQUCprkJMtZJqiSucwVLUkhRFEIiELFGCvDRHoVzVB2uVsaba0BxTtTNcKcOCV8YMgPfEDFB1R8YMjPDHnvo4-XaHcsGpDX4D80vxBcFirroL_6wnzzJI3SmH-8bngc5fl2vUt5Gv0CPn-Aqw
CitedBy_id crossref_primary_10_1007_s00344_018_9801_3
crossref_primary_10_1186_s12862_021_01873_y
crossref_primary_10_3390_nu12061717
crossref_primary_10_1007_s13205_020_02528_3
crossref_primary_10_1186_s12870_016_0895_0
crossref_primary_10_1111_ppl_13949
crossref_primary_10_1007_s11240_018_1418_5
crossref_primary_10_1007_s00299_014_1604_9
crossref_primary_10_1186_s12864_016_3463_y
crossref_primary_10_1186_s12864_017_3677_7
crossref_primary_10_1007_s11032_021_01223_2
crossref_primary_10_1186_s12870_017_1115_2
crossref_primary_10_1016_j_scienta_2023_112717
crossref_primary_10_1007_s00299_020_02599_9
crossref_primary_10_1016_j_synbio_2024_05_014
crossref_primary_10_1016_j_xplc_2022_100498
crossref_primary_10_1111_ppl_13378
crossref_primary_10_1111_jipb_13550
crossref_primary_10_1016_j_bbamem_2019_183127
crossref_primary_10_1093_pcp_pcy039
crossref_primary_10_3390_genes12040583
crossref_primary_10_1093_jxb_erz246
crossref_primary_10_3389_fpls_2021_640606
crossref_primary_10_1016_j_plaphy_2016_07_016
crossref_primary_10_5511_plantbiotechnology_14_0904a
crossref_primary_10_1016_j_gene_2015_11_002
crossref_primary_10_1071_FP23249
crossref_primary_10_3390_plants11020211
crossref_primary_10_1007_s00344_017_9707_5
crossref_primary_10_1016_j_plantsci_2020_110471
crossref_primary_10_1016_j_ygeno_2022_110446
crossref_primary_10_1111_plb_13107
crossref_primary_10_1016_j_stress_2023_100300
crossref_primary_10_3390_genes11040418
crossref_primary_10_1007_s10709_023_00186_w
crossref_primary_10_1186_s12864_021_07943_1
crossref_primary_10_3390_plants11070963
Cites_doi 10.1105/tpc.13.4.853
10.1104/pp.109.135624
10.1104/pp.104.058032
10.1023/A:1013378702940
10.1016/0092-8674(85)90190-4
10.1093/nar/27.2.628
10.1073/pnas.0406377102
10.1093/molbev/msl017
10.1093/nar/14.24.9549
10.1093/bioinformatics/btm404
10.1007/s001220051379
10.1038/ng2074
10.1111/j.1365-313X.1991.00071.x
10.1105/tpc.109.067819
10.1104/pp.113.4.1437
10.1093/bioinformatics/btn221
10.1046/j.1365-313x.1998.00343.x
10.1093/nar/gkg563
10.1186/1471-2229-8-16
10.1046/j.1365-313X.2003.01943.x
10.1016/j.plantsci.2005.10.001
10.1016/S0031-9422(96)00480-3
10.1080/10408398309527367
10.1111/j.1601-5223.1993.00187.x
10.1007/978-3-642-86659-3
10.1007/s001220050861
10.1146/annurev.arplant.57.032905.105252
10.1093/bioinformatics/17.9.847
10.1016/S0968-0004(03)00052-5
10.1016/j.phytochem.2007.02.012
10.1101/gr.6438607
10.1093/pcp/pcm091
10.1007/BF00331014
10.1046/j.1365-313X.2003.01834.x
10.1111/j.1469-8137.2004.01217.x
10.1126/science.1078540
10.1006/fstl.2001.0843
10.1105/tpc.012963
10.1007/s00438-008-0399-1
10.1105/tpc.014043
10.1093/molbev/msl159
10.1146/annurev.biochem.68.1.321
10.1105/tpc.106.046029
10.1016/S0167-4781(98)00068-2
10.1104/pp.109.140582
10.1080/10408398609527441
10.1104/pp.106.081406
10.1073/pnas.0500383102
10.1104/pp.107.097162
10.1126/science.290.5499.2114
10.1111/j.1365-313X.2006.02964.x
10.1016/S0021-9673(98)00294-5
10.1104/pp.106.088104
10.1007/BF02913969
10.1046/j.1432-1033.2003.03418.x
10.1007/s11101-007-9079-8
ContentType Journal Article
Copyright 2010 German Botanical Society and The Royal Botanical Society of the Netherlands.
Copyright_xml – notice: 2010 German Botanical Society and The Royal Botanical Society of the Netherlands.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
DOI 10.1111/j.1438-8677.2010.00350.x
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
DatabaseTitleList CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1438-8677
EndPage 50
ExternalDocumentID 10_1111_j_1438_8677_2010_00350_x
21143724
ark_67375_WNG_5399HFL7_7
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
29O
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABCVL
ABEML
ABHUG
ABJNI
ABLJU
ABPTK
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHBTC
AIAGR
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZ~
IX1
J0M
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RIG
RJQFR
ROL
RTC
RX1
SUPJJ
SV3
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZZTAW
~02
~IA
~WT
CGR
CUY
CVF
ECM
EIF
HGLYW
NPM
OIG
AAHBH
AAYXX
AITYG
CITATION
H13
ID FETCH-LOGICAL-c418t-66f5655f5ca119010d60df1eb16908948a1fd9d9f1c0baabbae32f444c26d32f3
ISSN 1435-8603
IngestDate Fri Aug 23 00:47:49 EDT 2024
Thu May 23 23:18:32 EDT 2024
Wed Jan 17 05:14:44 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2010 German Botanical Society and The Royal Botanical Society of the Netherlands.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c418t-66f5655f5ca119010d60df1eb16908948a1fd9d9f1c0baabbae32f444c26d32f3
Notes istex:9E0340CC48A9E02577B2934E663787DA33E6784A
ark:/67375/WNG-5399HFL7-7
ArticleID:PLB350
PMID 21143724
PageCount 9
ParticipantIDs crossref_primary_10_1111_j_1438_8677_2010_00350_x
pubmed_primary_21143724
istex_primary_ark_67375_WNG_5399HFL7_7
PublicationCentury 2000
PublicationDate 2011-01-01
PublicationDateYYYYMMDD 2011-01-01
PublicationDate_xml – month: 01
  year: 2011
  text: 2011-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
PublicationTitle Plant biology (Stuttgart, Germany)
PublicationTitleAlternate Plant Biol (Stuttg)
PublicationYear 2011
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Ohno S. (1970) Evolution by gene duplication. Springer-Verlag, New York, USA.
Lepiniec L., Debeaujon I., Routaboul J., Baudry A., Pourcel L., Nesi N., Caboche M. (2006) Genetics and biochemistry of seed flavonoids. Annual Review of Plant Biology, 57, 405-430.
Takos A.M., Ubi B.E., Robinson S.P., Walker A.R. (2006b) Condensed tannin biosynthesis genes are regulated separately from other flavonoid biosynthesis genes in apple fruit skin. Plant Science, 170, 487-499.
Yazaki K., Sugiyama A., Morita M., Shitan N. (2008) Secondary transport as an efficient membrane transport mechanism for plant secondary metabolites. Phytochemistry Reviews, 7, 513-524.
Guyot S., Doco T., Souquet J., Moutounet M., Drilleau J. (1997) Characterization of highly polymerized procyanidins in cider apple (Malus sylvestris var. kermerrien) skin and pulp. Phytochemistry, 44, 351-357.
Durrett T.P., Gassmann W., Rogers E.E. (2007) The FRD3-mediated efflux of citrate into the root vasculature is necessary for efficient iron translocation. Plant Physiology, 144, 197-205.
Viklund H., Elofsson A. (2008) OCTOPUS: improving topology prediction by two-track ANN-based preference scores and an extended topological grammar. Bioinformatics, 24, 1662-1668.
Brown J.W.S. (1986) A catalogue of splice junction and putative branch point sequences from plant introns. Nucleic Acids Research, 14, 9549-9559.
Vision T.J., Brown D.G., Tanksley S.D. (2000) The origins of genomic duplications in Arabidopsis. Science, 290, 2114-2117.
Xie D.Y., Sharma S.B., Paiva N.L., Ferreira D., Dixon R.A. (2003) Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science, 299, 396-399.
Renard C.M., Dupont N., Guillermin P. (2007) Concentrations and characteristics of procyanidins and other phenolics in apples during fruit growth. Phytochemistry, 68, 1128-1138.
Zdobnov E.M., Apweiler R. (2001) InterProScan - an integration platform for the signature-recognition methods in InterPro. Bioinformatics, 17, 847-848.
Jende-Strid B. (1993) Genetic control of flavonoid biosynthesis in barley. Hereditas, 119, 187-204.
Hvorup R.N., Winnen B., Chang A.B., Jiang Y., Zhou X.F., Saier M.H., Jr (2003) The multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) exporter superfamily. European Journal of Biochemistry, 270, 799-813.
Baxter I.R., Young J.C., Armstrong G., Foster N., Bogenschutz N., Cordova T., Peer W.A., Hazen S.P., Murphy A.S., Harper J.F. (2005) A plasma membrane H+-ATPase is required for the formation of proanthocyanidins in the seed coat endothelium of Arabidopsis thaliana. Proceedings of the National Academy of Sciences USA, 102, 2649-2654.
Jakoby M., Weinl C., Pusch S., Kuijt S., Merkle T., Dissmeyer N., Schnittger A. (2006) Analysis of the subcellular localization, function, and proteolytic control of the Arabidopsis cyclin-dependent kinase inhibitor ICK1/KRP1. Plant Physiology, 141, 1293-1305.
Koornneef M. (1990) Mutations affecting the testa colour in Arabidopsis. Arabidopsis Information Services, 27, 1-4.
Iwamoto M., Maekawa M., Saito A., Higo H., Higo K. (1998) Evolutionary relationship of plant catalase genes inferred from exon-intron structures: isozyme divergence after the separation of monocots and dicots. Theoretical and Applied Genetics, 97, 1-19.
Kitamura S., Shikazono N., Tanaka A. (2004) TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. The Plant Journal, 37, 104-114.
Aubourg S., Kreis M., Lecharny A. (1999) The DEAD box RNA helicase family in Arabidopsis thaliana. Nucleic Acids Research, 27, 628-636.
Mathews H., Clendennen S.K., Caldwell C.G., Liu X.L., Connors K., Matheis N., Schuster D.K., Menasco D.J., Wagoner W., Lightner J., Wagner D.R. (2003) Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport. The Plant Cell, 15, 1689-1703.
Deshpande S.S., Cheryan M., Salunkhe D.K. (1986) Tannin analysis of food products. Critical Reviews in Food Science and Nutrition, 24, 401-449.
Knowles D.G., Mc Lysaght A. (2006) High rate of recent intron gain and loss in simultaneously duplicated Arabidopsis genes. Molecular Biology and Evolution, 23, 1548-1557.
Chai Y., Lei B., Huang H., Li J., Yin J., Tang Z., Wang R., Chen L. (2009) TRANSPARENTTESTA12 genes from Brassica napus and parental species: cloning, evolution, and differential involvement in yellow seed trait. Molecular Genetics and Genomics, 281, 109-123.
Debeaujon I., Peeters A.J.M., Léon-Kloosterziel K.M., Koornneef M. (2001) The TRANSPARENT TESTA12 gene of Arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid sequestration in vacuoles of the seed coat endothelium. The Plant Cell, 13, 853-872.
Brodskii L.I., Ivanov V.V., Kalaidzidis Ia L., Leontovich A.M., Nikolaev V.K., Feranchuk S.I., Drachev V.A. (1995) GeneBee-NET: an internet-based server for biopolymer structure analysis. Biokhimiia, 60, 1221-1230.
Roy S., Penny D. (2007) Patterns of intron loss and gain in plants: intron loss-dominated evolution and genome-wide comparison of O. sativa and A. thaliana. Molecular Biology and Evolution, 24, 171-181.
Aubourg S., Chéron A., Kreis M., Lecharny A. (1998) Structure and expression of an asparaginyl-tRNA synthetase gene located on chromosome IV of Arabidopsis thaliana and adjacent to a novel gene of 15 exons. Biochimica et Biophysica Acta-Gene Structure and Expression, 1398, 225-231.
Zhao J., Dixon R.A. (2009) MATE Transporters Facilitate Vacuolar Uptake of Epicatechin 3′-O-Glucoside for Proanthocyanidin Biosynthesis in Medicago truncatula and Arabidopsis. The Plant Cell, 21, 2323-2340.
Larkin M.A., Blackshields G., Brown N.P., Chenna R., Mc Gettigan P.A., Mc William H., Valentin F., Wallace I.M., Wilm A., Lopez R., Thompson J.D., Gibson T.J., Higgins D.G. (2007) Clustal W and Clustal X version 2.0. Bioinformatics, 23, 2947-2948.
Guyot S., Le Bourvellec C., Marnet N., Drilleau J.F. (2002) Procyanidins are the most abundant polyphenols in dessert apples at maturity. Lebensmittel-Wissenschaften und Technologie, 35, 289-291.
Clough S.J., Bent A.F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal, 16, 735-743.
Dixon R., Xie D., Sharma S. (2005) Proanthocyanidins: a final frontier in flavonoid research? New Phytologist, 165, 9-28.
Aastrup S., Outtrup H., Erdal K. (1984) Location of the proanthocyanidins in the barley grain. Carlsberg Research Communications, 49, 105-109.
Janssen B.J., Thodey K., Schaffer R.J., Alba R., Balakrishnan L., Bishop R., Bowen J.H., Crowhurst R.N., Gleave A.P., Ledger S., Mc Artney S., Pichler F.B., Snowden K.C., Ward S. (2008) Global gene expression analysis of apple fruit development from the floral bud to ripe fruit. BMC Plant Biology, 8, 16.
Marinova K., Pourcel L., Weder B., Schwarz M., Barron D., Routaboul J.M., Debeaujon I., Klein M. (2007) The Arabidopsis MATE Transporter TT12 Acts as a Vacuolar Flavonoid/H+-Antiporter Active in Proanthocyanidin-Accumulating Cells of the Seed Coat. The Plant Cell, 19, 2023-2038.
Escarpa A., Gonzáles M.C. (1998) High-performance liquid chromatography with diode-array detection for the determination of phenolic compounds in peel and pulp from different apple varieties. Journal of Chromatography A, 823, 331-337.
Gasteiger E., Gattiker A., Hoogland C., Ivanyi I., Appel R.D., Bairoch A. (2003) ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Research, 31, 3784-3788.
Le Hir H., Nott A., Moore M.J. (2003) How introns influence and enhance eukaryotic gene expression. TRENDS in Biochemical Sciences, 28, 215-220.
Abrahams S., Lee E., Walker A.R., Tanner G.J., Larkin P.J., Ashton A.R. (2003) The Arabidopsis TDS4 gene encodes leucoanthocyanidin dioxygenase (LDOX) and is essential for proanthocyanidin synthesis and vacuole development. The Plant Journal, 35, 624-636.
Gomez C., Terrier N., Torregrosa L., Vialet S., Fournier-Level A., Verries C., Souquet J.M., Mazauric J.P., Klein M., Cheynier V., Ageorges A. (2009) Grapevine MATE-type proteins act as vacuolar H+-dependent acylated anthocyanin transporters. Plant Physiology, 150, 402-415.
Baltimore D. (1985) Retroviruses and retrotransposons: the role of reverse transcription in shaping the eukaryotic genome. Cell, 40, 481-482.
Lespinasse D., Grivet L., Troispoux V., Rodier-Goud M., Pinard F., Seguin M. (2000) Identification of QTLs involved in the resistance to South American leaf blight (Microcyclus ulei) in the rubber tree. Theoretical and Applied Genetics, 100, 975-984.
Debeaujon I., Nesi N., Perez P., Devic M., Grandjean O., Caboche M., Lepiniec L. (2003) Proanthocyanidin-accumulating cells in Arabidopsis testa: regulation of differentiation and role in seed development. The Plant Cell, 15, 2514-2531.
Takos A.M., Jaffe F.W., Jacob S.R., Bogs J., Robinson S.P., Walker A.R. (2006a) Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiology, 142, 1216-1232.
Carmel L., Wolf Y.I., Rogozin I.B., Koonin E.V. (2007) Three distinct modes of intron dynamics in the evolution of eukaryotes. Genome Research, 17, 1034-1044.
Boyer J., Liu R.H. (2004) Apple phytochemicals and their health benefits. Nutritional Journal, 3, 5.
Mehrtens F., Kranz H., Bednarek P., Weisshaar B. (2005) The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis. Plant Physiology, 138, 1083-1096.
Espley R.V., Hellens R.P., Putterill J., Stevenson D.E., Kutty-Amma S., Allan A.C. (2007) Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. The Plant Journal, 49, 414-427.
Pelletier M.K., Murrell J.R., Shirley B.W. (1997) Characterization of flavonol synthase and leucoanthocyanidin dioxygenase genes in Arabidopsis. Plant Physiology, 113, 1437-1445.
Roy S.W., Gilbert W. (2005) Rates of intron loss and gain: implications for early eukaryotic evolution. Proceedings of the Nat
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
Boyer J. (e_1_2_6_9_1) 2004; 3
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_57_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
Koornneef M. (e_1_2_6_38_1) 1990; 27
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
Brodskii L.I. (e_1_2_6_10_1) 1995; 60
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – ident: e_1_2_6_15_1
  doi: 10.1105/tpc.13.4.853
– ident: e_1_2_6_27_1
  doi: 10.1104/pp.109.135624
– ident: e_1_2_6_46_1
  doi: 10.1104/pp.104.058032
– ident: e_1_2_6_54_1
  doi: 10.1023/A:1013378702940
– ident: e_1_2_6_6_1
  doi: 10.1016/0092-8674(85)90190-4
– ident: e_1_2_6_5_1
  doi: 10.1093/nar/27.2.628
– ident: e_1_2_6_7_1
  doi: 10.1073/pnas.0406377102
– ident: e_1_2_6_36_1
  doi: 10.1093/molbev/msl017
– ident: e_1_2_6_11_1
  doi: 10.1093/nar/14.24.9549
– ident: e_1_2_6_39_1
  doi: 10.1093/bioinformatics/btm404
– ident: e_1_2_6_42_1
  doi: 10.1007/s001220051379
– ident: e_1_2_6_43_1
  doi: 10.1038/ng2074
– ident: e_1_2_6_23_1
  doi: 10.1111/j.1365-313X.1991.00071.x
– ident: e_1_2_6_60_1
  doi: 10.1105/tpc.109.067819
– ident: e_1_2_6_48_1
  doi: 10.1104/pp.113.4.1437
– volume: 60
  start-page: 1221
  year: 1995
  ident: e_1_2_6_10_1
  article-title: GeneBee‐NET: an internet‐based server for biopolymer structure analysis
  publication-title: Biokhimiia
  contributor:
    fullname: Brodskii L.I.
– ident: e_1_2_6_55_1
  doi: 10.1093/bioinformatics/btn221
– ident: e_1_2_6_14_1
  doi: 10.1046/j.1365-313x.1998.00343.x
– ident: e_1_2_6_26_1
  doi: 10.1093/nar/gkg563
– ident: e_1_2_6_33_1
  doi: 10.1186/1471-2229-8-16
– ident: e_1_2_6_35_1
  doi: 10.1046/j.1365-313X.2003.01943.x
– ident: e_1_2_6_53_1
  doi: 10.1016/j.plantsci.2005.10.001
– ident: e_1_2_6_28_1
  doi: 10.1016/S0031-9422(96)00480-3
– ident: e_1_2_6_18_1
  doi: 10.1080/10408398309527367
– ident: e_1_2_6_34_1
  doi: 10.1111/j.1601-5223.1993.00187.x
– ident: e_1_2_6_47_1
  doi: 10.1007/978-3-642-86659-3
– ident: e_1_2_6_31_1
  doi: 10.1007/s001220050861
– ident: e_1_2_6_41_1
  doi: 10.1146/annurev.arplant.57.032905.105252
– volume: 3
  start-page: 5
  year: 2004
  ident: e_1_2_6_9_1
  article-title: Apple phytochemicals and their health benefits
  publication-title: Nutritional Journal
  contributor:
    fullname: Boyer J.
– ident: e_1_2_6_59_1
  doi: 10.1093/bioinformatics/17.9.847
– ident: e_1_2_6_40_1
  doi: 10.1016/S0968-0004(03)00052-5
– ident: e_1_2_6_49_1
  doi: 10.1016/j.phytochem.2007.02.012
– ident: e_1_2_6_12_1
  doi: 10.1101/gr.6438607
– ident: e_1_2_6_25_1
  doi: 10.1093/pcp/pcm091
– ident: e_1_2_6_37_1
  doi: 10.1007/BF00331014
– ident: e_1_2_6_3_1
  doi: 10.1046/j.1365-313X.2003.01834.x
– ident: e_1_2_6_19_1
  doi: 10.1111/j.1469-8137.2004.01217.x
– ident: e_1_2_6_57_1
  doi: 10.1126/science.1078540
– ident: e_1_2_6_29_1
  doi: 10.1006/fstl.2001.0843
– ident: e_1_2_6_45_1
  doi: 10.1105/tpc.012963
– ident: e_1_2_6_13_1
  doi: 10.1007/s00438-008-0399-1
– ident: e_1_2_6_16_1
  doi: 10.1105/tpc.014043
– ident: e_1_2_6_51_1
  doi: 10.1093/molbev/msl159
– ident: e_1_2_6_24_1
  doi: 10.1146/annurev.biochem.68.1.321
– ident: e_1_2_6_44_1
  doi: 10.1105/tpc.106.046029
– ident: e_1_2_6_4_1
  doi: 10.1016/S0167-4781(98)00068-2
– ident: e_1_2_6_8_1
  doi: 10.1104/pp.109.140582
– ident: e_1_2_6_17_1
  doi: 10.1080/10408398609527441
– ident: e_1_2_6_32_1
  doi: 10.1104/pp.106.081406
– ident: e_1_2_6_50_1
  doi: 10.1073/pnas.0500383102
– ident: e_1_2_6_20_1
  doi: 10.1104/pp.107.097162
– ident: e_1_2_6_56_1
  doi: 10.1126/science.290.5499.2114
– ident: e_1_2_6_22_1
  doi: 10.1111/j.1365-313X.2006.02964.x
– ident: e_1_2_6_21_1
  doi: 10.1016/S0021-9673(98)00294-5
– ident: e_1_2_6_52_1
  doi: 10.1104/pp.106.088104
– volume: 27
  start-page: 1
  year: 1990
  ident: e_1_2_6_38_1
  article-title: Mutations affecting the testa colour in Arabidopsis
  publication-title: Arabidopsis Information Services
  contributor:
    fullname: Koornneef M.
– ident: e_1_2_6_2_1
  doi: 10.1007/BF02913969
– ident: e_1_2_6_30_1
  doi: 10.1046/j.1432-1033.2003.03418.x
– ident: e_1_2_6_58_1
  doi: 10.1007/s11101-007-9079-8
SSID ssj0014901
Score 2.1680844
Snippet Proanthocyanidins (PAs) are a class of flavonoids with numerous functions in plant ecology and development, including protection against microbial infection,...
Abstract Proanthocyanidins (PAs) are a class of flavonoids with numerous functions in plant ecology and development, including protection against microbial...
SourceID crossref
pubmed
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 42
SubjectTerms Arabidopsis - genetics
Arabidopsis Proteins - genetics
Arabidopsis thaliana
Cloning, Molecular
flavonoid biosynthesis
Genome, Plant
Malus - genetics
Malus x domestica
MATE transporter
Phylogeny
proanthocyanidins
Seeds - genetics
transparent testa12 (tt12)
Title Two differentially expressed MATE factor genes from apple complement the Arabidopsis transparent testa12 mutant
URI https://api.istex.fr/ark:/67375/WNG-5399HFL7-7/fulltext.pdf
https://www.ncbi.nlm.nih.gov/pubmed/21143724
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKxgMviG8KDPkB8VKlihPn63FjHxXQPrBO7C1yYmebGM1UHLHy1-_OTtKkDDR4iSyrsVLfz-fz-e53hLyTgQx84SuMnvId2G-lI5JQOipIGC_ySIYJ5jtPZ-HkhH88DU4Hgy5DcKWzcf7r1ryS_5Eq9IFcMUv2HyTbDgod0Ab5whMkDM-7yfhn2VY4gZV6eblCxn5DBy5H0935QV1OB-skqx82lQRvrJWNJDeeQZtbshTZhSyvkJ1EG7pzYVibwA7Vgnmj7xUWG-4asljsSI8aCicwU491pfWZsBlAR6jvF6uOm8EUhzeu1vFax1tVPG17jsWZwPCAfu_sQp2LyuDt07jrpTC5el0vxYY30nrX1nFLqHnBbnPi0LXaTjV9sYOEez117f8GS6t7LUtXvYtbNtu_7A_1yE1wnx-4Tdxol5J7Y6tsAxjF8htGxEVB-nV2lCK77-Twc5RG98i2FyUBegH2v7Q8ZnAKNXW42__YDym79Vt6dtI2LvnrjZOPsYDmj8jD-uhCdy0OH5OBWjwh9_dKgMbqKSkBjLQPRtqCkSIYqQUjNWCkCEZqwEjXYKQARtoBI-2AkdZgpBaMz8jJ4cH8w8Spq3k4OWexdsKwgMNDUAS5YGiFujJ0ZcHAVgjx7pnHghUykUnBcjcTIsuE8r2Cc557oYSW_5xsLcqFekmoByqEqyTzMsE52JiZK0Xh59AQBfJDDglr5i69sqQtafew68cpzneK852a-U6vh-S9meT2hT-JeEheWCm0v_QYw9tv_uquQ7wmD9Zr5A3Z0stK7YBtq7O3Bjc384ChTQ
link.rule.ids 315,786,790,27957,27958
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two+differentially+expressed+MATE+factor+genes+from+apple+complement+the+Arabidopsis+transparent+testa12+mutant&rft.jtitle=Plant+biology+%28Stuttgart%2C+Germany%29&rft.au=Frank%2C+S.&rft.au=Keck%2C+M.&rft.au=Sagasser%2C+M.&rft.au=Niehaus%2C+K.&rft.date=2011-01-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1435-8603&rft.eissn=1438-8677&rft.volume=13&rft.issue=1&rft.spage=42&rft.epage=50&rft_id=info:doi/10.1111%2Fj.1438-8677.2010.00350.x&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_5399HFL7_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1435-8603&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1435-8603&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1435-8603&client=summon