Fused filament fabrication of scaffolds for tissue engineering; how realistic is shape-memory? A review

Since the invention of additive manufacturing (AM) in the 1980s, great advances are today conceivable thanks to considerable evolution in recent years. Medicine, and particularly tissue engineering (TE), have high expectations regarding AM, which allows the manufacturing of complex personalized part...

Full description

Saved in:
Bibliographic Details
Published inPolymer (Guilford) Vol. 217; p. 123440
Main Authors Bayart, Marie, Charlon, Sébastien, Soulestin, Jérémie
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 05.03.2021
Elsevier BV
Elsevier
Subjects
Online AccessGet full text
ISSN0032-3861
1873-2291
DOI10.1016/j.polymer.2021.123440

Cover

Loading…
Abstract Since the invention of additive manufacturing (AM) in the 1980s, great advances are today conceivable thanks to considerable evolution in recent years. Medicine, and particularly tissue engineering (TE), have high expectations regarding AM, which allows the manufacturing of complex personalized parts. Among existing techniques, fused filament fabrication (FFF) is very promising in the biomedical field, due to its many advantages, particularly for specific applications such as scaffolds for TE. This review, in interaction with biomedical, process and material sciences, aims to help researchers understand the importance of process parameterization (build orientation, raster angle, layer thickness, etc.) combined with an appropriate material choice, to develop optimized scaffolds using FFF. This review also reflects the state of existing advances and opens perspectives on the subject, especially with the use of biodegradable and biocompatible shape-memory polymers, the principle of which will be revisited and the few studies concerning shape-memory scaffolds will be gathered. [Display omitted] •A reminder includes information on materials' properties needed in biomedicine.•Studies refer to FFF and its setting optimization for the production of scaffolds.•Scaffolds' optimization is based on their composition and machine parameterization.•SMPs show great promises to develop scaffolds for tissue engineering.•The need to study the effect of FFF settings on materials' properties is growing.
AbstractList Since the invention of additive manufacturing (AM) in the 1980s, great advances are today conceivable thanks to considerable evolution in recent years. Medicine, and particularly tissue engineering (TE), have high expectations regarding AM, which allows the manufacturing of complex personalized parts. Among existing techniques, fused filament fabrication (FFF) is very promising in the biomedical field, due to its many advantages, particularly for specific applications such as scaffolds for TE. This review, in interaction with biomedical, process and material sciences, aims to help researchers understand the importance of process parameterization (build orientation, raster angle, layer thickness, etc.) combined with an appropriate material choice, to develop optimized scaffolds using FFF. This review also reflects the state of existing advances and opens perspectives on the subject, especially with the use of biodegradable and biocompatible shape-memory polymers, the principle of which will be revisited and the few studies concerning shape-memory scaffolds will be gathered. [Display omitted] •A reminder includes information on materials' properties needed in biomedicine.•Studies refer to FFF and its setting optimization for the production of scaffolds.•Scaffolds' optimization is based on their composition and machine parameterization.•SMPs show great promises to develop scaffolds for tissue engineering.•The need to study the effect of FFF settings on materials' properties is growing.
Since the invention of additive manufacturing (AM) in the 1980s, great advances are today conceivable thanks to considerable evolution in recent years. Medicine, and particularly tissue engineering (TE), have high expectations regarding AM, which allows the manufacturing of complex personalized parts. Among existing techniques, fused filament fabrication (FFF) is very promising in the biomedical field, due to its many advantages, particularly for specific applications such as scaffolds for TE. This review, in interaction with biomedical, process and material sciences, aims to help researchers understand the importance of process parameterization (build orientation, raster angle, layer thickness, etc.) combined with an appropriate material choice, to develop optimized scaffolds using FFF. This review also reflects the state of existing advances and opens perspectives on the subject, especially with the use of biodegradable and biocompatible shape-memory polymers, the principle of which will be revisited and the few studies concerning shape-memory scaffolds will be gathered.
ArticleNumber 123440
Author Bayart, Marie
Charlon, Sébastien
Soulestin, Jérémie
Author_xml – sequence: 1
  givenname: Marie
  surname: Bayart
  fullname: Bayart, Marie
– sequence: 2
  givenname: Sébastien
  surname: Charlon
  fullname: Charlon, Sébastien
  email: sebastien.charlon@imt-lille-douai.fr
– sequence: 3
  givenname: Jérémie
  surname: Soulestin
  fullname: Soulestin, Jérémie
BackLink https://hal.science/hal-03183431$$DView record in HAL
BookMark eNqFUU1rGzEUFCWFOml_QkHQUw_r6mt3teQQTGiSgqGX9Cxk7ZP9zK7kSnKC_33X2eTSS04P3psZ5s1ckosQAxDylbMlZ7z5sV8e4nAaIS0FE3zJhVSKfSALrltZCdHxC7JgTIpK6oZ_Ipc57xljohZqQbZ3xww99TjYEUKh3m4SOlswBho9zc56H4c-Ux8TLZjzESiELQaAhGF7TXfxmSawA-aCjmKmeWcPUI0wxnS6oavp-ITw_Jl89HbI8OV1XpE_dz8fbx-q9e_7X7erdeUU16VqGuglbzagoWOat2Ljem6Vs2AB6gYaqVohvAI1_dP1DlTX265x0LW6dZrLK_J91t3ZwRwSjjadTLRoHlZrc94xybVUkj-dsd9m7CHFv0fIxezjMYXJnhE103UnRV1PqOsZ5VLMOYE3DstLQCVZHAxn5tyC2ZvXFsy5BTO3MLHr_9hvpt7j3cw8mMKaAkwmO4TgoMcErpg-4jsK_wCzhKdB
CitedBy_id crossref_primary_10_1002_cae_22561
crossref_primary_10_3390_app11146320
crossref_primary_10_1016_j_bioadv_2022_212818
crossref_primary_10_3390_jfb15100280
crossref_primary_10_1002_jbm_b_35402
crossref_primary_10_1016_j_polymer_2023_126587
crossref_primary_10_62184_mmc_jmmc100020241
crossref_primary_10_1016_j_eurpolymj_2023_112718
crossref_primary_10_3390_su15086805
crossref_primary_10_1080_17452759_2023_2285418
crossref_primary_10_2139_ssrn_4069589
crossref_primary_10_1016_j_reactfunctpolym_2022_105374
crossref_primary_10_1016_j_bprint_2023_e00259
crossref_primary_10_1007_s12008_022_01018_5
crossref_primary_10_1089_ten_tec_2023_0082
crossref_primary_10_1016_j_addma_2022_103065
Cites_doi 10.1007/s00449-010-0499-2
10.1016/j.joca.2004.12.014
10.1007/s10856-016-5731-4
10.1080/10426914.2015.1070425
10.1016/j.bbe.2020.01.015
10.1557/jmr.2018.112
10.1016/j.actbio.2016.09.030
10.1016/j.morpho.2017.06.002
10.1016/S0142-9612(02)00466-0
10.1016/j.msec.2010.01.006
10.1108/13552541211272045
10.1007/BF00120366
10.1016/j.ceramint.2018.07.297
10.1016/j.jmapro.2020.04.049
10.1186/s41038-018-0121-4
10.1039/C7TB00419B
10.1016/j.applthermaleng.2019.114064
10.1016/S1526-6125(04)70071-7
10.1002/mame.201800179
10.1038/s41598-017-13838-7
10.1007/s11434-012-5336-3
10.1016/j.matdes.2017.03.065
10.1016/j.mattod.2017.06.005
10.1039/C8BM00518D
10.2514/6.2017-0567
10.1080/17452759.2015.1097053
10.1186/s13036-015-0001-4
10.1002/marc.201200153
10.1002/jbm.a.35871
10.1002/app.13354
10.1016/j.msec.2013.02.041
10.1108/RPJ-08-2018-0217
10.1016/j.procir.2016.02.313
10.1016/j.jmbbm.2012.01.021
10.1016/j.jmbbm.2016.01.031
10.3390/ma11081333
10.1007/BF02871912
10.1088/1757-899X/161/1/012033
10.1557/jmr.2018.359
10.3144/expresspolymlett.2014.44
10.1063/1.5008034
10.1088/0957-4484/20/23/235702
10.1016/j.biomaterials.2004.01.038
10.1007/s40964-017-0023-1
10.1016/j.msec.2015.06.028
10.1016/j.polymdegradstab.2010.09.007
10.1016/j.cej.2018.01.010
10.1007/s10544-008-9271-7
10.1016/j.eurpolymj.2017.06.011
10.1016/S1369-7021(11)70058-X
10.1016/j.biomaterials.2010.07.043
10.1007/s10856-012-4738-8
10.1016/j.polymer.2009.01.032
10.1002/jbm.a.35637
10.3390/app9132676
10.1007/s12668-018-0525-4
10.1016/S0378-5173(01)00691-3
10.1159/000184165
10.1002/jbm.a.20055
10.1002/mame.201700143
10.1002/adhm.201700694
10.1002/1521-3900(200203)180:1<257::AID-MASY257>3.0.CO;2-I
10.1039/b615954k
10.1002/polb.24370
10.1088/1748-6041/2/1/S04
10.1007/s10965-013-0140-6
10.1163/092050609X12457428919034
10.1007/s12206-016-1049-x
10.1016/j.polymertesting.2018.05.020
10.1016/j.compositesb.2019.107147
10.1088/1758-5090/aa8114
10.1108/RPJ-04-2017-0055
10.1039/C7TB02068F
10.1016/j.progpolymsci.2011.06.003
10.1179/1432891714Z.000000000898
10.1016/j.procir.2015.07.025
10.1007/s10616-015-9895-4
10.1016/j.addr.2016.06.018
10.1016/j.procir.2017.04.042
10.1021/ma201502k
10.1007/s00170-015-7576-2
10.1016/j.matdes.2019.108414
10.1021/acsami.6b00704
10.1002/polb.22259
10.1016/j.jmapro.2018.08.008
10.1002/macp.201400340
10.1016/j.matdes.2019.107704
10.1007/s00170-011-3744-1
10.1016/S0142-9612(01)00232-0
10.1016/j.biomaterials.2005.07.015
10.3389/fbioe.2019.00164
10.1002/jbm.a.35736
10.1007/s10529-007-9581-5
10.1016/j.actbio.2008.07.012
10.1016/S1359-6462(02)00071-4
10.1016/j.proeng.2012.07.362
10.1016/j.eng.2018.07.021
10.1016/j.ijom.2006.03.024
10.1364/OPEX.13.008204
10.1007/s00170-012-4687-x
10.4161/org.26048
10.1007/s40436-014-0097-7
10.1002/pi.2195
10.1016/0142-9612(81)90050-8
10.1002/adma.200502266
10.1155/2011/290602
10.1016/j.biomaterials.2006.03.043
10.1007/s11431-019-1494-0
10.1016/j.jmbbm.2015.11.036
10.1038/35015116
10.1007/s00170-006-0556-9
10.1089/107632701753337645
10.1007/s11837-020-04013-x
10.3390/ijms18050899
10.1016/j.bone.2009.09.031
10.1016/S0142-9612(98)00154-9
10.1515/polyeng-2016-0194
10.1149/06619.0023ecst
10.1016/j.actbio.2009.03.038
10.1016/j.jmbbm.2017.04.001
10.15212/FMCH.2017.0110
10.1016/j.compositesb.2015.10.005
10.1016/j.addr.2016.06.014
10.1002/polb.24775
10.1016/j.actbio.2012.10.041
10.1002/(SICI)1097-4636(19991205)47:3<324::AID-JBM6>3.0.CO;2-Y
10.1039/C6RA06906A
10.1016/S1369-7021(07)70047-0
10.1016/j.polymertesting.2019.106255
10.1039/b923717h
10.1021/acsami.6b06618
10.1016/S0161-6420(81)80012-7
10.1002/mabi.200700107
10.1016/j.jmapro.2016.11.006
10.1155/2013/626452
10.1016/j.biomaterials.2005.05.079
10.1021/bm060620d
10.1016/j.cirp.2009.03.071
10.1002/masy.201300194
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Mar 5, 2021
Attribution - NonCommercial
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Mar 5, 2021
– notice: Attribution - NonCommercial
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
1XC
VOOES
DOI 10.1016/j.polymer.2021.123440
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Physics
EISSN 1873-2291
ExternalDocumentID oai_HAL_hal_03183431v1
10_1016_j_polymer_2021_123440
S003238612100063X
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNCT
ACPRK
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SPD
SSK
SSM
SSZ
T5K
TN5
WH7
XPP
ZMT
~G-
.-4
29O
6TJ
6TU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDEX
ABDPE
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
RIG
SCB
SEW
SSH
T9H
WUQ
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
EFKBS
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
1XC
VOOES
ID FETCH-LOGICAL-c418t-66ed316be8e908172bcd1a4caeaee56e634722f4e40329dce49da96ce9787c813
IEDL.DBID .~1
ISSN 0032-3861
IngestDate Fri May 09 12:20:07 EDT 2025
Wed Aug 13 03:59:22 EDT 2025
Tue Jul 01 02:37:01 EDT 2025
Thu Apr 24 23:05:49 EDT 2025
Fri Feb 23 02:45:40 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords 4D printing
Additive manufacturing (AM)
Scaffolds
Fused filament fabrication (FFF)
Shape-memory polymers (SMPs)
Language English
License Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-66ed316be8e908172bcd1a4caeaee56e634722f4e40329dce49da96ce9787c813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7066-9303
0000-0001-5760-5877
OpenAccessLink https://hal.science/hal-03183431
PQID 2508593255
PQPubID 2045419
ParticipantIDs hal_primary_oai_HAL_hal_03183431v1
proquest_journals_2508593255
crossref_citationtrail_10_1016_j_polymer_2021_123440
crossref_primary_10_1016_j_polymer_2021_123440
elsevier_sciencedirect_doi_10_1016_j_polymer_2021_123440
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-05
PublicationDateYYYYMMDD 2021-03-05
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-05
  day: 05
PublicationDecade 2020
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Polymer (Guilford)
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
– name: Elsevier
References Blaker, Gough, Maquet, Notingher, Boccaccini (bib59) 2003; 67A
Singh, Ramakrishna, Singh (bib10) 2017; 25
Shim, Won, Park, Bae, Ahn, Kim, Lim, Cho, Yun, Bae, Jeong, Huh (bib52) 2017; 18
Zhang, Chen, Zhang (bib146) 2009; 50
Sabahi, Chen, Wang, Kruzic, Li (bib21) 2020; 72
Lee, Singla, Lee (bib46) 2001; 221
Sastri (bib34) 2013
Peng, Zheng, Chen, Zhang, Deng, Chen, Wu (bib74) 2018; 18
Zein, Hutmacher, Tan, Teoh (bib106) 2002; 23
Bosworth, Downes (bib76) 2010; 95
Zhang, Yang, Ding, Li (bib63) 2016; 6
Kuo, Liu, Teng, Chang, Chien, Liao, Kuo, Chen (bib12) 2016; 86
Altankov, Groth (bib62) 1994; 5
Wu, Ding (bib73) 2004; 25
Sokolowski, Metcalfe, Hayashi, Raymond (bib141) 2007; 2
Sun, Cai, Ren, Naguib (bib138) 2017; 55
Bellehumeur, Li, Sun, Gu (bib83) 2004; 6
Singh, Pal (bib38) 2012; 9
Shelton, Willburn, Hartsfield, Cobb, Cerri, Kemnitz (bib95) 2020; 81
Shen, Lu, Zhou, Liang (bib148) 2012; 21
Bonfield, Grynpas, Tully, Bowman, Abram (bib31) 1981; 2
Chia, Wu (bib105) 2015; 9
.
Xue, Dai, Li (bib136) 2010; 31
Bikas, Stavropoulos, Chryssolouris (bib11) 2016; 83
Vaezi, Yang (bib43) 2015; 10
Madhavan Nampoothiri, Nair, John (bib27) 2010; 101
Hashimoto, Takadama, Mizuno, Yasutomi, Kokubo (bib33) 2003
Ki, Park, Kim, Jung, Woo, Lee, Park (bib124) 2008; 30
Wu, Geng, Zhao, Zhang, Rosen, Zhang (bib80) 2014; 18
Faes, Ferraris, Moens (bib94) 2016; 42
Corcione, Gervaso, Scalera, Montagna, Maiullaro, Sannino, Maffezzoli (bib117) 2017; 37
Senatov, Niaza, Zadorozhnyy, Maksimkin, Kaloshkin, Estrin (bib118) 2016; 57
Koosomsuan, Yamaguchi, Phinyocheep, Sirisinha (bib151) 2019; 57
Duty, Ajinjeru, Kishore, Compton, Hmeidat, Chen, Liu, Hassen, Lindahl, Kunc (bib14) 2018; 35
Kayal, Ramanujan (bib39) 2010; 30
Hutmacher (bib23) 2000
Chaidas, Kitsakis, Kechagias, Maropoulos (bib89) 2016; 161
Bernard, Jubeli, Pungente, Yagoubi (bib49) 2018; 6
Toosi, Naderi‐Meshkin, Kalalinia, Peivandi, HosseinKhani, Bahrami, Heirani‐Tabasi, Mirahmadi, Behravan (bib67) 2016; 104
Saini, Arora, Kumar (bib29) 2016; 107
Hinsch (bib36) 1985
Kochesfahani (bib86) 2016
Garg, Bhattacharya, Batish (bib77) 2016; 31
Esposito Corcione, Gervaso, Scalera, Padmanabhan, Madaghiele, Montagna, Sannino, Licciulli, Maffezzoli (bib58) 2019; 45
Ulery, Nair, Laurencin (bib71) 2011; 49
Senatov, Zadorozhnyy, Niaza, Medvedev, Kaloshkin, Anisimova, Kiselevskiy, Yang (bib153) 2017; 93
Boschetto, Giordano, Veniali (bib88) 2013; 67
Li, Zhang, Liu, Leng (bib22) 2020; 63
Bružauskaitė, Bironaitė, Bagdonas, Bernotienė (bib112) 2016; 68
Dong, Wang, Zhao, Zhu, Yu (bib121) 2017; 7
Zhao, Wang, Wang, Mai, Yan, Yang (bib28) 2004; 91
Liu, Wang, Zhang (bib19) 2017; 5
Wang, Zou, Ding (bib90) 2019; 161
Chim, Hutmacher, Chou, Oliveira, Reis, Lim, Schantz (bib122) 2006; 35
da Silva, Kaduri, Poley, Adir, Krinsky, Shainsky-Roitman, Schroeder (bib70) 2018; 340
Sessini, Raquez, Lo Re, Mincheva, Kenny, Dubois, Peponi (bib140) 2016; 8
Guo, Ma, Lv, Zhao, Wang, Li (bib149) 2018; 33
Lai, Lan (bib144) 2013; 20
Bernasconi, Natale, Levi, Magagnin (bib100) 2015; 66
Mironov, Grigoryev, Krotova, Skaletsky, Popov, Sevastianov (bib108) 2017; 105
Tamay, Usal, Alagoz, Yucel, Hasirci, Hasirci (bib18) 2019; 7
Czaja, Young, Kawecki, Brown (bib48) 2007; 8
Wang, Xi, Jin (bib82) 2007; 33
Spoerk, Arbeiter, Raguž, Weingrill, Fischinger, Traxler, Schuschnigg, Cardon, Holzer (bib81) 2018; 303
Park, Park, Shin, Kang, Kim, Yoon, Shin (bib111) 2012; 23
Abe, Okazaki, Hiasa, Yasuda, Nogami, Mizumachi, Hirata (bib57) 2013; 2013
Meena, Mengi, Deshpande (bib45) 1999; 111
Kumaresan, Gandhinathan, Ramu, Ananthasubramanian, Pradheepa (bib50) 2016; 30
Naghieh, Karamooz Ravari, Badrossamay, Foroozmehr, Kadkhodaei (bib115) 2016; 59
Wu, Chen, Yan, Cai, Shi (bib131) 2019; 171
Jeong, Ko, Yum, Jung, Lee, Shin (bib6) 2008; 8
Popescu, Zapciu, Amza, Baciu, Marinescu (bib93) 2018; 69
Mathieu, Mueller, Bourban, Pioletti, Müller, Månson (bib9) 2006; 27
Boschetto, Giordano, Veniali (bib87) 2012; 61
Rodríguez-Panes, Claver, Camacho (bib92) 2018; 11
Bignotti, Penco, Sartore, D'Antone, D'Amore, Spagnoli (bib110) 2002; 180
Xiong, Yan, Wang, Zhang, Zhang (bib123) 2002; 46
Sadat-Shojai, Khorasani, Jamshidi, Irani (bib5) 2013; 33
Galantucci, Lavecchia, Percoco (bib13) 2009; 58
Vaes, Coppens, Goderis, Zoetelief, Van Puyvelde (bib79) 2019; 9
Peterson, Dobrynin, Becker (bib152) 2017; 6
Shim, Kim, Park, Hahn, Rhie, Kang, Lee, Cho (bib109) 2010; 21
Hendrikson, Rouwkema, Clementi, van Blitterswijk, Farè, Moroni (bib154) 2017; 9
Xiao, Gao (bib99) 2017; 2
Panayotov, Orti, Cuisinier, Yachouh (bib42) 2016; 27
Gleadall, Visscher, Yang, Thomas, Segal (bib16) 2018; 6
Dhandayuthapani, Yoshida, Maekawa, Kumar (bib26) 2011; 2011
Wang, Joseph, Bonfield (bib32) 1998; 19
Spoerk, Sapkota, Weingrill, Fischinger, Arbeiter, Holzer (bib85) 2017; 302
Miao, Castro, Nowicki, Xia, Cui, Zhou, Zhu, Lee, Sarkar, Vozzi, Tabata, Fisher, Zhang (bib134) 2017; 20
Clayman (bib35) 1981; 88
Yan, Dong, Su, Han, Song, Wei, Shi (bib2) 2018; 4
Szymczyk-Ziółkowska, Łabowska, Detyna, Michalak, Gruber (bib15) 2020; 40
Karger-Kocsis, Kéki (bib139) 2014; 8
Xie, He, Deng, Du, Fan, Yang, Wang (bib127) 2016; 8
Dogan, Boyacioglu, Kodal, Gokce, Ozkoc (bib143) 2017; 71
Alves, Ferreira, Gil (bib30) 2012
Serra, Planell, Navarro (bib61) 2013; 9
Shahriar, France, Valerie, Arthur, Christian (bib102) 2017
Singh, Singh, Prakash, Ramakrishna (bib98) 2020; 55
Park, Lee, Kim (bib68) 2011; 34
Heidari-Rarani, Rafiee-Afarani, Zahedi (bib103) 2019; 175
Mi, Jing, Napiwocki, Hagerty, Chen, Turng (bib142) 2017; 5
Lam, Teoh, Hutmacher (bib51) 2007; 56
Bruyas, Lou, Stahl, Gardner, Maloney, Goodman, Yang (bib55) 2018; 33
Lee, Mooney (bib44) 2012; 37
Grasso, Azzouz, Ruiz-Hincapie, Zarrelli, Ren (bib104) 2018; 24
Drummer, Cifuentes-Cuéllar, Rietzel (bib78) 2012; 18
Jiang, Kelch, Lendlein (bib128) 2006; 18
Yu, Zhou, Zheng, Guo, Xiao, Song (bib130) 2009; 20
Feuser, Gaspar, Ricci‐Júnior, da Silva, Nele, Sayer, de Araújo (bib40) 2014; 343
Santerre, Woodhouse, Laroche, Labow (bib75) 2005; 26
Freed, Vunjak-Novakovic, Biron, Eagles, Lesnoy, Barlow, Langer (bib25) 1994; 12
(bib1) 2012
Yen, Tseng, Hsu, Tsai (bib107) 2009; 11
Huiskes, Ruimerman, van Lenthe, Janssen (bib3) 2000; 405
Poomathi, Singh, Prakash, Subramanian, Sahay, Cinappan, Ramakrishna (bib17) 2020; 26
Small IV, Wilson, Benett, Loge, Maitland (bib129) 2005; 13
Chen, Chueh, Tseng, Huang, Lee (bib72) 2003; 24
Abdullah, Jumahat, Abdullah, Frormann (bib135) 2012; 41
Wang, Favi, Cheng, Golshan, Ziemer, Keidar, Webster (bib65) 2016; 46
R. Chen, A. Ramachandran, C. Liu, F.-K. Chang, D. Senesky, Tsai-Wu Analysis of a Thin-Walled 3D-Printed Polylactic Acid (PLA) Structural Bracket, in: 58th AIAAASCEAHSASC Struct. Struct. Dyn. Mater. Conf., American Institute of Aeronautics and Astronautics, n.d.
Lopes, Corbellini, Ferreira, Almeida, Fredel, Fernandes, Correia (bib41) 2009; 5
Marra, Szem, Kumta, DiMilla, Weiss (bib8) 1999; 47
Ceretti, Ginestra, Neto, Fiorentino, Da Silva (bib120) 2017; 65
Serra, Mateos-Timoneda, Planell, Navarro (bib60) 2013; 9
Ma, Su, Tai, Sun, Yan, Liu, Xue (bib7) 2012; 57
Kao, Lin, Chen, Yeh, Fang, Shie (bib64) 2015; 56
Lee, Lee, Cheon, Park, Jang, Kim, Jung (bib119) 2019; 30
Casavola, Cazzato, Karalekas, Moramarco, Pappalettera (bib84) 2019; vol. 7
Speight (bib69) 2011
Small IV, Singhal, Wilson, Maitland (bib132) 2010; 20
Wang (bib54) 2004
Tamai, Myoui, Hirao, Kaito, Ochi, Tanaka, Takaoka, Yoshikawa (bib53) 2005; 13
Mendez, Annamalai, Eichhorn, Rusli, Rowan, Foster, Weder (bib125) 2011; 44
Zheng, Zhou, Li, Weng (bib145) 2006; 27
Chaair, Labjar, Britel (bib56) 2017; 101
Rodrigues, Benning, Ferreira, Dixon, Dalgarno (bib116) 2016; 49
Chacón, Caminero, García-Plaza, Núñez (bib91) 2017; 124
Kutikov, Reyer, Song (bib147) 2014; 215
Cao, Kuboyama (bib4) 2010; 46
Lin, Tan, Marra, Jan, Liu (bib47) 2009; 5
Garzon-Hernandez, Garcia-Gonzalez, Jérusalem, Arias (bib96) 2020; 188
Behl, Lendlein (bib133) 2007; 10
Nässberger, Arbin, Östelius (bib37) 1987; 45
Ostrowska, Di Luca, Szlazak, Moroni, Swieszkowski (bib114) 2016; 104
Liu, Qin, Mather (bib137) 2007; 17
Han, Dong, Fan, Liu, li, Wang, Yuan, Li, Zhang (bib126) 2012; 33
Cai, Sun, Ren, Naguib (bib150) 2017; 5
Gupta, Bissoyi, Bit (bib20) 2018; 8
Tyler, Gullotti, Mangraviti, Utsuki, Brem (bib66) 2016; 107
Yang, Leong, Du, Chua (bib113) 2001; 7
O'Brien (bib24) 2011; 14
Mohamed, Masood, Bhowmik (bib97) 2015; 3
Wu (10.1016/j.polymer.2021.123440_bib80) 2014; 18
Hinsch (10.1016/j.polymer.2021.123440_bib36) 1985
Zhang (10.1016/j.polymer.2021.123440_bib63) 2016; 6
Szymczyk-Ziółkowska (10.1016/j.polymer.2021.123440_bib15) 2020; 40
Wang (10.1016/j.polymer.2021.123440_bib32) 1998; 19
Spoerk (10.1016/j.polymer.2021.123440_bib85) 2017; 302
Kayal (10.1016/j.polymer.2021.123440_bib39) 2010; 30
Ostrowska (10.1016/j.polymer.2021.123440_bib114) 2016; 104
Bernard (10.1016/j.polymer.2021.123440_bib49) 2018; 6
Dhandayuthapani (10.1016/j.polymer.2021.123440_bib26) 2011; 2011
Freed (10.1016/j.polymer.2021.123440_bib25) 1994; 12
Sessini (10.1016/j.polymer.2021.123440_bib140) 2016; 8
O'Brien (10.1016/j.polymer.2021.123440_bib24) 2011; 14
Serra (10.1016/j.polymer.2021.123440_bib61) 2013; 9
Tyler (10.1016/j.polymer.2021.123440_bib66) 2016; 107
Lee (10.1016/j.polymer.2021.123440_bib119) 2019; 30
Liu (10.1016/j.polymer.2021.123440_bib19) 2017; 5
Boschetto (10.1016/j.polymer.2021.123440_bib87) 2012; 61
Karger-Kocsis (10.1016/j.polymer.2021.123440_bib139) 2014; 8
Lin (10.1016/j.polymer.2021.123440_bib47) 2009; 5
Yan (10.1016/j.polymer.2021.123440_bib2) 2018; 4
Shim (10.1016/j.polymer.2021.123440_bib52) 2017; 18
Wang (10.1016/j.polymer.2021.123440_bib90) 2019; 161
Feuser (10.1016/j.polymer.2021.123440_bib40) 2014; 343
Nässberger (10.1016/j.polymer.2021.123440_bib37) 1987; 45
Heidari-Rarani (10.1016/j.polymer.2021.123440_bib103) 2019; 175
Hashimoto (10.1016/j.polymer.2021.123440_bib33) 2003
Bosworth (10.1016/j.polymer.2021.123440_bib76) 2010; 95
Bignotti (10.1016/j.polymer.2021.123440_bib110) 2002; 180
Mathieu (10.1016/j.polymer.2021.123440_bib9) 2006; 27
Drummer (10.1016/j.polymer.2021.123440_bib78) 2012; 18
Lee (10.1016/j.polymer.2021.123440_bib44) 2012; 37
Shim (10.1016/j.polymer.2021.123440_bib109) 2010; 21
Jiang (10.1016/j.polymer.2021.123440_bib128) 2006; 18
Senatov (10.1016/j.polymer.2021.123440_bib153) 2017; 93
Zein (10.1016/j.polymer.2021.123440_bib106) 2002; 23
Ki (10.1016/j.polymer.2021.123440_bib124) 2008; 30
Wang (10.1016/j.polymer.2021.123440_bib82) 2007; 33
Li (10.1016/j.polymer.2021.123440_bib22) 2020; 63
Blaker (10.1016/j.polymer.2021.123440_bib59) 2003; 67A
Tamai (10.1016/j.polymer.2021.123440_bib53) 2005; 13
Poomathi (10.1016/j.polymer.2021.123440_bib17) 2020; 26
Abdullah (10.1016/j.polymer.2021.123440_bib135) 2012; 41
Abe (10.1016/j.polymer.2021.123440_bib57) 2013; 2013
Hutmacher (10.1016/j.polymer.2021.123440_bib23) 2000
Madhavan Nampoothiri (10.1016/j.polymer.2021.123440_bib27) 2010; 101
Spoerk (10.1016/j.polymer.2021.123440_bib81) 2018; 303
Peng (10.1016/j.polymer.2021.123440_bib74) 2018; 18
10.1016/j.polymer.2021.123440_bib101
Chacón (10.1016/j.polymer.2021.123440_bib91) 2017; 124
Miao (10.1016/j.polymer.2021.123440_bib134) 2017; 20
Lai (10.1016/j.polymer.2021.123440_bib144) 2013; 20
Naghieh (10.1016/j.polymer.2021.123440_bib115) 2016; 59
Kumaresan (10.1016/j.polymer.2021.123440_bib50) 2016; 30
Santerre (10.1016/j.polymer.2021.123440_bib75) 2005; 26
Singh (10.1016/j.polymer.2021.123440_bib10) 2017; 25
Ceretti (10.1016/j.polymer.2021.123440_bib120) 2017; 65
Bikas (10.1016/j.polymer.2021.123440_bib11) 2016; 83
Vaes (10.1016/j.polymer.2021.123440_bib79) 2019; 9
Panayotov (10.1016/j.polymer.2021.123440_bib42) 2016; 27
Dogan (10.1016/j.polymer.2021.123440_bib143) 2017; 71
Cai (10.1016/j.polymer.2021.123440_bib150) 2017; 5
Huiskes (10.1016/j.polymer.2021.123440_bib3) 2000; 405
Wang (10.1016/j.polymer.2021.123440_bib65) 2016; 46
Chia (10.1016/j.polymer.2021.123440_bib105) 2015; 9
Wu (10.1016/j.polymer.2021.123440_bib73) 2004; 25
Alves (10.1016/j.polymer.2021.123440_bib30) 2012
Gupta (10.1016/j.polymer.2021.123440_bib20) 2018; 8
Kao (10.1016/j.polymer.2021.123440_bib64) 2015; 56
Kutikov (10.1016/j.polymer.2021.123440_bib147) 2014; 215
Chaidas (10.1016/j.polymer.2021.123440_bib89) 2016; 161
Wu (10.1016/j.polymer.2021.123440_bib131) 2019; 171
Ma (10.1016/j.polymer.2021.123440_bib7) 2012; 57
Toosi (10.1016/j.polymer.2021.123440_bib67) 2016; 104
Grasso (10.1016/j.polymer.2021.123440_bib104) 2018; 24
Duty (10.1016/j.polymer.2021.123440_bib14) 2018; 35
Park (10.1016/j.polymer.2021.123440_bib68) 2011; 34
Vaezi (10.1016/j.polymer.2021.123440_bib43) 2015; 10
Xue (10.1016/j.polymer.2021.123440_bib136) 2010; 31
Chen (10.1016/j.polymer.2021.123440_bib72) 2003; 24
Bernasconi (10.1016/j.polymer.2021.123440_bib100) 2015; 66
Wang (10.1016/j.polymer.2021.123440_bib54) 2004
Garzon-Hernandez (10.1016/j.polymer.2021.123440_bib96) 2020; 188
Altankov (10.1016/j.polymer.2021.123440_bib62) 1994; 5
Dong (10.1016/j.polymer.2021.123440_bib121) 2017; 7
Mironov (10.1016/j.polymer.2021.123440_bib108) 2017; 105
Yu (10.1016/j.polymer.2021.123440_bib130) 2009; 20
Behl (10.1016/j.polymer.2021.123440_bib133) 2007; 10
Sokolowski (10.1016/j.polymer.2021.123440_bib141) 2007; 2
Saini (10.1016/j.polymer.2021.123440_bib29) 2016; 107
Shahriar (10.1016/j.polymer.2021.123440_bib102) 2017
Meena (10.1016/j.polymer.2021.123440_bib45) 1999; 111
Boschetto (10.1016/j.polymer.2021.123440_bib88) 2013; 67
Shen (10.1016/j.polymer.2021.123440_bib148) 2012; 21
Marra (10.1016/j.polymer.2021.123440_bib8) 1999; 47
Gleadall (10.1016/j.polymer.2021.123440_bib16) 2018; 6
Esposito Corcione (10.1016/j.polymer.2021.123440_bib58) 2019; 45
Kuo (10.1016/j.polymer.2021.123440_bib12) 2016; 86
Koosomsuan (10.1016/j.polymer.2021.123440_bib151) 2019; 57
Singh (10.1016/j.polymer.2021.123440_bib38) 2012; 9
Sabahi (10.1016/j.polymer.2021.123440_bib21) 2020; 72
Senatov (10.1016/j.polymer.2021.123440_bib118) 2016; 57
Lee (10.1016/j.polymer.2021.123440_bib46) 2001; 221
Popescu (10.1016/j.polymer.2021.123440_bib93) 2018; 69
Small IV (10.1016/j.polymer.2021.123440_bib132) 2010; 20
Bonfield (10.1016/j.polymer.2021.123440_bib31) 1981; 2
Mendez (10.1016/j.polymer.2021.123440_bib125) 2011; 44
Casavola (10.1016/j.polymer.2021.123440_bib84) 2019; vol. 7
Sadat-Shojai (10.1016/j.polymer.2021.123440_bib5) 2013; 33
Xiao (10.1016/j.polymer.2021.123440_bib99) 2017; 2
Guo (10.1016/j.polymer.2021.123440_bib149) 2018; 33
Zhang (10.1016/j.polymer.2021.123440_bib146) 2009; 50
Lam (10.1016/j.polymer.2021.123440_bib51) 2007; 56
Mi (10.1016/j.polymer.2021.123440_bib142) 2017; 5
Ulery (10.1016/j.polymer.2021.123440_bib71) 2011; 49
Sun (10.1016/j.polymer.2021.123440_bib138) 2017; 55
Zheng (10.1016/j.polymer.2021.123440_bib145) 2006; 27
Rodrigues (10.1016/j.polymer.2021.123440_bib116) 2016; 49
Bellehumeur (10.1016/j.polymer.2021.123440_bib83) 2004; 6
Yen (10.1016/j.polymer.2021.123440_bib107) 2009; 11
Xiong (10.1016/j.polymer.2021.123440_bib123) 2002; 46
Galantucci (10.1016/j.polymer.2021.123440_bib13) 2009; 58
Mohamed (10.1016/j.polymer.2021.123440_bib97) 2015; 3
Speight (10.1016/j.polymer.2021.123440_bib69) 2011
Liu (10.1016/j.polymer.2021.123440_bib137) 2007; 17
Czaja (10.1016/j.polymer.2021.123440_bib48) 2007; 8
Singh (10.1016/j.polymer.2021.123440_bib98) 2020; 55
Bruyas (10.1016/j.polymer.2021.123440_bib55) 2018; 33
Xie (10.1016/j.polymer.2021.123440_bib127) 2016; 8
Peterson (10.1016/j.polymer.2021.123440_bib152) 2017; 6
Hendrikson (10.1016/j.polymer.2021.123440_bib154) 2017; 9
Jeong (10.1016/j.polymer.2021.123440_bib6) 2008; 8
Serra (10.1016/j.polymer.2021.123440_bib60) 2013; 9
Zhao (10.1016/j.polymer.2021.123440_bib28) 2004; 91
Lopes (10.1016/j.polymer.2021.123440_bib41) 2009; 5
Rodríguez-Panes (10.1016/j.polymer.2021.123440_bib92) 2018; 11
Yang (10.1016/j.polymer.2021.123440_bib113) 2001; 7
Han (10.1016/j.polymer.2021.123440_bib126) 2012; 33
Cao (10.1016/j.polymer.2021.123440_bib4) 2010; 46
(10.1016/j.polymer.2021.123440_bib1) 2012
Kochesfahani (10.1016/j.polymer.2021.123440_bib86) 2016
Garg (10.1016/j.polymer.2021.123440_bib77) 2016; 31
Chim (10.1016/j.polymer.2021.123440_bib122) 2006; 35
Park (10.1016/j.polymer.2021.123440_bib111) 2012; 23
Small IV (10.1016/j.polymer.2021.123440_bib129) 2005; 13
Tamay (10.1016/j.polymer.2021.123440_bib18) 2019; 7
Clayman (10.1016/j.polymer.2021.123440_bib35) 1981; 88
Shelton (10.1016/j.polymer.2021.123440_bib95) 2020; 81
Corcione (10.1016/j.polymer.2021.123440_bib117) 2017; 37
Chaair (10.1016/j.polymer.2021.123440_bib56) 2017; 101
Bružauskaitė (10.1016/j.polymer.2021.123440_bib112) 2016; 68
Sastri (10.1016/j.polymer.2021.123440_bib34) 2013
Faes (10.1016/j.polymer.2021.123440_bib94) 2016; 42
da Silva (10.1016/j.polymer.2021.123440_bib70) 2018; 340
References_xml – volume: 46
  start-page: 386
  year: 2010
  end-page: 395
  ident: bib4
  article-title: A biodegradable porous composite scaffold of PGA/β-TCP for bone tissue engineering
  publication-title: Bone
– volume: 5
  start-page: 356
  year: 2009
  end-page: 362
  ident: bib41
  article-title: New PMMA-co-EHA glass-filled composites for biomedical applications: mechanical properties and bioactivity
  publication-title: Acta Biomater.
– volume: 10
  start-page: 123
  year: 2015
  end-page: 135
  ident: bib43
  article-title: Extrusion-based additive manufacturing of PEEK for biomedical applications
  publication-title: Virtual Phys. Prototyp.
– volume: 93
  start-page: 222
  year: 2017
  end-page: 231
  ident: bib153
  article-title: Shape memory effect in 3D-printed scaffolds for self-fitting implants
  publication-title: Eur. Polym. J.
– volume: 88
  start-page: 959
  year: 1981
  end-page: 964
  ident: bib35
  publication-title: Polypropylene, Ophthalmology
– volume: 14
  start-page: 88
  year: 2011
  end-page: 95
  ident: bib24
  article-title: Biomaterials & scaffolds for tissue engineering
  publication-title: Mater. Today
– volume: 37
  start-page: 741
  year: 2017
  end-page: 746
  ident: bib117
  article-title: 3D printing of hydroxyapatite polymer-based composites for bone tissue engineering
  publication-title: J. Polym. Eng.
– volume: 45
  start-page: 286
  year: 1987
  end-page: 290
  ident: bib37
  article-title: Exposure of patients to phthalates from polyvinyl chloride tubes and bags during dialysis
  publication-title: Nephron
– volume: 161
  year: 2016
  ident: bib89
  article-title: The impact of temperature changing on surface roughness of FFF process
  publication-title: IOP Conf. Ser. Mater. Sci. Eng.
– volume: 33
  start-page: 1948
  year: 2018
  end-page: 1959
  ident: bib55
  article-title: Systematic characterization of 3D-printed PCL/β-TCP scaffolds for biomedical devices and bone tissue engineering: influence of composition and porosity
  publication-title: J. Mater. Res.
– volume: 10
  start-page: 20
  year: 2007
  end-page: 28
  ident: bib133
  article-title: Shape-memory polymers
  publication-title: Mater. Today
– volume: 7
  year: 2019
  ident: bib18
  article-title: 3D and 4D printing of polymers for tissue engineering applications
  publication-title: Front. Bioeng. Biotechnol.
– volume: 46
  start-page: 771
  year: 2002
  end-page: 776
  ident: bib123
  article-title: Fabrication of porous scaffolds for bone tissue engineering via low-temperature deposition
  publication-title: Scripta Mater.
– volume: 12
  start-page: 689
  year: 1994
  ident: bib25
  article-title: Biodegradable polymer scaffolds for tissue engineering
  publication-title: Bio Technol.
– volume: 9
  year: 2017
  ident: bib154
  article-title: Towards 4D printed scaffolds for tissue engineering: exploiting 3D shape memory polymers to deliver time-controlled stimulus on cultured cells
  publication-title: Biofabrication
– start-page: 1
  year: 2004
  end-page: 82
  ident: bib54
  article-title: Bioactive materials and processing
  publication-title: Biomater. Tissue Eng.
– volume: 5
  start-page: 286
  year: 2017
  end-page: 298
  ident: bib19
  article-title: Additive manufacturing techniques and their biomedical applications
  publication-title: Fam. Med. Community Health
– volume: 24
  start-page: 1167
  year: 2003
  end-page: 1173
  ident: bib72
  article-title: Preparation and characterization of biodegradable PLA polymeric blends
  publication-title: Biomaterials
– volume: 55
  start-page: 288
  year: 2020
  end-page: 306
  ident: bib98
  article-title: Current status and future directions of fused filament fabrication
  publication-title: J. Manuf. Process.
– volume: 46
  start-page: 256
  year: 2016
  end-page: 265
  ident: bib65
  article-title: Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration
  publication-title: Acta Biomater.
– year: 2012
  ident: bib1
  publication-title: A. Standard, ISO/ASTM 52900: 2015 Additive manufacturing-General principles-terminology, ASTM F2792-10e1
– volume: 83
  start-page: 389
  year: 2016
  end-page: 405
  ident: bib11
  article-title: Additive manufacturing methods and modelling approaches: a critical review
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 20
  start-page: 140
  year: 2013
  ident: bib144
  article-title: Shape memory properties of melt-blended polylactic acid (PLA)/thermoplastic polyurethane (TPU) bio-based blends
  publication-title: J. Polym. Res.
– volume: 35
  start-page: 526
  year: 2018
  end-page: 537
  ident: bib14
  article-title: What makes a material printable? A viscoelastic model for extrusion-based 3D printing of polymers
  publication-title: J. Manuf. Process.
– volume: 13
  start-page: 405
  year: 2005
  end-page: 417
  ident: bib53
  article-title: A new biotechnology for articular cartilage repair: subchondral implantation of a composite of interconnected porous hydroxyapatite, synthetic polymer (PLA-PEG), and bone morphogenetic protein-2 (rhBMP-2)
  publication-title: Osteoarthritis Cartilage
– volume: 9
  start-page: 5521
  year: 2013
  end-page: 5530
  ident: bib61
  article-title: High-resolution PLA-based composite scaffolds via 3-D printing technology
  publication-title: Acta Biomater.
– volume: 101
  start-page: 8493
  year: 2010
  end-page: 8501
  ident: bib27
  article-title: An overview of the recent developments in polylactide (PLA) research, Bioresour
  publication-title: Technol.
– volume: 37
  start-page: 106
  year: 2012
  end-page: 126
  ident: bib44
  article-title: Alginate: properties and biomedical applications
  publication-title: Prog. Polym. Sci.
– volume: 55
  start-page: 1197
  year: 2017
  end-page: 1206
  ident: bib138
  article-title: Room temperature deformable shape memory composite with fine-tuned crystallization induced via nanoclay particles
  publication-title: J. Polym. Sci., Part B: Polym. Phys.
– volume: 340
  start-page: 9
  year: 2018
  end-page: 14
  ident: bib70
  article-title: Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems
  publication-title: Chem. Eng. J.
– volume: 71
  start-page: 349
  year: 2017
  end-page: 361
  ident: bib143
  article-title: Thermally induced shape memory behavior, enzymatic degradation and biocompatibility of PLA/TPU blends: “Effects of compatibilization
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 63
  start-page: 545
  year: 2020
  end-page: 560
  ident: bib22
  article-title: 4D printed shape memory polymers and their structures for biomedical applications
  publication-title: Sci. China Technol. Sci.
– volume: 2
  start-page: S23
  year: 2007
  ident: bib141
  article-title: Medical applications of shape memory polymers
  publication-title: Biomed. Mater.
– volume: 6
  start-page: 47418
  year: 2016
  end-page: 47426
  ident: bib63
  article-title: Tailor-made poly(L-lactide)/poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds prepared via high-pressure compression molding/salt leaching
  publication-title: RSC Adv.
– volume: 20
  start-page: 3356
  year: 2010
  end-page: 3366
  ident: bib132
  article-title: Biomedical applications of thermally activated shape memory polymers
  publication-title: J. Mater. Chem.
– volume: 59
  start-page: 241
  year: 2016
  end-page: 250
  ident: bib115
  article-title: Numerical investigation of the mechanical properties of the additive manufactured bone scaffolds fabricated by FDM: the effect of layer penetration and post-heating
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 23
  start-page: 2671
  year: 2012
  end-page: 2678
  ident: bib111
  article-title: Scaffolds for bone tissue engineering fabricated from two different materials by the rapid prototyping technique: PCL versus PLGA
  publication-title: J. Mater. Sci. Mater. Med.
– volume: 20
  start-page: 577
  year: 2017
  end-page: 591
  ident: bib134
  article-title: 4D printing of polymeric materials for tissue and organ regeneration
  publication-title: Mater. Today
– volume: 6
  year: 2018
  ident: bib16
  article-title: Review of additive manufactured tissue engineering scaffolds: relationship between geometry and performance
  publication-title: Burns Trauma
– volume: 11
  start-page: 615
  year: 2009
  end-page: 624
  ident: bib107
  article-title: Evaluation of chondrocyte growth in the highly porous scaffolds made by fused deposition manufacturing (FDM) filled with type II collagen
  publication-title: Biomed. Microdevices
– volume: 49
  start-page: 33
  year: 2016
  end-page: 38
  ident: bib116
  article-title: Manufacture and characterisation of porous PLA scaffolds
  publication-title: Procedia CIRP
– volume: 6
  year: 2017
  ident: bib152
  article-title: Biodegradable shape memory polymers in medicine
  publication-title: Adv. Healthc. Mater.
– volume: 6
  start-page: 2025
  year: 2018
  end-page: 2053
  ident: bib49
  article-title: Biocompatibility of polymer-based biomaterials and medical devices – regulations, in vitro screening and risk-management
  publication-title: Biomater. Sci.
– volume: 302
  start-page: 1700143
  year: 2017
  ident: bib85
  article-title: Shrinkage and warpage optimization of expanded-perlite-filled polypropylene composites in extrusion-based additive manufacturing
  publication-title: Macromol. Mater. Eng.
– volume: 161
  year: 2019
  ident: bib90
  article-title: Modeling of surface roughness based on heat transfer considering diffusion among deposition filaments for FDM 3D printing heat-resistant resin
  publication-title: Appl. Therm. Eng.
– volume: 65
  start-page: 13
  year: 2017
  end-page: 18
  ident: bib120
  article-title: Multi-layered scaffolds production via fused deposition modeling (FDM) using an open source 3D printer: process parameters optimization for dimensional accuracy and design reproducibility
  publication-title: Procedia CIRP
– volume: 40
  start-page: 624
  year: 2020
  end-page: 638
  ident: bib15
  article-title: A review of fabrication polymer scaffolds for biomedical applications using additive manufacturing techniques
  publication-title: Biocybern. Biomed. Eng.
– volume: 66
  start-page: 23
  year: 2015
  end-page: 35
  ident: bib100
  article-title: Electroless plating of PLA and PETG for 3D printed flexible substrates
  publication-title: ECS Trans
– start-page: 499
  year: 2011
  end-page: 537
  ident: bib69
  article-title: Chapter 14 - monomers, polymers, and plastics
  publication-title: Handb. Ind. Hydrocarb. Process.
– volume: 95
  start-page: 2269
  year: 2010
  end-page: 2276
  ident: bib76
  article-title: Physicochemical characterisation of degrading polycaprolactone scaffolds
  publication-title: Polym. Degrad. Stabil.
– volume: 104
  start-page: 991
  year: 2016
  end-page: 1001
  ident: bib114
  article-title: Influence of internal pore architecture on biological and mechanical properties of three-dimensional fiber deposited scaffolds for bone regeneration
  publication-title: J. Biomed. Mater. Res. A.
– volume: 57
  start-page: 241
  year: 2019
  end-page: 256
  ident: bib151
  article-title: High-strain shape memory behavior of PLA–PEG multiblock copolymers and its microstructural origin
  publication-title: J. Polym. Sci., Part B: Polym. Phys.
– volume: 27
  start-page: 4288
  year: 2006
  end-page: 4295
  ident: bib145
  article-title: Shape memory properties of poly(d,l-lactide)/hydroxyapatite composites
  publication-title: Biomaterials
– volume: 188
  year: 2020
  ident: bib96
  article-title: Design of FDM 3D printed polymers: an experimental-modelling methodology for the prediction of mechanical properties
  publication-title: Mater. Des.
– volume: 68
  start-page: 355
  year: 2016
  end-page: 369
  ident: bib112
  article-title: Scaffolds and cells for tissue regeneration: different scaffold pore sizes—different cell effects
  publication-title: Cytotechnology
– volume: 57
  start-page: 139
  year: 2016
  end-page: 148
  ident: bib118
  article-title: Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 5
  start-page: 8845
  year: 2017
  end-page: 8853
  ident: bib150
  article-title: Toward the low actuation temperature of flexible shape memory polymer composites with room temperature deformability via induced plasticizing effect
  publication-title: J. Mater. Chem. B.
– volume: 27
  start-page: 118
  year: 2016
  ident: bib42
  article-title: Polyetheretherketone (PEEK) for medical applications
  publication-title: J. Mater. Sci. Mater. Med.
– volume: 405
  start-page: 704
  year: 2000
  end-page: 706
  ident: bib3
  article-title: Effects of mechanical forces on maintenance and adaptation of form in trabecular bone
  publication-title: Nature
– volume: 33
  start-page: 1087
  year: 2007
  end-page: 1096
  ident: bib82
  article-title: A model research for prototype warp deformation in the FDM process
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 171
  year: 2019
  ident: bib131
  article-title: Four-dimensional printing of a novel acrylate-based shape memory polymer using digital light processing
  publication-title: Mater. Des.
– volume: 13
  start-page: 8204
  year: 2005
  end-page: 8213
  ident: bib129
  article-title: Laser-activated shape memory polymer intravascular thrombectomy device
  publication-title: Optic Express
– volume: 8
  year: 2016
  ident: bib140
  article-title: Multiresponsive shape memory blends and nanocomposites based on starch
  publication-title: ACS Appl. Mater. Interfaces
– volume: 21
  start-page: 317
  year: 2012
  end-page: 323
  ident: bib148
  article-title: Influence of blocked polyisocyanate on thermomechanical, shape memory and biodegradable properties of poly (lactic acid)/poly (ethylene glycol) blends, Iran
  publication-title: Polym. J.
– volume: 8
  start-page: 1
  year: 2007
  end-page: 12
  ident: bib48
  article-title: The future prospects of microbial cellulose in biomedical applications
  publication-title: Biomacromolecules
– volume: 5
  start-page: 732
  year: 1994
  end-page: 737
  ident: bib62
  article-title: Reorganization of substratum-bound fibronectin on hydrophilic and hydrophobic materials is related to biocompatibility
  publication-title: J. Mater. Sci. Mater. Med.
– volume: 34
  start-page: 505
  year: 2011
  end-page: 513
  ident: bib68
  article-title: Fabrication of porous polycaprolactone/hydroxyapatite (PCL/HA) blend scaffolds using a 3D plotting system for bone tissue engineering
  publication-title: Bioproc. Biosyst. Eng.
– volume: 17
  start-page: 1543
  year: 2007
  end-page: 1558
  ident: bib137
  article-title: Review of progress in shape-memory polymers
  publication-title: J. Mater. Chem.
– volume: 49
  start-page: 832
  year: 2011
  end-page: 864
  ident: bib71
  article-title: Biomedical applications of biodegradable polymers
  publication-title: J. Polym. Sci., Part B: Polym. Phys.
– volume: 303
  year: 2018
  ident: bib81
  article-title: Polypropylene filled with glass spheres in extrusion-based additive manufacturing: effect of filler size and printing chamber temperature
  publication-title: Macromol. Mater. Eng.
– start-page: 175
  year: 2000
  end-page: 189
  ident: bib23
  article-title: Scaffolds in tissue engineering bone and cartilage
  publication-title: Biomater. Silver Jubil. Compend
– volume: 107
  start-page: 163
  year: 2016
  end-page: 175
  ident: bib66
  article-title: Polylactic acid (PLA) controlled delivery carriers for biomedical applications
  publication-title: Adv. Drug Deliv. Rev.
– start-page: 1598
  year: 2016
  end-page: 1614
  ident: bib86
  article-title: Improving PLA-based material for FDM 3D-printers using minerals (principles and method development)
  publication-title: SPE ANTEC Indianap
– volume: 25
  start-page: 185
  year: 2017
  end-page: 200
  ident: bib10
  article-title: Material issues in additive manufacturing: a review
  publication-title: J. Manuf. Process.
– volume: 104
  start-page: 2020
  year: 2016
  end-page: 2028
  ident: bib67
  article-title: PGA-incorporated collagen: toward a biodegradable composite scaffold for bone-tissue engineering
  publication-title: J. Biomed. Mater. Res. A.
– volume: 56
  start-page: 718
  year: 2007
  end-page: 728
  ident: bib51
  article-title: Comparison of the degradation of polycaprolactone and polycaprolactone–(β-tricalcium phosphate) scaffolds in alkaline medium
  publication-title: Polym. Int.
– volume: 105
  start-page: 104
  year: 2017
  end-page: 109
  ident: bib108
  article-title: 3D printing of PLGA scaffolds for tissue engineering
  publication-title: J. Biomed. Mater. Res. A.
– volume: 111
  start-page: 319
  year: 1999
  end-page: 329
  ident: bib45
  article-title: Biomedical and industrial applications of collagen
  publication-title: Proc. Indian Acad. Sci. Chem. Sci.
– volume: 30
  start-page: 405
  year: 2008
  end-page: 410
  ident: bib124
  article-title: Development of 3-D nanofibrous fibroin scaffold with high porosity by electrospinning: implications for bone regeneration
  publication-title: Biotechnol. Lett.
– volume: 107
  start-page: 47
  year: 2016
  end-page: 59
  ident: bib29
  article-title: Poly(lactic acid) blends in biomedical applications
  publication-title: Adv. Drug Deliv. Rev.
– volume: 45
  start-page: 2803
  year: 2019
  end-page: 2810
  ident: bib58
  article-title: Highly loaded hydroxyapatite microsphere/PLA porous scaffolds obtained by fused deposition modelling
  publication-title: Ceram. Int.
– volume: 20
  start-page: 235702
  year: 2009
  ident: bib130
  article-title: A biodegradable shape-memory nanocomposite with excellent magnetism sensitivity
  publication-title: Nanotechnology
– volume: 19
  start-page: 2357
  year: 1998
  end-page: 2366
  ident: bib32
  article-title: Hydroxyapatite-polyethylene composites for bone substitution: effects of ceramic particle size and morphology
  publication-title: Biomaterials
– volume: 26
  start-page: 1313
  year: 2020
  end-page: 1334
  ident: bib17
  article-title: 3D printing in tissue engineering: a state of the art review of technologies and biomaterials
  publication-title: Rapid Prototyp. J.
– volume: 25
  start-page: 5821
  year: 2004
  end-page: 5830
  ident: bib73
  article-title: In vitro degradation of three-dimensional porous poly(d,l-lactide-co-glycolide) scaffolds for tissue engineering
  publication-title: Biomaterials
– volume: vol. 7
  start-page: 87
  year: 2019
  end-page: 92
  ident: bib84
  article-title: The effect of chamber temperature on residual stresses of FDM parts
  publication-title: Residual Stress Thermomechanics Infrared Imaging Hybrid Tech. Inverse Probl
– volume: 5
  start-page: 2591
  year: 2009
  end-page: 2600
  ident: bib47
  article-title: Synthesis and characterization of collagen/hyaluronan/chitosan composite sponges for potential biomedical applications
  publication-title: Acta Biomater.
– volume: 91
  start-page: 2143
  year: 2004
  end-page: 2150
  ident: bib28
  article-title: Direct synthesis of poly(D,L-lactic acid) by melt polycondensation and its application in drug delivery
  publication-title: J. Appl. Polym. Sci.
– volume: 30
  start-page: 5305
  year: 2016
  end-page: 5312
  ident: bib50
  article-title: Design, analysis and fabrication of polyamide/hydroxyapatite porous structured scaffold using selective laser sintering method for bio-medical applications
  publication-title: J. Mech. Sci. Technol.
– volume: 8
  start-page: 868
  year: 2018
  end-page: 883
  ident: bib20
  article-title: A review on 3D printable techniques for tissue engineering
  publication-title: BioNanoScience
– volume: 101
  start-page: 120
  year: 2017
  end-page: 124
  ident: bib56
  article-title: Synthesis of β-tricalcium phosphate
  publication-title: Morphologie
– volume: 180
  start-page: 257
  year: 2002
  end-page: 266
  ident: bib110
  article-title: Thermal degradation of two classes of block copolymers based on poly(lactic-glycolic acid) and poly(ε-caprolactone) or poly(ethylene glycol)
  publication-title: Macromol. Symp.
– volume: 58
  start-page: 189
  year: 2009
  end-page: 192
  ident: bib13
  article-title: Experimental study aiming to enhance the surface finish of fused deposition modeled parts
  publication-title: CIRP Ann
– volume: 18
  start-page: S5
  year: 2014
  end-page: S12
  ident: bib80
  article-title: Manufacture and thermal deformation analysis of semicrystalline polymer polyether ether ketone by 3D printing
  publication-title: Mater. Res. Innovat.
– volume: 23
  start-page: 1169
  year: 2002
  end-page: 1185
  ident: bib106
  article-title: Fused deposition modeling of novel scaffold architectures for tissue engineering applications
  publication-title: Biomaterials
– year: 2017
  ident: bib102
  article-title: Toward improvement of the properties of parts manufactured by FFF (fused filament fabrication) through understanding the influence of temperature and rheological behaviour on the coalescence phenomenon
  publication-title: AIP Conf. Proc
– volume: 67
  start-page: 2727
  year: 2013
  end-page: 2742
  ident: bib88
  article-title: Surface roughness prediction in fused deposition modelling by neural networks
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 18
  start-page: 1471
  year: 2006
  end-page: 1475
  ident: bib128
  article-title: Polymers move in response to light
  publication-title: Adv. Mater.
– volume: 57
  start-page: 3051
  year: 2012
  end-page: 3058
  ident: bib7
  article-title: Preparation and cytocompatibility of polylactic acid/hydroxyapatite/graphene oxide nanocomposite fibrous membrane
  publication-title: Chin. Sci. Bull.
– volume: 9
  start-page: 9
  year: 2012
  end-page: 21
  ident: bib38
  article-title: Sterculia crosslinked PVA and PVA-poly(AAm) hydrogel wound dressings for slow drug delivery: mechanical, mucoadhesive, biocompatible and permeability properties
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 81
  year: 2020
  ident: bib95
  article-title: Effects of thermal process parameters on mechanical interlayer strength for additively manufactured Ultem 9085
  publication-title: Polym. Test.
– volume: 33
  start-page: 1055
  year: 2012
  end-page: 1060
  ident: bib126
  article-title: pH-induced shape-memory polymers
  publication-title: Macromol. Rapid Commun.
– volume: 215
  start-page: 2482
  year: 2014
  end-page: 2490
  ident: bib147
  article-title: Shape-memory performance of thermoplastic amphiphilic triblock copolymer poly(d,l-lactic acid-co-ethylene glycol-co-d,l-lactic acid) (PELA)/Hydroxyapatite composites
  publication-title: Macromol. Chem. Phys.
– start-page: 1
  year: 2012
  end-page: 25
  ident: bib30
  article-title: Biomedical polyurethane-based materials
  publication-title: Polyurethane Prop. Struct. Appl. N. Y. Nova Publ
– volume: 7
  start-page: 679
  year: 2001
  end-page: 689
  ident: bib113
  article-title: The design of scaffolds for use in tissue engineering. Part I. Traditional factors
  publication-title: Tissue Eng.
– volume: 41
  start-page: 1641
  year: 2012
  end-page: 1646
  ident: bib135
  article-title: Determination of shape fixity and shape recovery rate of carbon nanotube-filled shape memory polymer nanocomposites
  publication-title: Procedia Eng
– year: 2013
  ident: bib34
  article-title: Plastics in Medical Devices: Properties, Requirements, and Applications
– volume: 44
  start-page: 6827
  year: 2011
  end-page: 6835
  ident: bib125
  article-title: Bioinspired mechanically adaptive polymer nanocomposites with water-activated shape-memory effect
  publication-title: Macromolecules
– volume: 8
  start-page: 328
  year: 2008
  end-page: 338
  ident: bib6
  article-title: Nanofibrous poly(lactic acid)/hydroxyapatite composite scaffolds for guided tissue regeneration
  publication-title: Macromol. Biosci.
– volume: 86
  start-page: 36
  year: 2016
  end-page: 39
  ident: bib12
  article-title: Preparation of starch/acrylonitrile-butadiene-styrene copolymers (ABS) biomass alloys and their feasible evaluation for 3D printing applications
  publication-title: Compos. B Eng.
– volume: 9
  start-page: 239
  year: 2013
  end-page: 244
  ident: bib60
  article-title: 3D printed PLA-based scaffolds
  publication-title: Organogenesis
– volume: 33
  start-page: 4101
  year: 2018
  end-page: 4112
  ident: bib149
  article-title: The effect of plasticizer on the shape memory properties of poly(lactide acid)/poly(ethylene glycol) blends
  publication-title: J. Mater. Res.
– volume: 61
  start-page: 945
  year: 2012
  end-page: 956
  ident: bib87
  article-title: Modelling micro geometrical profiles in fused deposition process
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 3
  start-page: 42
  year: 2015
  end-page: 53
  ident: bib97
  article-title: Optimization of fused deposition modeling process parameters: a review of current research and future prospects
  publication-title: Adv. Manuf.
– volume: 221
  start-page: 1
  year: 2001
  end-page: 22
  ident: bib46
  article-title: Biomedical applications of collagen
  publication-title: Int. J. Pharm.
– volume: 18
  start-page: 500
  year: 2012
  end-page: 507
  ident: bib78
  article-title: Suitability of PLA/TCP for fused deposition modeling
  publication-title: Rapid Prototyp. J.
– volume: 67A
  start-page: 1401
  year: 2003
  end-page: 1411
  ident: bib59
  article-title: In vitro evaluation of novel bioactive composites based on Bioglass®-filled polylactide foams for bone tissue engineering scaffolds
  publication-title: J. Biomed. Mater. Res. A.
– start-page: 415
  year: 2003
  end-page: 418
  ident: bib33
  article-title: Titanium dioxide/ultra high molecular weight polyethylene composite for bone-repairing applications: preparation and biocompatibility
  publication-title: Key Eng. Mater
– volume: 24
  start-page: 1337
  year: 2018
  end-page: 1346
  ident: bib104
  article-title: Effect of temperature on the mechanical properties of 3D-printed PLA tensile specimens
  publication-title: Rapid Prototyp. J.
– volume: 8
  start-page: 397
  year: 2014
  end-page: 412
  ident: bib139
  article-title: Biodegradable polyester-based shape memory polymers: concepts of (supra) molecular architecturing
  publication-title: Express Polym. Lett.
– volume: 50
  start-page: 1311
  year: 2009
  end-page: 1315
  ident: bib146
  article-title: Surprising shape-memory effect of polylactide resulted from toughening by polyamide elastomer
  publication-title: Polymer
– volume: 2013
  year: 2013
  ident: bib57
  article-title: Bioactive surface modification of hydroxyapatite
  publication-title: BioMed Res. Int.
– volume: 2
  start-page: 185
  year: 1981
  end-page: 186
  ident: bib31
  article-title: Hydroxyapatite reinforced polyethylene–a mechanically compatible implant material for bone replacement
  publication-title: Biomaterials
– volume: 8
  start-page: 9431
  year: 2016
  end-page: 9439
  ident: bib127
  article-title: Design of poly(l-lactide)–poly(ethylene glycol) copolymer with light-induced shape-memory effect triggered by pendant anthracene groups
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 1333
  year: 2018
  ident: bib92
  article-title: The influence of manufacturing parameters on the mechanical behaviour of PLA and ABS pieces manufactured by FDM: a comparative analysis
  publication-title: Materials
– volume: 124
  start-page: 143
  year: 2017
  end-page: 157
  ident: bib91
  article-title: Additive manufacturing of PLA structures using fused deposition modelling: effect of process parameters on mechanical properties and their optimal selection
  publication-title: Mater. Des.
– volume: 2011
  year: 2011
  ident: bib26
  article-title: Polymeric scaffolds in tissue engineering application: a review
  publication-title: Int. J. Polym. Sci.
– volume: 30
  start-page: 484
  year: 2010
  end-page: 490
  ident: bib39
  article-title: Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery
  publication-title: Mater. Sci. Eng. C
– volume: 27
  start-page: 905
  year: 2006
  end-page: 916
  ident: bib9
  article-title: Architecture and properties of anisotropic polymer composite scaffolds for bone tissue engineering
  publication-title: Biomaterials
– volume: 69
  start-page: 157
  year: 2018
  end-page: 166
  ident: bib93
  article-title: FDM process parameters influence over the mechanical properties of polymer specimens: a review
  publication-title: Polym. Test.
– volume: 343
  start-page: 65
  year: 2014
  end-page: 69
  ident: bib40
  article-title: Synthesis and characterization of poly(methyl methacrylate) PMMA and evaluation of cytotoxicity for biomedical application
  publication-title: Macromol. Symp.
– volume: 4
  start-page: 729
  year: 2018
  end-page: 742
  ident: bib2
  article-title: A review of 3D printing technology for medical applications
  publication-title: Engineering
– volume: 5
  start-page: 4137
  year: 2017
  end-page: 4151
  ident: bib142
  article-title: Biocompatible, degradable thermoplastic polyurethane based on polycaprolactone-block-polytetrahydrofuran-block-polycaprolactone copolymers for soft tissue engineering
  publication-title: J. Mater. Chem. B.
– volume: 21
  start-page: 1069
  year: 2010
  end-page: 1080
  ident: bib109
  article-title: Effect of thermal degradation of SFF-based PLGA scaffolds fabricated using a multi-head deposition system followed by change of cell growth rate
  publication-title: J. Biomater. Sci. Polym. Ed.
– volume: 9
  start-page: 2676
  year: 2019
  ident: bib79
  article-title: Assessment of crystallinity development during fused filament fabrication through fast scanning chip calorimetry
  publication-title: Appl. Sci.
– volume: 33
  start-page: 2776
  year: 2013
  end-page: 2787
  ident: bib5
  article-title: Nano-hydroxyapatite reinforced polyhydroxybutyrate composites: a comprehensive study on the structural and in vitro biological properties
  publication-title: Mater. Sci. Eng. C
– volume: 31
  start-page: 522
  year: 2016
  end-page: 529
  ident: bib77
  article-title: On surface finish and dimensional accuracy of FDM parts after cold vapor treatment
  publication-title: Mater. Manuf. Process.
– volume: 26
  start-page: 7457
  year: 2005
  end-page: 7470
  ident: bib75
  article-title: Understanding the biodegradation of polyurethanes: from classical implants to tissue engineering materials
  publication-title: Biomaterials
– volume: 9
  start-page: 4
  year: 2015
  ident: bib105
  article-title: Recent advances in 3D printing of biomaterials
  publication-title: J. Biol. Eng.
– volume: 35
  start-page: 928
  year: 2006
  end-page: 934
  ident: bib122
  article-title: A comparative analysis of scaffold material modifications for load-bearing applications in bone tissue engineering
  publication-title: Int. J. Oral Maxillofac. Surg.
– volume: 175
  year: 2019
  ident: bib103
  article-title: Mechanical characterization of FDM 3D printing of continuous carbon fiber reinforced PLA composites
  publication-title: Compos. B Eng.
– volume: 2
  start-page: 117
  year: 2017
  end-page: 123
  ident: bib99
  article-title: The manufacture of 3D printing of medical grade TPU
  publication-title: Prog. Addit. Manuf.
– volume: 18
  start-page: 899
  year: 2017
  ident: bib52
  article-title: Effects of 3D-printed polycaprolactone/β-tricalcium phosphate membranes on guided bone regeneration
  publication-title: Int. J. Mol. Sci.
– reference: R. Chen, A. Ramachandran, C. Liu, F.-K. Chang, D. Senesky, Tsai-Wu Analysis of a Thin-Walled 3D-Printed Polylactic Acid (PLA) Structural Bracket, in: 58th AIAAASCEAHSASC Struct. Struct. Dyn. Mater. Conf., American Institute of Aeronautics and Astronautics, n.d.
– volume: 30
  year: 2019
  ident: bib119
  article-title: Fabrication of poly(lactic acid)/Ti composite scaffolds with enhanced mechanical properties and biocompatibility via fused filament fabrication (FFF)–based 3D printing
  publication-title: Addit. Manuf.
– reference: .
– volume: 47
  start-page: 324
  year: 1999
  end-page: 335
  ident: bib8
  article-title: In vitro analysis of biodegradable polymer blend/hydroxyapatite composites for bone tissue engineering
  publication-title: J. Biomed. Mater. Res.
– volume: 7
  start-page: 1
  year: 2017
  end-page: 9
  ident: bib121
  article-title: 3D- printed poly(ε-caprolactone) scaffold integrated with cell-laden chitosan hydrogels for bone tissue engineering
  publication-title: Sci. Rep.
– year: 1985
  ident: bib36
  article-title: Surgical Filament from Polypropylene Blended with Polyethylene
– volume: 6
  start-page: 170
  year: 2004
  end-page: 178
  ident: bib83
  article-title: Modeling of bond formation between polymer filaments in the fused deposition modeling process
  publication-title: J. Manuf. Process.
– volume: 31
  start-page: 8132
  year: 2010
  end-page: 8140
  ident: bib136
  article-title: Biodegradable shape-memory block co-polymers for fast self-expandable stents
  publication-title: Biomaterials
– volume: 42
  start-page: 748
  year: 2016
  end-page: 753
  ident: bib94
  article-title: Influence of inter-layer cooling time on the quasi-static properties of ABS components produced via fused deposition modelling
  publication-title: Procedia CIRP
– volume: 56
  start-page: 165
  year: 2015
  end-page: 173
  ident: bib64
  article-title: Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering
  publication-title: Mater. Sci. Eng. C
– volume: 18
  start-page: 1335
  year: 2018
  end-page: 1344
  ident: bib74
  article-title: Response of hPDLSCs on 3D printed PCL/PLGA composite scaffolds in vitro
  publication-title: Mol. Med. Rep.
– volume: 72
  start-page: 1229
  year: 2020
  end-page: 1253
  ident: bib21
  article-title: A review on additive manufacturing of shape-memory materials for biomedical applications
  publication-title: JOM
– volume: 34
  start-page: 505
  year: 2011
  ident: 10.1016/j.polymer.2021.123440_bib68
  article-title: Fabrication of porous polycaprolactone/hydroxyapatite (PCL/HA) blend scaffolds using a 3D plotting system for bone tissue engineering
  publication-title: Bioproc. Biosyst. Eng.
  doi: 10.1007/s00449-010-0499-2
– volume: 13
  start-page: 405
  year: 2005
  ident: 10.1016/j.polymer.2021.123440_bib53
  article-title: A new biotechnology for articular cartilage repair: subchondral implantation of a composite of interconnected porous hydroxyapatite, synthetic polymer (PLA-PEG), and bone morphogenetic protein-2 (rhBMP-2)
  publication-title: Osteoarthritis Cartilage
  doi: 10.1016/j.joca.2004.12.014
– volume: 27
  start-page: 118
  year: 2016
  ident: 10.1016/j.polymer.2021.123440_bib42
  article-title: Polyetheretherketone (PEEK) for medical applications
  publication-title: J. Mater. Sci. Mater. Med.
  doi: 10.1007/s10856-016-5731-4
– volume: 31
  start-page: 522
  year: 2016
  ident: 10.1016/j.polymer.2021.123440_bib77
  article-title: On surface finish and dimensional accuracy of FDM parts after cold vapor treatment
  publication-title: Mater. Manuf. Process.
  doi: 10.1080/10426914.2015.1070425
– volume: 40
  start-page: 624
  year: 2020
  ident: 10.1016/j.polymer.2021.123440_bib15
  article-title: A review of fabrication polymer scaffolds for biomedical applications using additive manufacturing techniques
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2020.01.015
– volume: 33
  start-page: 1948
  year: 2018
  ident: 10.1016/j.polymer.2021.123440_bib55
  article-title: Systematic characterization of 3D-printed PCL/β-TCP scaffolds for biomedical devices and bone tissue engineering: influence of composition and porosity
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2018.112
– volume: 46
  start-page: 256
  year: 2016
  ident: 10.1016/j.polymer.2021.123440_bib65
  article-title: Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2016.09.030
– volume: 101
  start-page: 120
  year: 2017
  ident: 10.1016/j.polymer.2021.123440_bib56
  article-title: Synthesis of β-tricalcium phosphate
  publication-title: Morphologie
  doi: 10.1016/j.morpho.2017.06.002
– volume: 24
  start-page: 1167
  year: 2003
  ident: 10.1016/j.polymer.2021.123440_bib72
  article-title: Preparation and characterization of biodegradable PLA polymeric blends
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(02)00466-0
– volume: 30
  start-page: 484
  year: 2010
  ident: 10.1016/j.polymer.2021.123440_bib39
  article-title: Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2010.01.006
– volume: 18
  start-page: 500
  year: 2012
  ident: 10.1016/j.polymer.2021.123440_bib78
  article-title: Suitability of PLA/TCP for fused deposition modeling
  publication-title: Rapid Prototyp. J.
  doi: 10.1108/13552541211272045
– volume: 5
  start-page: 732
  year: 1994
  ident: 10.1016/j.polymer.2021.123440_bib62
  article-title: Reorganization of substratum-bound fibronectin on hydrophilic and hydrophobic materials is related to biocompatibility
  publication-title: J. Mater. Sci. Mater. Med.
  doi: 10.1007/BF00120366
– volume: 45
  start-page: 2803
  year: 2019
  ident: 10.1016/j.polymer.2021.123440_bib58
  article-title: Highly loaded hydroxyapatite microsphere/PLA porous scaffolds obtained by fused deposition modelling
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2018.07.297
– volume: 18
  start-page: 1335
  year: 2018
  ident: 10.1016/j.polymer.2021.123440_bib74
  article-title: Response of hPDLSCs on 3D printed PCL/PLGA composite scaffolds in vitro
  publication-title: Mol. Med. Rep.
– volume: 55
  start-page: 288
  year: 2020
  ident: 10.1016/j.polymer.2021.123440_bib98
  article-title: Current status and future directions of fused filament fabrication
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2020.04.049
– volume: 6
  year: 2018
  ident: 10.1016/j.polymer.2021.123440_bib16
  article-title: Review of additive manufactured tissue engineering scaffolds: relationship between geometry and performance
  publication-title: Burns Trauma
  doi: 10.1186/s41038-018-0121-4
– volume: 5
  start-page: 4137
  year: 2017
  ident: 10.1016/j.polymer.2021.123440_bib142
  article-title: Biocompatible, degradable thermoplastic polyurethane based on polycaprolactone-block-polytetrahydrofuran-block-polycaprolactone copolymers for soft tissue engineering
  publication-title: J. Mater. Chem. B.
  doi: 10.1039/C7TB00419B
– volume: 161
  year: 2019
  ident: 10.1016/j.polymer.2021.123440_bib90
  article-title: Modeling of surface roughness based on heat transfer considering diffusion among deposition filaments for FDM 3D printing heat-resistant resin
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.114064
– volume: 6
  start-page: 170
  year: 2004
  ident: 10.1016/j.polymer.2021.123440_bib83
  article-title: Modeling of bond formation between polymer filaments in the fused deposition modeling process
  publication-title: J. Manuf. Process.
  doi: 10.1016/S1526-6125(04)70071-7
– volume: 303
  year: 2018
  ident: 10.1016/j.polymer.2021.123440_bib81
  article-title: Polypropylene filled with glass spheres in extrusion-based additive manufacturing: effect of filler size and printing chamber temperature
  publication-title: Macromol. Mater. Eng.
  doi: 10.1002/mame.201800179
– volume: 7
  start-page: 1
  year: 2017
  ident: 10.1016/j.polymer.2021.123440_bib121
  article-title: 3D- printed poly(ε-caprolactone) scaffold integrated with cell-laden chitosan hydrogels for bone tissue engineering
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-13838-7
– volume: 57
  start-page: 3051
  year: 2012
  ident: 10.1016/j.polymer.2021.123440_bib7
  article-title: Preparation and cytocompatibility of polylactic acid/hydroxyapatite/graphene oxide nanocomposite fibrous membrane
  publication-title: Chin. Sci. Bull.
  doi: 10.1007/s11434-012-5336-3
– volume: 124
  start-page: 143
  year: 2017
  ident: 10.1016/j.polymer.2021.123440_bib91
  article-title: Additive manufacturing of PLA structures using fused deposition modelling: effect of process parameters on mechanical properties and their optimal selection
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2017.03.065
– volume: 20
  start-page: 577
  year: 2017
  ident: 10.1016/j.polymer.2021.123440_bib134
  article-title: 4D printing of polymeric materials for tissue and organ regeneration
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2017.06.005
– volume: 6
  start-page: 2025
  year: 2018
  ident: 10.1016/j.polymer.2021.123440_bib49
  article-title: Biocompatibility of polymer-based biomaterials and medical devices – regulations, in vitro screening and risk-management
  publication-title: Biomater. Sci.
  doi: 10.1039/C8BM00518D
– ident: 10.1016/j.polymer.2021.123440_bib101
  doi: 10.2514/6.2017-0567
– volume: 10
  start-page: 123
  year: 2015
  ident: 10.1016/j.polymer.2021.123440_bib43
  article-title: Extrusion-based additive manufacturing of PEEK for biomedical applications
  publication-title: Virtual Phys. Prototyp.
  doi: 10.1080/17452759.2015.1097053
– volume: 9
  start-page: 4
  year: 2015
  ident: 10.1016/j.polymer.2021.123440_bib105
  article-title: Recent advances in 3D printing of biomaterials
  publication-title: J. Biol. Eng.
  doi: 10.1186/s13036-015-0001-4
– volume: 33
  start-page: 1055
  year: 2012
  ident: 10.1016/j.polymer.2021.123440_bib126
  article-title: pH-induced shape-memory polymers
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.201200153
– volume: 105
  start-page: 104
  year: 2017
  ident: 10.1016/j.polymer.2021.123440_bib108
  article-title: 3D printing of PLGA scaffolds for tissue engineering
  publication-title: J. Biomed. Mater. Res. A.
  doi: 10.1002/jbm.a.35871
– volume: 91
  start-page: 2143
  year: 2004
  ident: 10.1016/j.polymer.2021.123440_bib28
  article-title: Direct synthesis of poly(D,L-lactic acid) by melt polycondensation and its application in drug delivery
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.13354
– volume: 33
  start-page: 2776
  year: 2013
  ident: 10.1016/j.polymer.2021.123440_bib5
  article-title: Nano-hydroxyapatite reinforced polyhydroxybutyrate composites: a comprehensive study on the structural and in vitro biological properties
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2013.02.041
– volume: 26
  start-page: 1313
  year: 2020
  ident: 10.1016/j.polymer.2021.123440_bib17
  article-title: 3D printing in tissue engineering: a state of the art review of technologies and biomaterials
  publication-title: Rapid Prototyp. J.
  doi: 10.1108/RPJ-08-2018-0217
– volume: 42
  start-page: 748
  year: 2016
  ident: 10.1016/j.polymer.2021.123440_bib94
  article-title: Influence of inter-layer cooling time on the quasi-static properties of ABS components produced via fused deposition modelling
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2016.02.313
– volume: 9
  start-page: 9
  year: 2012
  ident: 10.1016/j.polymer.2021.123440_bib38
  article-title: Sterculia crosslinked PVA and PVA-poly(AAm) hydrogel wound dressings for slow drug delivery: mechanical, mucoadhesive, biocompatible and permeability properties
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2012.01.021
– volume: 59
  start-page: 241
  year: 2016
  ident: 10.1016/j.polymer.2021.123440_bib115
  article-title: Numerical investigation of the mechanical properties of the additive manufactured bone scaffolds fabricated by FDM: the effect of layer penetration and post-heating
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2016.01.031
– volume: 11
  start-page: 1333
  year: 2018
  ident: 10.1016/j.polymer.2021.123440_bib92
  article-title: The influence of manufacturing parameters on the mechanical behaviour of PLA and ABS pieces manufactured by FDM: a comparative analysis
  publication-title: Materials
  doi: 10.3390/ma11081333
– volume: 111
  start-page: 319
  year: 1999
  ident: 10.1016/j.polymer.2021.123440_bib45
  article-title: Biomedical and industrial applications of collagen
  publication-title: Proc. Indian Acad. Sci. Chem. Sci.
  doi: 10.1007/BF02871912
– volume: 161
  year: 2016
  ident: 10.1016/j.polymer.2021.123440_bib89
  article-title: The impact of temperature changing on surface roughness of FFF process
  publication-title: IOP Conf. Ser. Mater. Sci. Eng.
  doi: 10.1088/1757-899X/161/1/012033
– volume: 33
  start-page: 4101
  year: 2018
  ident: 10.1016/j.polymer.2021.123440_bib149
  article-title: The effect of plasticizer on the shape memory properties of poly(lactide acid)/poly(ethylene glycol) blends
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2018.359
– volume: 8
  start-page: 397
  year: 2014
  ident: 10.1016/j.polymer.2021.123440_bib139
  article-title: Biodegradable polyester-based shape memory polymers: concepts of (supra) molecular architecturing
  publication-title: Express Polym. Lett.
  doi: 10.3144/expresspolymlett.2014.44
– year: 2013
  ident: 10.1016/j.polymer.2021.123440_bib34
– year: 2017
  ident: 10.1016/j.polymer.2021.123440_bib102
  article-title: Toward improvement of the properties of parts manufactured by FFF (fused filament fabrication) through understanding the influence of temperature and rheological behaviour on the coalescence phenomenon
  doi: 10.1063/1.5008034
– volume: 20
  start-page: 235702
  year: 2009
  ident: 10.1016/j.polymer.2021.123440_bib130
  article-title: A biodegradable shape-memory nanocomposite with excellent magnetism sensitivity
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/20/23/235702
– volume: 25
  start-page: 5821
  year: 2004
  ident: 10.1016/j.polymer.2021.123440_bib73
  article-title: In vitro degradation of three-dimensional porous poly(d,l-lactide-co-glycolide) scaffolds for tissue engineering
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2004.01.038
– volume: 2
  start-page: 117
  year: 2017
  ident: 10.1016/j.polymer.2021.123440_bib99
  article-title: The manufacture of 3D printing of medical grade TPU
  publication-title: Prog. Addit. Manuf.
  doi: 10.1007/s40964-017-0023-1
– volume: 56
  start-page: 165
  year: 2015
  ident: 10.1016/j.polymer.2021.123440_bib64
  article-title: Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2015.06.028
– volume: 95
  start-page: 2269
  year: 2010
  ident: 10.1016/j.polymer.2021.123440_bib76
  article-title: Physicochemical characterisation of degrading polycaprolactone scaffolds
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2010.09.007
– volume: 340
  start-page: 9
  year: 2018
  ident: 10.1016/j.polymer.2021.123440_bib70
  article-title: Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.01.010
– volume: 11
  start-page: 615
  year: 2009
  ident: 10.1016/j.polymer.2021.123440_bib107
  article-title: Evaluation of chondrocyte growth in the highly porous scaffolds made by fused deposition manufacturing (FDM) filled with type II collagen
  publication-title: Biomed. Microdevices
  doi: 10.1007/s10544-008-9271-7
– year: 2012
  ident: 10.1016/j.polymer.2021.123440_bib1
– volume: 93
  start-page: 222
  year: 2017
  ident: 10.1016/j.polymer.2021.123440_bib153
  article-title: Shape memory effect in 3D-printed scaffolds for self-fitting implants
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2017.06.011
– volume: 14
  start-page: 88
  year: 2011
  ident: 10.1016/j.polymer.2021.123440_bib24
  article-title: Biomaterials & scaffolds for tissue engineering
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(11)70058-X
– volume: 31
  start-page: 8132
  year: 2010
  ident: 10.1016/j.polymer.2021.123440_bib136
  article-title: Biodegradable shape-memory block co-polymers for fast self-expandable stents
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.07.043
– volume: 23
  start-page: 2671
  year: 2012
  ident: 10.1016/j.polymer.2021.123440_bib111
  article-title: Scaffolds for bone tissue engineering fabricated from two different materials by the rapid prototyping technique: PCL versus PLGA
  publication-title: J. Mater. Sci. Mater. Med.
  doi: 10.1007/s10856-012-4738-8
– start-page: 175
  year: 2000
  ident: 10.1016/j.polymer.2021.123440_bib23
  article-title: Scaffolds in tissue engineering bone and cartilage
– volume: 50
  start-page: 1311
  year: 2009
  ident: 10.1016/j.polymer.2021.123440_bib146
  article-title: Surprising shape-memory effect of polylactide resulted from toughening by polyamide elastomer
  publication-title: Polymer
  doi: 10.1016/j.polymer.2009.01.032
– volume: 104
  start-page: 991
  year: 2016
  ident: 10.1016/j.polymer.2021.123440_bib114
  article-title: Influence of internal pore architecture on biological and mechanical properties of three-dimensional fiber deposited scaffolds for bone regeneration
  publication-title: J. Biomed. Mater. Res. A.
  doi: 10.1002/jbm.a.35637
– volume: 9
  start-page: 2676
  year: 2019
  ident: 10.1016/j.polymer.2021.123440_bib79
  article-title: Assessment of crystallinity development during fused filament fabrication through fast scanning chip calorimetry
  publication-title: Appl. Sci.
  doi: 10.3390/app9132676
– volume: 8
  start-page: 868
  year: 2018
  ident: 10.1016/j.polymer.2021.123440_bib20
  article-title: A review on 3D printable techniques for tissue engineering
  publication-title: BioNanoScience
  doi: 10.1007/s12668-018-0525-4
– volume: 221
  start-page: 1
  year: 2001
  ident: 10.1016/j.polymer.2021.123440_bib46
  article-title: Biomedical applications of collagen
  publication-title: Int. J. Pharm.
  doi: 10.1016/S0378-5173(01)00691-3
– volume: 45
  start-page: 286
  year: 1987
  ident: 10.1016/j.polymer.2021.123440_bib37
  article-title: Exposure of patients to phthalates from polyvinyl chloride tubes and bags during dialysis
  publication-title: Nephron
  doi: 10.1159/000184165
– volume: 67A
  start-page: 1401
  year: 2003
  ident: 10.1016/j.polymer.2021.123440_bib59
  article-title: In vitro evaluation of novel bioactive composites based on Bioglass®-filled polylactide foams for bone tissue engineering scaffolds
  publication-title: J. Biomed. Mater. Res. A.
  doi: 10.1002/jbm.a.20055
– volume: 302
  start-page: 1700143
  year: 2017
  ident: 10.1016/j.polymer.2021.123440_bib85
  article-title: Shrinkage and warpage optimization of expanded-perlite-filled polypropylene composites in extrusion-based additive manufacturing
  publication-title: Macromol. Mater. Eng.
  doi: 10.1002/mame.201700143
– volume: 6
  year: 2017
  ident: 10.1016/j.polymer.2021.123440_bib152
  article-title: Biodegradable shape memory polymers in medicine
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201700694
– volume: 180
  start-page: 257
  year: 2002
  ident: 10.1016/j.polymer.2021.123440_bib110
  article-title: Thermal degradation of two classes of block copolymers based on poly(lactic-glycolic acid) and poly(ε-caprolactone) or poly(ethylene glycol)
  publication-title: Macromol. Symp.
  doi: 10.1002/1521-3900(200203)180:1<257::AID-MASY257>3.0.CO;2-I
– volume: 17
  start-page: 1543
  year: 2007
  ident: 10.1016/j.polymer.2021.123440_bib137
  article-title: Review of progress in shape-memory polymers
  publication-title: J. Mater. Chem.
  doi: 10.1039/b615954k
– volume: 55
  start-page: 1197
  year: 2017
  ident: 10.1016/j.polymer.2021.123440_bib138
  article-title: Room temperature deformable shape memory composite with fine-tuned crystallization induced via nanoclay particles
  publication-title: J. Polym. Sci., Part B: Polym. Phys.
  doi: 10.1002/polb.24370
– volume: 2
  start-page: S23
  year: 2007
  ident: 10.1016/j.polymer.2021.123440_bib141
  article-title: Medical applications of shape memory polymers
  publication-title: Biomed. Mater.
  doi: 10.1088/1748-6041/2/1/S04
– start-page: 499
  year: 2011
  ident: 10.1016/j.polymer.2021.123440_bib69
  article-title: Chapter 14 - monomers, polymers, and plastics
– volume: 20
  start-page: 140
  year: 2013
  ident: 10.1016/j.polymer.2021.123440_bib144
  article-title: Shape memory properties of melt-blended polylactic acid (PLA)/thermoplastic polyurethane (TPU) bio-based blends
  publication-title: J. Polym. Res.
  doi: 10.1007/s10965-013-0140-6
– volume: 21
  start-page: 1069
  year: 2010
  ident: 10.1016/j.polymer.2021.123440_bib109
  article-title: Effect of thermal degradation of SFF-based PLGA scaffolds fabricated using a multi-head deposition system followed by change of cell growth rate
  publication-title: J. Biomater. Sci. Polym. Ed.
  doi: 10.1163/092050609X12457428919034
– volume: 30
  start-page: 5305
  year: 2016
  ident: 10.1016/j.polymer.2021.123440_bib50
  article-title: Design, analysis and fabrication of polyamide/hydroxyapatite porous structured scaffold using selective laser sintering method for bio-medical applications
  publication-title: J. Mech. Sci. Technol.
  doi: 10.1007/s12206-016-1049-x
– volume: 69
  start-page: 157
  year: 2018
  ident: 10.1016/j.polymer.2021.123440_bib93
  article-title: FDM process parameters influence over the mechanical properties of polymer specimens: a review
  publication-title: Polym. Test.
  doi: 10.1016/j.polymertesting.2018.05.020
– volume: 12
  start-page: 689
  year: 1994
  ident: 10.1016/j.polymer.2021.123440_bib25
  article-title: Biodegradable polymer scaffolds for tissue engineering
  publication-title: Bio Technol.
– volume: 175
  year: 2019
  ident: 10.1016/j.polymer.2021.123440_bib103
  article-title: Mechanical characterization of FDM 3D printing of continuous carbon fiber reinforced PLA composites
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2019.107147
– volume: 9
  year: 2017
  ident: 10.1016/j.polymer.2021.123440_bib154
  article-title: Towards 4D printed scaffolds for tissue engineering: exploiting 3D shape memory polymers to deliver time-controlled stimulus on cultured cells
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/aa8114
– volume: 24
  start-page: 1337
  year: 2018
  ident: 10.1016/j.polymer.2021.123440_bib104
  article-title: Effect of temperature on the mechanical properties of 3D-printed PLA tensile specimens
  publication-title: Rapid Prototyp. J.
  doi: 10.1108/RPJ-04-2017-0055
– volume: 5
  start-page: 8845
  year: 2017
  ident: 10.1016/j.polymer.2021.123440_bib150
  article-title: Toward the low actuation temperature of flexible shape memory polymer composites with room temperature deformability via induced plasticizing effect
  publication-title: J. Mater. Chem. B.
  doi: 10.1039/C7TB02068F
– volume: 37
  start-page: 106
  year: 2012
  ident: 10.1016/j.polymer.2021.123440_bib44
  article-title: Alginate: properties and biomedical applications
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2011.06.003
– volume: 18
  start-page: S5
  year: 2014
  ident: 10.1016/j.polymer.2021.123440_bib80
  article-title: Manufacture and thermal deformation analysis of semicrystalline polymer polyether ether ketone by 3D printing
  publication-title: Mater. Res. Innovat.
  doi: 10.1179/1432891714Z.000000000898
– volume: 49
  start-page: 33
  year: 2016
  ident: 10.1016/j.polymer.2021.123440_bib116
  article-title: Manufacture and characterisation of porous PLA scaffolds
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2015.07.025
– volume: 68
  start-page: 355
  year: 2016
  ident: 10.1016/j.polymer.2021.123440_bib112
  article-title: Scaffolds and cells for tissue regeneration: different scaffold pore sizes—different cell effects
  publication-title: Cytotechnology
  doi: 10.1007/s10616-015-9895-4
– volume: 101
  start-page: 8493
  year: 2010
  ident: 10.1016/j.polymer.2021.123440_bib27
  article-title: An overview of the recent developments in polylactide (PLA) research, Bioresour
  publication-title: Technol.
– volume: 107
  start-page: 163
  year: 2016
  ident: 10.1016/j.polymer.2021.123440_bib66
  article-title: Polylactic acid (PLA) controlled delivery carriers for biomedical applications
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2016.06.018
– volume: 65
  start-page: 13
  year: 2017
  ident: 10.1016/j.polymer.2021.123440_bib120
  article-title: Multi-layered scaffolds production via fused deposition modeling (FDM) using an open source 3D printer: process parameters optimization for dimensional accuracy and design reproducibility
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2017.04.042
– volume: 44
  start-page: 6827
  year: 2011
  ident: 10.1016/j.polymer.2021.123440_bib125
  article-title: Bioinspired mechanically adaptive polymer nanocomposites with water-activated shape-memory effect
  publication-title: Macromolecules
  doi: 10.1021/ma201502k
– volume: 30
  year: 2019
  ident: 10.1016/j.polymer.2021.123440_bib119
  article-title: Fabrication of poly(lactic acid)/Ti composite scaffolds with enhanced mechanical properties and biocompatibility via fused filament fabrication (FFF)–based 3D printing
  publication-title: Addit. Manuf.
– volume: 83
  start-page: 389
  year: 2016
  ident: 10.1016/j.polymer.2021.123440_bib11
  article-title: Additive manufacturing methods and modelling approaches: a critical review
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-015-7576-2
– volume: 188
  year: 2020
  ident: 10.1016/j.polymer.2021.123440_bib96
  article-title: Design of FDM 3D printed polymers: an experimental-modelling methodology for the prediction of mechanical properties
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2019.108414
– volume: 8
  start-page: 9431
  year: 2016
  ident: 10.1016/j.polymer.2021.123440_bib127
  article-title: Design of poly(l-lactide)–poly(ethylene glycol) copolymer with light-induced shape-memory effect triggered by pendant anthracene groups
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b00704
– volume: 49
  start-page: 832
  year: 2011
  ident: 10.1016/j.polymer.2021.123440_bib71
  article-title: Biomedical applications of biodegradable polymers
  publication-title: J. Polym. Sci., Part B: Polym. Phys.
  doi: 10.1002/polb.22259
– volume: 35
  start-page: 526
  year: 2018
  ident: 10.1016/j.polymer.2021.123440_bib14
  article-title: What makes a material printable? A viscoelastic model for extrusion-based 3D printing of polymers
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2018.08.008
– volume: 215
  start-page: 2482
  year: 2014
  ident: 10.1016/j.polymer.2021.123440_bib147
  article-title: Shape-memory performance of thermoplastic amphiphilic triblock copolymer poly(d,l-lactic acid-co-ethylene glycol-co-d,l-lactic acid) (PELA)/Hydroxyapatite composites
  publication-title: Macromol. Chem. Phys.
  doi: 10.1002/macp.201400340
– volume: 171
  year: 2019
  ident: 10.1016/j.polymer.2021.123440_bib131
  article-title: Four-dimensional printing of a novel acrylate-based shape memory polymer using digital light processing
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2019.107704
– volume: 61
  start-page: 945
  year: 2012
  ident: 10.1016/j.polymer.2021.123440_bib87
  article-title: Modelling micro geometrical profiles in fused deposition process
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-011-3744-1
– volume: 23
  start-page: 1169
  year: 2002
  ident: 10.1016/j.polymer.2021.123440_bib106
  article-title: Fused deposition modeling of novel scaffold architectures for tissue engineering applications
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(01)00232-0
– volume: 27
  start-page: 905
  year: 2006
  ident: 10.1016/j.polymer.2021.123440_bib9
  article-title: Architecture and properties of anisotropic polymer composite scaffolds for bone tissue engineering
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2005.07.015
– volume: 7
  year: 2019
  ident: 10.1016/j.polymer.2021.123440_bib18
  article-title: 3D and 4D printing of polymers for tissue engineering applications
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2019.00164
– volume: 104
  start-page: 2020
  year: 2016
  ident: 10.1016/j.polymer.2021.123440_bib67
  article-title: PGA-incorporated collagen: toward a biodegradable composite scaffold for bone-tissue engineering
  publication-title: J. Biomed. Mater. Res. A.
  doi: 10.1002/jbm.a.35736
– start-page: 1
  year: 2012
  ident: 10.1016/j.polymer.2021.123440_bib30
  article-title: Biomedical polyurethane-based materials
  publication-title: Polyurethane Prop. Struct. Appl. N. Y. Nova Publ
– volume: 30
  start-page: 405
  year: 2008
  ident: 10.1016/j.polymer.2021.123440_bib124
  article-title: Development of 3-D nanofibrous fibroin scaffold with high porosity by electrospinning: implications for bone regeneration
  publication-title: Biotechnol. Lett.
  doi: 10.1007/s10529-007-9581-5
– volume: vol. 7
  start-page: 87
  year: 2019
  ident: 10.1016/j.polymer.2021.123440_bib84
  article-title: The effect of chamber temperature on residual stresses of FDM parts
– volume: 5
  start-page: 356
  year: 2009
  ident: 10.1016/j.polymer.2021.123440_bib41
  article-title: New PMMA-co-EHA glass-filled composites for biomedical applications: mechanical properties and bioactivity
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2008.07.012
– volume: 46
  start-page: 771
  year: 2002
  ident: 10.1016/j.polymer.2021.123440_bib123
  article-title: Fabrication of porous scaffolds for bone tissue engineering via low-temperature deposition
  publication-title: Scripta Mater.
  doi: 10.1016/S1359-6462(02)00071-4
– volume: 41
  start-page: 1641
  year: 2012
  ident: 10.1016/j.polymer.2021.123440_bib135
  article-title: Determination of shape fixity and shape recovery rate of carbon nanotube-filled shape memory polymer nanocomposites
  publication-title: Procedia Eng
  doi: 10.1016/j.proeng.2012.07.362
– volume: 4
  start-page: 729
  year: 2018
  ident: 10.1016/j.polymer.2021.123440_bib2
  article-title: A review of 3D printing technology for medical applications
  publication-title: Engineering
  doi: 10.1016/j.eng.2018.07.021
– volume: 35
  start-page: 928
  year: 2006
  ident: 10.1016/j.polymer.2021.123440_bib122
  article-title: A comparative analysis of scaffold material modifications for load-bearing applications in bone tissue engineering
  publication-title: Int. J. Oral Maxillofac. Surg.
  doi: 10.1016/j.ijom.2006.03.024
– volume: 13
  start-page: 8204
  year: 2005
  ident: 10.1016/j.polymer.2021.123440_bib129
  article-title: Laser-activated shape memory polymer intravascular thrombectomy device
  publication-title: Optic Express
  doi: 10.1364/OPEX.13.008204
– volume: 67
  start-page: 2727
  year: 2013
  ident: 10.1016/j.polymer.2021.123440_bib88
  article-title: Surface roughness prediction in fused deposition modelling by neural networks
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-012-4687-x
– volume: 9
  start-page: 239
  year: 2013
  ident: 10.1016/j.polymer.2021.123440_bib60
  article-title: 3D printed PLA-based scaffolds
  publication-title: Organogenesis
  doi: 10.4161/org.26048
– volume: 3
  start-page: 42
  year: 2015
  ident: 10.1016/j.polymer.2021.123440_bib97
  article-title: Optimization of fused deposition modeling process parameters: a review of current research and future prospects
  publication-title: Adv. Manuf.
  doi: 10.1007/s40436-014-0097-7
– volume: 56
  start-page: 718
  year: 2007
  ident: 10.1016/j.polymer.2021.123440_bib51
  article-title: Comparison of the degradation of polycaprolactone and polycaprolactone–(β-tricalcium phosphate) scaffolds in alkaline medium
  publication-title: Polym. Int.
  doi: 10.1002/pi.2195
– volume: 2
  start-page: 185
  year: 1981
  ident: 10.1016/j.polymer.2021.123440_bib31
  article-title: Hydroxyapatite reinforced polyethylene–a mechanically compatible implant material for bone replacement
  publication-title: Biomaterials
  doi: 10.1016/0142-9612(81)90050-8
– volume: 18
  start-page: 1471
  year: 2006
  ident: 10.1016/j.polymer.2021.123440_bib128
  article-title: Polymers move in response to light
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200502266
– volume: 2011
  year: 2011
  ident: 10.1016/j.polymer.2021.123440_bib26
  article-title: Polymeric scaffolds in tissue engineering application: a review
  publication-title: Int. J. Polym. Sci.
  doi: 10.1155/2011/290602
– volume: 27
  start-page: 4288
  year: 2006
  ident: 10.1016/j.polymer.2021.123440_bib145
  article-title: Shape memory properties of poly(d,l-lactide)/hydroxyapatite composites
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2006.03.043
– volume: 63
  start-page: 545
  year: 2020
  ident: 10.1016/j.polymer.2021.123440_bib22
  article-title: 4D printed shape memory polymers and their structures for biomedical applications
  publication-title: Sci. China Technol. Sci.
  doi: 10.1007/s11431-019-1494-0
– volume: 57
  start-page: 139
  year: 2016
  ident: 10.1016/j.polymer.2021.123440_bib118
  article-title: Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2015.11.036
– volume: 405
  start-page: 704
  year: 2000
  ident: 10.1016/j.polymer.2021.123440_bib3
  article-title: Effects of mechanical forces on maintenance and adaptation of form in trabecular bone
  publication-title: Nature
  doi: 10.1038/35015116
– volume: 33
  start-page: 1087
  year: 2007
  ident: 10.1016/j.polymer.2021.123440_bib82
  article-title: A model research for prototype warp deformation in the FDM process
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-006-0556-9
– volume: 7
  start-page: 679
  year: 2001
  ident: 10.1016/j.polymer.2021.123440_bib113
  article-title: The design of scaffolds for use in tissue engineering. Part I. Traditional factors
  publication-title: Tissue Eng.
  doi: 10.1089/107632701753337645
– volume: 72
  start-page: 1229
  year: 2020
  ident: 10.1016/j.polymer.2021.123440_bib21
  article-title: A review on additive manufacturing of shape-memory materials for biomedical applications
  publication-title: JOM
  doi: 10.1007/s11837-020-04013-x
– volume: 18
  start-page: 899
  year: 2017
  ident: 10.1016/j.polymer.2021.123440_bib52
  article-title: Effects of 3D-printed polycaprolactone/β-tricalcium phosphate membranes on guided bone regeneration
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms18050899
– volume: 46
  start-page: 386
  year: 2010
  ident: 10.1016/j.polymer.2021.123440_bib4
  article-title: A biodegradable porous composite scaffold of PGA/β-TCP for bone tissue engineering
  publication-title: Bone
  doi: 10.1016/j.bone.2009.09.031
– volume: 19
  start-page: 2357
  year: 1998
  ident: 10.1016/j.polymer.2021.123440_bib32
  article-title: Hydroxyapatite-polyethylene composites for bone substitution: effects of ceramic particle size and morphology
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(98)00154-9
– volume: 37
  start-page: 741
  year: 2017
  ident: 10.1016/j.polymer.2021.123440_bib117
  article-title: 3D printing of hydroxyapatite polymer-based composites for bone tissue engineering
  publication-title: J. Polym. Eng.
  doi: 10.1515/polyeng-2016-0194
– year: 1985
  ident: 10.1016/j.polymer.2021.123440_bib36
– volume: 66
  start-page: 23
  year: 2015
  ident: 10.1016/j.polymer.2021.123440_bib100
  article-title: Electroless plating of PLA and PETG for 3D printed flexible substrates
  publication-title: ECS Trans
  doi: 10.1149/06619.0023ecst
– volume: 5
  start-page: 2591
  year: 2009
  ident: 10.1016/j.polymer.2021.123440_bib47
  article-title: Synthesis and characterization of collagen/hyaluronan/chitosan composite sponges for potential biomedical applications
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2009.03.038
– volume: 71
  start-page: 349
  year: 2017
  ident: 10.1016/j.polymer.2021.123440_bib143
  article-title: Thermally induced shape memory behavior, enzymatic degradation and biocompatibility of PLA/TPU blends: “Effects of compatibilization
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2017.04.001
– start-page: 1
  year: 2004
  ident: 10.1016/j.polymer.2021.123440_bib54
  article-title: Bioactive materials and processing
– volume: 5
  start-page: 286
  year: 2017
  ident: 10.1016/j.polymer.2021.123440_bib19
  article-title: Additive manufacturing techniques and their biomedical applications
  publication-title: Fam. Med. Community Health
  doi: 10.15212/FMCH.2017.0110
– start-page: 1598
  year: 2016
  ident: 10.1016/j.polymer.2021.123440_bib86
  article-title: Improving PLA-based material for FDM 3D-printers using minerals (principles and method development)
  publication-title: SPE ANTEC Indianap
– start-page: 415
  year: 2003
  ident: 10.1016/j.polymer.2021.123440_bib33
  article-title: Titanium dioxide/ultra high molecular weight polyethylene composite for bone-repairing applications: preparation and biocompatibility
– volume: 86
  start-page: 36
  year: 2016
  ident: 10.1016/j.polymer.2021.123440_bib12
  article-title: Preparation of starch/acrylonitrile-butadiene-styrene copolymers (ABS) biomass alloys and their feasible evaluation for 3D printing applications
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2015.10.005
– volume: 107
  start-page: 47
  year: 2016
  ident: 10.1016/j.polymer.2021.123440_bib29
  article-title: Poly(lactic acid) blends in biomedical applications
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2016.06.014
– volume: 57
  start-page: 241
  year: 2019
  ident: 10.1016/j.polymer.2021.123440_bib151
  article-title: High-strain shape memory behavior of PLA–PEG multiblock copolymers and its microstructural origin
  publication-title: J. Polym. Sci., Part B: Polym. Phys.
  doi: 10.1002/polb.24775
– volume: 9
  start-page: 5521
  year: 2013
  ident: 10.1016/j.polymer.2021.123440_bib61
  article-title: High-resolution PLA-based composite scaffolds via 3-D printing technology
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2012.10.041
– volume: 47
  start-page: 324
  year: 1999
  ident: 10.1016/j.polymer.2021.123440_bib8
  article-title: In vitro analysis of biodegradable polymer blend/hydroxyapatite composites for bone tissue engineering
  publication-title: J. Biomed. Mater. Res.
  doi: 10.1002/(SICI)1097-4636(19991205)47:3<324::AID-JBM6>3.0.CO;2-Y
– volume: 6
  start-page: 47418
  year: 2016
  ident: 10.1016/j.polymer.2021.123440_bib63
  article-title: Tailor-made poly(L-lactide)/poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds prepared via high-pressure compression molding/salt leaching
  publication-title: RSC Adv.
  doi: 10.1039/C6RA06906A
– volume: 10
  start-page: 20
  year: 2007
  ident: 10.1016/j.polymer.2021.123440_bib133
  article-title: Shape-memory polymers
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(07)70047-0
– volume: 81
  year: 2020
  ident: 10.1016/j.polymer.2021.123440_bib95
  article-title: Effects of thermal process parameters on mechanical interlayer strength for additively manufactured Ultem 9085
  publication-title: Polym. Test.
  doi: 10.1016/j.polymertesting.2019.106255
– volume: 20
  start-page: 3356
  year: 2010
  ident: 10.1016/j.polymer.2021.123440_bib132
  article-title: Biomedical applications of thermally activated shape memory polymers
  publication-title: J. Mater. Chem.
  doi: 10.1039/b923717h
– volume: 8
  year: 2016
  ident: 10.1016/j.polymer.2021.123440_bib140
  article-title: Multiresponsive shape memory blends and nanocomposites based on starch
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b06618
– volume: 88
  start-page: 959
  year: 1981
  ident: 10.1016/j.polymer.2021.123440_bib35
  publication-title: Polypropylene, Ophthalmology
  doi: 10.1016/S0161-6420(81)80012-7
– volume: 8
  start-page: 328
  year: 2008
  ident: 10.1016/j.polymer.2021.123440_bib6
  article-title: Nanofibrous poly(lactic acid)/hydroxyapatite composite scaffolds for guided tissue regeneration
  publication-title: Macromol. Biosci.
  doi: 10.1002/mabi.200700107
– volume: 25
  start-page: 185
  year: 2017
  ident: 10.1016/j.polymer.2021.123440_bib10
  article-title: Material issues in additive manufacturing: a review
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2016.11.006
– volume: 2013
  year: 2013
  ident: 10.1016/j.polymer.2021.123440_bib57
  article-title: Bioactive surface modification of hydroxyapatite
  publication-title: BioMed Res. Int.
  doi: 10.1155/2013/626452
– volume: 26
  start-page: 7457
  year: 2005
  ident: 10.1016/j.polymer.2021.123440_bib75
  article-title: Understanding the biodegradation of polyurethanes: from classical implants to tissue engineering materials
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2005.05.079
– volume: 21
  start-page: 317
  year: 2012
  ident: 10.1016/j.polymer.2021.123440_bib148
  article-title: Influence of blocked polyisocyanate on thermomechanical, shape memory and biodegradable properties of poly (lactic acid)/poly (ethylene glycol) blends, Iran
  publication-title: Polym. J.
– volume: 8
  start-page: 1
  year: 2007
  ident: 10.1016/j.polymer.2021.123440_bib48
  article-title: The future prospects of microbial cellulose in biomedical applications
  publication-title: Biomacromolecules
  doi: 10.1021/bm060620d
– volume: 58
  start-page: 189
  year: 2009
  ident: 10.1016/j.polymer.2021.123440_bib13
  article-title: Experimental study aiming to enhance the surface finish of fused deposition modeled parts
  publication-title: CIRP Ann
  doi: 10.1016/j.cirp.2009.03.071
– volume: 343
  start-page: 65
  year: 2014
  ident: 10.1016/j.polymer.2021.123440_bib40
  article-title: Synthesis and characterization of poly(methyl methacrylate) PMMA and evaluation of cytotoxicity for biomedical application
  publication-title: Macromol. Symp.
  doi: 10.1002/masy.201300194
SSID ssj0002524
Score 2.459306
Snippet Since the invention of additive manufacturing (AM) in the 1980s, great advances are today conceivable thanks to considerable evolution in recent years....
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 123440
SubjectTerms 4D printing
Additive manufacturing (AM)
Biocompatibility
Biodegradability
Biodegradation
Biomedical materials
Condensed Matter
Fabrication
Fused deposition modeling
Fused filament fabrication (FFF)
Materials Science
Parameterization
Physics
Polymers
Scaffolds
Shape memory
Shape-memory polymers (SMPs)
Thickness
Tissue engineering
Title Fused filament fabrication of scaffolds for tissue engineering; how realistic is shape-memory? A review
URI https://dx.doi.org/10.1016/j.polymer.2021.123440
https://www.proquest.com/docview/2508593255
https://hal.science/hal-03183431
Volume 217
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLYYHLYdpsE2rYwha9rVLYkdJ9EOU1Wt6n5xGlJvlmO_rEWlqUgBceFv33uJQwdCQuIYK_4hf_Z7n633PjP2WXpcNDZzIgaXCRV7JYokccKiM5GZhdRbynf-fawnJ-rHNJlusVGXC0NhlcH2tza9sdahZBBmc7CazynHV2JzjQIWOdopZbCrlML6-jebMI84iVslZhkL-nuTxTM47a-qxfUZkCxoHPVxcIruQB72T89mFCh5z143Tmj8mr0K7JEP2wHusi1Y7rHno-7Rtj328j99wTfs7_iiBs_LOcKOzoWXtjgPd3S8KnntbFlWC19zZK583UDAYdPAFz6rrjiyykWj5sznNa9ndgXijMJzr7_yIW8zX96yk_G3P6OJCC8rCKeibC20Bi8jXUAGOXKCNC6cj6xyFixAokFL0pAsFSicttw7ULm3uXaAZ87UZZF8x7aX1RLeM15AbNPyKPEyRSoDR1bZVBZalXkBWivbY6qbT-OC7Di9frEwXXzZqQkwGILBtDD0WP-22qrV3XisQtaBZe4sIIO-4bGqnxDc225IcHsy_GWorDF5yLEuox476LA3YZvXBvkj6cXhsWz_6d1_YC_oqwlsSw7Y9vr8Aj4i01kXh81SPmQ7w-8_J8f_AO20_l0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwED5t3cPgAcEArTDAQry6XRLHScQDqiqqjHV92qS-WY59oZ26plo60P4958TpACFN4tXR2ZY_5-6zdfcZ4FNkadPo1PAQTcpFaAUv4thwTcEkSjUmVrt654uZzK_Et3k834NxVwvj0iq97299euOtfcvQr-Zws1y6Gt-IumsUsFygne_DgVOnEj04GJ2d57OdQw7jsBVjjkLuDB4KeYbXg021ur9BpwwaBgOan3DXIP8OUfsLlyv5l8tu4tDkOTzzBJKN2jm-gD1cH8HhuHu37Qie_iYx-BK-T-5qtKxcEvIUX1ipi1t_TceqktVGl2W1sjUj8sq2DQoMHzr4zBbVT0bEctUIOrNlzeqF3iC_cRm691_YiLXFL6_gavL1cpxz_7gCNyJIt1xKtFEgC0wxI1qQhIWxgRZGo0aMJcrIyUiWAgUtW2YNiszqTBqkY2di0iB6Db11tcZjYAWGOilPYxslxGbwVAudRIUUZVaglEL3QXTrqYxXHncPYKxUl2J2rTwMysGgWhj6MNiZbVrpjccM0g4s9cceUhQeHjP9SODuhnGa2_loqlxb4_WIZv0I-nDSYa_8n14ropBOMo5OZm_-f_gPcJhfXkzV9Gx2_haeuC9Nnlt8Ar3t7R2-I-KzLd77jf0Ln-kBHQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fused+filament+fabrication+of+scaffolds+for+tissue+engineering%3B+how+realistic+is+shape-memory%3F+A+review&rft.jtitle=Polymer+%28Guilford%29&rft.au=Bayart%2C+Marie&rft.au=Charlon%2C+S%C3%A9bastien&rft.au=Soulestin%2C+J%C3%A9r%C3%A9mie&rft.date=2021-03-05&rft.pub=Elsevier+Ltd&rft.issn=0032-3861&rft.eissn=1873-2291&rft.volume=217&rft_id=info:doi/10.1016%2Fj.polymer.2021.123440&rft.externalDocID=S003238612100063X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-3861&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-3861&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-3861&client=summon