Fused filament fabrication of scaffolds for tissue engineering; how realistic is shape-memory? A review
Since the invention of additive manufacturing (AM) in the 1980s, great advances are today conceivable thanks to considerable evolution in recent years. Medicine, and particularly tissue engineering (TE), have high expectations regarding AM, which allows the manufacturing of complex personalized part...
Saved in:
Published in | Polymer (Guilford) Vol. 217; p. 123440 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
05.03.2021
Elsevier BV Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0032-3861 1873-2291 |
DOI | 10.1016/j.polymer.2021.123440 |
Cover
Loading…
Abstract | Since the invention of additive manufacturing (AM) in the 1980s, great advances are today conceivable thanks to considerable evolution in recent years. Medicine, and particularly tissue engineering (TE), have high expectations regarding AM, which allows the manufacturing of complex personalized parts. Among existing techniques, fused filament fabrication (FFF) is very promising in the biomedical field, due to its many advantages, particularly for specific applications such as scaffolds for TE. This review, in interaction with biomedical, process and material sciences, aims to help researchers understand the importance of process parameterization (build orientation, raster angle, layer thickness, etc.) combined with an appropriate material choice, to develop optimized scaffolds using FFF. This review also reflects the state of existing advances and opens perspectives on the subject, especially with the use of biodegradable and biocompatible shape-memory polymers, the principle of which will be revisited and the few studies concerning shape-memory scaffolds will be gathered.
[Display omitted]
•A reminder includes information on materials' properties needed in biomedicine.•Studies refer to FFF and its setting optimization for the production of scaffolds.•Scaffolds' optimization is based on their composition and machine parameterization.•SMPs show great promises to develop scaffolds for tissue engineering.•The need to study the effect of FFF settings on materials' properties is growing. |
---|---|
AbstractList | Since the invention of additive manufacturing (AM) in the 1980s, great advances are today conceivable thanks to considerable evolution in recent years. Medicine, and particularly tissue engineering (TE), have high expectations regarding AM, which allows the manufacturing of complex personalized parts. Among existing techniques, fused filament fabrication (FFF) is very promising in the biomedical field, due to its many advantages, particularly for specific applications such as scaffolds for TE. This review, in interaction with biomedical, process and material sciences, aims to help researchers understand the importance of process parameterization (build orientation, raster angle, layer thickness, etc.) combined with an appropriate material choice, to develop optimized scaffolds using FFF. This review also reflects the state of existing advances and opens perspectives on the subject, especially with the use of biodegradable and biocompatible shape-memory polymers, the principle of which will be revisited and the few studies concerning shape-memory scaffolds will be gathered.
[Display omitted]
•A reminder includes information on materials' properties needed in biomedicine.•Studies refer to FFF and its setting optimization for the production of scaffolds.•Scaffolds' optimization is based on their composition and machine parameterization.•SMPs show great promises to develop scaffolds for tissue engineering.•The need to study the effect of FFF settings on materials' properties is growing. Since the invention of additive manufacturing (AM) in the 1980s, great advances are today conceivable thanks to considerable evolution in recent years. Medicine, and particularly tissue engineering (TE), have high expectations regarding AM, which allows the manufacturing of complex personalized parts. Among existing techniques, fused filament fabrication (FFF) is very promising in the biomedical field, due to its many advantages, particularly for specific applications such as scaffolds for TE. This review, in interaction with biomedical, process and material sciences, aims to help researchers understand the importance of process parameterization (build orientation, raster angle, layer thickness, etc.) combined with an appropriate material choice, to develop optimized scaffolds using FFF. This review also reflects the state of existing advances and opens perspectives on the subject, especially with the use of biodegradable and biocompatible shape-memory polymers, the principle of which will be revisited and the few studies concerning shape-memory scaffolds will be gathered. |
ArticleNumber | 123440 |
Author | Bayart, Marie Charlon, Sébastien Soulestin, Jérémie |
Author_xml | – sequence: 1 givenname: Marie surname: Bayart fullname: Bayart, Marie – sequence: 2 givenname: Sébastien surname: Charlon fullname: Charlon, Sébastien email: sebastien.charlon@imt-lille-douai.fr – sequence: 3 givenname: Jérémie surname: Soulestin fullname: Soulestin, Jérémie |
BackLink | https://hal.science/hal-03183431$$DView record in HAL |
BookMark | eNqFUU1rGzEUFCWFOml_QkHQUw_r6mt3teQQTGiSgqGX9Cxk7ZP9zK7kSnKC_33X2eTSS04P3psZ5s1ckosQAxDylbMlZ7z5sV8e4nAaIS0FE3zJhVSKfSALrltZCdHxC7JgTIpK6oZ_Ipc57xljohZqQbZ3xww99TjYEUKh3m4SOlswBho9zc56H4c-Ux8TLZjzESiELQaAhGF7TXfxmSawA-aCjmKmeWcPUI0wxnS6oavp-ITw_Jl89HbI8OV1XpE_dz8fbx-q9e_7X7erdeUU16VqGuglbzagoWOat2Ljem6Vs2AB6gYaqVohvAI1_dP1DlTX265x0LW6dZrLK_J91t3ZwRwSjjadTLRoHlZrc94xybVUkj-dsd9m7CHFv0fIxezjMYXJnhE103UnRV1PqOsZ5VLMOYE3DstLQCVZHAxn5tyC2ZvXFsy5BTO3MLHr_9hvpt7j3cw8mMKaAkwmO4TgoMcErpg-4jsK_wCzhKdB |
CitedBy_id | crossref_primary_10_1002_cae_22561 crossref_primary_10_3390_app11146320 crossref_primary_10_1016_j_bioadv_2022_212818 crossref_primary_10_3390_jfb15100280 crossref_primary_10_1002_jbm_b_35402 crossref_primary_10_1016_j_polymer_2023_126587 crossref_primary_10_62184_mmc_jmmc100020241 crossref_primary_10_1016_j_eurpolymj_2023_112718 crossref_primary_10_3390_su15086805 crossref_primary_10_1080_17452759_2023_2285418 crossref_primary_10_2139_ssrn_4069589 crossref_primary_10_1016_j_reactfunctpolym_2022_105374 crossref_primary_10_1016_j_bprint_2023_e00259 crossref_primary_10_1007_s12008_022_01018_5 crossref_primary_10_1089_ten_tec_2023_0082 crossref_primary_10_1016_j_addma_2022_103065 |
Cites_doi | 10.1007/s00449-010-0499-2 10.1016/j.joca.2004.12.014 10.1007/s10856-016-5731-4 10.1080/10426914.2015.1070425 10.1016/j.bbe.2020.01.015 10.1557/jmr.2018.112 10.1016/j.actbio.2016.09.030 10.1016/j.morpho.2017.06.002 10.1016/S0142-9612(02)00466-0 10.1016/j.msec.2010.01.006 10.1108/13552541211272045 10.1007/BF00120366 10.1016/j.ceramint.2018.07.297 10.1016/j.jmapro.2020.04.049 10.1186/s41038-018-0121-4 10.1039/C7TB00419B 10.1016/j.applthermaleng.2019.114064 10.1016/S1526-6125(04)70071-7 10.1002/mame.201800179 10.1038/s41598-017-13838-7 10.1007/s11434-012-5336-3 10.1016/j.matdes.2017.03.065 10.1016/j.mattod.2017.06.005 10.1039/C8BM00518D 10.2514/6.2017-0567 10.1080/17452759.2015.1097053 10.1186/s13036-015-0001-4 10.1002/marc.201200153 10.1002/jbm.a.35871 10.1002/app.13354 10.1016/j.msec.2013.02.041 10.1108/RPJ-08-2018-0217 10.1016/j.procir.2016.02.313 10.1016/j.jmbbm.2012.01.021 10.1016/j.jmbbm.2016.01.031 10.3390/ma11081333 10.1007/BF02871912 10.1088/1757-899X/161/1/012033 10.1557/jmr.2018.359 10.3144/expresspolymlett.2014.44 10.1063/1.5008034 10.1088/0957-4484/20/23/235702 10.1016/j.biomaterials.2004.01.038 10.1007/s40964-017-0023-1 10.1016/j.msec.2015.06.028 10.1016/j.polymdegradstab.2010.09.007 10.1016/j.cej.2018.01.010 10.1007/s10544-008-9271-7 10.1016/j.eurpolymj.2017.06.011 10.1016/S1369-7021(11)70058-X 10.1016/j.biomaterials.2010.07.043 10.1007/s10856-012-4738-8 10.1016/j.polymer.2009.01.032 10.1002/jbm.a.35637 10.3390/app9132676 10.1007/s12668-018-0525-4 10.1016/S0378-5173(01)00691-3 10.1159/000184165 10.1002/jbm.a.20055 10.1002/mame.201700143 10.1002/adhm.201700694 10.1002/1521-3900(200203)180:1<257::AID-MASY257>3.0.CO;2-I 10.1039/b615954k 10.1002/polb.24370 10.1088/1748-6041/2/1/S04 10.1007/s10965-013-0140-6 10.1163/092050609X12457428919034 10.1007/s12206-016-1049-x 10.1016/j.polymertesting.2018.05.020 10.1016/j.compositesb.2019.107147 10.1088/1758-5090/aa8114 10.1108/RPJ-04-2017-0055 10.1039/C7TB02068F 10.1016/j.progpolymsci.2011.06.003 10.1179/1432891714Z.000000000898 10.1016/j.procir.2015.07.025 10.1007/s10616-015-9895-4 10.1016/j.addr.2016.06.018 10.1016/j.procir.2017.04.042 10.1021/ma201502k 10.1007/s00170-015-7576-2 10.1016/j.matdes.2019.108414 10.1021/acsami.6b00704 10.1002/polb.22259 10.1016/j.jmapro.2018.08.008 10.1002/macp.201400340 10.1016/j.matdes.2019.107704 10.1007/s00170-011-3744-1 10.1016/S0142-9612(01)00232-0 10.1016/j.biomaterials.2005.07.015 10.3389/fbioe.2019.00164 10.1002/jbm.a.35736 10.1007/s10529-007-9581-5 10.1016/j.actbio.2008.07.012 10.1016/S1359-6462(02)00071-4 10.1016/j.proeng.2012.07.362 10.1016/j.eng.2018.07.021 10.1016/j.ijom.2006.03.024 10.1364/OPEX.13.008204 10.1007/s00170-012-4687-x 10.4161/org.26048 10.1007/s40436-014-0097-7 10.1002/pi.2195 10.1016/0142-9612(81)90050-8 10.1002/adma.200502266 10.1155/2011/290602 10.1016/j.biomaterials.2006.03.043 10.1007/s11431-019-1494-0 10.1016/j.jmbbm.2015.11.036 10.1038/35015116 10.1007/s00170-006-0556-9 10.1089/107632701753337645 10.1007/s11837-020-04013-x 10.3390/ijms18050899 10.1016/j.bone.2009.09.031 10.1016/S0142-9612(98)00154-9 10.1515/polyeng-2016-0194 10.1149/06619.0023ecst 10.1016/j.actbio.2009.03.038 10.1016/j.jmbbm.2017.04.001 10.15212/FMCH.2017.0110 10.1016/j.compositesb.2015.10.005 10.1016/j.addr.2016.06.014 10.1002/polb.24775 10.1016/j.actbio.2012.10.041 10.1002/(SICI)1097-4636(19991205)47:3<324::AID-JBM6>3.0.CO;2-Y 10.1039/C6RA06906A 10.1016/S1369-7021(07)70047-0 10.1016/j.polymertesting.2019.106255 10.1039/b923717h 10.1021/acsami.6b06618 10.1016/S0161-6420(81)80012-7 10.1002/mabi.200700107 10.1016/j.jmapro.2016.11.006 10.1155/2013/626452 10.1016/j.biomaterials.2005.05.079 10.1021/bm060620d 10.1016/j.cirp.2009.03.071 10.1002/masy.201300194 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Mar 5, 2021 Attribution - NonCommercial |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Mar 5, 2021 – notice: Attribution - NonCommercial |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 1XC VOOES |
DOI | 10.1016/j.polymer.2021.123440 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Physics |
EISSN | 1873-2291 |
ExternalDocumentID | oai_HAL_hal_03183431v1 10_1016_j_polymer_2021_123440 S003238612100063X |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARLI AAXUO ABFNM ABMAC ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNCT ACPRK ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRAH AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SMS SPC SPCBC SPD SSK SSM SSZ T5K TN5 WH7 XPP ZMT ~G- .-4 29O 6TJ 6TU AAQXK AATTM AAXKI AAYWO AAYXX ABDEX ABDPE ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- RIG SCB SEW SSH T9H WUQ 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K EFKBS F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 1XC VOOES |
ID | FETCH-LOGICAL-c418t-66ed316be8e908172bcd1a4caeaee56e634722f4e40329dce49da96ce9787c813 |
IEDL.DBID | .~1 |
ISSN | 0032-3861 |
IngestDate | Fri May 09 12:20:07 EDT 2025 Wed Aug 13 03:59:22 EDT 2025 Tue Jul 01 02:37:01 EDT 2025 Thu Apr 24 23:05:49 EDT 2025 Fri Feb 23 02:45:40 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | 4D printing Additive manufacturing (AM) Scaffolds Fused filament fabrication (FFF) Shape-memory polymers (SMPs) |
Language | English |
License | Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c418t-66ed316be8e908172bcd1a4caeaee56e634722f4e40329dce49da96ce9787c813 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7066-9303 0000-0001-5760-5877 |
OpenAccessLink | https://hal.science/hal-03183431 |
PQID | 2508593255 |
PQPubID | 2045419 |
ParticipantIDs | hal_primary_oai_HAL_hal_03183431v1 proquest_journals_2508593255 crossref_citationtrail_10_1016_j_polymer_2021_123440 crossref_primary_10_1016_j_polymer_2021_123440 elsevier_sciencedirect_doi_10_1016_j_polymer_2021_123440 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-05 |
PublicationDateYYYYMMDD | 2021-03-05 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Polymer (Guilford) |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier BV Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV – name: Elsevier |
References | Blaker, Gough, Maquet, Notingher, Boccaccini (bib59) 2003; 67A Singh, Ramakrishna, Singh (bib10) 2017; 25 Shim, Won, Park, Bae, Ahn, Kim, Lim, Cho, Yun, Bae, Jeong, Huh (bib52) 2017; 18 Zhang, Chen, Zhang (bib146) 2009; 50 Sabahi, Chen, Wang, Kruzic, Li (bib21) 2020; 72 Lee, Singla, Lee (bib46) 2001; 221 Sastri (bib34) 2013 Peng, Zheng, Chen, Zhang, Deng, Chen, Wu (bib74) 2018; 18 Zein, Hutmacher, Tan, Teoh (bib106) 2002; 23 Bosworth, Downes (bib76) 2010; 95 Zhang, Yang, Ding, Li (bib63) 2016; 6 Kuo, Liu, Teng, Chang, Chien, Liao, Kuo, Chen (bib12) 2016; 86 Altankov, Groth (bib62) 1994; 5 Wu, Ding (bib73) 2004; 25 Sokolowski, Metcalfe, Hayashi, Raymond (bib141) 2007; 2 Sun, Cai, Ren, Naguib (bib138) 2017; 55 Bellehumeur, Li, Sun, Gu (bib83) 2004; 6 Singh, Pal (bib38) 2012; 9 Shelton, Willburn, Hartsfield, Cobb, Cerri, Kemnitz (bib95) 2020; 81 Shen, Lu, Zhou, Liang (bib148) 2012; 21 Bonfield, Grynpas, Tully, Bowman, Abram (bib31) 1981; 2 Chia, Wu (bib105) 2015; 9 . Xue, Dai, Li (bib136) 2010; 31 Bikas, Stavropoulos, Chryssolouris (bib11) 2016; 83 Vaezi, Yang (bib43) 2015; 10 Madhavan Nampoothiri, Nair, John (bib27) 2010; 101 Hashimoto, Takadama, Mizuno, Yasutomi, Kokubo (bib33) 2003 Ki, Park, Kim, Jung, Woo, Lee, Park (bib124) 2008; 30 Wu, Geng, Zhao, Zhang, Rosen, Zhang (bib80) 2014; 18 Faes, Ferraris, Moens (bib94) 2016; 42 Corcione, Gervaso, Scalera, Montagna, Maiullaro, Sannino, Maffezzoli (bib117) 2017; 37 Senatov, Niaza, Zadorozhnyy, Maksimkin, Kaloshkin, Estrin (bib118) 2016; 57 Koosomsuan, Yamaguchi, Phinyocheep, Sirisinha (bib151) 2019; 57 Duty, Ajinjeru, Kishore, Compton, Hmeidat, Chen, Liu, Hassen, Lindahl, Kunc (bib14) 2018; 35 Kayal, Ramanujan (bib39) 2010; 30 Hutmacher (bib23) 2000 Chaidas, Kitsakis, Kechagias, Maropoulos (bib89) 2016; 161 Bernard, Jubeli, Pungente, Yagoubi (bib49) 2018; 6 Toosi, Naderi‐Meshkin, Kalalinia, Peivandi, HosseinKhani, Bahrami, Heirani‐Tabasi, Mirahmadi, Behravan (bib67) 2016; 104 Saini, Arora, Kumar (bib29) 2016; 107 Hinsch (bib36) 1985 Kochesfahani (bib86) 2016 Garg, Bhattacharya, Batish (bib77) 2016; 31 Esposito Corcione, Gervaso, Scalera, Padmanabhan, Madaghiele, Montagna, Sannino, Licciulli, Maffezzoli (bib58) 2019; 45 Ulery, Nair, Laurencin (bib71) 2011; 49 Senatov, Zadorozhnyy, Niaza, Medvedev, Kaloshkin, Anisimova, Kiselevskiy, Yang (bib153) 2017; 93 Boschetto, Giordano, Veniali (bib88) 2013; 67 Li, Zhang, Liu, Leng (bib22) 2020; 63 Bružauskaitė, Bironaitė, Bagdonas, Bernotienė (bib112) 2016; 68 Dong, Wang, Zhao, Zhu, Yu (bib121) 2017; 7 Zhao, Wang, Wang, Mai, Yan, Yang (bib28) 2004; 91 Liu, Wang, Zhang (bib19) 2017; 5 Wang, Zou, Ding (bib90) 2019; 161 Chim, Hutmacher, Chou, Oliveira, Reis, Lim, Schantz (bib122) 2006; 35 da Silva, Kaduri, Poley, Adir, Krinsky, Shainsky-Roitman, Schroeder (bib70) 2018; 340 Sessini, Raquez, Lo Re, Mincheva, Kenny, Dubois, Peponi (bib140) 2016; 8 Guo, Ma, Lv, Zhao, Wang, Li (bib149) 2018; 33 Lai, Lan (bib144) 2013; 20 Bernasconi, Natale, Levi, Magagnin (bib100) 2015; 66 Mironov, Grigoryev, Krotova, Skaletsky, Popov, Sevastianov (bib108) 2017; 105 Tamay, Usal, Alagoz, Yucel, Hasirci, Hasirci (bib18) 2019; 7 Czaja, Young, Kawecki, Brown (bib48) 2007; 8 Wang, Xi, Jin (bib82) 2007; 33 Spoerk, Arbeiter, Raguž, Weingrill, Fischinger, Traxler, Schuschnigg, Cardon, Holzer (bib81) 2018; 303 Park, Park, Shin, Kang, Kim, Yoon, Shin (bib111) 2012; 23 Abe, Okazaki, Hiasa, Yasuda, Nogami, Mizumachi, Hirata (bib57) 2013; 2013 Meena, Mengi, Deshpande (bib45) 1999; 111 Kumaresan, Gandhinathan, Ramu, Ananthasubramanian, Pradheepa (bib50) 2016; 30 Naghieh, Karamooz Ravari, Badrossamay, Foroozmehr, Kadkhodaei (bib115) 2016; 59 Wu, Chen, Yan, Cai, Shi (bib131) 2019; 171 Jeong, Ko, Yum, Jung, Lee, Shin (bib6) 2008; 8 Popescu, Zapciu, Amza, Baciu, Marinescu (bib93) 2018; 69 Mathieu, Mueller, Bourban, Pioletti, Müller, Månson (bib9) 2006; 27 Boschetto, Giordano, Veniali (bib87) 2012; 61 Rodríguez-Panes, Claver, Camacho (bib92) 2018; 11 Bignotti, Penco, Sartore, D'Antone, D'Amore, Spagnoli (bib110) 2002; 180 Xiong, Yan, Wang, Zhang, Zhang (bib123) 2002; 46 Sadat-Shojai, Khorasani, Jamshidi, Irani (bib5) 2013; 33 Galantucci, Lavecchia, Percoco (bib13) 2009; 58 Vaes, Coppens, Goderis, Zoetelief, Van Puyvelde (bib79) 2019; 9 Peterson, Dobrynin, Becker (bib152) 2017; 6 Shim, Kim, Park, Hahn, Rhie, Kang, Lee, Cho (bib109) 2010; 21 Hendrikson, Rouwkema, Clementi, van Blitterswijk, Farè, Moroni (bib154) 2017; 9 Xiao, Gao (bib99) 2017; 2 Panayotov, Orti, Cuisinier, Yachouh (bib42) 2016; 27 Gleadall, Visscher, Yang, Thomas, Segal (bib16) 2018; 6 Dhandayuthapani, Yoshida, Maekawa, Kumar (bib26) 2011; 2011 Wang, Joseph, Bonfield (bib32) 1998; 19 Spoerk, Sapkota, Weingrill, Fischinger, Arbeiter, Holzer (bib85) 2017; 302 Miao, Castro, Nowicki, Xia, Cui, Zhou, Zhu, Lee, Sarkar, Vozzi, Tabata, Fisher, Zhang (bib134) 2017; 20 Clayman (bib35) 1981; 88 Yan, Dong, Su, Han, Song, Wei, Shi (bib2) 2018; 4 Szymczyk-Ziółkowska, Łabowska, Detyna, Michalak, Gruber (bib15) 2020; 40 Karger-Kocsis, Kéki (bib139) 2014; 8 Xie, He, Deng, Du, Fan, Yang, Wang (bib127) 2016; 8 Dogan, Boyacioglu, Kodal, Gokce, Ozkoc (bib143) 2017; 71 Alves, Ferreira, Gil (bib30) 2012 Serra, Planell, Navarro (bib61) 2013; 9 Shahriar, France, Valerie, Arthur, Christian (bib102) 2017 Singh, Singh, Prakash, Ramakrishna (bib98) 2020; 55 Park, Lee, Kim (bib68) 2011; 34 Heidari-Rarani, Rafiee-Afarani, Zahedi (bib103) 2019; 175 Mi, Jing, Napiwocki, Hagerty, Chen, Turng (bib142) 2017; 5 Lam, Teoh, Hutmacher (bib51) 2007; 56 Bruyas, Lou, Stahl, Gardner, Maloney, Goodman, Yang (bib55) 2018; 33 Lee, Mooney (bib44) 2012; 37 Grasso, Azzouz, Ruiz-Hincapie, Zarrelli, Ren (bib104) 2018; 24 Drummer, Cifuentes-Cuéllar, Rietzel (bib78) 2012; 18 Jiang, Kelch, Lendlein (bib128) 2006; 18 Yu, Zhou, Zheng, Guo, Xiao, Song (bib130) 2009; 20 Feuser, Gaspar, Ricci‐Júnior, da Silva, Nele, Sayer, de Araújo (bib40) 2014; 343 Santerre, Woodhouse, Laroche, Labow (bib75) 2005; 26 Freed, Vunjak-Novakovic, Biron, Eagles, Lesnoy, Barlow, Langer (bib25) 1994; 12 (bib1) 2012 Yen, Tseng, Hsu, Tsai (bib107) 2009; 11 Huiskes, Ruimerman, van Lenthe, Janssen (bib3) 2000; 405 Poomathi, Singh, Prakash, Subramanian, Sahay, Cinappan, Ramakrishna (bib17) 2020; 26 Small IV, Wilson, Benett, Loge, Maitland (bib129) 2005; 13 Chen, Chueh, Tseng, Huang, Lee (bib72) 2003; 24 Abdullah, Jumahat, Abdullah, Frormann (bib135) 2012; 41 Wang, Favi, Cheng, Golshan, Ziemer, Keidar, Webster (bib65) 2016; 46 R. Chen, A. Ramachandran, C. Liu, F.-K. Chang, D. Senesky, Tsai-Wu Analysis of a Thin-Walled 3D-Printed Polylactic Acid (PLA) Structural Bracket, in: 58th AIAAASCEAHSASC Struct. Struct. Dyn. Mater. Conf., American Institute of Aeronautics and Astronautics, n.d. Lopes, Corbellini, Ferreira, Almeida, Fredel, Fernandes, Correia (bib41) 2009; 5 Marra, Szem, Kumta, DiMilla, Weiss (bib8) 1999; 47 Ceretti, Ginestra, Neto, Fiorentino, Da Silva (bib120) 2017; 65 Serra, Mateos-Timoneda, Planell, Navarro (bib60) 2013; 9 Ma, Su, Tai, Sun, Yan, Liu, Xue (bib7) 2012; 57 Kao, Lin, Chen, Yeh, Fang, Shie (bib64) 2015; 56 Lee, Lee, Cheon, Park, Jang, Kim, Jung (bib119) 2019; 30 Casavola, Cazzato, Karalekas, Moramarco, Pappalettera (bib84) 2019; vol. 7 Speight (bib69) 2011 Small IV, Singhal, Wilson, Maitland (bib132) 2010; 20 Wang (bib54) 2004 Tamai, Myoui, Hirao, Kaito, Ochi, Tanaka, Takaoka, Yoshikawa (bib53) 2005; 13 Mendez, Annamalai, Eichhorn, Rusli, Rowan, Foster, Weder (bib125) 2011; 44 Zheng, Zhou, Li, Weng (bib145) 2006; 27 Chaair, Labjar, Britel (bib56) 2017; 101 Rodrigues, Benning, Ferreira, Dixon, Dalgarno (bib116) 2016; 49 Chacón, Caminero, García-Plaza, Núñez (bib91) 2017; 124 Kutikov, Reyer, Song (bib147) 2014; 215 Cao, Kuboyama (bib4) 2010; 46 Lin, Tan, Marra, Jan, Liu (bib47) 2009; 5 Garzon-Hernandez, Garcia-Gonzalez, Jérusalem, Arias (bib96) 2020; 188 Behl, Lendlein (bib133) 2007; 10 Nässberger, Arbin, Östelius (bib37) 1987; 45 Ostrowska, Di Luca, Szlazak, Moroni, Swieszkowski (bib114) 2016; 104 Liu, Qin, Mather (bib137) 2007; 17 Han, Dong, Fan, Liu, li, Wang, Yuan, Li, Zhang (bib126) 2012; 33 Cai, Sun, Ren, Naguib (bib150) 2017; 5 Gupta, Bissoyi, Bit (bib20) 2018; 8 Tyler, Gullotti, Mangraviti, Utsuki, Brem (bib66) 2016; 107 Yang, Leong, Du, Chua (bib113) 2001; 7 O'Brien (bib24) 2011; 14 Mohamed, Masood, Bhowmik (bib97) 2015; 3 Wu (10.1016/j.polymer.2021.123440_bib80) 2014; 18 Hinsch (10.1016/j.polymer.2021.123440_bib36) 1985 Zhang (10.1016/j.polymer.2021.123440_bib63) 2016; 6 Szymczyk-Ziółkowska (10.1016/j.polymer.2021.123440_bib15) 2020; 40 Wang (10.1016/j.polymer.2021.123440_bib32) 1998; 19 Spoerk (10.1016/j.polymer.2021.123440_bib85) 2017; 302 Kayal (10.1016/j.polymer.2021.123440_bib39) 2010; 30 Ostrowska (10.1016/j.polymer.2021.123440_bib114) 2016; 104 Bernard (10.1016/j.polymer.2021.123440_bib49) 2018; 6 Dhandayuthapani (10.1016/j.polymer.2021.123440_bib26) 2011; 2011 Freed (10.1016/j.polymer.2021.123440_bib25) 1994; 12 Sessini (10.1016/j.polymer.2021.123440_bib140) 2016; 8 O'Brien (10.1016/j.polymer.2021.123440_bib24) 2011; 14 Serra (10.1016/j.polymer.2021.123440_bib61) 2013; 9 Tyler (10.1016/j.polymer.2021.123440_bib66) 2016; 107 Lee (10.1016/j.polymer.2021.123440_bib119) 2019; 30 Liu (10.1016/j.polymer.2021.123440_bib19) 2017; 5 Boschetto (10.1016/j.polymer.2021.123440_bib87) 2012; 61 Karger-Kocsis (10.1016/j.polymer.2021.123440_bib139) 2014; 8 Lin (10.1016/j.polymer.2021.123440_bib47) 2009; 5 Yan (10.1016/j.polymer.2021.123440_bib2) 2018; 4 Shim (10.1016/j.polymer.2021.123440_bib52) 2017; 18 Wang (10.1016/j.polymer.2021.123440_bib90) 2019; 161 Feuser (10.1016/j.polymer.2021.123440_bib40) 2014; 343 Nässberger (10.1016/j.polymer.2021.123440_bib37) 1987; 45 Heidari-Rarani (10.1016/j.polymer.2021.123440_bib103) 2019; 175 Hashimoto (10.1016/j.polymer.2021.123440_bib33) 2003 Bosworth (10.1016/j.polymer.2021.123440_bib76) 2010; 95 Bignotti (10.1016/j.polymer.2021.123440_bib110) 2002; 180 Mathieu (10.1016/j.polymer.2021.123440_bib9) 2006; 27 Drummer (10.1016/j.polymer.2021.123440_bib78) 2012; 18 Lee (10.1016/j.polymer.2021.123440_bib44) 2012; 37 Shim (10.1016/j.polymer.2021.123440_bib109) 2010; 21 Jiang (10.1016/j.polymer.2021.123440_bib128) 2006; 18 Senatov (10.1016/j.polymer.2021.123440_bib153) 2017; 93 Zein (10.1016/j.polymer.2021.123440_bib106) 2002; 23 Ki (10.1016/j.polymer.2021.123440_bib124) 2008; 30 Wang (10.1016/j.polymer.2021.123440_bib82) 2007; 33 Li (10.1016/j.polymer.2021.123440_bib22) 2020; 63 Blaker (10.1016/j.polymer.2021.123440_bib59) 2003; 67A Tamai (10.1016/j.polymer.2021.123440_bib53) 2005; 13 Poomathi (10.1016/j.polymer.2021.123440_bib17) 2020; 26 Abdullah (10.1016/j.polymer.2021.123440_bib135) 2012; 41 Abe (10.1016/j.polymer.2021.123440_bib57) 2013; 2013 Hutmacher (10.1016/j.polymer.2021.123440_bib23) 2000 Madhavan Nampoothiri (10.1016/j.polymer.2021.123440_bib27) 2010; 101 Spoerk (10.1016/j.polymer.2021.123440_bib81) 2018; 303 Peng (10.1016/j.polymer.2021.123440_bib74) 2018; 18 10.1016/j.polymer.2021.123440_bib101 Chacón (10.1016/j.polymer.2021.123440_bib91) 2017; 124 Miao (10.1016/j.polymer.2021.123440_bib134) 2017; 20 Lai (10.1016/j.polymer.2021.123440_bib144) 2013; 20 Naghieh (10.1016/j.polymer.2021.123440_bib115) 2016; 59 Kumaresan (10.1016/j.polymer.2021.123440_bib50) 2016; 30 Santerre (10.1016/j.polymer.2021.123440_bib75) 2005; 26 Singh (10.1016/j.polymer.2021.123440_bib10) 2017; 25 Ceretti (10.1016/j.polymer.2021.123440_bib120) 2017; 65 Bikas (10.1016/j.polymer.2021.123440_bib11) 2016; 83 Vaes (10.1016/j.polymer.2021.123440_bib79) 2019; 9 Panayotov (10.1016/j.polymer.2021.123440_bib42) 2016; 27 Dogan (10.1016/j.polymer.2021.123440_bib143) 2017; 71 Cai (10.1016/j.polymer.2021.123440_bib150) 2017; 5 Huiskes (10.1016/j.polymer.2021.123440_bib3) 2000; 405 Wang (10.1016/j.polymer.2021.123440_bib65) 2016; 46 Chia (10.1016/j.polymer.2021.123440_bib105) 2015; 9 Wu (10.1016/j.polymer.2021.123440_bib73) 2004; 25 Alves (10.1016/j.polymer.2021.123440_bib30) 2012 Gupta (10.1016/j.polymer.2021.123440_bib20) 2018; 8 Kao (10.1016/j.polymer.2021.123440_bib64) 2015; 56 Kutikov (10.1016/j.polymer.2021.123440_bib147) 2014; 215 Chaidas (10.1016/j.polymer.2021.123440_bib89) 2016; 161 Wu (10.1016/j.polymer.2021.123440_bib131) 2019; 171 Ma (10.1016/j.polymer.2021.123440_bib7) 2012; 57 Toosi (10.1016/j.polymer.2021.123440_bib67) 2016; 104 Grasso (10.1016/j.polymer.2021.123440_bib104) 2018; 24 Duty (10.1016/j.polymer.2021.123440_bib14) 2018; 35 Park (10.1016/j.polymer.2021.123440_bib68) 2011; 34 Vaezi (10.1016/j.polymer.2021.123440_bib43) 2015; 10 Xue (10.1016/j.polymer.2021.123440_bib136) 2010; 31 Chen (10.1016/j.polymer.2021.123440_bib72) 2003; 24 Bernasconi (10.1016/j.polymer.2021.123440_bib100) 2015; 66 Wang (10.1016/j.polymer.2021.123440_bib54) 2004 Garzon-Hernandez (10.1016/j.polymer.2021.123440_bib96) 2020; 188 Altankov (10.1016/j.polymer.2021.123440_bib62) 1994; 5 Dong (10.1016/j.polymer.2021.123440_bib121) 2017; 7 Mironov (10.1016/j.polymer.2021.123440_bib108) 2017; 105 Yu (10.1016/j.polymer.2021.123440_bib130) 2009; 20 Behl (10.1016/j.polymer.2021.123440_bib133) 2007; 10 Sokolowski (10.1016/j.polymer.2021.123440_bib141) 2007; 2 Saini (10.1016/j.polymer.2021.123440_bib29) 2016; 107 Shahriar (10.1016/j.polymer.2021.123440_bib102) 2017 Meena (10.1016/j.polymer.2021.123440_bib45) 1999; 111 Boschetto (10.1016/j.polymer.2021.123440_bib88) 2013; 67 Shen (10.1016/j.polymer.2021.123440_bib148) 2012; 21 Marra (10.1016/j.polymer.2021.123440_bib8) 1999; 47 Gleadall (10.1016/j.polymer.2021.123440_bib16) 2018; 6 Esposito Corcione (10.1016/j.polymer.2021.123440_bib58) 2019; 45 Kuo (10.1016/j.polymer.2021.123440_bib12) 2016; 86 Koosomsuan (10.1016/j.polymer.2021.123440_bib151) 2019; 57 Singh (10.1016/j.polymer.2021.123440_bib38) 2012; 9 Sabahi (10.1016/j.polymer.2021.123440_bib21) 2020; 72 Senatov (10.1016/j.polymer.2021.123440_bib118) 2016; 57 Lee (10.1016/j.polymer.2021.123440_bib46) 2001; 221 Popescu (10.1016/j.polymer.2021.123440_bib93) 2018; 69 Small IV (10.1016/j.polymer.2021.123440_bib132) 2010; 20 Bonfield (10.1016/j.polymer.2021.123440_bib31) 1981; 2 Mendez (10.1016/j.polymer.2021.123440_bib125) 2011; 44 Casavola (10.1016/j.polymer.2021.123440_bib84) 2019; vol. 7 Sadat-Shojai (10.1016/j.polymer.2021.123440_bib5) 2013; 33 Xiao (10.1016/j.polymer.2021.123440_bib99) 2017; 2 Guo (10.1016/j.polymer.2021.123440_bib149) 2018; 33 Zhang (10.1016/j.polymer.2021.123440_bib146) 2009; 50 Lam (10.1016/j.polymer.2021.123440_bib51) 2007; 56 Mi (10.1016/j.polymer.2021.123440_bib142) 2017; 5 Ulery (10.1016/j.polymer.2021.123440_bib71) 2011; 49 Sun (10.1016/j.polymer.2021.123440_bib138) 2017; 55 Zheng (10.1016/j.polymer.2021.123440_bib145) 2006; 27 Rodrigues (10.1016/j.polymer.2021.123440_bib116) 2016; 49 Bellehumeur (10.1016/j.polymer.2021.123440_bib83) 2004; 6 Yen (10.1016/j.polymer.2021.123440_bib107) 2009; 11 Xiong (10.1016/j.polymer.2021.123440_bib123) 2002; 46 Galantucci (10.1016/j.polymer.2021.123440_bib13) 2009; 58 Mohamed (10.1016/j.polymer.2021.123440_bib97) 2015; 3 Speight (10.1016/j.polymer.2021.123440_bib69) 2011 Liu (10.1016/j.polymer.2021.123440_bib137) 2007; 17 Czaja (10.1016/j.polymer.2021.123440_bib48) 2007; 8 Singh (10.1016/j.polymer.2021.123440_bib98) 2020; 55 Bruyas (10.1016/j.polymer.2021.123440_bib55) 2018; 33 Xie (10.1016/j.polymer.2021.123440_bib127) 2016; 8 Peterson (10.1016/j.polymer.2021.123440_bib152) 2017; 6 Hendrikson (10.1016/j.polymer.2021.123440_bib154) 2017; 9 Jeong (10.1016/j.polymer.2021.123440_bib6) 2008; 8 Serra (10.1016/j.polymer.2021.123440_bib60) 2013; 9 Zhao (10.1016/j.polymer.2021.123440_bib28) 2004; 91 Lopes (10.1016/j.polymer.2021.123440_bib41) 2009; 5 Rodríguez-Panes (10.1016/j.polymer.2021.123440_bib92) 2018; 11 Yang (10.1016/j.polymer.2021.123440_bib113) 2001; 7 Han (10.1016/j.polymer.2021.123440_bib126) 2012; 33 Cao (10.1016/j.polymer.2021.123440_bib4) 2010; 46 (10.1016/j.polymer.2021.123440_bib1) 2012 Kochesfahani (10.1016/j.polymer.2021.123440_bib86) 2016 Garg (10.1016/j.polymer.2021.123440_bib77) 2016; 31 Chim (10.1016/j.polymer.2021.123440_bib122) 2006; 35 Park (10.1016/j.polymer.2021.123440_bib111) 2012; 23 Small IV (10.1016/j.polymer.2021.123440_bib129) 2005; 13 Tamay (10.1016/j.polymer.2021.123440_bib18) 2019; 7 Clayman (10.1016/j.polymer.2021.123440_bib35) 1981; 88 Shelton (10.1016/j.polymer.2021.123440_bib95) 2020; 81 Corcione (10.1016/j.polymer.2021.123440_bib117) 2017; 37 Chaair (10.1016/j.polymer.2021.123440_bib56) 2017; 101 Bružauskaitė (10.1016/j.polymer.2021.123440_bib112) 2016; 68 Sastri (10.1016/j.polymer.2021.123440_bib34) 2013 Faes (10.1016/j.polymer.2021.123440_bib94) 2016; 42 da Silva (10.1016/j.polymer.2021.123440_bib70) 2018; 340 |
References_xml | – volume: 46 start-page: 386 year: 2010 end-page: 395 ident: bib4 article-title: A biodegradable porous composite scaffold of PGA/β-TCP for bone tissue engineering publication-title: Bone – volume: 5 start-page: 356 year: 2009 end-page: 362 ident: bib41 article-title: New PMMA-co-EHA glass-filled composites for biomedical applications: mechanical properties and bioactivity publication-title: Acta Biomater. – volume: 10 start-page: 123 year: 2015 end-page: 135 ident: bib43 article-title: Extrusion-based additive manufacturing of PEEK for biomedical applications publication-title: Virtual Phys. Prototyp. – volume: 93 start-page: 222 year: 2017 end-page: 231 ident: bib153 article-title: Shape memory effect in 3D-printed scaffolds for self-fitting implants publication-title: Eur. Polym. J. – volume: 88 start-page: 959 year: 1981 end-page: 964 ident: bib35 publication-title: Polypropylene, Ophthalmology – volume: 14 start-page: 88 year: 2011 end-page: 95 ident: bib24 article-title: Biomaterials & scaffolds for tissue engineering publication-title: Mater. Today – volume: 37 start-page: 741 year: 2017 end-page: 746 ident: bib117 article-title: 3D printing of hydroxyapatite polymer-based composites for bone tissue engineering publication-title: J. Polym. Eng. – volume: 45 start-page: 286 year: 1987 end-page: 290 ident: bib37 article-title: Exposure of patients to phthalates from polyvinyl chloride tubes and bags during dialysis publication-title: Nephron – volume: 161 year: 2016 ident: bib89 article-title: The impact of temperature changing on surface roughness of FFF process publication-title: IOP Conf. Ser. Mater. Sci. Eng. – volume: 33 start-page: 1948 year: 2018 end-page: 1959 ident: bib55 article-title: Systematic characterization of 3D-printed PCL/β-TCP scaffolds for biomedical devices and bone tissue engineering: influence of composition and porosity publication-title: J. Mater. Res. – volume: 10 start-page: 20 year: 2007 end-page: 28 ident: bib133 article-title: Shape-memory polymers publication-title: Mater. Today – volume: 7 year: 2019 ident: bib18 article-title: 3D and 4D printing of polymers for tissue engineering applications publication-title: Front. Bioeng. Biotechnol. – volume: 46 start-page: 771 year: 2002 end-page: 776 ident: bib123 article-title: Fabrication of porous scaffolds for bone tissue engineering via low-temperature deposition publication-title: Scripta Mater. – volume: 12 start-page: 689 year: 1994 ident: bib25 article-title: Biodegradable polymer scaffolds for tissue engineering publication-title: Bio Technol. – volume: 9 year: 2017 ident: bib154 article-title: Towards 4D printed scaffolds for tissue engineering: exploiting 3D shape memory polymers to deliver time-controlled stimulus on cultured cells publication-title: Biofabrication – start-page: 1 year: 2004 end-page: 82 ident: bib54 article-title: Bioactive materials and processing publication-title: Biomater. Tissue Eng. – volume: 5 start-page: 286 year: 2017 end-page: 298 ident: bib19 article-title: Additive manufacturing techniques and their biomedical applications publication-title: Fam. Med. Community Health – volume: 24 start-page: 1167 year: 2003 end-page: 1173 ident: bib72 article-title: Preparation and characterization of biodegradable PLA polymeric blends publication-title: Biomaterials – volume: 55 start-page: 288 year: 2020 end-page: 306 ident: bib98 article-title: Current status and future directions of fused filament fabrication publication-title: J. Manuf. Process. – volume: 46 start-page: 256 year: 2016 end-page: 265 ident: bib65 article-title: Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration publication-title: Acta Biomater. – year: 2012 ident: bib1 publication-title: A. Standard, ISO/ASTM 52900: 2015 Additive manufacturing-General principles-terminology, ASTM F2792-10e1 – volume: 83 start-page: 389 year: 2016 end-page: 405 ident: bib11 article-title: Additive manufacturing methods and modelling approaches: a critical review publication-title: Int. J. Adv. Manuf. Technol. – volume: 20 start-page: 140 year: 2013 ident: bib144 article-title: Shape memory properties of melt-blended polylactic acid (PLA)/thermoplastic polyurethane (TPU) bio-based blends publication-title: J. Polym. Res. – volume: 35 start-page: 526 year: 2018 end-page: 537 ident: bib14 article-title: What makes a material printable? A viscoelastic model for extrusion-based 3D printing of polymers publication-title: J. Manuf. Process. – volume: 13 start-page: 405 year: 2005 end-page: 417 ident: bib53 article-title: A new biotechnology for articular cartilage repair: subchondral implantation of a composite of interconnected porous hydroxyapatite, synthetic polymer (PLA-PEG), and bone morphogenetic protein-2 (rhBMP-2) publication-title: Osteoarthritis Cartilage – volume: 9 start-page: 5521 year: 2013 end-page: 5530 ident: bib61 article-title: High-resolution PLA-based composite scaffolds via 3-D printing technology publication-title: Acta Biomater. – volume: 101 start-page: 8493 year: 2010 end-page: 8501 ident: bib27 article-title: An overview of the recent developments in polylactide (PLA) research, Bioresour publication-title: Technol. – volume: 37 start-page: 106 year: 2012 end-page: 126 ident: bib44 article-title: Alginate: properties and biomedical applications publication-title: Prog. Polym. Sci. – volume: 55 start-page: 1197 year: 2017 end-page: 1206 ident: bib138 article-title: Room temperature deformable shape memory composite with fine-tuned crystallization induced via nanoclay particles publication-title: J. Polym. Sci., Part B: Polym. Phys. – volume: 340 start-page: 9 year: 2018 end-page: 14 ident: bib70 article-title: Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems publication-title: Chem. Eng. J. – volume: 71 start-page: 349 year: 2017 end-page: 361 ident: bib143 article-title: Thermally induced shape memory behavior, enzymatic degradation and biocompatibility of PLA/TPU blends: “Effects of compatibilization publication-title: J. Mech. Behav. Biomed. Mater. – volume: 63 start-page: 545 year: 2020 end-page: 560 ident: bib22 article-title: 4D printed shape memory polymers and their structures for biomedical applications publication-title: Sci. China Technol. Sci. – volume: 2 start-page: S23 year: 2007 ident: bib141 article-title: Medical applications of shape memory polymers publication-title: Biomed. Mater. – volume: 6 start-page: 47418 year: 2016 end-page: 47426 ident: bib63 article-title: Tailor-made poly(L-lactide)/poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds prepared via high-pressure compression molding/salt leaching publication-title: RSC Adv. – volume: 20 start-page: 3356 year: 2010 end-page: 3366 ident: bib132 article-title: Biomedical applications of thermally activated shape memory polymers publication-title: J. Mater. Chem. – volume: 59 start-page: 241 year: 2016 end-page: 250 ident: bib115 article-title: Numerical investigation of the mechanical properties of the additive manufactured bone scaffolds fabricated by FDM: the effect of layer penetration and post-heating publication-title: J. Mech. Behav. Biomed. Mater. – volume: 23 start-page: 2671 year: 2012 end-page: 2678 ident: bib111 article-title: Scaffolds for bone tissue engineering fabricated from two different materials by the rapid prototyping technique: PCL versus PLGA publication-title: J. Mater. Sci. Mater. Med. – volume: 20 start-page: 577 year: 2017 end-page: 591 ident: bib134 article-title: 4D printing of polymeric materials for tissue and organ regeneration publication-title: Mater. Today – volume: 6 year: 2018 ident: bib16 article-title: Review of additive manufactured tissue engineering scaffolds: relationship between geometry and performance publication-title: Burns Trauma – volume: 11 start-page: 615 year: 2009 end-page: 624 ident: bib107 article-title: Evaluation of chondrocyte growth in the highly porous scaffolds made by fused deposition manufacturing (FDM) filled with type II collagen publication-title: Biomed. Microdevices – volume: 49 start-page: 33 year: 2016 end-page: 38 ident: bib116 article-title: Manufacture and characterisation of porous PLA scaffolds publication-title: Procedia CIRP – volume: 6 year: 2017 ident: bib152 article-title: Biodegradable shape memory polymers in medicine publication-title: Adv. Healthc. Mater. – volume: 6 start-page: 2025 year: 2018 end-page: 2053 ident: bib49 article-title: Biocompatibility of polymer-based biomaterials and medical devices – regulations, in vitro screening and risk-management publication-title: Biomater. Sci. – volume: 302 start-page: 1700143 year: 2017 ident: bib85 article-title: Shrinkage and warpage optimization of expanded-perlite-filled polypropylene composites in extrusion-based additive manufacturing publication-title: Macromol. Mater. Eng. – volume: 161 year: 2019 ident: bib90 article-title: Modeling of surface roughness based on heat transfer considering diffusion among deposition filaments for FDM 3D printing heat-resistant resin publication-title: Appl. Therm. Eng. – volume: 65 start-page: 13 year: 2017 end-page: 18 ident: bib120 article-title: Multi-layered scaffolds production via fused deposition modeling (FDM) using an open source 3D printer: process parameters optimization for dimensional accuracy and design reproducibility publication-title: Procedia CIRP – volume: 40 start-page: 624 year: 2020 end-page: 638 ident: bib15 article-title: A review of fabrication polymer scaffolds for biomedical applications using additive manufacturing techniques publication-title: Biocybern. Biomed. Eng. – volume: 66 start-page: 23 year: 2015 end-page: 35 ident: bib100 article-title: Electroless plating of PLA and PETG for 3D printed flexible substrates publication-title: ECS Trans – start-page: 499 year: 2011 end-page: 537 ident: bib69 article-title: Chapter 14 - monomers, polymers, and plastics publication-title: Handb. Ind. Hydrocarb. Process. – volume: 95 start-page: 2269 year: 2010 end-page: 2276 ident: bib76 article-title: Physicochemical characterisation of degrading polycaprolactone scaffolds publication-title: Polym. Degrad. Stabil. – volume: 104 start-page: 991 year: 2016 end-page: 1001 ident: bib114 article-title: Influence of internal pore architecture on biological and mechanical properties of three-dimensional fiber deposited scaffolds for bone regeneration publication-title: J. Biomed. Mater. Res. A. – volume: 57 start-page: 241 year: 2019 end-page: 256 ident: bib151 article-title: High-strain shape memory behavior of PLA–PEG multiblock copolymers and its microstructural origin publication-title: J. Polym. Sci., Part B: Polym. Phys. – volume: 27 start-page: 4288 year: 2006 end-page: 4295 ident: bib145 article-title: Shape memory properties of poly(d,l-lactide)/hydroxyapatite composites publication-title: Biomaterials – volume: 188 year: 2020 ident: bib96 article-title: Design of FDM 3D printed polymers: an experimental-modelling methodology for the prediction of mechanical properties publication-title: Mater. Des. – volume: 68 start-page: 355 year: 2016 end-page: 369 ident: bib112 article-title: Scaffolds and cells for tissue regeneration: different scaffold pore sizes—different cell effects publication-title: Cytotechnology – volume: 57 start-page: 139 year: 2016 end-page: 148 ident: bib118 article-title: Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds publication-title: J. Mech. Behav. Biomed. Mater. – volume: 5 start-page: 8845 year: 2017 end-page: 8853 ident: bib150 article-title: Toward the low actuation temperature of flexible shape memory polymer composites with room temperature deformability via induced plasticizing effect publication-title: J. Mater. Chem. B. – volume: 27 start-page: 118 year: 2016 ident: bib42 article-title: Polyetheretherketone (PEEK) for medical applications publication-title: J. Mater. Sci. Mater. Med. – volume: 405 start-page: 704 year: 2000 end-page: 706 ident: bib3 article-title: Effects of mechanical forces on maintenance and adaptation of form in trabecular bone publication-title: Nature – volume: 33 start-page: 1087 year: 2007 end-page: 1096 ident: bib82 article-title: A model research for prototype warp deformation in the FDM process publication-title: Int. J. Adv. Manuf. Technol. – volume: 171 year: 2019 ident: bib131 article-title: Four-dimensional printing of a novel acrylate-based shape memory polymer using digital light processing publication-title: Mater. Des. – volume: 13 start-page: 8204 year: 2005 end-page: 8213 ident: bib129 article-title: Laser-activated shape memory polymer intravascular thrombectomy device publication-title: Optic Express – volume: 8 year: 2016 ident: bib140 article-title: Multiresponsive shape memory blends and nanocomposites based on starch publication-title: ACS Appl. Mater. Interfaces – volume: 21 start-page: 317 year: 2012 end-page: 323 ident: bib148 article-title: Influence of blocked polyisocyanate on thermomechanical, shape memory and biodegradable properties of poly (lactic acid)/poly (ethylene glycol) blends, Iran publication-title: Polym. J. – volume: 8 start-page: 1 year: 2007 end-page: 12 ident: bib48 article-title: The future prospects of microbial cellulose in biomedical applications publication-title: Biomacromolecules – volume: 5 start-page: 732 year: 1994 end-page: 737 ident: bib62 article-title: Reorganization of substratum-bound fibronectin on hydrophilic and hydrophobic materials is related to biocompatibility publication-title: J. Mater. Sci. Mater. Med. – volume: 34 start-page: 505 year: 2011 end-page: 513 ident: bib68 article-title: Fabrication of porous polycaprolactone/hydroxyapatite (PCL/HA) blend scaffolds using a 3D plotting system for bone tissue engineering publication-title: Bioproc. Biosyst. Eng. – volume: 17 start-page: 1543 year: 2007 end-page: 1558 ident: bib137 article-title: Review of progress in shape-memory polymers publication-title: J. Mater. Chem. – volume: 49 start-page: 832 year: 2011 end-page: 864 ident: bib71 article-title: Biomedical applications of biodegradable polymers publication-title: J. Polym. Sci., Part B: Polym. Phys. – volume: 303 year: 2018 ident: bib81 article-title: Polypropylene filled with glass spheres in extrusion-based additive manufacturing: effect of filler size and printing chamber temperature publication-title: Macromol. Mater. Eng. – start-page: 175 year: 2000 end-page: 189 ident: bib23 article-title: Scaffolds in tissue engineering bone and cartilage publication-title: Biomater. Silver Jubil. Compend – volume: 107 start-page: 163 year: 2016 end-page: 175 ident: bib66 article-title: Polylactic acid (PLA) controlled delivery carriers for biomedical applications publication-title: Adv. Drug Deliv. Rev. – start-page: 1598 year: 2016 end-page: 1614 ident: bib86 article-title: Improving PLA-based material for FDM 3D-printers using minerals (principles and method development) publication-title: SPE ANTEC Indianap – volume: 25 start-page: 185 year: 2017 end-page: 200 ident: bib10 article-title: Material issues in additive manufacturing: a review publication-title: J. Manuf. Process. – volume: 104 start-page: 2020 year: 2016 end-page: 2028 ident: bib67 article-title: PGA-incorporated collagen: toward a biodegradable composite scaffold for bone-tissue engineering publication-title: J. Biomed. Mater. Res. A. – volume: 56 start-page: 718 year: 2007 end-page: 728 ident: bib51 article-title: Comparison of the degradation of polycaprolactone and polycaprolactone–(β-tricalcium phosphate) scaffolds in alkaline medium publication-title: Polym. Int. – volume: 105 start-page: 104 year: 2017 end-page: 109 ident: bib108 article-title: 3D printing of PLGA scaffolds for tissue engineering publication-title: J. Biomed. Mater. Res. A. – volume: 111 start-page: 319 year: 1999 end-page: 329 ident: bib45 article-title: Biomedical and industrial applications of collagen publication-title: Proc. Indian Acad. Sci. Chem. Sci. – volume: 30 start-page: 405 year: 2008 end-page: 410 ident: bib124 article-title: Development of 3-D nanofibrous fibroin scaffold with high porosity by electrospinning: implications for bone regeneration publication-title: Biotechnol. Lett. – volume: 107 start-page: 47 year: 2016 end-page: 59 ident: bib29 article-title: Poly(lactic acid) blends in biomedical applications publication-title: Adv. Drug Deliv. Rev. – volume: 45 start-page: 2803 year: 2019 end-page: 2810 ident: bib58 article-title: Highly loaded hydroxyapatite microsphere/PLA porous scaffolds obtained by fused deposition modelling publication-title: Ceram. Int. – volume: 20 start-page: 235702 year: 2009 ident: bib130 article-title: A biodegradable shape-memory nanocomposite with excellent magnetism sensitivity publication-title: Nanotechnology – volume: 19 start-page: 2357 year: 1998 end-page: 2366 ident: bib32 article-title: Hydroxyapatite-polyethylene composites for bone substitution: effects of ceramic particle size and morphology publication-title: Biomaterials – volume: 26 start-page: 1313 year: 2020 end-page: 1334 ident: bib17 article-title: 3D printing in tissue engineering: a state of the art review of technologies and biomaterials publication-title: Rapid Prototyp. J. – volume: 25 start-page: 5821 year: 2004 end-page: 5830 ident: bib73 article-title: In vitro degradation of three-dimensional porous poly(d,l-lactide-co-glycolide) scaffolds for tissue engineering publication-title: Biomaterials – volume: vol. 7 start-page: 87 year: 2019 end-page: 92 ident: bib84 article-title: The effect of chamber temperature on residual stresses of FDM parts publication-title: Residual Stress Thermomechanics Infrared Imaging Hybrid Tech. Inverse Probl – volume: 5 start-page: 2591 year: 2009 end-page: 2600 ident: bib47 article-title: Synthesis and characterization of collagen/hyaluronan/chitosan composite sponges for potential biomedical applications publication-title: Acta Biomater. – volume: 91 start-page: 2143 year: 2004 end-page: 2150 ident: bib28 article-title: Direct synthesis of poly(D,L-lactic acid) by melt polycondensation and its application in drug delivery publication-title: J. Appl. Polym. Sci. – volume: 30 start-page: 5305 year: 2016 end-page: 5312 ident: bib50 article-title: Design, analysis and fabrication of polyamide/hydroxyapatite porous structured scaffold using selective laser sintering method for bio-medical applications publication-title: J. Mech. Sci. Technol. – volume: 8 start-page: 868 year: 2018 end-page: 883 ident: bib20 article-title: A review on 3D printable techniques for tissue engineering publication-title: BioNanoScience – volume: 101 start-page: 120 year: 2017 end-page: 124 ident: bib56 article-title: Synthesis of β-tricalcium phosphate publication-title: Morphologie – volume: 180 start-page: 257 year: 2002 end-page: 266 ident: bib110 article-title: Thermal degradation of two classes of block copolymers based on poly(lactic-glycolic acid) and poly(ε-caprolactone) or poly(ethylene glycol) publication-title: Macromol. Symp. – volume: 58 start-page: 189 year: 2009 end-page: 192 ident: bib13 article-title: Experimental study aiming to enhance the surface finish of fused deposition modeled parts publication-title: CIRP Ann – volume: 18 start-page: S5 year: 2014 end-page: S12 ident: bib80 article-title: Manufacture and thermal deformation analysis of semicrystalline polymer polyether ether ketone by 3D printing publication-title: Mater. Res. Innovat. – volume: 23 start-page: 1169 year: 2002 end-page: 1185 ident: bib106 article-title: Fused deposition modeling of novel scaffold architectures for tissue engineering applications publication-title: Biomaterials – year: 2017 ident: bib102 article-title: Toward improvement of the properties of parts manufactured by FFF (fused filament fabrication) through understanding the influence of temperature and rheological behaviour on the coalescence phenomenon publication-title: AIP Conf. Proc – volume: 67 start-page: 2727 year: 2013 end-page: 2742 ident: bib88 article-title: Surface roughness prediction in fused deposition modelling by neural networks publication-title: Int. J. Adv. Manuf. Technol. – volume: 18 start-page: 1471 year: 2006 end-page: 1475 ident: bib128 article-title: Polymers move in response to light publication-title: Adv. Mater. – volume: 57 start-page: 3051 year: 2012 end-page: 3058 ident: bib7 article-title: Preparation and cytocompatibility of polylactic acid/hydroxyapatite/graphene oxide nanocomposite fibrous membrane publication-title: Chin. Sci. Bull. – volume: 9 start-page: 9 year: 2012 end-page: 21 ident: bib38 article-title: Sterculia crosslinked PVA and PVA-poly(AAm) hydrogel wound dressings for slow drug delivery: mechanical, mucoadhesive, biocompatible and permeability properties publication-title: J. Mech. Behav. Biomed. Mater. – volume: 81 year: 2020 ident: bib95 article-title: Effects of thermal process parameters on mechanical interlayer strength for additively manufactured Ultem 9085 publication-title: Polym. Test. – volume: 33 start-page: 1055 year: 2012 end-page: 1060 ident: bib126 article-title: pH-induced shape-memory polymers publication-title: Macromol. Rapid Commun. – volume: 215 start-page: 2482 year: 2014 end-page: 2490 ident: bib147 article-title: Shape-memory performance of thermoplastic amphiphilic triblock copolymer poly(d,l-lactic acid-co-ethylene glycol-co-d,l-lactic acid) (PELA)/Hydroxyapatite composites publication-title: Macromol. Chem. Phys. – start-page: 1 year: 2012 end-page: 25 ident: bib30 article-title: Biomedical polyurethane-based materials publication-title: Polyurethane Prop. Struct. Appl. N. Y. Nova Publ – volume: 7 start-page: 679 year: 2001 end-page: 689 ident: bib113 article-title: The design of scaffolds for use in tissue engineering. Part I. Traditional factors publication-title: Tissue Eng. – volume: 41 start-page: 1641 year: 2012 end-page: 1646 ident: bib135 article-title: Determination of shape fixity and shape recovery rate of carbon nanotube-filled shape memory polymer nanocomposites publication-title: Procedia Eng – year: 2013 ident: bib34 article-title: Plastics in Medical Devices: Properties, Requirements, and Applications – volume: 44 start-page: 6827 year: 2011 end-page: 6835 ident: bib125 article-title: Bioinspired mechanically adaptive polymer nanocomposites with water-activated shape-memory effect publication-title: Macromolecules – volume: 8 start-page: 328 year: 2008 end-page: 338 ident: bib6 article-title: Nanofibrous poly(lactic acid)/hydroxyapatite composite scaffolds for guided tissue regeneration publication-title: Macromol. Biosci. – volume: 86 start-page: 36 year: 2016 end-page: 39 ident: bib12 article-title: Preparation of starch/acrylonitrile-butadiene-styrene copolymers (ABS) biomass alloys and their feasible evaluation for 3D printing applications publication-title: Compos. B Eng. – volume: 9 start-page: 239 year: 2013 end-page: 244 ident: bib60 article-title: 3D printed PLA-based scaffolds publication-title: Organogenesis – volume: 33 start-page: 4101 year: 2018 end-page: 4112 ident: bib149 article-title: The effect of plasticizer on the shape memory properties of poly(lactide acid)/poly(ethylene glycol) blends publication-title: J. Mater. Res. – volume: 61 start-page: 945 year: 2012 end-page: 956 ident: bib87 article-title: Modelling micro geometrical profiles in fused deposition process publication-title: Int. J. Adv. Manuf. Technol. – volume: 3 start-page: 42 year: 2015 end-page: 53 ident: bib97 article-title: Optimization of fused deposition modeling process parameters: a review of current research and future prospects publication-title: Adv. Manuf. – volume: 221 start-page: 1 year: 2001 end-page: 22 ident: bib46 article-title: Biomedical applications of collagen publication-title: Int. J. Pharm. – volume: 18 start-page: 500 year: 2012 end-page: 507 ident: bib78 article-title: Suitability of PLA/TCP for fused deposition modeling publication-title: Rapid Prototyp. J. – volume: 67A start-page: 1401 year: 2003 end-page: 1411 ident: bib59 article-title: In vitro evaluation of novel bioactive composites based on Bioglass®-filled polylactide foams for bone tissue engineering scaffolds publication-title: J. Biomed. Mater. Res. A. – start-page: 415 year: 2003 end-page: 418 ident: bib33 article-title: Titanium dioxide/ultra high molecular weight polyethylene composite for bone-repairing applications: preparation and biocompatibility publication-title: Key Eng. Mater – volume: 24 start-page: 1337 year: 2018 end-page: 1346 ident: bib104 article-title: Effect of temperature on the mechanical properties of 3D-printed PLA tensile specimens publication-title: Rapid Prototyp. J. – volume: 8 start-page: 397 year: 2014 end-page: 412 ident: bib139 article-title: Biodegradable polyester-based shape memory polymers: concepts of (supra) molecular architecturing publication-title: Express Polym. Lett. – volume: 50 start-page: 1311 year: 2009 end-page: 1315 ident: bib146 article-title: Surprising shape-memory effect of polylactide resulted from toughening by polyamide elastomer publication-title: Polymer – volume: 2013 year: 2013 ident: bib57 article-title: Bioactive surface modification of hydroxyapatite publication-title: BioMed Res. Int. – volume: 2 start-page: 185 year: 1981 end-page: 186 ident: bib31 article-title: Hydroxyapatite reinforced polyethylene–a mechanically compatible implant material for bone replacement publication-title: Biomaterials – volume: 8 start-page: 9431 year: 2016 end-page: 9439 ident: bib127 article-title: Design of poly(l-lactide)–poly(ethylene glycol) copolymer with light-induced shape-memory effect triggered by pendant anthracene groups publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 1333 year: 2018 ident: bib92 article-title: The influence of manufacturing parameters on the mechanical behaviour of PLA and ABS pieces manufactured by FDM: a comparative analysis publication-title: Materials – volume: 124 start-page: 143 year: 2017 end-page: 157 ident: bib91 article-title: Additive manufacturing of PLA structures using fused deposition modelling: effect of process parameters on mechanical properties and their optimal selection publication-title: Mater. Des. – volume: 2011 year: 2011 ident: bib26 article-title: Polymeric scaffolds in tissue engineering application: a review publication-title: Int. J. Polym. Sci. – volume: 30 start-page: 484 year: 2010 end-page: 490 ident: bib39 article-title: Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery publication-title: Mater. Sci. Eng. C – volume: 27 start-page: 905 year: 2006 end-page: 916 ident: bib9 article-title: Architecture and properties of anisotropic polymer composite scaffolds for bone tissue engineering publication-title: Biomaterials – volume: 69 start-page: 157 year: 2018 end-page: 166 ident: bib93 article-title: FDM process parameters influence over the mechanical properties of polymer specimens: a review publication-title: Polym. Test. – volume: 343 start-page: 65 year: 2014 end-page: 69 ident: bib40 article-title: Synthesis and characterization of poly(methyl methacrylate) PMMA and evaluation of cytotoxicity for biomedical application publication-title: Macromol. Symp. – volume: 4 start-page: 729 year: 2018 end-page: 742 ident: bib2 article-title: A review of 3D printing technology for medical applications publication-title: Engineering – volume: 5 start-page: 4137 year: 2017 end-page: 4151 ident: bib142 article-title: Biocompatible, degradable thermoplastic polyurethane based on polycaprolactone-block-polytetrahydrofuran-block-polycaprolactone copolymers for soft tissue engineering publication-title: J. Mater. Chem. B. – volume: 21 start-page: 1069 year: 2010 end-page: 1080 ident: bib109 article-title: Effect of thermal degradation of SFF-based PLGA scaffolds fabricated using a multi-head deposition system followed by change of cell growth rate publication-title: J. Biomater. Sci. Polym. Ed. – volume: 9 start-page: 2676 year: 2019 ident: bib79 article-title: Assessment of crystallinity development during fused filament fabrication through fast scanning chip calorimetry publication-title: Appl. Sci. – volume: 33 start-page: 2776 year: 2013 end-page: 2787 ident: bib5 article-title: Nano-hydroxyapatite reinforced polyhydroxybutyrate composites: a comprehensive study on the structural and in vitro biological properties publication-title: Mater. Sci. Eng. C – volume: 31 start-page: 522 year: 2016 end-page: 529 ident: bib77 article-title: On surface finish and dimensional accuracy of FDM parts after cold vapor treatment publication-title: Mater. Manuf. Process. – volume: 26 start-page: 7457 year: 2005 end-page: 7470 ident: bib75 article-title: Understanding the biodegradation of polyurethanes: from classical implants to tissue engineering materials publication-title: Biomaterials – volume: 9 start-page: 4 year: 2015 ident: bib105 article-title: Recent advances in 3D printing of biomaterials publication-title: J. Biol. Eng. – volume: 35 start-page: 928 year: 2006 end-page: 934 ident: bib122 article-title: A comparative analysis of scaffold material modifications for load-bearing applications in bone tissue engineering publication-title: Int. J. Oral Maxillofac. Surg. – volume: 175 year: 2019 ident: bib103 article-title: Mechanical characterization of FDM 3D printing of continuous carbon fiber reinforced PLA composites publication-title: Compos. B Eng. – volume: 2 start-page: 117 year: 2017 end-page: 123 ident: bib99 article-title: The manufacture of 3D printing of medical grade TPU publication-title: Prog. Addit. Manuf. – volume: 18 start-page: 899 year: 2017 ident: bib52 article-title: Effects of 3D-printed polycaprolactone/β-tricalcium phosphate membranes on guided bone regeneration publication-title: Int. J. Mol. Sci. – reference: R. Chen, A. Ramachandran, C. Liu, F.-K. Chang, D. Senesky, Tsai-Wu Analysis of a Thin-Walled 3D-Printed Polylactic Acid (PLA) Structural Bracket, in: 58th AIAAASCEAHSASC Struct. Struct. Dyn. Mater. Conf., American Institute of Aeronautics and Astronautics, n.d. – volume: 30 year: 2019 ident: bib119 article-title: Fabrication of poly(lactic acid)/Ti composite scaffolds with enhanced mechanical properties and biocompatibility via fused filament fabrication (FFF)–based 3D printing publication-title: Addit. Manuf. – reference: . – volume: 47 start-page: 324 year: 1999 end-page: 335 ident: bib8 article-title: In vitro analysis of biodegradable polymer blend/hydroxyapatite composites for bone tissue engineering publication-title: J. Biomed. Mater. Res. – volume: 7 start-page: 1 year: 2017 end-page: 9 ident: bib121 article-title: 3D- printed poly(ε-caprolactone) scaffold integrated with cell-laden chitosan hydrogels for bone tissue engineering publication-title: Sci. Rep. – year: 1985 ident: bib36 article-title: Surgical Filament from Polypropylene Blended with Polyethylene – volume: 6 start-page: 170 year: 2004 end-page: 178 ident: bib83 article-title: Modeling of bond formation between polymer filaments in the fused deposition modeling process publication-title: J. Manuf. Process. – volume: 31 start-page: 8132 year: 2010 end-page: 8140 ident: bib136 article-title: Biodegradable shape-memory block co-polymers for fast self-expandable stents publication-title: Biomaterials – volume: 42 start-page: 748 year: 2016 end-page: 753 ident: bib94 article-title: Influence of inter-layer cooling time on the quasi-static properties of ABS components produced via fused deposition modelling publication-title: Procedia CIRP – volume: 56 start-page: 165 year: 2015 end-page: 173 ident: bib64 article-title: Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering publication-title: Mater. Sci. Eng. C – volume: 18 start-page: 1335 year: 2018 end-page: 1344 ident: bib74 article-title: Response of hPDLSCs on 3D printed PCL/PLGA composite scaffolds in vitro publication-title: Mol. Med. Rep. – volume: 72 start-page: 1229 year: 2020 end-page: 1253 ident: bib21 article-title: A review on additive manufacturing of shape-memory materials for biomedical applications publication-title: JOM – volume: 34 start-page: 505 year: 2011 ident: 10.1016/j.polymer.2021.123440_bib68 article-title: Fabrication of porous polycaprolactone/hydroxyapatite (PCL/HA) blend scaffolds using a 3D plotting system for bone tissue engineering publication-title: Bioproc. Biosyst. Eng. doi: 10.1007/s00449-010-0499-2 – volume: 13 start-page: 405 year: 2005 ident: 10.1016/j.polymer.2021.123440_bib53 article-title: A new biotechnology for articular cartilage repair: subchondral implantation of a composite of interconnected porous hydroxyapatite, synthetic polymer (PLA-PEG), and bone morphogenetic protein-2 (rhBMP-2) publication-title: Osteoarthritis Cartilage doi: 10.1016/j.joca.2004.12.014 – volume: 27 start-page: 118 year: 2016 ident: 10.1016/j.polymer.2021.123440_bib42 article-title: Polyetheretherketone (PEEK) for medical applications publication-title: J. Mater. Sci. Mater. Med. doi: 10.1007/s10856-016-5731-4 – volume: 31 start-page: 522 year: 2016 ident: 10.1016/j.polymer.2021.123440_bib77 article-title: On surface finish and dimensional accuracy of FDM parts after cold vapor treatment publication-title: Mater. Manuf. Process. doi: 10.1080/10426914.2015.1070425 – volume: 40 start-page: 624 year: 2020 ident: 10.1016/j.polymer.2021.123440_bib15 article-title: A review of fabrication polymer scaffolds for biomedical applications using additive manufacturing techniques publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2020.01.015 – volume: 33 start-page: 1948 year: 2018 ident: 10.1016/j.polymer.2021.123440_bib55 article-title: Systematic characterization of 3D-printed PCL/β-TCP scaffolds for biomedical devices and bone tissue engineering: influence of composition and porosity publication-title: J. Mater. Res. doi: 10.1557/jmr.2018.112 – volume: 46 start-page: 256 year: 2016 ident: 10.1016/j.polymer.2021.123440_bib65 article-title: Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration publication-title: Acta Biomater. doi: 10.1016/j.actbio.2016.09.030 – volume: 101 start-page: 120 year: 2017 ident: 10.1016/j.polymer.2021.123440_bib56 article-title: Synthesis of β-tricalcium phosphate publication-title: Morphologie doi: 10.1016/j.morpho.2017.06.002 – volume: 24 start-page: 1167 year: 2003 ident: 10.1016/j.polymer.2021.123440_bib72 article-title: Preparation and characterization of biodegradable PLA polymeric blends publication-title: Biomaterials doi: 10.1016/S0142-9612(02)00466-0 – volume: 30 start-page: 484 year: 2010 ident: 10.1016/j.polymer.2021.123440_bib39 article-title: Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2010.01.006 – volume: 18 start-page: 500 year: 2012 ident: 10.1016/j.polymer.2021.123440_bib78 article-title: Suitability of PLA/TCP for fused deposition modeling publication-title: Rapid Prototyp. J. doi: 10.1108/13552541211272045 – volume: 5 start-page: 732 year: 1994 ident: 10.1016/j.polymer.2021.123440_bib62 article-title: Reorganization of substratum-bound fibronectin on hydrophilic and hydrophobic materials is related to biocompatibility publication-title: J. Mater. Sci. Mater. Med. doi: 10.1007/BF00120366 – volume: 45 start-page: 2803 year: 2019 ident: 10.1016/j.polymer.2021.123440_bib58 article-title: Highly loaded hydroxyapatite microsphere/PLA porous scaffolds obtained by fused deposition modelling publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2018.07.297 – volume: 18 start-page: 1335 year: 2018 ident: 10.1016/j.polymer.2021.123440_bib74 article-title: Response of hPDLSCs on 3D printed PCL/PLGA composite scaffolds in vitro publication-title: Mol. Med. Rep. – volume: 55 start-page: 288 year: 2020 ident: 10.1016/j.polymer.2021.123440_bib98 article-title: Current status and future directions of fused filament fabrication publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2020.04.049 – volume: 6 year: 2018 ident: 10.1016/j.polymer.2021.123440_bib16 article-title: Review of additive manufactured tissue engineering scaffolds: relationship between geometry and performance publication-title: Burns Trauma doi: 10.1186/s41038-018-0121-4 – volume: 5 start-page: 4137 year: 2017 ident: 10.1016/j.polymer.2021.123440_bib142 article-title: Biocompatible, degradable thermoplastic polyurethane based on polycaprolactone-block-polytetrahydrofuran-block-polycaprolactone copolymers for soft tissue engineering publication-title: J. Mater. Chem. B. doi: 10.1039/C7TB00419B – volume: 161 year: 2019 ident: 10.1016/j.polymer.2021.123440_bib90 article-title: Modeling of surface roughness based on heat transfer considering diffusion among deposition filaments for FDM 3D printing heat-resistant resin publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.114064 – volume: 6 start-page: 170 year: 2004 ident: 10.1016/j.polymer.2021.123440_bib83 article-title: Modeling of bond formation between polymer filaments in the fused deposition modeling process publication-title: J. Manuf. Process. doi: 10.1016/S1526-6125(04)70071-7 – volume: 303 year: 2018 ident: 10.1016/j.polymer.2021.123440_bib81 article-title: Polypropylene filled with glass spheres in extrusion-based additive manufacturing: effect of filler size and printing chamber temperature publication-title: Macromol. Mater. Eng. doi: 10.1002/mame.201800179 – volume: 7 start-page: 1 year: 2017 ident: 10.1016/j.polymer.2021.123440_bib121 article-title: 3D- printed poly(ε-caprolactone) scaffold integrated with cell-laden chitosan hydrogels for bone tissue engineering publication-title: Sci. Rep. doi: 10.1038/s41598-017-13838-7 – volume: 57 start-page: 3051 year: 2012 ident: 10.1016/j.polymer.2021.123440_bib7 article-title: Preparation and cytocompatibility of polylactic acid/hydroxyapatite/graphene oxide nanocomposite fibrous membrane publication-title: Chin. Sci. Bull. doi: 10.1007/s11434-012-5336-3 – volume: 124 start-page: 143 year: 2017 ident: 10.1016/j.polymer.2021.123440_bib91 article-title: Additive manufacturing of PLA structures using fused deposition modelling: effect of process parameters on mechanical properties and their optimal selection publication-title: Mater. Des. doi: 10.1016/j.matdes.2017.03.065 – volume: 20 start-page: 577 year: 2017 ident: 10.1016/j.polymer.2021.123440_bib134 article-title: 4D printing of polymeric materials for tissue and organ regeneration publication-title: Mater. Today doi: 10.1016/j.mattod.2017.06.005 – volume: 6 start-page: 2025 year: 2018 ident: 10.1016/j.polymer.2021.123440_bib49 article-title: Biocompatibility of polymer-based biomaterials and medical devices – regulations, in vitro screening and risk-management publication-title: Biomater. Sci. doi: 10.1039/C8BM00518D – ident: 10.1016/j.polymer.2021.123440_bib101 doi: 10.2514/6.2017-0567 – volume: 10 start-page: 123 year: 2015 ident: 10.1016/j.polymer.2021.123440_bib43 article-title: Extrusion-based additive manufacturing of PEEK for biomedical applications publication-title: Virtual Phys. Prototyp. doi: 10.1080/17452759.2015.1097053 – volume: 9 start-page: 4 year: 2015 ident: 10.1016/j.polymer.2021.123440_bib105 article-title: Recent advances in 3D printing of biomaterials publication-title: J. Biol. Eng. doi: 10.1186/s13036-015-0001-4 – volume: 33 start-page: 1055 year: 2012 ident: 10.1016/j.polymer.2021.123440_bib126 article-title: pH-induced shape-memory polymers publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.201200153 – volume: 105 start-page: 104 year: 2017 ident: 10.1016/j.polymer.2021.123440_bib108 article-title: 3D printing of PLGA scaffolds for tissue engineering publication-title: J. Biomed. Mater. Res. A. doi: 10.1002/jbm.a.35871 – volume: 91 start-page: 2143 year: 2004 ident: 10.1016/j.polymer.2021.123440_bib28 article-title: Direct synthesis of poly(D,L-lactic acid) by melt polycondensation and its application in drug delivery publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.13354 – volume: 33 start-page: 2776 year: 2013 ident: 10.1016/j.polymer.2021.123440_bib5 article-title: Nano-hydroxyapatite reinforced polyhydroxybutyrate composites: a comprehensive study on the structural and in vitro biological properties publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2013.02.041 – volume: 26 start-page: 1313 year: 2020 ident: 10.1016/j.polymer.2021.123440_bib17 article-title: 3D printing in tissue engineering: a state of the art review of technologies and biomaterials publication-title: Rapid Prototyp. J. doi: 10.1108/RPJ-08-2018-0217 – volume: 42 start-page: 748 year: 2016 ident: 10.1016/j.polymer.2021.123440_bib94 article-title: Influence of inter-layer cooling time on the quasi-static properties of ABS components produced via fused deposition modelling publication-title: Procedia CIRP doi: 10.1016/j.procir.2016.02.313 – volume: 9 start-page: 9 year: 2012 ident: 10.1016/j.polymer.2021.123440_bib38 article-title: Sterculia crosslinked PVA and PVA-poly(AAm) hydrogel wound dressings for slow drug delivery: mechanical, mucoadhesive, biocompatible and permeability properties publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2012.01.021 – volume: 59 start-page: 241 year: 2016 ident: 10.1016/j.polymer.2021.123440_bib115 article-title: Numerical investigation of the mechanical properties of the additive manufactured bone scaffolds fabricated by FDM: the effect of layer penetration and post-heating publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2016.01.031 – volume: 11 start-page: 1333 year: 2018 ident: 10.1016/j.polymer.2021.123440_bib92 article-title: The influence of manufacturing parameters on the mechanical behaviour of PLA and ABS pieces manufactured by FDM: a comparative analysis publication-title: Materials doi: 10.3390/ma11081333 – volume: 111 start-page: 319 year: 1999 ident: 10.1016/j.polymer.2021.123440_bib45 article-title: Biomedical and industrial applications of collagen publication-title: Proc. Indian Acad. Sci. Chem. Sci. doi: 10.1007/BF02871912 – volume: 161 year: 2016 ident: 10.1016/j.polymer.2021.123440_bib89 article-title: The impact of temperature changing on surface roughness of FFF process publication-title: IOP Conf. Ser. Mater. Sci. Eng. doi: 10.1088/1757-899X/161/1/012033 – volume: 33 start-page: 4101 year: 2018 ident: 10.1016/j.polymer.2021.123440_bib149 article-title: The effect of plasticizer on the shape memory properties of poly(lactide acid)/poly(ethylene glycol) blends publication-title: J. Mater. Res. doi: 10.1557/jmr.2018.359 – volume: 8 start-page: 397 year: 2014 ident: 10.1016/j.polymer.2021.123440_bib139 article-title: Biodegradable polyester-based shape memory polymers: concepts of (supra) molecular architecturing publication-title: Express Polym. Lett. doi: 10.3144/expresspolymlett.2014.44 – year: 2013 ident: 10.1016/j.polymer.2021.123440_bib34 – year: 2017 ident: 10.1016/j.polymer.2021.123440_bib102 article-title: Toward improvement of the properties of parts manufactured by FFF (fused filament fabrication) through understanding the influence of temperature and rheological behaviour on the coalescence phenomenon doi: 10.1063/1.5008034 – volume: 20 start-page: 235702 year: 2009 ident: 10.1016/j.polymer.2021.123440_bib130 article-title: A biodegradable shape-memory nanocomposite with excellent magnetism sensitivity publication-title: Nanotechnology doi: 10.1088/0957-4484/20/23/235702 – volume: 25 start-page: 5821 year: 2004 ident: 10.1016/j.polymer.2021.123440_bib73 article-title: In vitro degradation of three-dimensional porous poly(d,l-lactide-co-glycolide) scaffolds for tissue engineering publication-title: Biomaterials doi: 10.1016/j.biomaterials.2004.01.038 – volume: 2 start-page: 117 year: 2017 ident: 10.1016/j.polymer.2021.123440_bib99 article-title: The manufacture of 3D printing of medical grade TPU publication-title: Prog. Addit. Manuf. doi: 10.1007/s40964-017-0023-1 – volume: 56 start-page: 165 year: 2015 ident: 10.1016/j.polymer.2021.123440_bib64 article-title: Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2015.06.028 – volume: 95 start-page: 2269 year: 2010 ident: 10.1016/j.polymer.2021.123440_bib76 article-title: Physicochemical characterisation of degrading polycaprolactone scaffolds publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2010.09.007 – volume: 340 start-page: 9 year: 2018 ident: 10.1016/j.polymer.2021.123440_bib70 article-title: Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.01.010 – volume: 11 start-page: 615 year: 2009 ident: 10.1016/j.polymer.2021.123440_bib107 article-title: Evaluation of chondrocyte growth in the highly porous scaffolds made by fused deposition manufacturing (FDM) filled with type II collagen publication-title: Biomed. Microdevices doi: 10.1007/s10544-008-9271-7 – year: 2012 ident: 10.1016/j.polymer.2021.123440_bib1 – volume: 93 start-page: 222 year: 2017 ident: 10.1016/j.polymer.2021.123440_bib153 article-title: Shape memory effect in 3D-printed scaffolds for self-fitting implants publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2017.06.011 – volume: 14 start-page: 88 year: 2011 ident: 10.1016/j.polymer.2021.123440_bib24 article-title: Biomaterials & scaffolds for tissue engineering publication-title: Mater. Today doi: 10.1016/S1369-7021(11)70058-X – volume: 31 start-page: 8132 year: 2010 ident: 10.1016/j.polymer.2021.123440_bib136 article-title: Biodegradable shape-memory block co-polymers for fast self-expandable stents publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.07.043 – volume: 23 start-page: 2671 year: 2012 ident: 10.1016/j.polymer.2021.123440_bib111 article-title: Scaffolds for bone tissue engineering fabricated from two different materials by the rapid prototyping technique: PCL versus PLGA publication-title: J. Mater. Sci. Mater. Med. doi: 10.1007/s10856-012-4738-8 – start-page: 175 year: 2000 ident: 10.1016/j.polymer.2021.123440_bib23 article-title: Scaffolds in tissue engineering bone and cartilage – volume: 50 start-page: 1311 year: 2009 ident: 10.1016/j.polymer.2021.123440_bib146 article-title: Surprising shape-memory effect of polylactide resulted from toughening by polyamide elastomer publication-title: Polymer doi: 10.1016/j.polymer.2009.01.032 – volume: 104 start-page: 991 year: 2016 ident: 10.1016/j.polymer.2021.123440_bib114 article-title: Influence of internal pore architecture on biological and mechanical properties of three-dimensional fiber deposited scaffolds for bone regeneration publication-title: J. Biomed. Mater. Res. A. doi: 10.1002/jbm.a.35637 – volume: 9 start-page: 2676 year: 2019 ident: 10.1016/j.polymer.2021.123440_bib79 article-title: Assessment of crystallinity development during fused filament fabrication through fast scanning chip calorimetry publication-title: Appl. Sci. doi: 10.3390/app9132676 – volume: 8 start-page: 868 year: 2018 ident: 10.1016/j.polymer.2021.123440_bib20 article-title: A review on 3D printable techniques for tissue engineering publication-title: BioNanoScience doi: 10.1007/s12668-018-0525-4 – volume: 221 start-page: 1 year: 2001 ident: 10.1016/j.polymer.2021.123440_bib46 article-title: Biomedical applications of collagen publication-title: Int. J. Pharm. doi: 10.1016/S0378-5173(01)00691-3 – volume: 45 start-page: 286 year: 1987 ident: 10.1016/j.polymer.2021.123440_bib37 article-title: Exposure of patients to phthalates from polyvinyl chloride tubes and bags during dialysis publication-title: Nephron doi: 10.1159/000184165 – volume: 67A start-page: 1401 year: 2003 ident: 10.1016/j.polymer.2021.123440_bib59 article-title: In vitro evaluation of novel bioactive composites based on Bioglass®-filled polylactide foams for bone tissue engineering scaffolds publication-title: J. Biomed. Mater. Res. A. doi: 10.1002/jbm.a.20055 – volume: 302 start-page: 1700143 year: 2017 ident: 10.1016/j.polymer.2021.123440_bib85 article-title: Shrinkage and warpage optimization of expanded-perlite-filled polypropylene composites in extrusion-based additive manufacturing publication-title: Macromol. Mater. Eng. doi: 10.1002/mame.201700143 – volume: 6 year: 2017 ident: 10.1016/j.polymer.2021.123440_bib152 article-title: Biodegradable shape memory polymers in medicine publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201700694 – volume: 180 start-page: 257 year: 2002 ident: 10.1016/j.polymer.2021.123440_bib110 article-title: Thermal degradation of two classes of block copolymers based on poly(lactic-glycolic acid) and poly(ε-caprolactone) or poly(ethylene glycol) publication-title: Macromol. Symp. doi: 10.1002/1521-3900(200203)180:1<257::AID-MASY257>3.0.CO;2-I – volume: 17 start-page: 1543 year: 2007 ident: 10.1016/j.polymer.2021.123440_bib137 article-title: Review of progress in shape-memory polymers publication-title: J. Mater. Chem. doi: 10.1039/b615954k – volume: 55 start-page: 1197 year: 2017 ident: 10.1016/j.polymer.2021.123440_bib138 article-title: Room temperature deformable shape memory composite with fine-tuned crystallization induced via nanoclay particles publication-title: J. Polym. Sci., Part B: Polym. Phys. doi: 10.1002/polb.24370 – volume: 2 start-page: S23 year: 2007 ident: 10.1016/j.polymer.2021.123440_bib141 article-title: Medical applications of shape memory polymers publication-title: Biomed. Mater. doi: 10.1088/1748-6041/2/1/S04 – start-page: 499 year: 2011 ident: 10.1016/j.polymer.2021.123440_bib69 article-title: Chapter 14 - monomers, polymers, and plastics – volume: 20 start-page: 140 year: 2013 ident: 10.1016/j.polymer.2021.123440_bib144 article-title: Shape memory properties of melt-blended polylactic acid (PLA)/thermoplastic polyurethane (TPU) bio-based blends publication-title: J. Polym. Res. doi: 10.1007/s10965-013-0140-6 – volume: 21 start-page: 1069 year: 2010 ident: 10.1016/j.polymer.2021.123440_bib109 article-title: Effect of thermal degradation of SFF-based PLGA scaffolds fabricated using a multi-head deposition system followed by change of cell growth rate publication-title: J. Biomater. Sci. Polym. Ed. doi: 10.1163/092050609X12457428919034 – volume: 30 start-page: 5305 year: 2016 ident: 10.1016/j.polymer.2021.123440_bib50 article-title: Design, analysis and fabrication of polyamide/hydroxyapatite porous structured scaffold using selective laser sintering method for bio-medical applications publication-title: J. Mech. Sci. Technol. doi: 10.1007/s12206-016-1049-x – volume: 69 start-page: 157 year: 2018 ident: 10.1016/j.polymer.2021.123440_bib93 article-title: FDM process parameters influence over the mechanical properties of polymer specimens: a review publication-title: Polym. Test. doi: 10.1016/j.polymertesting.2018.05.020 – volume: 12 start-page: 689 year: 1994 ident: 10.1016/j.polymer.2021.123440_bib25 article-title: Biodegradable polymer scaffolds for tissue engineering publication-title: Bio Technol. – volume: 175 year: 2019 ident: 10.1016/j.polymer.2021.123440_bib103 article-title: Mechanical characterization of FDM 3D printing of continuous carbon fiber reinforced PLA composites publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2019.107147 – volume: 9 year: 2017 ident: 10.1016/j.polymer.2021.123440_bib154 article-title: Towards 4D printed scaffolds for tissue engineering: exploiting 3D shape memory polymers to deliver time-controlled stimulus on cultured cells publication-title: Biofabrication doi: 10.1088/1758-5090/aa8114 – volume: 24 start-page: 1337 year: 2018 ident: 10.1016/j.polymer.2021.123440_bib104 article-title: Effect of temperature on the mechanical properties of 3D-printed PLA tensile specimens publication-title: Rapid Prototyp. J. doi: 10.1108/RPJ-04-2017-0055 – volume: 5 start-page: 8845 year: 2017 ident: 10.1016/j.polymer.2021.123440_bib150 article-title: Toward the low actuation temperature of flexible shape memory polymer composites with room temperature deformability via induced plasticizing effect publication-title: J. Mater. Chem. B. doi: 10.1039/C7TB02068F – volume: 37 start-page: 106 year: 2012 ident: 10.1016/j.polymer.2021.123440_bib44 article-title: Alginate: properties and biomedical applications publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2011.06.003 – volume: 18 start-page: S5 year: 2014 ident: 10.1016/j.polymer.2021.123440_bib80 article-title: Manufacture and thermal deformation analysis of semicrystalline polymer polyether ether ketone by 3D printing publication-title: Mater. Res. Innovat. doi: 10.1179/1432891714Z.000000000898 – volume: 49 start-page: 33 year: 2016 ident: 10.1016/j.polymer.2021.123440_bib116 article-title: Manufacture and characterisation of porous PLA scaffolds publication-title: Procedia CIRP doi: 10.1016/j.procir.2015.07.025 – volume: 68 start-page: 355 year: 2016 ident: 10.1016/j.polymer.2021.123440_bib112 article-title: Scaffolds and cells for tissue regeneration: different scaffold pore sizes—different cell effects publication-title: Cytotechnology doi: 10.1007/s10616-015-9895-4 – volume: 101 start-page: 8493 year: 2010 ident: 10.1016/j.polymer.2021.123440_bib27 article-title: An overview of the recent developments in polylactide (PLA) research, Bioresour publication-title: Technol. – volume: 107 start-page: 163 year: 2016 ident: 10.1016/j.polymer.2021.123440_bib66 article-title: Polylactic acid (PLA) controlled delivery carriers for biomedical applications publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2016.06.018 – volume: 65 start-page: 13 year: 2017 ident: 10.1016/j.polymer.2021.123440_bib120 article-title: Multi-layered scaffolds production via fused deposition modeling (FDM) using an open source 3D printer: process parameters optimization for dimensional accuracy and design reproducibility publication-title: Procedia CIRP doi: 10.1016/j.procir.2017.04.042 – volume: 44 start-page: 6827 year: 2011 ident: 10.1016/j.polymer.2021.123440_bib125 article-title: Bioinspired mechanically adaptive polymer nanocomposites with water-activated shape-memory effect publication-title: Macromolecules doi: 10.1021/ma201502k – volume: 30 year: 2019 ident: 10.1016/j.polymer.2021.123440_bib119 article-title: Fabrication of poly(lactic acid)/Ti composite scaffolds with enhanced mechanical properties and biocompatibility via fused filament fabrication (FFF)–based 3D printing publication-title: Addit. Manuf. – volume: 83 start-page: 389 year: 2016 ident: 10.1016/j.polymer.2021.123440_bib11 article-title: Additive manufacturing methods and modelling approaches: a critical review publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-015-7576-2 – volume: 188 year: 2020 ident: 10.1016/j.polymer.2021.123440_bib96 article-title: Design of FDM 3D printed polymers: an experimental-modelling methodology for the prediction of mechanical properties publication-title: Mater. Des. doi: 10.1016/j.matdes.2019.108414 – volume: 8 start-page: 9431 year: 2016 ident: 10.1016/j.polymer.2021.123440_bib127 article-title: Design of poly(l-lactide)–poly(ethylene glycol) copolymer with light-induced shape-memory effect triggered by pendant anthracene groups publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b00704 – volume: 49 start-page: 832 year: 2011 ident: 10.1016/j.polymer.2021.123440_bib71 article-title: Biomedical applications of biodegradable polymers publication-title: J. Polym. Sci., Part B: Polym. Phys. doi: 10.1002/polb.22259 – volume: 35 start-page: 526 year: 2018 ident: 10.1016/j.polymer.2021.123440_bib14 article-title: What makes a material printable? A viscoelastic model for extrusion-based 3D printing of polymers publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2018.08.008 – volume: 215 start-page: 2482 year: 2014 ident: 10.1016/j.polymer.2021.123440_bib147 article-title: Shape-memory performance of thermoplastic amphiphilic triblock copolymer poly(d,l-lactic acid-co-ethylene glycol-co-d,l-lactic acid) (PELA)/Hydroxyapatite composites publication-title: Macromol. Chem. Phys. doi: 10.1002/macp.201400340 – volume: 171 year: 2019 ident: 10.1016/j.polymer.2021.123440_bib131 article-title: Four-dimensional printing of a novel acrylate-based shape memory polymer using digital light processing publication-title: Mater. Des. doi: 10.1016/j.matdes.2019.107704 – volume: 61 start-page: 945 year: 2012 ident: 10.1016/j.polymer.2021.123440_bib87 article-title: Modelling micro geometrical profiles in fused deposition process publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-011-3744-1 – volume: 23 start-page: 1169 year: 2002 ident: 10.1016/j.polymer.2021.123440_bib106 article-title: Fused deposition modeling of novel scaffold architectures for tissue engineering applications publication-title: Biomaterials doi: 10.1016/S0142-9612(01)00232-0 – volume: 27 start-page: 905 year: 2006 ident: 10.1016/j.polymer.2021.123440_bib9 article-title: Architecture and properties of anisotropic polymer composite scaffolds for bone tissue engineering publication-title: Biomaterials doi: 10.1016/j.biomaterials.2005.07.015 – volume: 7 year: 2019 ident: 10.1016/j.polymer.2021.123440_bib18 article-title: 3D and 4D printing of polymers for tissue engineering applications publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2019.00164 – volume: 104 start-page: 2020 year: 2016 ident: 10.1016/j.polymer.2021.123440_bib67 article-title: PGA-incorporated collagen: toward a biodegradable composite scaffold for bone-tissue engineering publication-title: J. Biomed. Mater. Res. A. doi: 10.1002/jbm.a.35736 – start-page: 1 year: 2012 ident: 10.1016/j.polymer.2021.123440_bib30 article-title: Biomedical polyurethane-based materials publication-title: Polyurethane Prop. Struct. Appl. N. Y. Nova Publ – volume: 30 start-page: 405 year: 2008 ident: 10.1016/j.polymer.2021.123440_bib124 article-title: Development of 3-D nanofibrous fibroin scaffold with high porosity by electrospinning: implications for bone regeneration publication-title: Biotechnol. Lett. doi: 10.1007/s10529-007-9581-5 – volume: vol. 7 start-page: 87 year: 2019 ident: 10.1016/j.polymer.2021.123440_bib84 article-title: The effect of chamber temperature on residual stresses of FDM parts – volume: 5 start-page: 356 year: 2009 ident: 10.1016/j.polymer.2021.123440_bib41 article-title: New PMMA-co-EHA glass-filled composites for biomedical applications: mechanical properties and bioactivity publication-title: Acta Biomater. doi: 10.1016/j.actbio.2008.07.012 – volume: 46 start-page: 771 year: 2002 ident: 10.1016/j.polymer.2021.123440_bib123 article-title: Fabrication of porous scaffolds for bone tissue engineering via low-temperature deposition publication-title: Scripta Mater. doi: 10.1016/S1359-6462(02)00071-4 – volume: 41 start-page: 1641 year: 2012 ident: 10.1016/j.polymer.2021.123440_bib135 article-title: Determination of shape fixity and shape recovery rate of carbon nanotube-filled shape memory polymer nanocomposites publication-title: Procedia Eng doi: 10.1016/j.proeng.2012.07.362 – volume: 4 start-page: 729 year: 2018 ident: 10.1016/j.polymer.2021.123440_bib2 article-title: A review of 3D printing technology for medical applications publication-title: Engineering doi: 10.1016/j.eng.2018.07.021 – volume: 35 start-page: 928 year: 2006 ident: 10.1016/j.polymer.2021.123440_bib122 article-title: A comparative analysis of scaffold material modifications for load-bearing applications in bone tissue engineering publication-title: Int. J. Oral Maxillofac. Surg. doi: 10.1016/j.ijom.2006.03.024 – volume: 13 start-page: 8204 year: 2005 ident: 10.1016/j.polymer.2021.123440_bib129 article-title: Laser-activated shape memory polymer intravascular thrombectomy device publication-title: Optic Express doi: 10.1364/OPEX.13.008204 – volume: 67 start-page: 2727 year: 2013 ident: 10.1016/j.polymer.2021.123440_bib88 article-title: Surface roughness prediction in fused deposition modelling by neural networks publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-012-4687-x – volume: 9 start-page: 239 year: 2013 ident: 10.1016/j.polymer.2021.123440_bib60 article-title: 3D printed PLA-based scaffolds publication-title: Organogenesis doi: 10.4161/org.26048 – volume: 3 start-page: 42 year: 2015 ident: 10.1016/j.polymer.2021.123440_bib97 article-title: Optimization of fused deposition modeling process parameters: a review of current research and future prospects publication-title: Adv. Manuf. doi: 10.1007/s40436-014-0097-7 – volume: 56 start-page: 718 year: 2007 ident: 10.1016/j.polymer.2021.123440_bib51 article-title: Comparison of the degradation of polycaprolactone and polycaprolactone–(β-tricalcium phosphate) scaffolds in alkaline medium publication-title: Polym. Int. doi: 10.1002/pi.2195 – volume: 2 start-page: 185 year: 1981 ident: 10.1016/j.polymer.2021.123440_bib31 article-title: Hydroxyapatite reinforced polyethylene–a mechanically compatible implant material for bone replacement publication-title: Biomaterials doi: 10.1016/0142-9612(81)90050-8 – volume: 18 start-page: 1471 year: 2006 ident: 10.1016/j.polymer.2021.123440_bib128 article-title: Polymers move in response to light publication-title: Adv. Mater. doi: 10.1002/adma.200502266 – volume: 2011 year: 2011 ident: 10.1016/j.polymer.2021.123440_bib26 article-title: Polymeric scaffolds in tissue engineering application: a review publication-title: Int. J. Polym. Sci. doi: 10.1155/2011/290602 – volume: 27 start-page: 4288 year: 2006 ident: 10.1016/j.polymer.2021.123440_bib145 article-title: Shape memory properties of poly(d,l-lactide)/hydroxyapatite composites publication-title: Biomaterials doi: 10.1016/j.biomaterials.2006.03.043 – volume: 63 start-page: 545 year: 2020 ident: 10.1016/j.polymer.2021.123440_bib22 article-title: 4D printed shape memory polymers and their structures for biomedical applications publication-title: Sci. China Technol. Sci. doi: 10.1007/s11431-019-1494-0 – volume: 57 start-page: 139 year: 2016 ident: 10.1016/j.polymer.2021.123440_bib118 article-title: Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2015.11.036 – volume: 405 start-page: 704 year: 2000 ident: 10.1016/j.polymer.2021.123440_bib3 article-title: Effects of mechanical forces on maintenance and adaptation of form in trabecular bone publication-title: Nature doi: 10.1038/35015116 – volume: 33 start-page: 1087 year: 2007 ident: 10.1016/j.polymer.2021.123440_bib82 article-title: A model research for prototype warp deformation in the FDM process publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-006-0556-9 – volume: 7 start-page: 679 year: 2001 ident: 10.1016/j.polymer.2021.123440_bib113 article-title: The design of scaffolds for use in tissue engineering. Part I. Traditional factors publication-title: Tissue Eng. doi: 10.1089/107632701753337645 – volume: 72 start-page: 1229 year: 2020 ident: 10.1016/j.polymer.2021.123440_bib21 article-title: A review on additive manufacturing of shape-memory materials for biomedical applications publication-title: JOM doi: 10.1007/s11837-020-04013-x – volume: 18 start-page: 899 year: 2017 ident: 10.1016/j.polymer.2021.123440_bib52 article-title: Effects of 3D-printed polycaprolactone/β-tricalcium phosphate membranes on guided bone regeneration publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms18050899 – volume: 46 start-page: 386 year: 2010 ident: 10.1016/j.polymer.2021.123440_bib4 article-title: A biodegradable porous composite scaffold of PGA/β-TCP for bone tissue engineering publication-title: Bone doi: 10.1016/j.bone.2009.09.031 – volume: 19 start-page: 2357 year: 1998 ident: 10.1016/j.polymer.2021.123440_bib32 article-title: Hydroxyapatite-polyethylene composites for bone substitution: effects of ceramic particle size and morphology publication-title: Biomaterials doi: 10.1016/S0142-9612(98)00154-9 – volume: 37 start-page: 741 year: 2017 ident: 10.1016/j.polymer.2021.123440_bib117 article-title: 3D printing of hydroxyapatite polymer-based composites for bone tissue engineering publication-title: J. Polym. Eng. doi: 10.1515/polyeng-2016-0194 – year: 1985 ident: 10.1016/j.polymer.2021.123440_bib36 – volume: 66 start-page: 23 year: 2015 ident: 10.1016/j.polymer.2021.123440_bib100 article-title: Electroless plating of PLA and PETG for 3D printed flexible substrates publication-title: ECS Trans doi: 10.1149/06619.0023ecst – volume: 5 start-page: 2591 year: 2009 ident: 10.1016/j.polymer.2021.123440_bib47 article-title: Synthesis and characterization of collagen/hyaluronan/chitosan composite sponges for potential biomedical applications publication-title: Acta Biomater. doi: 10.1016/j.actbio.2009.03.038 – volume: 71 start-page: 349 year: 2017 ident: 10.1016/j.polymer.2021.123440_bib143 article-title: Thermally induced shape memory behavior, enzymatic degradation and biocompatibility of PLA/TPU blends: “Effects of compatibilization publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2017.04.001 – start-page: 1 year: 2004 ident: 10.1016/j.polymer.2021.123440_bib54 article-title: Bioactive materials and processing – volume: 5 start-page: 286 year: 2017 ident: 10.1016/j.polymer.2021.123440_bib19 article-title: Additive manufacturing techniques and their biomedical applications publication-title: Fam. Med. Community Health doi: 10.15212/FMCH.2017.0110 – start-page: 1598 year: 2016 ident: 10.1016/j.polymer.2021.123440_bib86 article-title: Improving PLA-based material for FDM 3D-printers using minerals (principles and method development) publication-title: SPE ANTEC Indianap – start-page: 415 year: 2003 ident: 10.1016/j.polymer.2021.123440_bib33 article-title: Titanium dioxide/ultra high molecular weight polyethylene composite for bone-repairing applications: preparation and biocompatibility – volume: 86 start-page: 36 year: 2016 ident: 10.1016/j.polymer.2021.123440_bib12 article-title: Preparation of starch/acrylonitrile-butadiene-styrene copolymers (ABS) biomass alloys and their feasible evaluation for 3D printing applications publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2015.10.005 – volume: 107 start-page: 47 year: 2016 ident: 10.1016/j.polymer.2021.123440_bib29 article-title: Poly(lactic acid) blends in biomedical applications publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2016.06.014 – volume: 57 start-page: 241 year: 2019 ident: 10.1016/j.polymer.2021.123440_bib151 article-title: High-strain shape memory behavior of PLA–PEG multiblock copolymers and its microstructural origin publication-title: J. Polym. Sci., Part B: Polym. Phys. doi: 10.1002/polb.24775 – volume: 9 start-page: 5521 year: 2013 ident: 10.1016/j.polymer.2021.123440_bib61 article-title: High-resolution PLA-based composite scaffolds via 3-D printing technology publication-title: Acta Biomater. doi: 10.1016/j.actbio.2012.10.041 – volume: 47 start-page: 324 year: 1999 ident: 10.1016/j.polymer.2021.123440_bib8 article-title: In vitro analysis of biodegradable polymer blend/hydroxyapatite composites for bone tissue engineering publication-title: J. Biomed. Mater. Res. doi: 10.1002/(SICI)1097-4636(19991205)47:3<324::AID-JBM6>3.0.CO;2-Y – volume: 6 start-page: 47418 year: 2016 ident: 10.1016/j.polymer.2021.123440_bib63 article-title: Tailor-made poly(L-lactide)/poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds prepared via high-pressure compression molding/salt leaching publication-title: RSC Adv. doi: 10.1039/C6RA06906A – volume: 10 start-page: 20 year: 2007 ident: 10.1016/j.polymer.2021.123440_bib133 article-title: Shape-memory polymers publication-title: Mater. Today doi: 10.1016/S1369-7021(07)70047-0 – volume: 81 year: 2020 ident: 10.1016/j.polymer.2021.123440_bib95 article-title: Effects of thermal process parameters on mechanical interlayer strength for additively manufactured Ultem 9085 publication-title: Polym. Test. doi: 10.1016/j.polymertesting.2019.106255 – volume: 20 start-page: 3356 year: 2010 ident: 10.1016/j.polymer.2021.123440_bib132 article-title: Biomedical applications of thermally activated shape memory polymers publication-title: J. Mater. Chem. doi: 10.1039/b923717h – volume: 8 year: 2016 ident: 10.1016/j.polymer.2021.123440_bib140 article-title: Multiresponsive shape memory blends and nanocomposites based on starch publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b06618 – volume: 88 start-page: 959 year: 1981 ident: 10.1016/j.polymer.2021.123440_bib35 publication-title: Polypropylene, Ophthalmology doi: 10.1016/S0161-6420(81)80012-7 – volume: 8 start-page: 328 year: 2008 ident: 10.1016/j.polymer.2021.123440_bib6 article-title: Nanofibrous poly(lactic acid)/hydroxyapatite composite scaffolds for guided tissue regeneration publication-title: Macromol. Biosci. doi: 10.1002/mabi.200700107 – volume: 25 start-page: 185 year: 2017 ident: 10.1016/j.polymer.2021.123440_bib10 article-title: Material issues in additive manufacturing: a review publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2016.11.006 – volume: 2013 year: 2013 ident: 10.1016/j.polymer.2021.123440_bib57 article-title: Bioactive surface modification of hydroxyapatite publication-title: BioMed Res. Int. doi: 10.1155/2013/626452 – volume: 26 start-page: 7457 year: 2005 ident: 10.1016/j.polymer.2021.123440_bib75 article-title: Understanding the biodegradation of polyurethanes: from classical implants to tissue engineering materials publication-title: Biomaterials doi: 10.1016/j.biomaterials.2005.05.079 – volume: 21 start-page: 317 year: 2012 ident: 10.1016/j.polymer.2021.123440_bib148 article-title: Influence of blocked polyisocyanate on thermomechanical, shape memory and biodegradable properties of poly (lactic acid)/poly (ethylene glycol) blends, Iran publication-title: Polym. J. – volume: 8 start-page: 1 year: 2007 ident: 10.1016/j.polymer.2021.123440_bib48 article-title: The future prospects of microbial cellulose in biomedical applications publication-title: Biomacromolecules doi: 10.1021/bm060620d – volume: 58 start-page: 189 year: 2009 ident: 10.1016/j.polymer.2021.123440_bib13 article-title: Experimental study aiming to enhance the surface finish of fused deposition modeled parts publication-title: CIRP Ann doi: 10.1016/j.cirp.2009.03.071 – volume: 343 start-page: 65 year: 2014 ident: 10.1016/j.polymer.2021.123440_bib40 article-title: Synthesis and characterization of poly(methyl methacrylate) PMMA and evaluation of cytotoxicity for biomedical application publication-title: Macromol. Symp. doi: 10.1002/masy.201300194 |
SSID | ssj0002524 |
Score | 2.459306 |
Snippet | Since the invention of additive manufacturing (AM) in the 1980s, great advances are today conceivable thanks to considerable evolution in recent years.... |
SourceID | hal proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 123440 |
SubjectTerms | 4D printing Additive manufacturing (AM) Biocompatibility Biodegradability Biodegradation Biomedical materials Condensed Matter Fabrication Fused deposition modeling Fused filament fabrication (FFF) Materials Science Parameterization Physics Polymers Scaffolds Shape memory Shape-memory polymers (SMPs) Thickness Tissue engineering |
Title | Fused filament fabrication of scaffolds for tissue engineering; how realistic is shape-memory? A review |
URI | https://dx.doi.org/10.1016/j.polymer.2021.123440 https://www.proquest.com/docview/2508593255 https://hal.science/hal-03183431 |
Volume | 217 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLYYHLYdpsE2rYwha9rVLYkdJ9EOU1Wt6n5xGlJvlmO_rEWlqUgBceFv33uJQwdCQuIYK_4hf_Z7n633PjP2WXpcNDZzIgaXCRV7JYokccKiM5GZhdRbynf-fawnJ-rHNJlusVGXC0NhlcH2tza9sdahZBBmc7CazynHV2JzjQIWOdopZbCrlML6-jebMI84iVslZhkL-nuTxTM47a-qxfUZkCxoHPVxcIruQB72T89mFCh5z143Tmj8mr0K7JEP2wHusi1Y7rHno-7Rtj328j99wTfs7_iiBs_LOcKOzoWXtjgPd3S8KnntbFlWC19zZK583UDAYdPAFz6rrjiyykWj5sznNa9ndgXijMJzr7_yIW8zX96yk_G3P6OJCC8rCKeibC20Bi8jXUAGOXKCNC6cj6xyFixAokFL0pAsFSicttw7ULm3uXaAZ87UZZF8x7aX1RLeM15AbNPyKPEyRSoDR1bZVBZalXkBWivbY6qbT-OC7Di9frEwXXzZqQkwGILBtDD0WP-22qrV3XisQtaBZe4sIIO-4bGqnxDc225IcHsy_GWorDF5yLEuox476LA3YZvXBvkj6cXhsWz_6d1_YC_oqwlsSw7Y9vr8Aj4i01kXh81SPmQ7w-8_J8f_AO20_l0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwED5t3cPgAcEArTDAQry6XRLHScQDqiqqjHV92qS-WY59oZ26plo60P4958TpACFN4tXR2ZY_5-6zdfcZ4FNkadPo1PAQTcpFaAUv4thwTcEkSjUmVrt654uZzK_Et3k834NxVwvj0iq97299euOtfcvQr-Zws1y6Gt-IumsUsFygne_DgVOnEj04GJ2d57OdQw7jsBVjjkLuDB4KeYbXg021ur9BpwwaBgOan3DXIP8OUfsLlyv5l8tu4tDkOTzzBJKN2jm-gD1cH8HhuHu37Qie_iYx-BK-T-5qtKxcEvIUX1ipi1t_TceqktVGl2W1sjUj8sq2DQoMHzr4zBbVT0bEctUIOrNlzeqF3iC_cRm691_YiLXFL6_gavL1cpxz_7gCNyJIt1xKtFEgC0wxI1qQhIWxgRZGo0aMJcrIyUiWAgUtW2YNiszqTBqkY2di0iB6Db11tcZjYAWGOilPYxslxGbwVAudRIUUZVaglEL3QXTrqYxXHncPYKxUl2J2rTwMysGgWhj6MNiZbVrpjccM0g4s9cceUhQeHjP9SODuhnGa2_loqlxb4_WIZv0I-nDSYa_8n14ropBOMo5OZm_-f_gPcJhfXkzV9Gx2_haeuC9Nnlt8Ar3t7R2-I-KzLd77jf0Ln-kBHQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fused+filament+fabrication+of+scaffolds+for+tissue+engineering%3B+how+realistic+is+shape-memory%3F+A+review&rft.jtitle=Polymer+%28Guilford%29&rft.au=Bayart%2C+Marie&rft.au=Charlon%2C+S%C3%A9bastien&rft.au=Soulestin%2C+J%C3%A9r%C3%A9mie&rft.date=2021-03-05&rft.pub=Elsevier+Ltd&rft.issn=0032-3861&rft.eissn=1873-2291&rft.volume=217&rft_id=info:doi/10.1016%2Fj.polymer.2021.123440&rft.externalDocID=S003238612100063X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-3861&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-3861&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-3861&client=summon |