Product Rating Distribution Estimation Using an LDL-Based Method with Uniform Manifold Approximation and Projection
Ratings of products serve as a crucial indicator for assessing the impact of products in the retail market. Existing methods in rating estimation of product primarily use single-label machine learning methods, where the prediction may fail to represent the whole properties of products. This paper ex...
Saved in:
Published in | IEICE Transactions on Information and Systems Vol. E108.D; no. 8; pp. 1020 - 1024 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
The Institute of Electronics, Information and Communication Engineers
01.08.2025
一般社団法人 電子情報通信学会 |
Subjects | |
Online Access | Get full text |
ISSN | 0916-8532 1745-1361 |
DOI | 10.1587/transinf.2024EDL8064 |
Cover
Abstract | Ratings of products serve as a crucial indicator for assessing the impact of products in the retail market. Existing methods in rating estimation of product primarily use single-label machine learning methods, where the prediction may fail to represent the whole properties of products. This paper explores a challenging task to obtain product rating distribution estimation (RDE), which predict the distribution of product ratings instead of a single rating. Specifically, we focus on RDE of follower brands product, which provide relatively objective artifacts and easier to collect data. We formulate the RDE task based on a label distribution learning (LDL) framework, which uses the maximum entropy model functions as the output component of LDL, and generate the probability distribution for each category. However, one of the main challenge of conducting the RDE task within the LDL framework is that the large number of labels leads to an exponentially growing output space, which increases model complexity and reduces its performance. To address this problem, we propose a new model, called RDE-LDL, with an adaptive manifold learning module. The RDE-LDL method use uniform manifold approximation and projection (UMAP) to represent the label distribution manifold via fuzzy simplicial sets, which encodes label correlation information, and allows to regularize the maximum entropy model’s output based on label correlation. Quantitative and qualitative experiments conducted on a marketing dataset verified the demonstrates the effectiveness of the RDE-LDL method with the UMAP-based module. |
---|---|
AbstractList | Ratings of products serve as a crucial indicator for assessing the impact of products in the retail market. Existing methods in rating estimation of product primarily use single-label machine learning methods, where the prediction may fail to represent the whole properties of products. This paper explores a challenging task to obtain product rating distribution estimation (RDE), which predict the distribution of product ratings instead of a single rating. Specifically, we focus on RDE of follower brands product, which provide relatively objective artifacts and easier to collect data. We formulate the RDE task based on a label distribution learning (LDL) framework, which uses the maximum entropy model functions as the output component of LDL, and generate the probability distribution for each category. However, one of the main challenge of conducting the RDE task within the LDL framework is that the large number of labels leads to an exponentially growing output space, which increases model complexity and reduces its performance. To address this problem, we propose a new model, called RDE-LDL, with an adaptive manifold learning module. The RDE-LDL method use uniform manifold approximation and projection (UMAP) to represent the label distribution manifold via fuzzy simplicial sets, which encodes label correlation information, and allows to regularize the maximum entropy model’s output based on label correlation. Quantitative and qualitative experiments conducted on a marketing dataset verified the demonstrates the effectiveness of the RDE-LDL method with the UMAP-based module. |
ArticleNumber | 2024EDL8064 |
Author | Fei QIAO Fei MO Lingyu LIANG |
Author_xml | – sequence: 1 givenname: Fei surname: MO fullname: MO, Fei – sequence: 2 givenname: Fei surname: QIAO fullname: QIAO, Fei – sequence: 3 givenname: Lingyu surname: LIANG fullname: LIANG, Lingyu |
BackLink | https://cir.nii.ac.jp/crid/1390021846536341504$$DView record in CiNii |
BookMark | eNpNUE1PAyEUJKYm1o9_4IGD11XewrLsUdv6kWyjaeyZUGBbmso2gFH_vbvWakMCw3sz817mFA186y1Cl0CuoRDlTQrKR-eb65zkbDKuBeHsCA2hZEUGlMMADUkFPBMFzU_QaYxrQkDkUAxRfAmtedcJz1RyfonHLqbgFu_JtR5PYnJv6gfOY99VHtfjOrtT0Ro8tWnVGvzh0grPvWva8Ianqgcbg2-329B-7tXKG9wNWlvdf8_RcaM20V78vmdofj95HT1m9fPD0-i2zjQDkTLOWKlMxSoDmuQlsQLAKNodTmwpuhpXFVBiWMPzhgmt7GJBlVgAr8quSM8Q2_nq0MYYbCO3odsofEkgsg9O7oOTB8F1squdzDsntetvoBUhOQjGC8opg4L0tNmOto5JLe2ftwrJ6Y39954AEXIsxR4czPoj65UK0nr6De6kjng |
Cites_doi | 10.3390/electronics12092047 10.1109/TKDE.2013.39 10.1108/EJM-12-2016-0871 10.1587/transinf.2020EDL8038 10.1038/nbt.4314 10.1109/ICCECE54139.2022.9712779 10.1007/s00500-023-08903-5 10.24963/ijcai.2017/443 10.1109/TNNLS.2023.3258976 10.1109/ICCES51350.2021.9489208 10.1109/TKDE.2016.2545658 10.1109/TKDE.2019.2943337 10.1109/TNNLS.2021.3103178 10.1016/j.jbusres.2023.114063 10.1007/s10994-012-5285-8 10.1109/TBDATA.2023.3338023 10.1057/jma.2015.4 10.1109/TCSS.2023.3290558 10.1609/aaai.v32i1.11664 10.1080/13527266.2016.1236284 10.1007/s11747-020-00739-x 10.1093/jcr/ucx065 10.1109/TPAMI.2013.51 10.1108/JPBM-05-2019-2363 |
ContentType | Journal Article |
Copyright | 2025 The Institute of Electronics, Information and Communication Engineers |
Copyright_xml | – notice: 2025 The Institute of Electronics, Information and Communication Engineers |
DBID | RYH AAYXX CITATION |
DOI | 10.1587/transinf.2024EDL8064 |
DatabaseName | CiNii Complete CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1745-1361 |
EndPage | 1024 |
ExternalDocumentID | 10_1587_transinf_2024EDL8064 article_transinf_E108_D_8_E108_D_2024EDL8064_article_char_en |
GroupedDBID | -~X 5GY ABJNI ABZEH ACGFS ADNWM AENEX ALMA_UNASSIGNED_HOLDINGS CS3 DU5 EBS EJD F5P ICE JSF JSH KQ8 OK1 P2P RJT RZJ TN5 ZKX 1TH AFFNX C1A CKLRP H13 RIG RYH RYL VOH ZE2 ZY4 AAYXX CITATION |
ID | FETCH-LOGICAL-c418t-6447ad949d1c0270e811da3a3a60e78c026a9130d4f62f48caebb3a8b1697d4f3 |
ISSN | 0916-8532 |
IngestDate | Thu Aug 07 06:02:08 EDT 2025 Thu Jun 26 23:13:03 EDT 2025 Mon Sep 01 00:08:27 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c418t-6447ad949d1c0270e811da3a3a60e78c026a9130d4f62f48caebb3a8b1697d4f3 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/transinf/E108.D/8/E108.D_2024EDL8064/_article/-char/en |
PageCount | 5 |
ParticipantIDs | crossref_primary_10_1587_transinf_2024EDL8064 nii_cinii_1390021846536341504 jstage_primary_article_transinf_E108_D_8_E108_D_2024EDL8064_article_char_en |
PublicationCentury | 2000 |
PublicationDate | 2025-08-01 |
PublicationDateYYYYMMDD | 2025-08-01 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | IEICE Transactions on Information and Systems |
PublicationTitleAlternate | IEICE Trans. Inf. & Syst. |
PublicationTitle_FL | IEICE Trans. Inf. & Syst |
PublicationYear | 2025 |
Publisher | The Institute of Electronics, Information and Communication Engineers 一般社団法人 電子情報通信学会 |
Publisher_xml | – name: The Institute of Electronics, Information and Communication Engineers – name: 一般社団法人 電子情報通信学会 |
References | [2] F. Qiao and W.G. Griffin, “Brand imitation strategy, package design and consumer response: What does it take to make a difference?,” Journal of Product & Brand Management, vol.31, no.2, pp.177-188, 2022. 10.1108/jpbm-05-2019-2363 [9] D.F. Braxton, D.D. Muehling, and J. Joireman, “The effects of processing mode and brand scandals on copycat product evaluations,” Journal of Marketing Communications, vol.25, no.3, pp.247-267, 2016. 10.1080/13527266.2016.1236284 [11] J. Wang and X. Geng, “Label distribution learning by exploiting label distribution manifold,” IEEE Trans. Neural Netw. Learn. Syst., vol.34, no.2, pp.839-852, 2023. 10.1109/tnnls.2021.3103178 [19] X. Jia, Z. Li, X. Zheng, W. Li, and S.-J. Huang, “Label distribution learning with label correlations on local samples,” IEEE Trans. Knowl. Data Eng., vol.33, no.4, pp.1619-1631, 2021. 10.1109/tkde.2019.2943337 [24] X. Jia, T. Qin, Y. Lu, and W. Li, “Adaptive weighted ranking-oriented label distribution learning,” IEEE Trans. Neural Netw. Learn. Syst., vol.35, no.8, pp.11302-11316, 2023. 10.1109/tnnls.2023.3258976 [17] M. Xu and Z.-H. Zhou, “Incomplete label distribution learning,” Proc. 26th International Joint Conference on Artificial Intelligence, pp.3175-3181, 2017. 10.24963/ijcai.2017/443 [15] M.-L. Zhang and Z.-H. Zhou, “A review on multi-label learning algorithms,” IEEE Trans. Knowl. Data Eng., vol.26, no.8, pp.1819-1837, 2014. 10.1109/tkde.2013.39 [5] N.C.S. Reddy, V. Subhashini, D. Rai, Sriharsha, B. Vittal, and S. Ganesh, “Product rating estimation using machine learning,” 2021 6th International Conference on Communication and Electronics Systems (ICCES), pp.1366-1369, 2021. 10.1109/ICCES51350.2021.9489208 [13] L.M. De Luca, D. Herhausen, G. Troilo, and A. Rossi, “How and when do big data investments pay off? The role of marketing affordances and service innovation,” Journal of the Academy of Marketing Science, vol.49, no.4, pp.790-810, 2021. 10.1007/s11747-020-00739-x [16] K. Dembczyński, W. Waegeman, W. Cheng, and E. Hüllermeier, “On label dependence and loss minimization in multi-label classification,” Machine Learning, vol.88, pp.5-45, 2012. 10.1007/s10994-012-5285-8 [1] Y. Shen, W. Shan, and J. Luan, “Influence of aggregated ratings on purchase decisions: An event-related potential study,” European Journal of Marketing, vol.52, no.1/2, pp.147-158, 2018. 10.1108/ejm-12-2016-0871 [10] X. Geng, “Label distribution learning,” IEEE Trans. Knowl. Data Eng., vol.28, no.7, pp.1734-1748, 2016. 10.1109/tkde.2016.2545658 [7] W. Wang, W. Xiong, J. Wang, L. Tao, S. Li, Y. Yi, X. Zou, and C. Li, “A user purchase behavior prediction method based on XGBoost,” Electronics, vol.12, no.9, 2047, 2023. 10.3390/electronics12092047 [20] E. Becht, L. McInnes, J. Healy, C.-A. Dutertre, I.W.H. Kwok, L.G. Ng, F. Ginhoux, and E.W. Newell, “Dimensionality reduction for visualizing single-cell data using UMAP,” Nature Biotechnology, vol.37, no.1, pp.38-44, 2019. 10.1038/nbt.4314 [14] R.M. Cortez, W.J. Johnston, and M. Ehret, “ “good times-bad times”-Relationship marketing through business cycles,” Journal of Business Research, vol.165, 114063, 2023. 10.1016/j.jbusres.2023.114063 [3] F. van Horen and R. Pieters, “Out-of-category brand imitation: Product categorization determines copycat evaluation,” Journal of Consumer Research, vol.44, no.4, pp.816-832, 2017. 10.1093/jcr/ucx065 [4] T. Amirifar, S. Lahmiri, and M.K. Zanjani, “An NLP-deep learning approach for product rating prediction based on online reviews and product features,” IEEE Trans. Comput. Soc. Syst., vol.11, no.6, pp.8156-8168, 2023. 10.1109/tcss.2023.3290558 [22] Y. Lin, Y. Li, C. Wang, L. Guo, and J. Chen, “Label distribution learning based on horizontal and vertical mining of label correlations,” IEEE Trans. Big Data, vol.10, no.3, pp.275-287, 2023. 10.1109/tbdata.2023.3338023 [23] B. Chen and J. Yan, “Fresh tea shoot maturity estimation via multispectral imaging and deep label distribution learning,” IEICE Trans. Inf. & Syst., vol.E103-D, no.9, pp.2019-2022, Sept. 2020. 10.1587/transinf.2020edl8038 [21] X. Geng, C. Yin, and Z.-H. Zhou, “Facial age estimation by learning from label distributions,” IEEE Trans. Pattern Anal. Mach. Intell., vol.35, no.10, pp.2401-2412, 2013. 10.1109/tpami.2013.51 [12] X. Chen, H. Yu, and F. Yu, “What is the optimal number of response alternatives for rating scales? From an information processing perspective,” Journal of Marketing Analytics, vol.3, pp.69-78, 2015. 10.1057/jma.2015.4 [6] H. Wu and B. Li, “Customer purchase prediction based on improved gradient boosting decision tree algorithm,” 2022 2nd International Conference on Consumer Electronics and Computer Engineering (ICCECE), pp.795-798, 2022. 10.1109/iccece54139.2022.9712779 [18] X. Jia, W. Li, J. Liu, and Y. Zhang, “Label distribution learning by exploiting label correlations,” Proc. AAAI Conference on Artificial Intelligence, vol.32, no.1, pp.3310-3317, 2018. 10.1609/aaai.v32i1.11664 [8] L. Li, “Analysis of e-commerce customers’ shopping behavior based on data mining and machine learning,” Soft Computing, pp.1-10, 2023. 10.1007/s00500-023-08903-5 11 22 12 23 13 24 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 10 21 |
References_xml | – reference: [16] K. Dembczyński, W. Waegeman, W. Cheng, and E. Hüllermeier, “On label dependence and loss minimization in multi-label classification,” Machine Learning, vol.88, pp.5-45, 2012. 10.1007/s10994-012-5285-8 – reference: [19] X. Jia, Z. Li, X. Zheng, W. Li, and S.-J. Huang, “Label distribution learning with label correlations on local samples,” IEEE Trans. Knowl. Data Eng., vol.33, no.4, pp.1619-1631, 2021. 10.1109/tkde.2019.2943337 – reference: [15] M.-L. Zhang and Z.-H. Zhou, “A review on multi-label learning algorithms,” IEEE Trans. Knowl. Data Eng., vol.26, no.8, pp.1819-1837, 2014. 10.1109/tkde.2013.39 – reference: [23] B. Chen and J. Yan, “Fresh tea shoot maturity estimation via multispectral imaging and deep label distribution learning,” IEICE Trans. Inf. & Syst., vol.E103-D, no.9, pp.2019-2022, Sept. 2020. 10.1587/transinf.2020edl8038 – reference: [9] D.F. Braxton, D.D. Muehling, and J. Joireman, “The effects of processing mode and brand scandals on copycat product evaluations,” Journal of Marketing Communications, vol.25, no.3, pp.247-267, 2016. 10.1080/13527266.2016.1236284 – reference: [24] X. Jia, T. Qin, Y. Lu, and W. Li, “Adaptive weighted ranking-oriented label distribution learning,” IEEE Trans. Neural Netw. Learn. Syst., vol.35, no.8, pp.11302-11316, 2023. 10.1109/tnnls.2023.3258976 – reference: [14] R.M. Cortez, W.J. Johnston, and M. Ehret, “ “good times-bad times”-Relationship marketing through business cycles,” Journal of Business Research, vol.165, 114063, 2023. 10.1016/j.jbusres.2023.114063 – reference: [2] F. Qiao and W.G. Griffin, “Brand imitation strategy, package design and consumer response: What does it take to make a difference?,” Journal of Product & Brand Management, vol.31, no.2, pp.177-188, 2022. 10.1108/jpbm-05-2019-2363 – reference: [4] T. Amirifar, S. Lahmiri, and M.K. Zanjani, “An NLP-deep learning approach for product rating prediction based on online reviews and product features,” IEEE Trans. Comput. Soc. Syst., vol.11, no.6, pp.8156-8168, 2023. 10.1109/tcss.2023.3290558 – reference: [17] M. Xu and Z.-H. Zhou, “Incomplete label distribution learning,” Proc. 26th International Joint Conference on Artificial Intelligence, pp.3175-3181, 2017. 10.24963/ijcai.2017/443 – reference: [18] X. Jia, W. Li, J. Liu, and Y. Zhang, “Label distribution learning by exploiting label correlations,” Proc. AAAI Conference on Artificial Intelligence, vol.32, no.1, pp.3310-3317, 2018. 10.1609/aaai.v32i1.11664 – reference: [1] Y. Shen, W. Shan, and J. Luan, “Influence of aggregated ratings on purchase decisions: An event-related potential study,” European Journal of Marketing, vol.52, no.1/2, pp.147-158, 2018. 10.1108/ejm-12-2016-0871 – reference: [12] X. Chen, H. Yu, and F. Yu, “What is the optimal number of response alternatives for rating scales? From an information processing perspective,” Journal of Marketing Analytics, vol.3, pp.69-78, 2015. 10.1057/jma.2015.4 – reference: [13] L.M. De Luca, D. Herhausen, G. Troilo, and A. Rossi, “How and when do big data investments pay off? The role of marketing affordances and service innovation,” Journal of the Academy of Marketing Science, vol.49, no.4, pp.790-810, 2021. 10.1007/s11747-020-00739-x – reference: [20] E. Becht, L. McInnes, J. Healy, C.-A. Dutertre, I.W.H. Kwok, L.G. Ng, F. Ginhoux, and E.W. Newell, “Dimensionality reduction for visualizing single-cell data using UMAP,” Nature Biotechnology, vol.37, no.1, pp.38-44, 2019. 10.1038/nbt.4314 – reference: [7] W. Wang, W. Xiong, J. Wang, L. Tao, S. Li, Y. Yi, X. Zou, and C. Li, “A user purchase behavior prediction method based on XGBoost,” Electronics, vol.12, no.9, 2047, 2023. 10.3390/electronics12092047 – reference: [11] J. Wang and X. Geng, “Label distribution learning by exploiting label distribution manifold,” IEEE Trans. Neural Netw. Learn. Syst., vol.34, no.2, pp.839-852, 2023. 10.1109/tnnls.2021.3103178 – reference: [21] X. Geng, C. Yin, and Z.-H. Zhou, “Facial age estimation by learning from label distributions,” IEEE Trans. Pattern Anal. Mach. Intell., vol.35, no.10, pp.2401-2412, 2013. 10.1109/tpami.2013.51 – reference: [8] L. Li, “Analysis of e-commerce customers’ shopping behavior based on data mining and machine learning,” Soft Computing, pp.1-10, 2023. 10.1007/s00500-023-08903-5 – reference: [3] F. van Horen and R. Pieters, “Out-of-category brand imitation: Product categorization determines copycat evaluation,” Journal of Consumer Research, vol.44, no.4, pp.816-832, 2017. 10.1093/jcr/ucx065 – reference: [6] H. Wu and B. Li, “Customer purchase prediction based on improved gradient boosting decision tree algorithm,” 2022 2nd International Conference on Consumer Electronics and Computer Engineering (ICCECE), pp.795-798, 2022. 10.1109/iccece54139.2022.9712779 – reference: [22] Y. Lin, Y. Li, C. Wang, L. Guo, and J. Chen, “Label distribution learning based on horizontal and vertical mining of label correlations,” IEEE Trans. Big Data, vol.10, no.3, pp.275-287, 2023. 10.1109/tbdata.2023.3338023 – reference: [5] N.C.S. Reddy, V. Subhashini, D. Rai, Sriharsha, B. Vittal, and S. Ganesh, “Product rating estimation using machine learning,” 2021 6th International Conference on Communication and Electronics Systems (ICCES), pp.1366-1369, 2021. 10.1109/ICCES51350.2021.9489208 – reference: [10] X. Geng, “Label distribution learning,” IEEE Trans. Knowl. Data Eng., vol.28, no.7, pp.1734-1748, 2016. 10.1109/tkde.2016.2545658 – ident: 7 doi: 10.3390/electronics12092047 – ident: 15 doi: 10.1109/TKDE.2013.39 – ident: 1 doi: 10.1108/EJM-12-2016-0871 – ident: 23 doi: 10.1587/transinf.2020EDL8038 – ident: 20 doi: 10.1038/nbt.4314 – ident: 6 doi: 10.1109/ICCECE54139.2022.9712779 – ident: 8 doi: 10.1007/s00500-023-08903-5 – ident: 17 doi: 10.24963/ijcai.2017/443 – ident: 24 doi: 10.1109/TNNLS.2023.3258976 – ident: 5 doi: 10.1109/ICCES51350.2021.9489208 – ident: 10 doi: 10.1109/TKDE.2016.2545658 – ident: 19 doi: 10.1109/TKDE.2019.2943337 – ident: 11 doi: 10.1109/TNNLS.2021.3103178 – ident: 14 doi: 10.1016/j.jbusres.2023.114063 – ident: 16 doi: 10.1007/s10994-012-5285-8 – ident: 22 doi: 10.1109/TBDATA.2023.3338023 – ident: 12 doi: 10.1057/jma.2015.4 – ident: 4 doi: 10.1109/TCSS.2023.3290558 – ident: 18 doi: 10.1609/aaai.v32i1.11664 – ident: 9 doi: 10.1080/13527266.2016.1236284 – ident: 13 doi: 10.1007/s11747-020-00739-x – ident: 3 doi: 10.1093/jcr/ucx065 – ident: 21 doi: 10.1109/TPAMI.2013.51 – ident: 2 doi: 10.1108/JPBM-05-2019-2363 |
SSID | ssj0018215 |
Score | 2.385773 |
Snippet | Ratings of products serve as a crucial indicator for assessing the impact of products in the retail market. Existing methods in rating estimation of product... |
SourceID | crossref nii jstage |
SourceType | Index Database Publisher |
StartPage | 1020 |
SubjectTerms | label correlation label distribution learning manifold rating distribution estimation |
Title | Product Rating Distribution Estimation Using an LDL-Based Method with Uniform Manifold Approximation and Projection |
URI | https://www.jstage.jst.go.jp/article/transinf/E108.D/8/E108.D_2024EDL8064/_article/-char/en https://cir.nii.ac.jp/crid/1390021846536341504 |
Volume | E108.D |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | IEICE Transactions on Information and Systems, 2025/08/01, Vol.E108.D(8), pp.1020-1024 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9QwFLamhQMcWAqIAYp84BZliLPZPg5Nqg5tgaKp1FsUJ041FUpRyUjAz-YX8Lwk8aA5sGmkKLHsjOP35fmz8xaEXpW1msYj7lPCVQozkAUPpPCjplaUv4qF0Aay79Kj8_jtRXIxmfxwrJbWnZhV37f6lfyNVKEM5Kq8ZP9AssNNoQDOQb5wBAnD8bdk_MGEa_U-ltp4OVNBcG3-Ki-Hd9e4JXrGLEDl581O_DcwbdXeqU4cbXZhgXYq5qosYeDkU62Y6c311761dSe40jZbrUtmF_niIDfh0Y17hP70YB2chrZuTHTNOVfe2WL-3r0-Ha5gaXz5bQ0qdW4DXdkNiTAZzOEMhJba6NMxdMiHfD5W7232YsMRZojCuLFTSVIfWIVR2tLoaRonPolMHPdekeckYLPMAS1zNDMQqcCZ5eEy3jqDJGoP5rBTQwflM3jAOM9OWGBirf8Sm9tKvuirF6oLRVaw_sRpXvSVlTsdoHcH3Qop1aYFx2fjly8Wmqwb_UNbd0_o1uttndqgU7evYEWhQkXstKuVQ5OWD9A9u77Bc9OLh2gi2z10v88dgu1UsofuOoEwH6EvFsnYIBm7SMYjkrFGMi5bPCAZGyRjhWRskYx7JOMNJEO7Go9IfozOD_PlwZFv04H4VUxY5wNzp2XNY16TKghpIBkhdRnBLw0kZVCWlhwoWR03adjErCqlEFHJBEk5hcLoCdptr1v5FGFC6wAKG6kiY1MiRAW0HJZGkkme8oZPkd-PavHZRH0p1GoZpDDK2pHCFB2boR9q_wsypmgf5FdUK3UEPWr2YdIkSoFyJkH87L_-23N0Z3yLX6Dd7mYt94Fod-KlRuZPhebaGg |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Product+Rating+Distribution+Estimation+Using+an+LDL-Based+Method+with+Uniform+Manifold+Approximation+and+Projection&rft.jtitle=IEICE+Transactions+on+Information+and+Systems&rft.au=Fei+QIAO&rft.au=Fei+MO&rft.au=Lingyu+LIANG&rft.date=2025-08-01&rft.pub=The+Institute+of+Electronics%2C+Information+and+Communication+Engineers&rft.issn=0916-8532&rft.eissn=1745-1361&rft.volume=E108.D&rft.issue=8&rft.spage=1020&rft.epage=1024&rft_id=info:doi/10.1587%2Ftransinf.2024EDL8064&rft.externalDocID=article_transinf_E108_D_8_E108_D_2024EDL8064_article_char_en |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-8532&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-8532&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-8532&client=summon |