Product Rating Distribution Estimation Using an LDL-Based Method with Uniform Manifold Approximation and Projection

Ratings of products serve as a crucial indicator for assessing the impact of products in the retail market. Existing methods in rating estimation of product primarily use single-label machine learning methods, where the prediction may fail to represent the whole properties of products. This paper ex...

Full description

Saved in:
Bibliographic Details
Published inIEICE Transactions on Information and Systems Vol. E108.D; no. 8; pp. 1020 - 1024
Main Authors MO, Fei, QIAO, Fei, LIANG, Lingyu
Format Journal Article
LanguageEnglish
Published The Institute of Electronics, Information and Communication Engineers 01.08.2025
一般社団法人 電子情報通信学会
Subjects
Online AccessGet full text
ISSN0916-8532
1745-1361
DOI10.1587/transinf.2024EDL8064

Cover

Abstract Ratings of products serve as a crucial indicator for assessing the impact of products in the retail market. Existing methods in rating estimation of product primarily use single-label machine learning methods, where the prediction may fail to represent the whole properties of products. This paper explores a challenging task to obtain product rating distribution estimation (RDE), which predict the distribution of product ratings instead of a single rating. Specifically, we focus on RDE of follower brands product, which provide relatively objective artifacts and easier to collect data. We formulate the RDE task based on a label distribution learning (LDL) framework, which uses the maximum entropy model functions as the output component of LDL, and generate the probability distribution for each category. However, one of the main challenge of conducting the RDE task within the LDL framework is that the large number of labels leads to an exponentially growing output space, which increases model complexity and reduces its performance. To address this problem, we propose a new model, called RDE-LDL, with an adaptive manifold learning module. The RDE-LDL method use uniform manifold approximation and projection (UMAP) to represent the label distribution manifold via fuzzy simplicial sets, which encodes label correlation information, and allows to regularize the maximum entropy model’s output based on label correlation. Quantitative and qualitative experiments conducted on a marketing dataset verified the demonstrates the effectiveness of the RDE-LDL method with the UMAP-based module.
AbstractList Ratings of products serve as a crucial indicator for assessing the impact of products in the retail market. Existing methods in rating estimation of product primarily use single-label machine learning methods, where the prediction may fail to represent the whole properties of products. This paper explores a challenging task to obtain product rating distribution estimation (RDE), which predict the distribution of product ratings instead of a single rating. Specifically, we focus on RDE of follower brands product, which provide relatively objective artifacts and easier to collect data. We formulate the RDE task based on a label distribution learning (LDL) framework, which uses the maximum entropy model functions as the output component of LDL, and generate the probability distribution for each category. However, one of the main challenge of conducting the RDE task within the LDL framework is that the large number of labels leads to an exponentially growing output space, which increases model complexity and reduces its performance. To address this problem, we propose a new model, called RDE-LDL, with an adaptive manifold learning module. The RDE-LDL method use uniform manifold approximation and projection (UMAP) to represent the label distribution manifold via fuzzy simplicial sets, which encodes label correlation information, and allows to regularize the maximum entropy model’s output based on label correlation. Quantitative and qualitative experiments conducted on a marketing dataset verified the demonstrates the effectiveness of the RDE-LDL method with the UMAP-based module.
ArticleNumber 2024EDL8064
Author Fei QIAO
Fei MO
Lingyu LIANG
Author_xml – sequence: 1
  givenname: Fei
  surname: MO
  fullname: MO, Fei
– sequence: 2
  givenname: Fei
  surname: QIAO
  fullname: QIAO, Fei
– sequence: 3
  givenname: Lingyu
  surname: LIANG
  fullname: LIANG, Lingyu
BackLink https://cir.nii.ac.jp/crid/1390021846536341504$$DView record in CiNii
BookMark eNpNUE1PAyEUJKYm1o9_4IGD11XewrLsUdv6kWyjaeyZUGBbmso2gFH_vbvWakMCw3sz817mFA186y1Cl0CuoRDlTQrKR-eb65zkbDKuBeHsCA2hZEUGlMMADUkFPBMFzU_QaYxrQkDkUAxRfAmtedcJz1RyfonHLqbgFu_JtR5PYnJv6gfOY99VHtfjOrtT0Ro8tWnVGvzh0grPvWva8Ianqgcbg2-329B-7tXKG9wNWlvdf8_RcaM20V78vmdofj95HT1m9fPD0-i2zjQDkTLOWKlMxSoDmuQlsQLAKNodTmwpuhpXFVBiWMPzhgmt7GJBlVgAr8quSM8Q2_nq0MYYbCO3odsofEkgsg9O7oOTB8F1squdzDsntetvoBUhOQjGC8opg4L0tNmOto5JLe2ftwrJ6Y39954AEXIsxR4czPoj65UK0nr6De6kjng
Cites_doi 10.3390/electronics12092047
10.1109/TKDE.2013.39
10.1108/EJM-12-2016-0871
10.1587/transinf.2020EDL8038
10.1038/nbt.4314
10.1109/ICCECE54139.2022.9712779
10.1007/s00500-023-08903-5
10.24963/ijcai.2017/443
10.1109/TNNLS.2023.3258976
10.1109/ICCES51350.2021.9489208
10.1109/TKDE.2016.2545658
10.1109/TKDE.2019.2943337
10.1109/TNNLS.2021.3103178
10.1016/j.jbusres.2023.114063
10.1007/s10994-012-5285-8
10.1109/TBDATA.2023.3338023
10.1057/jma.2015.4
10.1109/TCSS.2023.3290558
10.1609/aaai.v32i1.11664
10.1080/13527266.2016.1236284
10.1007/s11747-020-00739-x
10.1093/jcr/ucx065
10.1109/TPAMI.2013.51
10.1108/JPBM-05-2019-2363
ContentType Journal Article
Copyright 2025 The Institute of Electronics, Information and Communication Engineers
Copyright_xml – notice: 2025 The Institute of Electronics, Information and Communication Engineers
DBID RYH
AAYXX
CITATION
DOI 10.1587/transinf.2024EDL8064
DatabaseName CiNii Complete
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1745-1361
EndPage 1024
ExternalDocumentID 10_1587_transinf_2024EDL8064
article_transinf_E108_D_8_E108_D_2024EDL8064_article_char_en
GroupedDBID -~X
5GY
ABJNI
ABZEH
ACGFS
ADNWM
AENEX
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
EBS
EJD
F5P
ICE
JSF
JSH
KQ8
OK1
P2P
RJT
RZJ
TN5
ZKX
1TH
AFFNX
C1A
CKLRP
H13
RIG
RYH
RYL
VOH
ZE2
ZY4
AAYXX
CITATION
ID FETCH-LOGICAL-c418t-6447ad949d1c0270e811da3a3a60e78c026a9130d4f62f48caebb3a8b1697d4f3
ISSN 0916-8532
IngestDate Thu Aug 07 06:02:08 EDT 2025
Thu Jun 26 23:13:03 EDT 2025
Mon Sep 01 00:08:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c418t-6447ad949d1c0270e811da3a3a60e78c026a9130d4f62f48caebb3a8b1697d4f3
OpenAccessLink https://www.jstage.jst.go.jp/article/transinf/E108.D/8/E108.D_2024EDL8064/_article/-char/en
PageCount 5
ParticipantIDs crossref_primary_10_1587_transinf_2024EDL8064
nii_cinii_1390021846536341504
jstage_primary_article_transinf_E108_D_8_E108_D_2024EDL8064_article_char_en
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationTitle IEICE Transactions on Information and Systems
PublicationTitleAlternate IEICE Trans. Inf. & Syst.
PublicationTitle_FL IEICE Trans. Inf. & Syst
PublicationYear 2025
Publisher The Institute of Electronics, Information and Communication Engineers
一般社団法人 電子情報通信学会
Publisher_xml – name: The Institute of Electronics, Information and Communication Engineers
– name: 一般社団法人 電子情報通信学会
References [2] F. Qiao and W.G. Griffin, “Brand imitation strategy, package design and consumer response: What does it take to make a difference?,” Journal of Product & Brand Management, vol.31, no.2, pp.177-188, 2022. 10.1108/jpbm-05-2019-2363
[9] D.F. Braxton, D.D. Muehling, and J. Joireman, “The effects of processing mode and brand scandals on copycat product evaluations,” Journal of Marketing Communications, vol.25, no.3, pp.247-267, 2016. 10.1080/13527266.2016.1236284
[11] J. Wang and X. Geng, “Label distribution learning by exploiting label distribution manifold,” IEEE Trans. Neural Netw. Learn. Syst., vol.34, no.2, pp.839-852, 2023. 10.1109/tnnls.2021.3103178
[19] X. Jia, Z. Li, X. Zheng, W. Li, and S.-J. Huang, “Label distribution learning with label correlations on local samples,” IEEE Trans. Knowl. Data Eng., vol.33, no.4, pp.1619-1631, 2021. 10.1109/tkde.2019.2943337
[24] X. Jia, T. Qin, Y. Lu, and W. Li, “Adaptive weighted ranking-oriented label distribution learning,” IEEE Trans. Neural Netw. Learn. Syst., vol.35, no.8, pp.11302-11316, 2023. 10.1109/tnnls.2023.3258976
[17] M. Xu and Z.-H. Zhou, “Incomplete label distribution learning,” Proc. 26th International Joint Conference on Artificial Intelligence, pp.3175-3181, 2017. 10.24963/ijcai.2017/443
[15] M.-L. Zhang and Z.-H. Zhou, “A review on multi-label learning algorithms,” IEEE Trans. Knowl. Data Eng., vol.26, no.8, pp.1819-1837, 2014. 10.1109/tkde.2013.39
[5] N.C.S. Reddy, V. Subhashini, D. Rai, Sriharsha, B. Vittal, and S. Ganesh, “Product rating estimation using machine learning,” 2021 6th International Conference on Communication and Electronics Systems (ICCES), pp.1366-1369, 2021. 10.1109/ICCES51350.2021.9489208
[13] L.M. De Luca, D. Herhausen, G. Troilo, and A. Rossi, “How and when do big data investments pay off? The role of marketing affordances and service innovation,” Journal of the Academy of Marketing Science, vol.49, no.4, pp.790-810, 2021. 10.1007/s11747-020-00739-x
[16] K. Dembczyński, W. Waegeman, W. Cheng, and E. Hüllermeier, “On label dependence and loss minimization in multi-label classification,” Machine Learning, vol.88, pp.5-45, 2012. 10.1007/s10994-012-5285-8
[1] Y. Shen, W. Shan, and J. Luan, “Influence of aggregated ratings on purchase decisions: An event-related potential study,” European Journal of Marketing, vol.52, no.1/2, pp.147-158, 2018. 10.1108/ejm-12-2016-0871
[10] X. Geng, “Label distribution learning,” IEEE Trans. Knowl. Data Eng., vol.28, no.7, pp.1734-1748, 2016. 10.1109/tkde.2016.2545658
[7] W. Wang, W. Xiong, J. Wang, L. Tao, S. Li, Y. Yi, X. Zou, and C. Li, “A user purchase behavior prediction method based on XGBoost,” Electronics, vol.12, no.9, 2047, 2023. 10.3390/electronics12092047
[20] E. Becht, L. McInnes, J. Healy, C.-A. Dutertre, I.W.H. Kwok, L.G. Ng, F. Ginhoux, and E.W. Newell, “Dimensionality reduction for visualizing single-cell data using UMAP,” Nature Biotechnology, vol.37, no.1, pp.38-44, 2019. 10.1038/nbt.4314
[14] R.M. Cortez, W.J. Johnston, and M. Ehret, “ “good times-bad times”-Relationship marketing through business cycles,” Journal of Business Research, vol.165, 114063, 2023. 10.1016/j.jbusres.2023.114063
[3] F. van Horen and R. Pieters, “Out-of-category brand imitation: Product categorization determines copycat evaluation,” Journal of Consumer Research, vol.44, no.4, pp.816-832, 2017. 10.1093/jcr/ucx065
[4] T. Amirifar, S. Lahmiri, and M.K. Zanjani, “An NLP-deep learning approach for product rating prediction based on online reviews and product features,” IEEE Trans. Comput. Soc. Syst., vol.11, no.6, pp.8156-8168, 2023. 10.1109/tcss.2023.3290558
[22] Y. Lin, Y. Li, C. Wang, L. Guo, and J. Chen, “Label distribution learning based on horizontal and vertical mining of label correlations,” IEEE Trans. Big Data, vol.10, no.3, pp.275-287, 2023. 10.1109/tbdata.2023.3338023
[23] B. Chen and J. Yan, “Fresh tea shoot maturity estimation via multispectral imaging and deep label distribution learning,” IEICE Trans. Inf. & Syst., vol.E103-D, no.9, pp.2019-2022, Sept. 2020. 10.1587/transinf.2020edl8038
[21] X. Geng, C. Yin, and Z.-H. Zhou, “Facial age estimation by learning from label distributions,” IEEE Trans. Pattern Anal. Mach. Intell., vol.35, no.10, pp.2401-2412, 2013. 10.1109/tpami.2013.51
[12] X. Chen, H. Yu, and F. Yu, “What is the optimal number of response alternatives for rating scales? From an information processing perspective,” Journal of Marketing Analytics, vol.3, pp.69-78, 2015. 10.1057/jma.2015.4
[6] H. Wu and B. Li, “Customer purchase prediction based on improved gradient boosting decision tree algorithm,” 2022 2nd International Conference on Consumer Electronics and Computer Engineering (ICCECE), pp.795-798, 2022. 10.1109/iccece54139.2022.9712779
[18] X. Jia, W. Li, J. Liu, and Y. Zhang, “Label distribution learning by exploiting label correlations,” Proc. AAAI Conference on Artificial Intelligence, vol.32, no.1, pp.3310-3317, 2018. 10.1609/aaai.v32i1.11664
[8] L. Li, “Analysis of e-commerce customers’ shopping behavior based on data mining and machine learning,” Soft Computing, pp.1-10, 2023. 10.1007/s00500-023-08903-5
11
22
12
23
13
24
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
10
21
References_xml – reference: [16] K. Dembczyński, W. Waegeman, W. Cheng, and E. Hüllermeier, “On label dependence and loss minimization in multi-label classification,” Machine Learning, vol.88, pp.5-45, 2012. 10.1007/s10994-012-5285-8
– reference: [19] X. Jia, Z. Li, X. Zheng, W. Li, and S.-J. Huang, “Label distribution learning with label correlations on local samples,” IEEE Trans. Knowl. Data Eng., vol.33, no.4, pp.1619-1631, 2021. 10.1109/tkde.2019.2943337
– reference: [15] M.-L. Zhang and Z.-H. Zhou, “A review on multi-label learning algorithms,” IEEE Trans. Knowl. Data Eng., vol.26, no.8, pp.1819-1837, 2014. 10.1109/tkde.2013.39
– reference: [23] B. Chen and J. Yan, “Fresh tea shoot maturity estimation via multispectral imaging and deep label distribution learning,” IEICE Trans. Inf. & Syst., vol.E103-D, no.9, pp.2019-2022, Sept. 2020. 10.1587/transinf.2020edl8038
– reference: [9] D.F. Braxton, D.D. Muehling, and J. Joireman, “The effects of processing mode and brand scandals on copycat product evaluations,” Journal of Marketing Communications, vol.25, no.3, pp.247-267, 2016. 10.1080/13527266.2016.1236284
– reference: [24] X. Jia, T. Qin, Y. Lu, and W. Li, “Adaptive weighted ranking-oriented label distribution learning,” IEEE Trans. Neural Netw. Learn. Syst., vol.35, no.8, pp.11302-11316, 2023. 10.1109/tnnls.2023.3258976
– reference: [14] R.M. Cortez, W.J. Johnston, and M. Ehret, “ “good times-bad times”-Relationship marketing through business cycles,” Journal of Business Research, vol.165, 114063, 2023. 10.1016/j.jbusres.2023.114063
– reference: [2] F. Qiao and W.G. Griffin, “Brand imitation strategy, package design and consumer response: What does it take to make a difference?,” Journal of Product & Brand Management, vol.31, no.2, pp.177-188, 2022. 10.1108/jpbm-05-2019-2363
– reference: [4] T. Amirifar, S. Lahmiri, and M.K. Zanjani, “An NLP-deep learning approach for product rating prediction based on online reviews and product features,” IEEE Trans. Comput. Soc. Syst., vol.11, no.6, pp.8156-8168, 2023. 10.1109/tcss.2023.3290558
– reference: [17] M. Xu and Z.-H. Zhou, “Incomplete label distribution learning,” Proc. 26th International Joint Conference on Artificial Intelligence, pp.3175-3181, 2017. 10.24963/ijcai.2017/443
– reference: [18] X. Jia, W. Li, J. Liu, and Y. Zhang, “Label distribution learning by exploiting label correlations,” Proc. AAAI Conference on Artificial Intelligence, vol.32, no.1, pp.3310-3317, 2018. 10.1609/aaai.v32i1.11664
– reference: [1] Y. Shen, W. Shan, and J. Luan, “Influence of aggregated ratings on purchase decisions: An event-related potential study,” European Journal of Marketing, vol.52, no.1/2, pp.147-158, 2018. 10.1108/ejm-12-2016-0871
– reference: [12] X. Chen, H. Yu, and F. Yu, “What is the optimal number of response alternatives for rating scales? From an information processing perspective,” Journal of Marketing Analytics, vol.3, pp.69-78, 2015. 10.1057/jma.2015.4
– reference: [13] L.M. De Luca, D. Herhausen, G. Troilo, and A. Rossi, “How and when do big data investments pay off? The role of marketing affordances and service innovation,” Journal of the Academy of Marketing Science, vol.49, no.4, pp.790-810, 2021. 10.1007/s11747-020-00739-x
– reference: [20] E. Becht, L. McInnes, J. Healy, C.-A. Dutertre, I.W.H. Kwok, L.G. Ng, F. Ginhoux, and E.W. Newell, “Dimensionality reduction for visualizing single-cell data using UMAP,” Nature Biotechnology, vol.37, no.1, pp.38-44, 2019. 10.1038/nbt.4314
– reference: [7] W. Wang, W. Xiong, J. Wang, L. Tao, S. Li, Y. Yi, X. Zou, and C. Li, “A user purchase behavior prediction method based on XGBoost,” Electronics, vol.12, no.9, 2047, 2023. 10.3390/electronics12092047
– reference: [11] J. Wang and X. Geng, “Label distribution learning by exploiting label distribution manifold,” IEEE Trans. Neural Netw. Learn. Syst., vol.34, no.2, pp.839-852, 2023. 10.1109/tnnls.2021.3103178
– reference: [21] X. Geng, C. Yin, and Z.-H. Zhou, “Facial age estimation by learning from label distributions,” IEEE Trans. Pattern Anal. Mach. Intell., vol.35, no.10, pp.2401-2412, 2013. 10.1109/tpami.2013.51
– reference: [8] L. Li, “Analysis of e-commerce customers’ shopping behavior based on data mining and machine learning,” Soft Computing, pp.1-10, 2023. 10.1007/s00500-023-08903-5
– reference: [3] F. van Horen and R. Pieters, “Out-of-category brand imitation: Product categorization determines copycat evaluation,” Journal of Consumer Research, vol.44, no.4, pp.816-832, 2017. 10.1093/jcr/ucx065
– reference: [6] H. Wu and B. Li, “Customer purchase prediction based on improved gradient boosting decision tree algorithm,” 2022 2nd International Conference on Consumer Electronics and Computer Engineering (ICCECE), pp.795-798, 2022. 10.1109/iccece54139.2022.9712779
– reference: [22] Y. Lin, Y. Li, C. Wang, L. Guo, and J. Chen, “Label distribution learning based on horizontal and vertical mining of label correlations,” IEEE Trans. Big Data, vol.10, no.3, pp.275-287, 2023. 10.1109/tbdata.2023.3338023
– reference: [5] N.C.S. Reddy, V. Subhashini, D. Rai, Sriharsha, B. Vittal, and S. Ganesh, “Product rating estimation using machine learning,” 2021 6th International Conference on Communication and Electronics Systems (ICCES), pp.1366-1369, 2021. 10.1109/ICCES51350.2021.9489208
– reference: [10] X. Geng, “Label distribution learning,” IEEE Trans. Knowl. Data Eng., vol.28, no.7, pp.1734-1748, 2016. 10.1109/tkde.2016.2545658
– ident: 7
  doi: 10.3390/electronics12092047
– ident: 15
  doi: 10.1109/TKDE.2013.39
– ident: 1
  doi: 10.1108/EJM-12-2016-0871
– ident: 23
  doi: 10.1587/transinf.2020EDL8038
– ident: 20
  doi: 10.1038/nbt.4314
– ident: 6
  doi: 10.1109/ICCECE54139.2022.9712779
– ident: 8
  doi: 10.1007/s00500-023-08903-5
– ident: 17
  doi: 10.24963/ijcai.2017/443
– ident: 24
  doi: 10.1109/TNNLS.2023.3258976
– ident: 5
  doi: 10.1109/ICCES51350.2021.9489208
– ident: 10
  doi: 10.1109/TKDE.2016.2545658
– ident: 19
  doi: 10.1109/TKDE.2019.2943337
– ident: 11
  doi: 10.1109/TNNLS.2021.3103178
– ident: 14
  doi: 10.1016/j.jbusres.2023.114063
– ident: 16
  doi: 10.1007/s10994-012-5285-8
– ident: 22
  doi: 10.1109/TBDATA.2023.3338023
– ident: 12
  doi: 10.1057/jma.2015.4
– ident: 4
  doi: 10.1109/TCSS.2023.3290558
– ident: 18
  doi: 10.1609/aaai.v32i1.11664
– ident: 9
  doi: 10.1080/13527266.2016.1236284
– ident: 13
  doi: 10.1007/s11747-020-00739-x
– ident: 3
  doi: 10.1093/jcr/ucx065
– ident: 21
  doi: 10.1109/TPAMI.2013.51
– ident: 2
  doi: 10.1108/JPBM-05-2019-2363
SSID ssj0018215
Score 2.385773
Snippet Ratings of products serve as a crucial indicator for assessing the impact of products in the retail market. Existing methods in rating estimation of product...
SourceID crossref
nii
jstage
SourceType Index Database
Publisher
StartPage 1020
SubjectTerms label correlation
label distribution learning
manifold
rating distribution estimation
Title Product Rating Distribution Estimation Using an LDL-Based Method with Uniform Manifold Approximation and Projection
URI https://www.jstage.jst.go.jp/article/transinf/E108.D/8/E108.D_2024EDL8064/_article/-char/en
https://cir.nii.ac.jp/crid/1390021846536341504
Volume E108.D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX IEICE Transactions on Information and Systems, 2025/08/01, Vol.E108.D(8), pp.1020-1024
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9QwFLamhQMcWAqIAYp84BZliLPZPg5Nqg5tgaKp1FsUJ041FUpRyUjAz-YX8Lwk8aA5sGmkKLHsjOP35fmz8xaEXpW1msYj7lPCVQozkAUPpPCjplaUv4qF0Aay79Kj8_jtRXIxmfxwrJbWnZhV37f6lfyNVKEM5Kq8ZP9AssNNoQDOQb5wBAnD8bdk_MGEa_U-ltp4OVNBcG3-Ki-Hd9e4JXrGLEDl581O_DcwbdXeqU4cbXZhgXYq5qosYeDkU62Y6c311761dSe40jZbrUtmF_niIDfh0Y17hP70YB2chrZuTHTNOVfe2WL-3r0-Ha5gaXz5bQ0qdW4DXdkNiTAZzOEMhJba6NMxdMiHfD5W7232YsMRZojCuLFTSVIfWIVR2tLoaRonPolMHPdekeckYLPMAS1zNDMQqcCZ5eEy3jqDJGoP5rBTQwflM3jAOM9OWGBirf8Sm9tKvuirF6oLRVaw_sRpXvSVlTsdoHcH3Qop1aYFx2fjly8Wmqwb_UNbd0_o1uttndqgU7evYEWhQkXstKuVQ5OWD9A9u77Bc9OLh2gi2z10v88dgu1UsofuOoEwH6EvFsnYIBm7SMYjkrFGMi5bPCAZGyRjhWRskYx7JOMNJEO7Go9IfozOD_PlwZFv04H4VUxY5wNzp2XNY16TKghpIBkhdRnBLw0kZVCWlhwoWR03adjErCqlEFHJBEk5hcLoCdptr1v5FGFC6wAKG6kiY1MiRAW0HJZGkkme8oZPkd-PavHZRH0p1GoZpDDK2pHCFB2boR9q_wsypmgf5FdUK3UEPWr2YdIkSoFyJkH87L_-23N0Z3yLX6Dd7mYt94Fod-KlRuZPhebaGg
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Product+Rating+Distribution+Estimation+Using+an+LDL-Based+Method+with+Uniform+Manifold+Approximation+and+Projection&rft.jtitle=IEICE+Transactions+on+Information+and+Systems&rft.au=Fei+QIAO&rft.au=Fei+MO&rft.au=Lingyu+LIANG&rft.date=2025-08-01&rft.pub=The+Institute+of+Electronics%2C+Information+and+Communication+Engineers&rft.issn=0916-8532&rft.eissn=1745-1361&rft.volume=E108.D&rft.issue=8&rft.spage=1020&rft.epage=1024&rft_id=info:doi/10.1587%2Ftransinf.2024EDL8064&rft.externalDocID=article_transinf_E108_D_8_E108_D_2024EDL8064_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-8532&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-8532&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-8532&client=summon