Osteoclast-like cell formation and its regulation by osteotropic hormones in mouse bone marrow cultures

We developed a mouse bone marrow culture system to examine the process of osteoclast-like multinucleated cell formation from its progenitors. When mouse marrow cells were cultured for 8 days with 1 alpha,25-dihydroxyvitamin D3 [1 alpha,25-(OH)2D3, 10(-10) to 10(-7) M] or human PTH (1-34) (25-100 ng/...

Full description

Saved in:
Bibliographic Details
Published inEndocrinology (Philadelphia) Vol. 122; no. 4; p. 1373
Main Authors Takahashi, N, Yamana, H, Yoshiki, S, Roodman, G D, Mundy, G R, Jones, S J, Boyde, A, Suda, T
Format Journal Article
LanguageEnglish
Published United States 01.04.1988
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:We developed a mouse bone marrow culture system to examine the process of osteoclast-like multinucleated cell formation from its progenitors. When mouse marrow cells were cultured for 8 days with 1 alpha,25-dihydroxyvitamin D3 [1 alpha,25-(OH)2D3, 10(-10) to 10(-7) M] or human PTH (1-34) (25-100 ng/ml), tartrate-resistant acid phosphatase (TRACP)-positive multinucleated cells formed. No TRACP-positive multinucleated cells appeared in the absence of these hormones. 1 alpha,25-(OH)2D3 and PTH also increased the number of the clusters of TRACP-positive mononuclear cells. Time course studies showed that these TRACP-positive mononuclear cell clusters appeared before the formation of TRACP-positive multinucleated cells, suggesting that the TRACP-positive mononuclear cells are precursors of the multinucleated cells. Salmon calcitonin markedly inhibited the formation of TRACP-positive multinucleated cells but not TRACP-positive mononuclear cell clusters induced by 1 alpha,25-(OH)2D3 or PTH. TRACP-positive mononuclear cells and multinucleated cells were rarely stained for nonspecific esterase, but some mononuclear cells were positively stained for both nonspecific esterase and TRACP. More that 90% of the TRACP-positive mononuclear cell clusters and multinucleated cells were found near colonies of alkaline phosphatase-positive mononuclear cells (possibly osteoblasts). When marrow mononuclear cells were cultured on sperm whale dentine slices in the presence of 1 alpha,25-(OH)2D3 or PTH, numerous resorption lacunae were formed. These results suggest that 1) TRACP-positive multinucleated cells formed in response to osteotropic hormones in mouse marrow cultures satisfy most of the criteria of osteoclasts, and 2) osteoblasts may play an important role in osteoclast formation.
ISSN:0013-7227
DOI:10.1210/endo-122-4-1373