Stabilized Time Transfer via a 1000-km Optical Fiber Link Using High-Precision Delay Compensation System
Variations in optical fiber length and refractive index are induced by environmental perturbation, resulting in an additional dynamic propagation delay in fiber-based time synchronization systems, which deteriorate their transfer stability. This disadvantage can be significantly reduced by transmitt...
Saved in:
Published in | Photonics Vol. 9; no. 8; p. 522 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Variations in optical fiber length and refractive index are induced by environmental perturbation, resulting in an additional dynamic propagation delay in fiber-based time synchronization systems, which deteriorate their transfer stability. This disadvantage can be significantly reduced by transmitting the time signal in both directions through fiber and constructing a feedback loop to compensate the propagation delay at the remote end of the link. This paper proposes an analog-digital hybrid proportional integral derivative (PID) control compensation system based on the time-frequency phase-locked loop (TF-PLL). The system is designed to keep the merits of wide servo bandwidth, servo accuracy, and a large dynamic delay compensation range up to 1 s, which is much greater than that reported in previous studies. For proving the validity of this proposed scheme, a self-developed optical fiber time synchronization equipment based on the delay compensation system is applied. The delay compensation system is used on a 1100-km long laboratory optical fiber, and the results show that the time synchronization stability in terms of time deviation (TDEV) is less than 5.92 ps/1 s and 2.56 ps/10,000 s. After successful laboratory evaluation, the proposed system is installed on a real 988.48-km line between the Xi’an Lintong branch of the National Time Service Center (NTSC) and Linfen City, Shanxi Province, realizing the time synchronization of 10 stations along the optical fiber link. The experimental results in the 988.48-km link illustrate that the measured time difference with a peak-to-peak value of 176 ps, the standard deviation of 19.3 ps, and a TDEV of less than 10.49 ps/1 s and 2.31 ps/40,000 s is achieved. The high-precision time delay compensation system proposed in this paper is simple, reliable, and accurate; has a wide range of compensation; and opens up a feasible scheme for providing synchronized time signals to multiple users over the long-distance field optical fiber networks. |
---|---|
AbstractList | Variations in optical fiber length and refractive index are induced by environmental perturbation, resulting in an additional dynamic propagation delay in fiber-based time synchronization systems, which deteriorate their transfer stability. This disadvantage can be significantly reduced by transmitting the time signal in both directions through fiber and constructing a feedback loop to compensate the propagation delay at the remote end of the link. This paper proposes an analog-digital hybrid proportional integral derivative (PID) control compensation system based on the time-frequency phase-locked loop (TF-PLL). The system is designed to keep the merits of wide servo bandwidth, servo accuracy, and a large dynamic delay compensation range up to 1 s, which is much greater than that reported in previous studies. For proving the validity of this proposed scheme, a self-developed optical fiber time synchronization equipment based on the delay compensation system is applied. The delay compensation system is used on a 1100-km long laboratory optical fiber, and the results show that the time synchronization stability in terms of time deviation (TDEV) is less than 5.92 ps/1 s and 2.56 ps/10,000 s. After successful laboratory evaluation, the proposed system is installed on a real 988.48-km line between the Xi’an Lintong branch of the National Time Service Center (NTSC) and Linfen City, Shanxi Province, realizing the time synchronization of 10 stations along the optical fiber link. The experimental results in the 988.48-km link illustrate that the measured time difference with a peak-to-peak value of 176 ps, the standard deviation of 19.3 ps, and a TDEV of less than 10.49 ps/1 s and 2.31 ps/40,000 s is achieved. The high-precision time delay compensation system proposed in this paper is simple, reliable, and accurate; has a wide range of compensation; and opens up a feasible scheme for providing synchronized time signals to multiple users over the long-distance field optical fiber networks. |
Audience | Academic |
Author | Guo, Xinxing Dong, Ruifang Liu, Bo Kong, Weicheng Zhang, Shougang Liu, Tao |
Author_xml | – sequence: 1 givenname: Bo surname: Liu fullname: Liu, Bo – sequence: 2 givenname: Xinxing orcidid: 0000-0001-7594-1727 surname: Guo fullname: Guo, Xinxing – sequence: 3 givenname: Weicheng surname: Kong fullname: Kong, Weicheng – sequence: 4 givenname: Tao surname: Liu fullname: Liu, Tao – sequence: 5 givenname: Ruifang orcidid: 0000-0001-6706-8980 surname: Dong fullname: Dong, Ruifang – sequence: 6 givenname: Shougang surname: Zhang fullname: Zhang, Shougang |
BookMark | eNp1UV1rHCEUlZJC0jTveRT6PKnj5_gYtk0TWEghm2dx1Nm9mxmd6qSw_fU12VJKoPrg5XjPOVfPB3QSUwwIXbbkijFNPs-7tKQIrmjSEUHpO3RGGeGNVIye_FOfootS9qQu3bJO8DO0e1hsDyP8Ch5vYAp4k20sQ8j4J1hscVt7m6cJ388LODviG-jr3RriE34sELf4Fra75nsODgqkiL-E0R7wKk1ziMUuL9DDoSxh-ojeD3Ys4eLPeY4eb75uVrfN-v7b3ep63TjedksjvBSdIp46LwPTvnUDp51QXrG-14o71_eKCi2oIkEEMXhOpNCKaGkrqtg5ujvq-mT3Zs4w2XwwyYJ5BVLeGpvrW8ZgtB5o11lafQbeCd0zKxnpg2WUu07JqvXpqDXn9OM5lMXs03OOdXxT7SVVrZS0dl0du7a2ikIc0pKtq9uHCVwNaoCKXyvOteYtY5VAjgSXUyk5DH_HbIl5ydO8zbNS5BuKg-X1e6sXjP8n_gbB3adN |
CitedBy_id | crossref_primary_10_3389_fphy_2022_1080966 crossref_primary_10_3390_app131910699 crossref_primary_10_3788_COL202422_011201 crossref_primary_10_1109_TIM_2024_3414551 crossref_primary_10_1063_5_0191453 crossref_primary_10_1364_OL_521519 crossref_primary_10_1016_j_yofte_2024_104102 crossref_primary_10_1109_TNET_2024_3443600 crossref_primary_10_3390_s22228924 crossref_primary_10_1109_TIM_2024_3488142 crossref_primary_10_3390_photonics10090981 crossref_primary_10_1109_TIM_2024_3368487 crossref_primary_10_1088_0256_307X_42_1_014202 crossref_primary_10_1088_2058_9565_acedc9 crossref_primary_10_1088_0256_307X_41_6_064202 |
Cites_doi | 10.1109/MWP.2013.6724045 10.1088/1681-7575/aa52ee 10.1109/FCS.2011.5977329 10.1109/MCOM.001.1900602 10.1109/EFTF/IFCS52194.2021.9604336 10.1109/LPT.2007.895900 10.1109/JLT.2020.2999158 10.1109/TIM.2010.2090696 10.1109/TIM.2020.3035243 10.1088/0026-1394/53/1/18 10.1109/FCS.2016.7546763 10.1109/EFTF.2014.7331506 10.1109/ACCESS.2019.2930554 10.1140/epjd/e2008-00059-5 10.1109/IAEAC.2017.8054380 10.1109/EFTF/IFCS52194.2021.9604295 10.1109/FCS.2017.8088893 10.1016/j.crhy.2015.04.005 10.1109/TUFFC.2018.2855085 10.1109/TAES.2020.3046336 10.1109/CSNDSP.2016.7573932 10.1109/FCS.2017.8088935 10.1109/FCS.2011.5977840 10.1038/srep40992 10.1109/OFC.2002.1036398 10.1103/PhysRevLett.119.263601 10.23919/URSIAP-RASC.2019.8738197 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG 8FH ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO F28 FR3 GNUQQ H8D H8G HCIFZ JG9 JQ2 KR7 L7M LK8 L~C L~D M7P P5Z P62 P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/photonics9080522 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Database ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China WRHA-DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Biological Science Collection ProQuest Central (New) ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection Ceramic Abstracts Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Corrosion Abstracts |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 2304-6732 |
ExternalDocumentID | oai_doaj_org_article_99f288a2e39f4859b3a630bea324c876 A744994133 10_3390_photonics9080522 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 5VS 8FE 8FG 8FH AADQD AAFWJ AAYXX ABHFT ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU CITATION GROUPED_DOAJ GS5 GX1 HCIFZ IAO ITC KQ8 KZ1 LK8 LMP M7P MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC PMFND 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC DWQXO F28 FR3 GNUQQ H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c418t-5d65870d2cd6e39d1cf42857d73bb974ccbb72595270e5e5fd406597096a59573 |
IEDL.DBID | BENPR |
ISSN | 2304-6732 |
IngestDate | Wed Aug 27 01:22:56 EDT 2025 Fri Jul 25 09:33:44 EDT 2025 Tue Jun 10 20:31:28 EDT 2025 Tue Jul 01 00:37:32 EDT 2025 Thu Apr 24 22:55:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c418t-5d65870d2cd6e39d1cf42857d73bb974ccbb72595270e5e5fd406597096a59573 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7594-1727 0000-0001-6706-8980 |
OpenAccessLink | https://www.proquest.com/docview/2706271662?pq-origsite=%requestingapplication% |
PQID | 2706271662 |
PQPubID | 2032352 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_99f288a2e39f4859b3a630bea324c876 proquest_journals_2706271662 gale_infotracacademiconefile_A744994133 crossref_primary_10_3390_photonics9080522 crossref_citationtrail_10_3390_photonics9080522 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Photonics |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Wang (ref_20) 2007; 19 Lopez (ref_21) 2008; 48 Belli (ref_7) 2018; 65 ref_11 Karlsson (ref_3) 2021; 57 Diaz (ref_10) 2020; 58 Krehlik (ref_14) 2011; 60 ref_19 ref_18 ref_17 Liu (ref_12) 2019; 7 ref_16 ref_15 Wu (ref_13) 2021; 13 Buhr (ref_27) 2021; 70 Clivati (ref_9) 2017; 7 Lopez (ref_25) 2015; 16 Hu (ref_1) 2017; 119 ref_24 Krehlik (ref_31) 2020; 38 ref_23 ref_22 Zhang (ref_28) 2017; 54 Hedekvist (ref_4) 2012; 21 Wang (ref_26) 2019; 11 ref_2 ref_29 Kodet (ref_30) 2016; 53 ref_8 ref_5 ref_6 |
References_xml | – ident: ref_22 doi: 10.1109/MWP.2013.6724045 – volume: 54 start-page: 94 year: 2017 ident: ref_28 article-title: Uncertainty analysis of BTDM-SFSW based fiber-optic time transfer publication-title: Metrologia doi: 10.1088/1681-7575/aa52ee – ident: ref_11 doi: 10.1109/FCS.2011.5977329 – volume: 58 start-page: 60 year: 2020 ident: ref_10 article-title: Time as a service based on white rabbit for finance applications publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.001.1900602 – ident: ref_2 doi: 10.1109/EFTF/IFCS52194.2021.9604336 – volume: 19 start-page: 861 year: 2007 ident: ref_20 article-title: 44-ns continuously tunable dispersionless optical delay element using a ppln waveguide with two-pump configuration, dcf, and a dispersion compensator publication-title: IEEE Photonics Technol. Lett. doi: 10.1109/LPT.2007.895900 – volume: 38 start-page: 5056 year: 2020 ident: ref_31 article-title: Picoseconds-accurate fiber-optic time transfer with relative stabilization of lasers wavelengths publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2020.2999158 – volume: 60 start-page: 1480 year: 2011 ident: ref_14 article-title: Active propagation delay stabilization for fiber-optic frequency distribution using controlled electronic delay lines publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2010.2090696 – volume: 70 start-page: 1 year: 2021 ident: ref_27 article-title: Subnanosecond time synchronization using a 100base-tx ethernet transceiver and an optimized pi-clock servo publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2020.3035243 – volume: 53 start-page: 18 year: 2016 ident: ref_30 article-title: Two-way time transfer via optical fiber providing subpicosecond precision and high temperature stability publication-title: Metrologia doi: 10.1088/0026-1394/53/1/18 – volume: 21 start-page: 371 year: 2012 ident: ref_4 article-title: Time and frequency transfer in optical fibers publication-title: Recent Prog. Opt. Fiber Res. – ident: ref_5 doi: 10.1109/FCS.2016.7546763 – ident: ref_23 doi: 10.1109/EFTF.2014.7331506 – volume: 11 start-page: 1 year: 2019 ident: ref_26 article-title: Joint frequency and time transfer over optical fiber with high-precision delay variation measurement using a phase-locked loop publication-title: IEEE Photonics J. – ident: ref_29 – volume: 7 start-page: 97487 year: 2019 ident: ref_12 article-title: Stabilized radio frequency transfer via 100 km urban optical fiber link using passive compensation method publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2930554 – volume: 13 start-page: 1 year: 2021 ident: ref_13 article-title: Absolutely consistent fiber-optic phase synchronization based on fixed-phase-reference optical active compensation publication-title: IEEE Photonics J. – volume: 48 start-page: 35 year: 2008 ident: ref_21 article-title: 86-km optical link with a resolution of 2 × 10−18 for rf frequency transfer publication-title: Eur. Phys. J. D doi: 10.1140/epjd/e2008-00059-5 – ident: ref_24 doi: 10.1109/IAEAC.2017.8054380 – ident: ref_6 doi: 10.1109/EFTF/IFCS52194.2021.9604295 – ident: ref_18 doi: 10.1109/FCS.2017.8088893 – volume: 16 start-page: 531 year: 2015 ident: ref_25 article-title: Frequency and time transfer for metrology and beyond using telecommunication network fibres publication-title: C. R. Phys. doi: 10.1016/j.crhy.2015.04.005 – volume: 65 start-page: 1965 year: 2018 ident: ref_7 article-title: Long-term behavior of the doris oscillator under radiation: The jason-2 case publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2018.2855085 – volume: 57 start-page: 1657 year: 2021 ident: ref_3 article-title: Stepped frequency pulse compression with noncoherent radar using deep learning publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2020.3046336 – ident: ref_17 doi: 10.1109/CSNDSP.2016.7573932 – ident: ref_19 doi: 10.1109/FCS.2017.8088935 – ident: ref_16 doi: 10.1109/FCS.2011.5977840 – volume: 7 start-page: 40992 year: 2017 ident: ref_9 article-title: A vlbi experiment using a remote atomic clock via a coherent fibre link publication-title: Sci. Rep. doi: 10.1038/srep40992 – ident: ref_15 doi: 10.1109/OFC.2002.1036398 – volume: 119 start-page: 263601 year: 2017 ident: ref_1 article-title: Atom interferometry with the sr optical clock transition publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.263601 – ident: ref_8 doi: 10.23919/URSIAP-RASC.2019.8738197 |
SSID | ssj0000913854 |
Score | 2.3241396 |
Snippet | Variations in optical fiber length and refractive index are induced by environmental perturbation, resulting in an additional dynamic propagation delay in... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 522 |
SubjectTerms | Compensation Compensation management Control systems Control theory Feedback loops Fiber optic networks Fiber optics fiber-optic link Laboratories Optical communication Optical fibers Optics Perturbation Phase locked loops Propagation Proportional integral derivative Refractivity Service centers Stability Synchronization time delay compensation Time lag Time measurement Time signals Time synchronization |
SummonAdditionalLinks | – databaseName: WRHA-DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JSgQxEA3iyYu7OG7kIIiHMD3ppNN9dBtEcDkoeAtZUdRxmBkF_Xqr0lFUUC9eQxrSr5JUvaTqhZBtU1heNKZm0auKCacEM1FahmJV0XvhKovVyKdn1fGVOLmW15-e-sKcsFYeuAWu2zSR17XhoWyiqGVjS1OVhQ0GIgEHSxl3X_B5n8hU2oObXllL0d5LlsDru8ObxwmKzY6bAlX8-Rc_lOT6f9qUk6fpz5PZHCLSvXZoC2QqDBbJXA4XaV6M4yVyA4Eipra-QitWctDkd2IY0edbQw3FM3V290DPh-m8mvYxOYQi-aQpUYBijge7GOVXduhhuDcvFDcIoLbJYLTVM18mV_2jy4Njlh9OYE706gmTHuIKVXjufAW4-Z6LwDKk8qq0FgiEc9Yq4D2SqyLIIKMXeL2qgM4YaFXlCpkePA7CKqG18r0AIYsC8IUI1kSB4KNwmwTnLjuk-w6jdllVHB-3uNfALhB4_R34Dtn9-GLYKmr80ncfLfPRD7WwUwPMEJ1niP5rhnTIDtpV44qFoTmTCw_gB1H7Su8pAbQPnHnZIRvvptd5KY81YFRxYJUVX_uP0ayTGY4VFCmHcINMT0ZPYRPimondSlP4DYBZ9Q8 priority: 102 providerName: Directory of Open Access Journals |
Title | Stabilized Time Transfer via a 1000-km Optical Fiber Link Using High-Precision Delay Compensation System |
URI | https://www.proquest.com/docview/2706271662 https://doaj.org/article/99f288a2e39f4859b3a630bea324c876 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxEB7R5MIFyksE2sgHJMTBymbXXu-eqrY0REiECFGpN8tPiihJSEKl9td3xnGCQKJXr1eyPfbMfOPxNwBvTGHLojUNj17VXDgluInSciKrit4LV1t6jfxpUo_PxccLeZEDbqucVrnViUlR-7mjGPmgVESoO6zr8mjxi1PVKLpdzSU09qCLKrhpOtA9OZtMv-yiLMR62UixuZ-sEN8PFpfzNZHOrtqC2PzLv-xRou3_n3JOFme0D4-yq8iON7J9Ag_C7Ck8zm4jy4dy9Qwu0WGkFNdbbKUXHSzZnxiW7Pq7YYZRbJ3_-Mk-L1Lcmo0oSYQRCGUpYYBRrgefLnO1HfY-XJkbRooCIW4SHNvwmj-H89HZ19MxzwUUuBPDZs2lR_9CFb50vg5V64cuItqQyqvKWgQSzlmrEP9IXNwgg4xe0DWrQlhjsFVVL6Azm8_CS2CN8sOArouKohEiWBNFYYMhAjeJRl72YLBdRu0yuzgVubjSiDJo4fW_C9-Dd7s_FhtmjXv6npBkdv2IEzs1zJffdD5ium0jbgFT4kxxkLK1lakrGiT6jA6Vfg_eklw1nVwcmjP5AQJOkDiw9LESCP_QqFc9ONiKXucjvdJ_NuCr-z-_hoclvZFIWYIH0Fkvf4dD9FzWtg97zehDP2_SfsL_dyNZ8Eo |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VcoALb9RACz6AEAcrG6-93j1UqFBCSh9waKXejF9LESUJSShqfxS_kRnvbhBI9Nar9-XH7Mw39sw3AM9s5kRW2ZLXQRdcei25rZXjRFZVhyB94Sgbef-gGB3J98fqeAV-dbkwFFbZ6cSkqMPE0x55X2gi1B0UhXg1_c6pahSdrnYlNBqx2I3nP9Flm2_ubOP6Phdi-PbwzYi3VQW4l4NywVVAo6uzIHwoYl6Fga8RgisddO4comvvndPoFCj8YlRR1UHS2aNGrG-xVef43mtwXeZoySkzffhuuadDHJulks1pKF7P-tOTyYIobudVRrUDxF_WLxUJ-J8pSPZteAdutcCUbTWSdBdW4vge3G5BKmtVwPw-nCA8pYDaC2yl_BGWrF0dZ-zsi2WW0U4-__qNfZimXXI2pJAURi4vS-EJjCJL-MdZW9uHbcdTe85ILaFDncSENSzqD-DoSib2IayOJ-O4BqzUYRARKOlallJGZ2uZuWiJLk4hpFA96HfTaHzLZU4lNU4N-jQ08ebfie_By-UT04bH45J7X9PKLO8jBu7UMJl9Nu0PbaqqFmVpBY4UO6kql9sip04iQvVoYnrwgtbVkJ7ArnnbpjvgAIlxy2xpic4mQoi8B-vd0ptWgczNH3F_dPnlp3BjdLi_Z_Z2DnYfw01B2RkpPnEdVhezH3EDMdPCPUmCyuDTVf8ZvwFEXSiS |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVEJceCMCBXwAIQ6rbLz2eveAUEsatRRChKjUm_GTorZJSAKo_DR-HTMbbxBI9Nar9-W1xzPf2DPfADw1ueV5baoselVmwimRmShtRmRV0XvhSkvZyO9G5d6heHMkjzbgV5sLQ2GVrU5sFLWfOtoj73FFhLr9suS9mMIixoPhq9nXjCpI0UlrW05jJSIH4fwHum-Ll_sDnOtnnA93P77ey1KFgcyJfrXMpEcDrHLPnS9DUfu-iwjHpfKqsBaRtnPWKnQQJH49yCCjF3QOqRD3G2xVBb73Cmwq8oo6sLmzOxp_WO_wEONmJcXqbLQo6rw3O54uifB2UedUSYD_ZQubkgH_MwyNtRvehOsJprLtlVzdgo0wuQ03EmRlSSEs7sAxglUKr_2JrZRNwhrbF8Ocff9imGG0r5-dnLH3s2bPnA0pQIWRA8yaYAVGcSbZeJ4q_bBBODXnjJQUuteN0LAVp_pdOLyUob0Hncl0Eu4Dq5TvB4RNKopKiGBNFLkNhsjjJAIM2YVeO4zaJWZzKrBxqtHDoYHX_w58F16sn5itWD0uuHeHZmZ9H_FxNw3T-Wedlreu68irynD8U-ykrG1hyoI6iXjVocHpwnOaV01aA7vmTEp-wB8k_i29rQS6nggoii5stVOvkzpZ6D_C_-Diy0_gKq4K_XZ_dPAQrnFK1WiCFbegs5x_C48QQC3t4ySpDD5d9uL4Df9BLiQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stabilized+Time+Transfer+via+a+1000-km+Optical+Fiber+Link+Using+High-Precision+Delay+Compensation+System&rft.jtitle=Photonics&rft.au=Liu%2C+Bo&rft.au=Guo%2C+Xinxing&rft.au=Kong%2C+Weicheng&rft.au=Liu%2C+Tao&rft.date=2022-08-01&rft.pub=MDPI+AG&rft.eissn=2304-6732&rft.volume=9&rft.issue=8&rft.spage=522&rft_id=info:doi/10.3390%2Fphotonics9080522&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2304-6732&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2304-6732&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2304-6732&client=summon |