Improved Chimpanzee Search Algorithm with Multi-Strategy Fusion and Its Application

An improved chimpanzee optimization algorithm incorporating multiple strategies (IMSChoA) is proposed to address the problems of initialized population boundary aggregation distribution, slow convergence speed, low precision, and proneness to fall into local optimality of the chimpanzee search algor...

Full description

Saved in:
Bibliographic Details
Published inMachines (Basel) Vol. 11; no. 2; p. 250
Main Authors Wu, Hongda, Zhang, Fuxing, Gao, Teng
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.02.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An improved chimpanzee optimization algorithm incorporating multiple strategies (IMSChoA) is proposed to address the problems of initialized population boundary aggregation distribution, slow convergence speed, low precision, and proneness to fall into local optimality of the chimpanzee search algorithm. Firstly, the improved sine chaotic mapping is used to initialize the population to solve the population boundary aggregation distribution problem. Secondly, a linear weighting factor and an adaptive acceleration factor are added to join the particle swarm idea and cooperate with the improved nonlinear convergence factor to balance the global search ability of the algorithm, accelerate the convergence of the algorithm, and improve the convergence accuracy. Finally, the sparrow elite mutation and Bernoulli chaos mapping strategy improved by adaptive change water wave factor are added to improve the ability of individuals to jump out of the local optimum. Through the comparative analysis of benchmark functions seeking optimization and the comparison of Wilcoxon rank sum statistical test seeking results, it can be seen that the IMSChoA optimization algorithm has stronger robustness and applicability. Further, the IMSChoA optimization algorithm is applied to two engineering examples to verify the superiority of the IMSChoA optimization algorithm in dealing with mechanical structure optimization design problems.
AbstractList An improved chimpanzee optimization algorithm incorporating multiple strategies (IMSChoA) is proposed to address the problems of initialized population boundary aggregation distribution, slow convergence speed, low precision, and proneness to fall into local optimality of the chimpanzee search algorithm. Firstly, the improved sine chaotic mapping is used to initialize the population to solve the population boundary aggregation distribution problem. Secondly, a linear weighting factor and an adaptive acceleration factor are added to join the particle swarm idea and cooperate with the improved nonlinear convergence factor to balance the global search ability of the algorithm, accelerate the convergence of the algorithm, and improve the convergence accuracy. Finally, the sparrow elite mutation and Bernoulli chaos mapping strategy improved by adaptive change water wave factor are added to improve the ability of individuals to jump out of the local optimum. Through the comparative analysis of benchmark functions seeking optimization and the comparison of Wilcoxon rank sum statistical test seeking results, it can be seen that the IMSChoA optimization algorithm has stronger robustness and applicability. Further, the IMSChoA optimization algorithm is applied to two engineering examples to verify the superiority of the IMSChoA optimization algorithm in dealing with mechanical structure optimization design problems.
Audience Academic
Author Zhang, Fuxing
Wu, Hongda
Gao, Teng
Author_xml – sequence: 1
  givenname: Hongda
  surname: Wu
  fullname: Wu, Hongda
– sequence: 2
  givenname: Fuxing
  surname: Zhang
  fullname: Zhang, Fuxing
– sequence: 3
  givenname: Teng
  surname: Gao
  fullname: Gao, Teng
BookMark eNp1kd1rHCEUxYeQQtIk730U-jypn6PzuCxNu5DSh22exdHrrsvMOFW3Jfnra7MJlEAVVA73d9Rz3zfnc5yhaT4QfMtYjz9Nxu7DDJkQTDEV-Ky5pFiKlkhMz_85XzQ3OR9wHT1hiqvLZruZlhR_gUPrfZgWMz8BoC2YZPdoNe5iCmU_od91Rd-OYwnttiRTYPeI7o45xBmZ2aFNyWi1LGOwplTtunnnzZjh5mW_ah7uPv9Yf23vv3_ZrFf3reVElVbYYXAOc44FBzGAHRwToKzzhnoMRnaUMwnWMyokZrJzxDtLpRsU6ztG2FWzOfm6aA56SWEy6VFHE_SzENNOm1SCHUFzjOkwGGMNMdxKPjhfA6gXd-AVEF69Pp68aho_j5CLPsRjmuvzNZWyF6TDXNWq21PVzlTTMPtY07B1OpiCrT3xoeoryakSRPG-At0JsCnmnMBrG8pzSBUMoyZY_22gftvACuI34Ov__ov8AXVHoek
CitedBy_id crossref_primary_10_1080_21642583_2023_2249021
crossref_primary_10_1016_j_asoc_2024_111933
Cites_doi 10.1016/j.eswa.2020.113370
10.1016/j.est.2020.101815
10.1016/j.measurement.2017.05.026
10.1007/s00500-018-3310-y
10.3390/mca27060096
10.1109/TPEL.2019.2923726
10.1155/2021/5556780
10.3390/sym14051011
10.1080/21642583.2019.1708830
10.1016/j.eswa.2020.113338
10.1007/s10586-018-2360-3
10.1016/j.cmpb.2009.04.005
10.1016/j.eswa.2018.04.012
10.3389/fresc.2021.802070
10.1016/j.advengsoft.2016.01.008
10.1016/j.swevo.2018.01.011
10.1016/j.swevo.2011.02.002
10.3390/electronics11050745
10.1007/s00521-021-06885-9
10.1080/0305215X.2019.1624740
10.3390/sym12081234
10.1109/ICSESS.2010.5552427
10.1016/j.aci.2017.09.001
10.1007/s11042-022-12882-4
10.1007/s12205-020-0504-5
10.1007/s12530-018-9228-x
10.1007/s00366-021-01591-5
10.1016/j.eswa.2021.115651
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.3390/machines11020250
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2075-1702
ExternalDocumentID oai_doaj_org_article_4002bbaaca1a4c74bdf1380546ef8e14
A742851849
10_3390_machines11020250
GroupedDBID 5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABJCF
ACIWK
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
ITC
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
RNS
PMFND
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c418t-5cbbdd044054e5becbd35e8cdfa2f0ea762437ecf32570376d1fdc27db8396313
IEDL.DBID DOA
ISSN 2075-1702
IngestDate Wed Aug 27 01:22:01 EDT 2025
Fri Jul 25 12:11:33 EDT 2025
Tue Jun 10 20:36:26 EDT 2025
Tue Jul 01 02:17:53 EDT 2025
Thu Apr 24 22:59:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-5cbbdd044054e5becbd35e8cdfa2f0ea762437ecf32570376d1fdc27db8396313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/4002bbaaca1a4c74bdf1380546ef8e14
PQID 2779516048
PQPubID 2032370
ParticipantIDs doaj_primary_oai_doaj_org_article_4002bbaaca1a4c74bdf1380546ef8e14
proquest_journals_2779516048
gale_infotracacademiconefile_A742851849
crossref_citationtrail_10_3390_machines11020250
crossref_primary_10_3390_machines11020250
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Machines (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Derrac (ref_32) 2011; 1
Houssein (ref_23) 2021; 185
Ghanamijaber (ref_3) 2019; 10
ref_34
Sun (ref_9) 2020; 35
ref_11
Wang (ref_17) 2021; 2021
Mareli (ref_31) 2018; 14
Mirjalili (ref_13) 2016; 95
Afzal (ref_7) 2020; 32
ref_19
Tharwat (ref_1) 2019; 22
Meidani (ref_10) 2022; 34
Cinsdikici (ref_2) 2009; 96
Li (ref_26) 2020; 24
Xue (ref_12) 2020; 8
Khishe (ref_20) 2020; 149
Tian (ref_18) 2018; 41
Xinming (ref_33) 2019; 34
ref_22
Teng (ref_15) 2019; 23
Du (ref_21) 2022; 81
ref_29
Ji (ref_8) 2020; 152
Liu (ref_24) 2022; 47
ref_28
Wang (ref_30) 2021; 2021
Lu (ref_14) 2018; 107
ref_27
Hussien (ref_16) 2020; 52
Ebrahimi (ref_5) 2017; 108
Hekmatmanesh (ref_25) 2022; 2
ref_4
ref_6
References_xml – volume: 152
  start-page: 113370
  year: 2020
  ident: ref_8
  article-title: An improved quantum particle swarm optimization algorithm for environmental economic dispatch
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113370
– volume: 34
  start-page: 2073
  year: 2019
  ident: ref_33
  article-title: Improved grey wolf optimizer and its application to high-dimensional function and FCM optimization
  publication-title: Control. Decis.
– volume: 32
  start-page: 101815
  year: 2020
  ident: ref_7
  article-title: Multi-objective optimization of thermal performance in battery system using genetic and particle swarm algorithm combined with fuzzy logics
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2020.101815
– volume: 108
  start-page: 26
  year: 2017
  ident: ref_5
  article-title: A new simulation-based genetic algorithm to efficiency measure in IDEA with weight restrictions
  publication-title: Measurement
  doi: 10.1016/j.measurement.2017.05.026
– volume: 47
  start-page: 1
  year: 2022
  ident: ref_24
  article-title: Golden sine chimpanzee optimization algorithm integrating multiple strategies
  publication-title: J. Autom.
– ident: ref_34
– volume: 23
  start-page: 6617
  year: 2019
  ident: ref_15
  article-title: An improved hybrid grey wolf optimization algorithm
  publication-title: Soft Comput.
  doi: 10.1007/s00500-018-3310-y
– ident: ref_11
– ident: ref_28
  doi: 10.3390/mca27060096
– volume: 35
  start-page: 1136
  year: 2020
  ident: ref_9
  article-title: State Feedback Control for a PM Hub Motor Based on Gray Wolf Optimization Algorithm
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2019.2923726
– volume: 2021
  start-page: 5556780
  year: 2021
  ident: ref_30
  article-title: Research on economic optimization of microgrid cluster based on chaos sparrow search algorithm
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2021/5556780
– ident: ref_29
  doi: 10.3390/sym14051011
– volume: 8
  start-page: 22
  year: 2020
  ident: ref_12
  article-title: A novel swarm intelligence optimization approach: Sparrow search algorithm
  publication-title: Syst. Sci. Control. Eng.
  doi: 10.1080/21642583.2019.1708830
– volume: 149
  start-page: 113338
  year: 2020
  ident: ref_20
  article-title: Chimp optimization algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113338
– volume: 22
  start-page: 4745
  year: 2019
  ident: ref_1
  article-title: Intelligent Bézier curve-based path planning model using Chaotic Particle Swarm Optimization algorithm
  publication-title: Cluster Comput.
  doi: 10.1007/s10586-018-2360-3
– volume: 96
  start-page: 85
  year: 2009
  ident: ref_2
  article-title: Detection of blood vessels in ophthalmoscope images using MF/ant (matched filter/ant colony) algorithm
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2009.04.005
– volume: 107
  start-page: 89
  year: 2018
  ident: ref_14
  article-title: Grey wolf optimizer with cellular topological structure
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.04.012
– volume: 2
  start-page: 802070
  year: 2022
  ident: ref_25
  article-title: Largest Lyapunov Exponent Optimization for Control of a Bionic-Hand: A Brain Computer Interface Study
  publication-title: Front. Rehabil. Sci.
  doi: 10.3389/fresc.2021.802070
– volume: 95
  start-page: 51
  year: 2016
  ident: ref_13
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 2021
  start-page: 8896794
  year: 2021
  ident: ref_17
  article-title: An Adaptive Fuzzy Chicken Swarm Optimization Algorithm
  publication-title: Math. Probl. Eng.
– ident: ref_4
– volume: 41
  start-page: 49
  year: 2018
  ident: ref_18
  article-title: MPSO: Modified particle swarm optimization and its applications
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.01.011
– volume: 1
  start-page: 3
  year: 2011
  ident: ref_32
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.02.002
– ident: ref_6
  doi: 10.3390/electronics11050745
– volume: 34
  start-page: 7711
  year: 2022
  ident: ref_10
  article-title: Adaptive grey wolf optimizer
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-06885-9
– volume: 52
  start-page: 945
  year: 2020
  ident: ref_16
  article-title: New binary whale optimization algorithm for discrete optimization problems
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2019.1624740
– ident: ref_19
  doi: 10.3390/sym12081234
– ident: ref_27
  doi: 10.1109/ICSESS.2010.5552427
– volume: 14
  start-page: 107
  year: 2018
  ident: ref_31
  article-title: An adaptive Cuckoo search algorithm for optimisation
  publication-title: Appl. Comput. Inform.
  doi: 10.1016/j.aci.2017.09.001
– volume: 81
  start-page: 27397
  year: 2022
  ident: ref_21
  article-title: Improved chimp optimization algorithm for three-dimensional path planning problem
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-022-12882-4
– volume: 24
  start-page: 3703
  year: 2020
  ident: ref_26
  article-title: Modified Whale Optimization Algorithm Based on Tent Chaotic Mapping and Its Application in Structural Optimization
  publication-title: KSCE J. Civ. Eng.
  doi: 10.1007/s12205-020-0504-5
– volume: 10
  start-page: 273
  year: 2019
  ident: ref_3
  article-title: A hybrid fuzzy-PID controller based on gray wolf optimization algorithm in power system
  publication-title: Evol. Syst.
  doi: 10.1007/s12530-018-9228-x
– ident: ref_22
  doi: 10.1007/s00366-021-01591-5
– volume: 185
  start-page: 115651
  year: 2021
  ident: ref_23
  article-title: An efficient multilevel thresholding segmentation method for thermography breast cancer imaging based on improved chimp optimization algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115651
SSID ssj0000913848
Score 2.2244775
Snippet An improved chimpanzee optimization algorithm incorporating multiple strategies (IMSChoA) is proposed to address the problems of initialized population...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 250
SubjectTerms Acceleration
Accuracy
Agglomeration
Algorithms
Chimpanzees
Convergence
Design optimization
Heuristic
improved sine chaos mapping
Mapping
Mathematical models
Mathematical optimization
Monkeys & apes
Mutation
nonlinear decay factor
Optimization algorithms
Random variables
Search algorithms
sparrow elite mutation
Statistical tests
Water waves
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwEB3BcikH1NIiltLKh0qoB2s3trNOTtWCWAFSEWqLxM3yJxwgC2w4tL--M4l3aSuVa-Io9ow9M34evwH4VGhnY20lH0vhuHKF46hmza0SY4cRx9hGAvS_nk9OLtXZVXmVAbdFTqtc2sTOUIe5J4x8JLTGYGCCE-7L_QOnqlF0uppLaKzDBprgqhrAxuHx-cW3FcpCrJeVqvrzSYm_Ht11OYpxgW5PkP__yx91tP3_M86dx5m9hq0cKrJpr9s3sBabbdj8g0DwLXzvMYEY2NEN3XdsfsXI-gxiNr29xv63N3eMsFbW3bTlmYz2J5s9EUzGbBPYabtg0-dz7HdwOTv-cXTCc5kE7lVRtbz0zoVApaNLFUvUiQuyjJUPyYo0jhbNnZI6-iSpYh0alFCk4IUODoOjiSzkDgyaeRN3gaXaV14pW4cYlbRFraVSSdgawyyZkhjCaCks4zOHOJWyuDW4lyDxmn_FO4TPqy_ue_6MF9oekvxX7Yj5unswf7w2eSEZtDnCOWu9LazyWrmQUMU49ElMVSzUEA5Ie4bWJ3bN23zNAAdITFdmqnHDVeK-th7C_lLBJi_chXmeZnsvv34Pr6jyfJ_AvQ-D9vEpfsD4pHUf8yT8DXHW5w0
  priority: 102
  providerName: ProQuest
Title Improved Chimpanzee Search Algorithm with Multi-Strategy Fusion and Its Application
URI https://www.proquest.com/docview/2779516048
https://doaj.org/article/4002bbaaca1a4c74bdf1380546ef8e14
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB58XPQgPnF9LDkI4qHsNkk37XEV1wco4gO8hTwmetAq7nrQX--krboK6sVrmdJ0ZjKvTL4B2EqVNVgYkXQFt4m0qU1IzCoxknctRRxdg7Ggf3LaO7ySx9fZ9dior9gTVsMD14zrkI5xa41xJjXSKWl9SEVOgUYPQ47VCGtOPm8smapscEFEMq_PJQV9snNf9SbikNwdj37_ix-q4Pp_MsqVpxnMw1wTIrJ-vbQFmMByEWbHgAOX4KKuBaBne7fxnmP5isjqzmHWv7t5oIz_9p7FGiurbtgmDQjtCxs8x_IYM6VnR6Mh63-eXy_D1WD_cu8wacYjJE6m-SjJnLXex5HRmcSMZGG9yDB3PhgeumjIzEmh0AURJ9WRIfFp8I4rbyko6olUrMBU-VDiKrBQuNxJaQqPKIVJCyWkDNwUFF6JEHgLOu_M0q7BDo8jLO405RCRvfo7e1uw8_HGY42b8QvtbuT_B11EvK4ekB7oRg_0X3rQgu0oPR33JS3NmeZ6Af1gRLjSfUWJVkb5bNGCjXcB62bDDjVXimLNHtmztf9YzTrMxLn0dXv3BkyNnp5xk6KXkW3DZD44aMP07v7p2Xm7Uts3Rn_xPQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLZKOQAHxFNsKTAHEOIQbTIz2UkOqFoKyy59XGil3oZ5toc223ZTofKj-I2189gCEr31mplEGdtjezy2P4C3mbImlEYkqeA2kTazCbJZJUby1KLHkZpAAf2d3dF0X347yA9W4HdfC0Nplb1ObBS1nzuKkQ-5UugMjFDgNk7PEkKNotvVHkKjFYutcPkTj2yLj7PPyN93nE--7G1Okw5VIHEyK-okd9Z6T0jLuQw5LsF6kYfC-Wh4TINB7SCFCi4KAnjD_eez6B1X3qIvMRKZwO_egbtSoCWnyvTJ12VMh3psFrJob0NxPB2eNBmRYYFGlpO38Zf1a0AC_mcKGvs2eQQPO8eUjVtJegwroXoCD_5oV_gUvrcRiODZ5hFVV1a_QmBtvjIbHx8iteqjE0aRXdbU9SZd69tLNrmgoBwzlWezesHG17fmz2D_Vsj3HFareRVeAIulK5yUpvQhSGGyUgkpIzclOnUiRj6AYU8s7bqO5QSccazx5ELk1f-SdwAflm-ctt06bpj7iei_nEd9tpsH8_ND3W1bjRqOW2uMM5mRTknrI7IYlz4KsQiZHMB74p4mbYC_5kxX1IALpL5aeqzweJfjKbocwHrPYN2piYW-Fuq1m4ffwL3p3s623p7tbr2E-4R536aOr8NqfX4RXqFnVNvXjTgy-HHb8n8FkX8j0A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtNA9KmkEoIDYlUDLcwBhDhYiWfGGfuAULpEDYWoAir1NszaHlqnNK5Q-TS-ru95SQGJ3nq1x9a8Zd42bwF4nSprQmFEMhTcJtKmNkEyq8RIPrRocQxNoID-59lo90B-PMwOV-B3VwtDaZWdTKwFtZ87ipEPuFJoDIyozWxs0yL2tycfzn4kNEGKblq7cRoNi-yFy5_ovi3eT7eR1m84n-x829pN2gkDiZNpXiWZs9Z7mrqcyZAhONaLLOTOR8PjMBiUFFKo4KKgYW94Fn0avePKW7QrRiIV-N87sKrIK-rB6ubObP_LMsJDHTdzmTd3owLBHpzW-ZFhgSqXk-3xly6sRwb8TzHU2m7yEB60ZiobN3z1CFZC-Rju_9G88Al8beIRwbOtY6q1LH-FwJrsZTY-OUJ8VcenjOK8rK7yTdpGuJdsckEhOmZKz6bVgo2v79CfwsGtIPAZ9Mp5GdaAxcLlTkpT-BCkMGmhhJSRmwJNPBEj78OgQ5Z2bf9yGqNxotGPIfTqf9Hbh3fLL86a3h03rN0k_C_XUdft-sH8_Ei3h1ijvOPWGuNMaqRT0vqIJEbQRyHmIZV9eEvU0yQbcGvOtCUOCCB12dJjhc5ehj510Yf1jsC6FRoLfc3iz29-_QruIu_rT9PZ3gu4h_sXTR75OvSq84uwgWZSZV-2_Mjg-20fgSu2Cili
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Chimpanzee+Search+Algorithm+with+Multi-Strategy+Fusion+and+Its+Application&rft.jtitle=Machines+%28Basel%29&rft.au=Wu%2C+Hongda&rft.au=Zhang%2C+Fuxing&rft.au=Gao%2C+Teng&rft.date=2023-02-01&rft.pub=MDPI+AG&rft.issn=2075-1702&rft.eissn=2075-1702&rft.volume=11&rft.issue=2&rft_id=info:doi/10.3390%2Fmachines11020250&rft.externalDocID=A742851849
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-1702&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-1702&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-1702&client=summon