Improved Chimpanzee Search Algorithm with Multi-Strategy Fusion and Its Application
An improved chimpanzee optimization algorithm incorporating multiple strategies (IMSChoA) is proposed to address the problems of initialized population boundary aggregation distribution, slow convergence speed, low precision, and proneness to fall into local optimality of the chimpanzee search algor...
Saved in:
Published in | Machines (Basel) Vol. 11; no. 2; p. 250 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An improved chimpanzee optimization algorithm incorporating multiple strategies (IMSChoA) is proposed to address the problems of initialized population boundary aggregation distribution, slow convergence speed, low precision, and proneness to fall into local optimality of the chimpanzee search algorithm. Firstly, the improved sine chaotic mapping is used to initialize the population to solve the population boundary aggregation distribution problem. Secondly, a linear weighting factor and an adaptive acceleration factor are added to join the particle swarm idea and cooperate with the improved nonlinear convergence factor to balance the global search ability of the algorithm, accelerate the convergence of the algorithm, and improve the convergence accuracy. Finally, the sparrow elite mutation and Bernoulli chaos mapping strategy improved by adaptive change water wave factor are added to improve the ability of individuals to jump out of the local optimum. Through the comparative analysis of benchmark functions seeking optimization and the comparison of Wilcoxon rank sum statistical test seeking results, it can be seen that the IMSChoA optimization algorithm has stronger robustness and applicability. Further, the IMSChoA optimization algorithm is applied to two engineering examples to verify the superiority of the IMSChoA optimization algorithm in dealing with mechanical structure optimization design problems. |
---|---|
AbstractList | An improved chimpanzee optimization algorithm incorporating multiple strategies (IMSChoA) is proposed to address the problems of initialized population boundary aggregation distribution, slow convergence speed, low precision, and proneness to fall into local optimality of the chimpanzee search algorithm. Firstly, the improved sine chaotic mapping is used to initialize the population to solve the population boundary aggregation distribution problem. Secondly, a linear weighting factor and an adaptive acceleration factor are added to join the particle swarm idea and cooperate with the improved nonlinear convergence factor to balance the global search ability of the algorithm, accelerate the convergence of the algorithm, and improve the convergence accuracy. Finally, the sparrow elite mutation and Bernoulli chaos mapping strategy improved by adaptive change water wave factor are added to improve the ability of individuals to jump out of the local optimum. Through the comparative analysis of benchmark functions seeking optimization and the comparison of Wilcoxon rank sum statistical test seeking results, it can be seen that the IMSChoA optimization algorithm has stronger robustness and applicability. Further, the IMSChoA optimization algorithm is applied to two engineering examples to verify the superiority of the IMSChoA optimization algorithm in dealing with mechanical structure optimization design problems. |
Audience | Academic |
Author | Zhang, Fuxing Wu, Hongda Gao, Teng |
Author_xml | – sequence: 1 givenname: Hongda surname: Wu fullname: Wu, Hongda – sequence: 2 givenname: Fuxing surname: Zhang fullname: Zhang, Fuxing – sequence: 3 givenname: Teng surname: Gao fullname: Gao, Teng |
BookMark | eNp1kd1rHCEUxYeQQtIk730U-jypn6PzuCxNu5DSh22exdHrrsvMOFW3Jfnra7MJlEAVVA73d9Rz3zfnc5yhaT4QfMtYjz9Nxu7DDJkQTDEV-Ky5pFiKlkhMz_85XzQ3OR9wHT1hiqvLZruZlhR_gUPrfZgWMz8BoC2YZPdoNe5iCmU_od91Rd-OYwnttiRTYPeI7o45xBmZ2aFNyWi1LGOwplTtunnnzZjh5mW_ah7uPv9Yf23vv3_ZrFf3reVElVbYYXAOc44FBzGAHRwToKzzhnoMRnaUMwnWMyokZrJzxDtLpRsU6ztG2FWzOfm6aA56SWEy6VFHE_SzENNOm1SCHUFzjOkwGGMNMdxKPjhfA6gXd-AVEF69Pp68aho_j5CLPsRjmuvzNZWyF6TDXNWq21PVzlTTMPtY07B1OpiCrT3xoeoryakSRPG-At0JsCnmnMBrG8pzSBUMoyZY_22gftvACuI34Ov__ov8AXVHoek |
CitedBy_id | crossref_primary_10_1080_21642583_2023_2249021 crossref_primary_10_1016_j_asoc_2024_111933 |
Cites_doi | 10.1016/j.eswa.2020.113370 10.1016/j.est.2020.101815 10.1016/j.measurement.2017.05.026 10.1007/s00500-018-3310-y 10.3390/mca27060096 10.1109/TPEL.2019.2923726 10.1155/2021/5556780 10.3390/sym14051011 10.1080/21642583.2019.1708830 10.1016/j.eswa.2020.113338 10.1007/s10586-018-2360-3 10.1016/j.cmpb.2009.04.005 10.1016/j.eswa.2018.04.012 10.3389/fresc.2021.802070 10.1016/j.advengsoft.2016.01.008 10.1016/j.swevo.2018.01.011 10.1016/j.swevo.2011.02.002 10.3390/electronics11050745 10.1007/s00521-021-06885-9 10.1080/0305215X.2019.1624740 10.3390/sym12081234 10.1109/ICSESS.2010.5552427 10.1016/j.aci.2017.09.001 10.1007/s11042-022-12882-4 10.1007/s12205-020-0504-5 10.1007/s12530-018-9228-x 10.1007/s00366-021-01591-5 10.1016/j.eswa.2021.115651 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.3390/machines11020250 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2075-1702 |
ExternalDocumentID | oai_doaj_org_article_4002bbaaca1a4c74bdf1380546ef8e14 A742851849 10_3390_machines11020250 |
GroupedDBID | 5VS 8FE 8FG AADQD AAFWJ AAYXX ABJCF ACIWK ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IAO ITC KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PROAC PTHSS RNS PMFND 7TB 8FD ABUWG AZQEC DWQXO FR3 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c418t-5cbbdd044054e5becbd35e8cdfa2f0ea762437ecf32570376d1fdc27db8396313 |
IEDL.DBID | DOA |
ISSN | 2075-1702 |
IngestDate | Wed Aug 27 01:22:01 EDT 2025 Fri Jul 25 12:11:33 EDT 2025 Tue Jun 10 20:36:26 EDT 2025 Tue Jul 01 02:17:53 EDT 2025 Thu Apr 24 22:59:57 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c418t-5cbbdd044054e5becbd35e8cdfa2f0ea762437ecf32570376d1fdc27db8396313 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doaj.org/article/4002bbaaca1a4c74bdf1380546ef8e14 |
PQID | 2779516048 |
PQPubID | 2032370 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4002bbaaca1a4c74bdf1380546ef8e14 proquest_journals_2779516048 gale_infotracacademiconefile_A742851849 crossref_citationtrail_10_3390_machines11020250 crossref_primary_10_3390_machines11020250 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Machines (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Derrac (ref_32) 2011; 1 Houssein (ref_23) 2021; 185 Ghanamijaber (ref_3) 2019; 10 ref_34 Sun (ref_9) 2020; 35 ref_11 Wang (ref_17) 2021; 2021 Mareli (ref_31) 2018; 14 Mirjalili (ref_13) 2016; 95 Afzal (ref_7) 2020; 32 ref_19 Tharwat (ref_1) 2019; 22 Meidani (ref_10) 2022; 34 Cinsdikici (ref_2) 2009; 96 Li (ref_26) 2020; 24 Xue (ref_12) 2020; 8 Khishe (ref_20) 2020; 149 Tian (ref_18) 2018; 41 Xinming (ref_33) 2019; 34 ref_22 Teng (ref_15) 2019; 23 Du (ref_21) 2022; 81 ref_29 Ji (ref_8) 2020; 152 Liu (ref_24) 2022; 47 ref_28 Wang (ref_30) 2021; 2021 Lu (ref_14) 2018; 107 ref_27 Hussien (ref_16) 2020; 52 Ebrahimi (ref_5) 2017; 108 Hekmatmanesh (ref_25) 2022; 2 ref_4 ref_6 |
References_xml | – volume: 152 start-page: 113370 year: 2020 ident: ref_8 article-title: An improved quantum particle swarm optimization algorithm for environmental economic dispatch publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113370 – volume: 34 start-page: 2073 year: 2019 ident: ref_33 article-title: Improved grey wolf optimizer and its application to high-dimensional function and FCM optimization publication-title: Control. Decis. – volume: 32 start-page: 101815 year: 2020 ident: ref_7 article-title: Multi-objective optimization of thermal performance in battery system using genetic and particle swarm algorithm combined with fuzzy logics publication-title: J. Energy Storage doi: 10.1016/j.est.2020.101815 – volume: 108 start-page: 26 year: 2017 ident: ref_5 article-title: A new simulation-based genetic algorithm to efficiency measure in IDEA with weight restrictions publication-title: Measurement doi: 10.1016/j.measurement.2017.05.026 – volume: 47 start-page: 1 year: 2022 ident: ref_24 article-title: Golden sine chimpanzee optimization algorithm integrating multiple strategies publication-title: J. Autom. – ident: ref_34 – volume: 23 start-page: 6617 year: 2019 ident: ref_15 article-title: An improved hybrid grey wolf optimization algorithm publication-title: Soft Comput. doi: 10.1007/s00500-018-3310-y – ident: ref_11 – ident: ref_28 doi: 10.3390/mca27060096 – volume: 35 start-page: 1136 year: 2020 ident: ref_9 article-title: State Feedback Control for a PM Hub Motor Based on Gray Wolf Optimization Algorithm publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2019.2923726 – volume: 2021 start-page: 5556780 year: 2021 ident: ref_30 article-title: Research on economic optimization of microgrid cluster based on chaos sparrow search algorithm publication-title: Comput. Intell. Neurosci. doi: 10.1155/2021/5556780 – ident: ref_29 doi: 10.3390/sym14051011 – volume: 8 start-page: 22 year: 2020 ident: ref_12 article-title: A novel swarm intelligence optimization approach: Sparrow search algorithm publication-title: Syst. Sci. Control. Eng. doi: 10.1080/21642583.2019.1708830 – volume: 149 start-page: 113338 year: 2020 ident: ref_20 article-title: Chimp optimization algorithm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113338 – volume: 22 start-page: 4745 year: 2019 ident: ref_1 article-title: Intelligent Bézier curve-based path planning model using Chaotic Particle Swarm Optimization algorithm publication-title: Cluster Comput. doi: 10.1007/s10586-018-2360-3 – volume: 96 start-page: 85 year: 2009 ident: ref_2 article-title: Detection of blood vessels in ophthalmoscope images using MF/ant (matched filter/ant colony) algorithm publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2009.04.005 – volume: 107 start-page: 89 year: 2018 ident: ref_14 article-title: Grey wolf optimizer with cellular topological structure publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.04.012 – volume: 2 start-page: 802070 year: 2022 ident: ref_25 article-title: Largest Lyapunov Exponent Optimization for Control of a Bionic-Hand: A Brain Computer Interface Study publication-title: Front. Rehabil. Sci. doi: 10.3389/fresc.2021.802070 – volume: 95 start-page: 51 year: 2016 ident: ref_13 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 2021 start-page: 8896794 year: 2021 ident: ref_17 article-title: An Adaptive Fuzzy Chicken Swarm Optimization Algorithm publication-title: Math. Probl. Eng. – ident: ref_4 – volume: 41 start-page: 49 year: 2018 ident: ref_18 article-title: MPSO: Modified particle swarm optimization and its applications publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2018.01.011 – volume: 1 start-page: 3 year: 2011 ident: ref_32 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.02.002 – ident: ref_6 doi: 10.3390/electronics11050745 – volume: 34 start-page: 7711 year: 2022 ident: ref_10 article-title: Adaptive grey wolf optimizer publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-06885-9 – volume: 52 start-page: 945 year: 2020 ident: ref_16 article-title: New binary whale optimization algorithm for discrete optimization problems publication-title: Eng. Optim. doi: 10.1080/0305215X.2019.1624740 – ident: ref_19 doi: 10.3390/sym12081234 – ident: ref_27 doi: 10.1109/ICSESS.2010.5552427 – volume: 14 start-page: 107 year: 2018 ident: ref_31 article-title: An adaptive Cuckoo search algorithm for optimisation publication-title: Appl. Comput. Inform. doi: 10.1016/j.aci.2017.09.001 – volume: 81 start-page: 27397 year: 2022 ident: ref_21 article-title: Improved chimp optimization algorithm for three-dimensional path planning problem publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-022-12882-4 – volume: 24 start-page: 3703 year: 2020 ident: ref_26 article-title: Modified Whale Optimization Algorithm Based on Tent Chaotic Mapping and Its Application in Structural Optimization publication-title: KSCE J. Civ. Eng. doi: 10.1007/s12205-020-0504-5 – volume: 10 start-page: 273 year: 2019 ident: ref_3 article-title: A hybrid fuzzy-PID controller based on gray wolf optimization algorithm in power system publication-title: Evol. Syst. doi: 10.1007/s12530-018-9228-x – ident: ref_22 doi: 10.1007/s00366-021-01591-5 – volume: 185 start-page: 115651 year: 2021 ident: ref_23 article-title: An efficient multilevel thresholding segmentation method for thermography breast cancer imaging based on improved chimp optimization algorithm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115651 |
SSID | ssj0000913848 |
Score | 2.2244775 |
Snippet | An improved chimpanzee optimization algorithm incorporating multiple strategies (IMSChoA) is proposed to address the problems of initialized population... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 250 |
SubjectTerms | Acceleration Accuracy Agglomeration Algorithms Chimpanzees Convergence Design optimization Heuristic improved sine chaos mapping Mapping Mathematical models Mathematical optimization Monkeys & apes Mutation nonlinear decay factor Optimization algorithms Random variables Search algorithms sparrow elite mutation Statistical tests Water waves |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwEB3BcikH1NIiltLKh0qoB2s3trNOTtWCWAFSEWqLxM3yJxwgC2w4tL--M4l3aSuVa-Io9ow9M34evwH4VGhnY20lH0vhuHKF46hmza0SY4cRx9hGAvS_nk9OLtXZVXmVAbdFTqtc2sTOUIe5J4x8JLTGYGCCE-7L_QOnqlF0uppLaKzDBprgqhrAxuHx-cW3FcpCrJeVqvrzSYm_Ht11OYpxgW5PkP__yx91tP3_M86dx5m9hq0cKrJpr9s3sBabbdj8g0DwLXzvMYEY2NEN3XdsfsXI-gxiNr29xv63N3eMsFbW3bTlmYz2J5s9EUzGbBPYabtg0-dz7HdwOTv-cXTCc5kE7lVRtbz0zoVApaNLFUvUiQuyjJUPyYo0jhbNnZI6-iSpYh0alFCk4IUODoOjiSzkDgyaeRN3gaXaV14pW4cYlbRFraVSSdgawyyZkhjCaCks4zOHOJWyuDW4lyDxmn_FO4TPqy_ue_6MF9oekvxX7Yj5unswf7w2eSEZtDnCOWu9LazyWrmQUMU49ElMVSzUEA5Ie4bWJ3bN23zNAAdITFdmqnHDVeK-th7C_lLBJi_chXmeZnsvv34Pr6jyfJ_AvQ-D9vEpfsD4pHUf8yT8DXHW5w0 priority: 102 providerName: ProQuest |
Title | Improved Chimpanzee Search Algorithm with Multi-Strategy Fusion and Its Application |
URI | https://www.proquest.com/docview/2779516048 https://doaj.org/article/4002bbaaca1a4c74bdf1380546ef8e14 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB58XPQgPnF9LDkI4qHsNkk37XEV1wco4gO8hTwmetAq7nrQX--krboK6sVrmdJ0ZjKvTL4B2EqVNVgYkXQFt4m0qU1IzCoxknctRRxdg7Ggf3LaO7ySx9fZ9dior9gTVsMD14zrkI5xa41xJjXSKWl9SEVOgUYPQ47VCGtOPm8smapscEFEMq_PJQV9snNf9SbikNwdj37_ix-q4Pp_MsqVpxnMw1wTIrJ-vbQFmMByEWbHgAOX4KKuBaBne7fxnmP5isjqzmHWv7t5oIz_9p7FGiurbtgmDQjtCxs8x_IYM6VnR6Mh63-eXy_D1WD_cu8wacYjJE6m-SjJnLXex5HRmcSMZGG9yDB3PhgeumjIzEmh0AURJ9WRIfFp8I4rbyko6olUrMBU-VDiKrBQuNxJaQqPKIVJCyWkDNwUFF6JEHgLOu_M0q7BDo8jLO405RCRvfo7e1uw8_HGY42b8QvtbuT_B11EvK4ekB7oRg_0X3rQgu0oPR33JS3NmeZ6Af1gRLjSfUWJVkb5bNGCjXcB62bDDjVXimLNHtmztf9YzTrMxLn0dXv3BkyNnp5xk6KXkW3DZD44aMP07v7p2Xm7Uts3Rn_xPQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLZKOQAHxFNsKTAHEOIQbTIz2UkOqFoKyy59XGil3oZ5toc223ZTofKj-I2189gCEr31mplEGdtjezy2P4C3mbImlEYkqeA2kTazCbJZJUby1KLHkZpAAf2d3dF0X347yA9W4HdfC0Nplb1ObBS1nzuKkQ-5UugMjFDgNk7PEkKNotvVHkKjFYutcPkTj2yLj7PPyN93nE--7G1Okw5VIHEyK-okd9Z6T0jLuQw5LsF6kYfC-Wh4TINB7SCFCi4KAnjD_eez6B1X3qIvMRKZwO_egbtSoCWnyvTJ12VMh3psFrJob0NxPB2eNBmRYYFGlpO38Zf1a0AC_mcKGvs2eQQPO8eUjVtJegwroXoCD_5oV_gUvrcRiODZ5hFVV1a_QmBtvjIbHx8iteqjE0aRXdbU9SZd69tLNrmgoBwzlWezesHG17fmz2D_Vsj3HFareRVeAIulK5yUpvQhSGGyUgkpIzclOnUiRj6AYU8s7bqO5QSccazx5ELk1f-SdwAflm-ctt06bpj7iei_nEd9tpsH8_ND3W1bjRqOW2uMM5mRTknrI7IYlz4KsQiZHMB74p4mbYC_5kxX1IALpL5aeqzweJfjKbocwHrPYN2piYW-Fuq1m4ffwL3p3s623p7tbr2E-4R536aOr8NqfX4RXqFnVNvXjTgy-HHb8n8FkX8j0A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtNA9KmkEoIDYlUDLcwBhDhYiWfGGfuAULpEDYWoAir1NszaHlqnNK5Q-TS-ru95SQGJ3nq1x9a8Zd42bwF4nSprQmFEMhTcJtKmNkEyq8RIPrRocQxNoID-59lo90B-PMwOV-B3VwtDaZWdTKwFtZ87ipEPuFJoDIyozWxs0yL2tycfzn4kNEGKblq7cRoNi-yFy5_ovi3eT7eR1m84n-x829pN2gkDiZNpXiWZs9Z7mrqcyZAhONaLLOTOR8PjMBiUFFKo4KKgYW94Fn0avePKW7QrRiIV-N87sKrIK-rB6ubObP_LMsJDHTdzmTd3owLBHpzW-ZFhgSqXk-3xly6sRwb8TzHU2m7yEB60ZiobN3z1CFZC-Rju_9G88Al8beIRwbOtY6q1LH-FwJrsZTY-OUJ8VcenjOK8rK7yTdpGuJdsckEhOmZKz6bVgo2v79CfwsGtIPAZ9Mp5GdaAxcLlTkpT-BCkMGmhhJSRmwJNPBEj78OgQ5Z2bf9yGqNxotGPIfTqf9Hbh3fLL86a3h03rN0k_C_XUdft-sH8_Ei3h1ijvOPWGuNMaqRT0vqIJEbQRyHmIZV9eEvU0yQbcGvOtCUOCCB12dJjhc5ehj510Yf1jsC6FRoLfc3iz29-_QruIu_rT9PZ3gu4h_sXTR75OvSq84uwgWZSZV-2_Mjg-20fgSu2Cili |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Chimpanzee+Search+Algorithm+with+Multi-Strategy+Fusion+and+Its+Application&rft.jtitle=Machines+%28Basel%29&rft.au=Wu%2C+Hongda&rft.au=Zhang%2C+Fuxing&rft.au=Gao%2C+Teng&rft.date=2023-02-01&rft.pub=MDPI+AG&rft.issn=2075-1702&rft.eissn=2075-1702&rft.volume=11&rft.issue=2&rft_id=info:doi/10.3390%2Fmachines11020250&rft.externalDocID=A742851849 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-1702&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-1702&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-1702&client=summon |