An improved hydrophobic coating for the porous gas diffusion layer in a PEM-based electrochemical hydrogen pump to mitigate anode flooding

•Anode flooding is a critical issue of PEM-based electrochemical hydrogen pump.•Coating the gas diffusion media with Ag-HDFT renders it super-hydrophobic.•The coating effectively eliminated the anode flooding issue. Anode flooding is a critical issue in proton exchange membrane (PEM)-based electroch...

Full description

Saved in:
Bibliographic Details
Published inElectrochemistry communications Vol. 117; p. 106777
Main Authors Lee, Myoungseok, Huang, Xinyu
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2020
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Anode flooding is a critical issue of PEM-based electrochemical hydrogen pump.•Coating the gas diffusion media with Ag-HDFT renders it super-hydrophobic.•The coating effectively eliminated the anode flooding issue. Anode flooding is a critical issue in proton exchange membrane (PEM)-based electrochemical hydrogen pumps. Water-proofing the gas diffusion layer (GDL) on the anode side is a highly effective approach to mitigate the flooding problem and to enhance hydrogen pump performance. In this study, we report a low-cost, wet chemical process for water-proofing a metallic GDL. Silver particles, used as roughening and bonding agents, were first deposited on the porous metallic gas diffusion medium, and then heptadecafluoro-1-decanethiol (HDFT) was applied as a hydrophobic surface modifier. The result was a super-hydrophobic porous metallic GDL. Real electrochemical pump cell tests under simulated flooding conditions revealed that the water management performance of the coated GDL was dramatically improved.
AbstractList •Anode flooding is a critical issue of PEM-based electrochemical hydrogen pump.•Coating the gas diffusion media with Ag-HDFT renders it super-hydrophobic.•The coating effectively eliminated the anode flooding issue. Anode flooding is a critical issue in proton exchange membrane (PEM)-based electrochemical hydrogen pumps. Water-proofing the gas diffusion layer (GDL) on the anode side is a highly effective approach to mitigate the flooding problem and to enhance hydrogen pump performance. In this study, we report a low-cost, wet chemical process for water-proofing a metallic GDL. Silver particles, used as roughening and bonding agents, were first deposited on the porous metallic gas diffusion medium, and then heptadecafluoro-1-decanethiol (HDFT) was applied as a hydrophobic surface modifier. The result was a super-hydrophobic porous metallic GDL. Real electrochemical pump cell tests under simulated flooding conditions revealed that the water management performance of the coated GDL was dramatically improved.
Anode flooding is a critical issue in proton exchange membrane (PEM)-based electrochemical hydrogen pumps. Water-proofing the gas diffusion layer (GDL) on the anode side is a highly effective approach to mitigate the flooding problem and to enhance hydrogen pump performance. In this study, we report a low-cost, wet chemical process for water-proofing a metallic GDL. Silver particles, used as roughening and bonding agents, were first deposited on the porous metallic gas diffusion medium, and then heptadecafluoro-1-decanethiol (HDFT) was applied as a hydrophobic surface modifier. The result was a super-hydrophobic porous metallic GDL. Real electrochemical pump cell tests under simulated flooding conditions revealed that the water management performance of the coated GDL was dramatically improved.
ArticleNumber 106777
Author Lee, Myoungseok
Huang, Xinyu
Author_xml – sequence: 1
  givenname: Myoungseok
  surname: Lee
  fullname: Lee, Myoungseok
– sequence: 2
  givenname: Xinyu
  surname: Huang
  fullname: Huang, Xinyu
  email: HUANGXIN@mailbox.sc.edu
BookMark eNqFkcFu1DAQhiNUJNrCG3DwC2SxnazX5oBUVaVUKoIDnK2JPc56ldiR7a20r8BT10vg0gOcZjTS_83M_181FyEGbJr3jG4YZeLDYYMTmjhvOOXnkdjtdq-aSyZ3XcsU5Re176RseS_Zm-Yq5wOljCvVXTa_bgLx85LiE1qyP9kUl30cvCEmQvFhJC4mUvZIlpjiMZMRMrHeuWP2MZAJTpiIDwTI97uv7QC5Us63lBTNHmdvYFqpIwayHOeFlEhmX_wIBQmEaJG4KUZbV71tXjuYMr77U6-bn5_vftx-aR-_3T_c3jy2pmeytFtQQnVsGAwVlFFqjRNbzphAZ6kB59SWAwNlhvotU5wKR7vBgJEdKKZkd908rFwb4aCX5GdIJx3B69-DmEYNqXgzoVa04yAkNUa6ftsZSS0C8gEEZ472orI-riyTYs4JnTa-VONiKAn8pBnV54T0Qa8J6XNCek2oivsX4r_H_Ef2aZVhNenJY9LZeAwGrU_V-fqF_zfgGQ3CsSk
CitedBy_id crossref_primary_10_1016_j_ijhydene_2022_04_134
crossref_primary_10_1016_j_jpowsour_2022_231121
crossref_primary_10_1039_D0SE01516D
crossref_primary_10_1016_j_cej_2024_150733
crossref_primary_10_1016_j_ijhydene_2021_05_121
crossref_primary_10_1016_j_jpowsour_2021_229743
crossref_primary_10_1016_j_apenergy_2024_124728
crossref_primary_10_1016_j_enrev_2022_100002
crossref_primary_10_1021_acsaem_2c00023
crossref_primary_10_3390_catal10111319
crossref_primary_10_1016_j_etran_2025_100407
crossref_primary_10_1016_j_ijhydene_2023_03_109
Cites_doi 10.1016/j.apsusc.2014.08.187
10.1021/la0256533
10.1002/anie.200604596
10.1088/0034-4885/78/8/086501
10.1021/la051308c
10.1016/j.elecom.2019.01.017
10.1016/j.apsusc.2012.10.167
10.1080/19475411.2016.1272502
10.1016/j.ijhydene.2004.12.011
10.1016/j.jpowsour.2007.11.059
10.1016/j.spmi.2012.04.015
10.1021/la991660o
10.1021/la902882b
10.1016/j.phpro.2013.07.045
10.1016/j.apsusc.2008.06.018
10.1016/j.surfcoat.2010.01.033
10.1007/s10800-006-9266-0
ContentType Journal Article
Copyright 2020
Copyright_xml – notice: 2020
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.elecom.2020.106777
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Open Access资源_DOAJ
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-1902
ExternalDocumentID oai_doaj_org_article_9032a680cc8f453c80deae2ba621f046
10_1016_j_elecom_2020_106777
S1388248120301284
GroupedDBID --K
--M
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABXDB
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFPKN
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BCNDV
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCB
SDF
SDG
SDP
SES
SEW
SPC
SSG
SSK
SSZ
T5K
UNMZH
XFK
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
ID FETCH-LOGICAL-c418t-5a96931bbc060100dcf652116efd0caff952a1a9cb48119206f03bcac83a91983
IEDL.DBID .~1
ISSN 1388-2481
IngestDate Wed Aug 27 01:25:30 EDT 2025
Thu Apr 24 22:59:35 EDT 2025
Tue Jul 01 03:05:00 EDT 2025
Thu Jun 13 14:30:56 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Hydrogen pump
Hydrophobic coating
Gas diffusion layer
Anode flooding
Super-hydrophobic surface
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-5a96931bbc060100dcf652116efd0caff952a1a9cb48119206f03bcac83a91983
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1388248120301284
ParticipantIDs doaj_primary_oai_doaj_org_article_9032a680cc8f453c80deae2ba621f046
crossref_citationtrail_10_1016_j_elecom_2020_106777
crossref_primary_10_1016_j_elecom_2020_106777
elsevier_sciencedirect_doi_10_1016_j_elecom_2020_106777
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2020
2020-08-00
2020-08-01
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: August 2020
PublicationDecade 2020
PublicationTitle Electrochemistry communications
PublicationYear 2020
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Larmour, Bell, Saunders (b0060) 2007; 46
Schondelmaier, Cramm, Klingeler, Morenzin, Zilkens, Eberhardt (b0075) 2002; 18
Subhash Latthe, Basavraj Gurav, Shridhar Maruti, Shrikant Vhatkar (b0110) 2012; 02
Alimohammadi, Gashti, Shamei, Kiumarsi (b0100) 2012; 52
Lee, Huang (b0035) 2019; 100
Sarkar, Saleema (b0055) 2010; 204
Simpson, Hunter, Aytug (b0105) 2015; 78
U. Bossel, B. Eliasson, Hydrogen Economy, (n.d.).
(accessed December 1, 2017).
Wang, Liu, Wei, Liu, Lian, Jiang, Nishinaga, Kikuchi, Natsui, Suzuki (b0065) 2016; 3
Barbir, Görgün (b0025) 2007; 37
Hydrogen Market: Global Industry Analysis and Forecast 2015−2021, (n.d.).
(accessed December 12, 2017).
Cao, Jones, Sikka, Wu, Gao (b0045) 2009; 25
Miwa, Nakajima, Fujishima, Hashimoto, Watanabe (b0070) 2000; 16
Fu, He (b0080) 2008; 255
Winter (b0010) 2005; 30
R. Vijay, S.K. Seshadri, P. Haridoss, Gas diffusion layer with PTFE gradients for effective water management in PEM fuel cells, (n.d.).
Liu, Luo, Sun, Wu, Jiang, Liu (b0090) 2013; 264
Qian, Shen (b0085) 2005; 21
Perry, Eisman, Benicewicz (b0020) 2008; 177
Liao, Zuo, Guo, Yuan, Zhuang (b0040) 2014; 317
Varshney, Mohapatra, Kumar (b0050) 2016; 7
Coclite, Shi, Gleason (b0095) 2013; 46
Barbir (10.1016/j.elecom.2020.106777_b0025) 2007; 37
Cao (10.1016/j.elecom.2020.106777_b0045) 2009; 25
Perry (10.1016/j.elecom.2020.106777_b0020) 2008; 177
Varshney (10.1016/j.elecom.2020.106777_b0050) 2016; 7
Miwa (10.1016/j.elecom.2020.106777_b0070) 2000; 16
Qian (10.1016/j.elecom.2020.106777_b0085) 2005; 21
Coclite (10.1016/j.elecom.2020.106777_b0095) 2013; 46
Lee (10.1016/j.elecom.2020.106777_b0035) 2019; 100
Simpson (10.1016/j.elecom.2020.106777_b0105) 2015; 78
Liao (10.1016/j.elecom.2020.106777_b0040) 2014; 317
Subhash Latthe (10.1016/j.elecom.2020.106777_b0110) 2012; 02
Alimohammadi (10.1016/j.elecom.2020.106777_b0100) 2012; 52
Winter (10.1016/j.elecom.2020.106777_b0010) 2005; 30
Sarkar (10.1016/j.elecom.2020.106777_b0055) 2010; 204
10.1016/j.elecom.2020.106777_b0015
10.1016/j.elecom.2020.106777_b0005
Fu (10.1016/j.elecom.2020.106777_b0080) 2008; 255
Larmour (10.1016/j.elecom.2020.106777_b0060) 2007; 46
Wang (10.1016/j.elecom.2020.106777_b0065) 2016; 3
Schondelmaier (10.1016/j.elecom.2020.106777_b0075) 2002; 18
Liu (10.1016/j.elecom.2020.106777_b0090) 2013; 264
10.1016/j.elecom.2020.106777_b0030
References_xml – reference: Hydrogen Market: Global Industry Analysis and Forecast 2015−2021, (n.d.).
– volume: 46
  start-page: 1710
  year: 2007
  end-page: 1712
  ident: b0060
  article-title: Remarkably simple fabrication of superhydrophobic surfaces using electroless galvanic deposition
  publication-title: Angew. Chem. Int. Ed.
– volume: 177
  start-page: 478
  year: 2008
  end-page: 484
  ident: b0020
  article-title: Electrochemical hydrogen pumping using a high-temperature polybenzimidazole (PBI) membrane
  publication-title: J. Power Sources
– reference: (accessed December 1, 2017).
– volume: 18
  start-page: 6242
  year: 2002
  end-page: 6245
  ident: b0075
  article-title: Orientation and self-assembly of hydrophobic fluoroalkylsilanes
  publication-title: Langmuir
– reference: R. Vijay, S.K. Seshadri, P. Haridoss, Gas diffusion layer with PTFE gradients for effective water management in PEM fuel cells, (n.d.).
– volume: 21
  start-page: 9007
  year: 2005
  end-page: 9009
  ident: b0085
  article-title: Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates
  publication-title: Langmuir
– volume: 264
  start-page: 872
  year: 2013
  end-page: 878
  ident: b0090
  article-title: Fabrication of the superhydrophobic surface on aluminum alloy by anodizing and polymeric coating
  publication-title: Appl. Surf. Sci.
– volume: 37
  start-page: 359
  year: 2007
  end-page: 365
  ident: b0025
  article-title: Electrochemical hydrogen pump for recirculation of hydrogen in a fuel cell stack
  publication-title: J. Appl. Electrochem.
– volume: 255
  start-page: 1776
  year: 2008
  end-page: 1781
  ident: b0080
  article-title: Fabrication of super-hydrophobic surfaces on aluminum alloy substrates
  publication-title: Appl. Surf. Sci.
– volume: 7
  start-page: 248
  year: 2016
  end-page: 264
  ident: b0050
  article-title: Superhydrophobic coatings for aluminium surfaces synthesized by chemical etching process
  publication-title: Int. J. Smart Nano Mater.
– reference: (accessed December 12, 2017).
– volume: 100
  start-page: 39
  year: 2019
  end-page: 42
  ident: b0035
  article-title: Development of a hydrophobic coating for the porous gas diffusion layer in a PEM-based electrochemical hydrogen pump to mitigate anode flooding
  publication-title: Electrochem. Commun.
– volume: 317
  start-page: 701
  year: 2014
  end-page: 709
  ident: b0040
  article-title: Fabrication of superhydrophobic surface on aluminum by continuous chemical etching and its anti-icing property
  publication-title: Appl. Surf. Sci.
– volume: 16
  start-page: 5754
  year: 2000
  end-page: 5760
  ident: b0070
  article-title: Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces
  publication-title: Langmuir
– volume: 52
  start-page: 50
  year: 2012
  end-page: 62
  ident: b0100
  article-title: Deposition of silver nanoparticles on carbon nanotube by chemical reduction method: evaluation of surface, thermal and optical properties
  publication-title: Superlattices Microstruct.
– volume: 02
  start-page: 76
  year: 2012
  end-page: 94
  ident: b0110
  article-title: Recent progress in preparation of superhydrophobic surfaces: a review
  publication-title: J. Surf. Eng. Mater. Adv. Technol.
– volume: 3
  start-page: 4
  year: 2016
  end-page: 5
  ident: b0065
  article-title: Robust superhydrophobic surface on Al substrate with durability, corrosion resistance and ice-phobicity
  publication-title: Nat. Publ. Gr.
– volume: 78
  year: 2015
  ident: b0105
  article-title: Superhydrophobic materials and coatings: a review
  publication-title: Reports Prog. Phys.
– volume: 30
  start-page: 681
  year: 2005
  end-page: 685
  ident: b0010
  article-title: Into the hydrogen energy economy—milestones
  publication-title: Int. J. Hydrogen Energy
– volume: 25
  start-page: 12444
  year: 2009
  end-page: 12448
  ident: b0045
  article-title: Anti-icing superhydrophobic coatings
  publication-title: Langmuir
– volume: 204
  start-page: 2483
  year: 2010
  end-page: 2486
  ident: b0055
  article-title: One-step fabrication process of superhydrophobic green coatings
  publication-title: Surf. Coat. Technol.
– volume: 46
  start-page: 56
  year: 2013
  end-page: 61
  ident: b0095
  article-title: Super-hydrophobic and oloephobic crystalline coatings by initiated chemical vapor deposition
  publication-title: Phys. Proc.
– reference: U. Bossel, B. Eliasson, Hydrogen Economy, (n.d.).
– volume: 317
  start-page: 701
  year: 2014
  ident: 10.1016/j.elecom.2020.106777_b0040
  article-title: Fabrication of superhydrophobic surface on aluminum by continuous chemical etching and its anti-icing property
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2014.08.187
– volume: 18
  start-page: 6242
  year: 2002
  ident: 10.1016/j.elecom.2020.106777_b0075
  article-title: Orientation and self-assembly of hydrophobic fluoroalkylsilanes
  publication-title: Langmuir
  doi: 10.1021/la0256533
– volume: 46
  start-page: 1710
  year: 2007
  ident: 10.1016/j.elecom.2020.106777_b0060
  article-title: Remarkably simple fabrication of superhydrophobic surfaces using electroless galvanic deposition
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200604596
– volume: 78
  year: 2015
  ident: 10.1016/j.elecom.2020.106777_b0105
  article-title: Superhydrophobic materials and coatings: a review
  publication-title: Reports Prog. Phys.
  doi: 10.1088/0034-4885/78/8/086501
– volume: 02
  start-page: 76
  year: 2012
  ident: 10.1016/j.elecom.2020.106777_b0110
  article-title: Recent progress in preparation of superhydrophobic surfaces: a review
  publication-title: J. Surf. Eng. Mater. Adv. Technol.
– volume: 21
  start-page: 9007
  year: 2005
  ident: 10.1016/j.elecom.2020.106777_b0085
  article-title: Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates
  publication-title: Langmuir
  doi: 10.1021/la051308c
– volume: 100
  start-page: 39
  year: 2019
  ident: 10.1016/j.elecom.2020.106777_b0035
  article-title: Development of a hydrophobic coating for the porous gas diffusion layer in a PEM-based electrochemical hydrogen pump to mitigate anode flooding
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2019.01.017
– ident: 10.1016/j.elecom.2020.106777_b0030
– volume: 264
  start-page: 872
  year: 2013
  ident: 10.1016/j.elecom.2020.106777_b0090
  article-title: Fabrication of the superhydrophobic surface on aluminum alloy by anodizing and polymeric coating
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2012.10.167
– ident: 10.1016/j.elecom.2020.106777_b0015
– volume: 3
  start-page: 4
  year: 2016
  ident: 10.1016/j.elecom.2020.106777_b0065
  article-title: Robust superhydrophobic surface on Al substrate with durability, corrosion resistance and ice-phobicity
  publication-title: Nat. Publ. Gr.
– volume: 7
  start-page: 248
  year: 2016
  ident: 10.1016/j.elecom.2020.106777_b0050
  article-title: Superhydrophobic coatings for aluminium surfaces synthesized by chemical etching process
  publication-title: Int. J. Smart Nano Mater.
  doi: 10.1080/19475411.2016.1272502
– volume: 30
  start-page: 681
  year: 2005
  ident: 10.1016/j.elecom.2020.106777_b0010
  article-title: Into the hydrogen energy economy—milestones
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2004.12.011
– volume: 177
  start-page: 478
  year: 2008
  ident: 10.1016/j.elecom.2020.106777_b0020
  article-title: Electrochemical hydrogen pumping using a high-temperature polybenzimidazole (PBI) membrane
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2007.11.059
– volume: 52
  start-page: 50
  year: 2012
  ident: 10.1016/j.elecom.2020.106777_b0100
  article-title: Deposition of silver nanoparticles on carbon nanotube by chemical reduction method: evaluation of surface, thermal and optical properties
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2012.04.015
– volume: 16
  start-page: 5754
  year: 2000
  ident: 10.1016/j.elecom.2020.106777_b0070
  article-title: Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces
  publication-title: Langmuir
  doi: 10.1021/la991660o
– volume: 25
  start-page: 12444
  year: 2009
  ident: 10.1016/j.elecom.2020.106777_b0045
  article-title: Anti-icing superhydrophobic coatings
  publication-title: Langmuir
  doi: 10.1021/la902882b
– volume: 46
  start-page: 56
  year: 2013
  ident: 10.1016/j.elecom.2020.106777_b0095
  article-title: Super-hydrophobic and oloephobic crystalline coatings by initiated chemical vapor deposition
  publication-title: Phys. Proc.
  doi: 10.1016/j.phpro.2013.07.045
– volume: 255
  start-page: 1776
  year: 2008
  ident: 10.1016/j.elecom.2020.106777_b0080
  article-title: Fabrication of super-hydrophobic surfaces on aluminum alloy substrates
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2008.06.018
– ident: 10.1016/j.elecom.2020.106777_b0005
– volume: 204
  start-page: 2483
  year: 2010
  ident: 10.1016/j.elecom.2020.106777_b0055
  article-title: One-step fabrication process of superhydrophobic green coatings
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2010.01.033
– volume: 37
  start-page: 359
  year: 2007
  ident: 10.1016/j.elecom.2020.106777_b0025
  article-title: Electrochemical hydrogen pump for recirculation of hydrogen in a fuel cell stack
  publication-title: J. Appl. Electrochem.
  doi: 10.1007/s10800-006-9266-0
SSID ssj0012993
Score 2.3958874
Snippet •Anode flooding is a critical issue of PEM-based electrochemical hydrogen pump.•Coating the gas diffusion media with Ag-HDFT renders it super-hydrophobic.•The...
Anode flooding is a critical issue in proton exchange membrane (PEM)-based electrochemical hydrogen pumps. Water-proofing the gas diffusion layer (GDL) on the...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 106777
SubjectTerms Anode flooding
Gas diffusion layer
Hydrogen pump
Hydrophobic coating
Super-hydrophobic surface
SummonAdditionalLinks – databaseName: Open Access资源_DOAJ
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27bhUxELVQGmgQT3F5aQpaC9v7sssQJYqQgiiIlG41fpFFYfcquSn4Bb6amfVudGlIQ2vZ45Vn5Dn2Hp8R4kNWKTKwlpi9lTXlOInW17Izqem0TtHNlP-zL-3pef35ornYK_XFnLAiD1wW7qNTlcHWqhBsrpsqWBUTJuOxNTrT4Y53X8p562Fq-X9Am-xMra84Dmqr10dzM7OLC8xM_ArdcFPbdd1fSWnW7t_LTXv55uSJeLwARTgsH_hUPEjjM_HwaK3P9lz8PhxhmK8EUoTLX_F62l5OfggQJmQuMxAcBYJ3QAibjvfwHW-Ay6Hc8v0YXCFhbRhGQPh6fCY5mUVYauKERUSgWKUIgy05HXYT_BxmSY4EOE4xQWbWO031QpyfHH87OpVLZQUZam13skHXukp7H1iORakYckt5XLcpRxUwZ9cY1OiCp7UjDKjarCofMNgKnXa2eikOxmlMrwQEbLJJtesw-ZqwlsUm0HgTve6CN3YjqnVp-7DIjnP1i6t-5Zf96ItDenZIXxyyEfJu1LbIbtzT_xN77a4vi2bPDRRK_RJK_X2htBHd6vN-wR8FV5Cp4Z_Tv_4f078Rj9hkYRe-FQe769v0jhDPzr-fg_sPv2z_JA
  priority: 102
  providerName: Directory of Open Access Journals
Title An improved hydrophobic coating for the porous gas diffusion layer in a PEM-based electrochemical hydrogen pump to mitigate anode flooding
URI https://dx.doi.org/10.1016/j.elecom.2020.106777
https://doaj.org/article/9032a680cc8f453c80deae2ba621f046
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxQxDI6qcoALKi-xPFY-cA2bzDM5LqtWC6gVElTqbZRnO6jMrJbtoRd-AL8aOzOzai8gcY2cZBRb9jeW_Zmxd1EET8Cam2gVLzDGcaNswesslLWUwetU8n96Vq3Pi08X5cUBW029MFRWOfr-wacnbz2uLMbXXGzadvFV5ogOCwxQhOrRy1IHe1GTlb__tS_zwHCWiHdJmJP01D6Xarxo1ExP_egZLVV1Xd8LT4nF_06UuhN5To7Y4xEywnL4qifsIHRP2cPVNKntGfu97KBNyYHg4erWb_vNVW9bB643VNUMCEwBgR4g1sYffbg0P4EGo9xQpgyuDaJuaDsw8OX4lFNY8zBOx3EjncBwKtoabFD9sOvhR5vIOQKYrvcBItW_41XP2fnJ8bfVmo8zFrgrpNrx0uhK59JaR8QsQngXK4zosgrRC2di1GVmpNHO4tshGhRVFLl1xqncaKlV_oIddn0XXjJwpoxZKHRtgi0QdSlTOtyfeStrZzM1Y_n0tI0bCchpDsZ1M1WafW8GhTSkkGZQyIzx_a7NQMDxD_kPpLW9LNFnp4V-e9mM9tNokWemUsI5FYsyd0r4YEJmTZXJKIpqxupJ5809a8Sj2r9e_-q_d75mjxCM6SG984Yd7rY34S0Cnp2dJ4ueswfLj5_XZ_OUNvgDtNYCvQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEG2FcAgXxCqGtQ5wbKbd3g8cQkg0IZkIiUTKzfSaOAr2aBahXPgAfocfpMpuj5ILSEi5tntTVbnqdet1FWNvvXCWgDVXXhc8wRjHVaETnkuX5lHkbNlR_qdH2eQk-Xyanm6w38NbGKJVBt_f-_TOW4eWcZDmeFbX469RjOgwwQBFqB69bGBWHrirH3huW3zY_4RKfifl3u7xzoSH0gLcJFGx5KkqszKOtDaUj0QIa3yGgSzKnLfCKO_LVKpIlUbjAgiCROZFrI0yRaxKPKfHOO8ddjdBd0FlE97_XPNKMH52mX5pd5y2N7zX60hlVNumpQfwkpqyPM9vxMOubMC1sHgt1O09YPcDRoXtXgwP2YZrHrGtnaE03GP2a7uBuruNcBbOr-y8nZ23ujZgWkU0akAkDIgsAcF9u1rAmVoAVWJZ0dUcXCqE-VA3oODL7pRTHLUQyvGYkL-gnxWNG2Zob7Bs4XvdZQNxoJrWOvBEuMelnrCTW5H8U7bZtI17xsCo1EuXlLlyOkGYV6jU4HhpdZQbLYsRiwfRViZkPKfCG5fVQG27qHqFVKSQqlfIiPH1qFmf8eMf_T-S1tZ9KV9319DOz6pgsFUpYqmyQhhTeDQaUwjrlJNaZTLyIslGLB90Xt0wf5yq_uvyz_975Bu2NTmeHlaH-0cHL9g9-tIzG1-yzeV85V4h2lrq1511A_t227_TH1D7PPk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+hydrophobic+coating+for+the+porous+gas+diffusion+layer+in+a+PEM-based+electrochemical+hydrogen+pump+to+mitigate+anode+flooding&rft.jtitle=Electrochemistry+communications&rft.au=Lee%2C+Myoungseok&rft.au=Huang%2C+Xinyu&rft.date=2020-08-01&rft.issn=1388-2481&rft.volume=117&rft.spage=106777&rft_id=info:doi/10.1016%2Fj.elecom.2020.106777&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_elecom_2020_106777
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1388-2481&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1388-2481&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1388-2481&client=summon