An improved hydrophobic coating for the porous gas diffusion layer in a PEM-based electrochemical hydrogen pump to mitigate anode flooding
•Anode flooding is a critical issue of PEM-based electrochemical hydrogen pump.•Coating the gas diffusion media with Ag-HDFT renders it super-hydrophobic.•The coating effectively eliminated the anode flooding issue. Anode flooding is a critical issue in proton exchange membrane (PEM)-based electroch...
Saved in:
Published in | Electrochemistry communications Vol. 117; p. 106777 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2020
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Anode flooding is a critical issue of PEM-based electrochemical hydrogen pump.•Coating the gas diffusion media with Ag-HDFT renders it super-hydrophobic.•The coating effectively eliminated the anode flooding issue.
Anode flooding is a critical issue in proton exchange membrane (PEM)-based electrochemical hydrogen pumps. Water-proofing the gas diffusion layer (GDL) on the anode side is a highly effective approach to mitigate the flooding problem and to enhance hydrogen pump performance. In this study, we report a low-cost, wet chemical process for water-proofing a metallic GDL. Silver particles, used as roughening and bonding agents, were first deposited on the porous metallic gas diffusion medium, and then heptadecafluoro-1-decanethiol (HDFT) was applied as a hydrophobic surface modifier. The result was a super-hydrophobic porous metallic GDL. Real electrochemical pump cell tests under simulated flooding conditions revealed that the water management performance of the coated GDL was dramatically improved. |
---|---|
AbstractList | •Anode flooding is a critical issue of PEM-based electrochemical hydrogen pump.•Coating the gas diffusion media with Ag-HDFT renders it super-hydrophobic.•The coating effectively eliminated the anode flooding issue.
Anode flooding is a critical issue in proton exchange membrane (PEM)-based electrochemical hydrogen pumps. Water-proofing the gas diffusion layer (GDL) on the anode side is a highly effective approach to mitigate the flooding problem and to enhance hydrogen pump performance. In this study, we report a low-cost, wet chemical process for water-proofing a metallic GDL. Silver particles, used as roughening and bonding agents, were first deposited on the porous metallic gas diffusion medium, and then heptadecafluoro-1-decanethiol (HDFT) was applied as a hydrophobic surface modifier. The result was a super-hydrophobic porous metallic GDL. Real electrochemical pump cell tests under simulated flooding conditions revealed that the water management performance of the coated GDL was dramatically improved. Anode flooding is a critical issue in proton exchange membrane (PEM)-based electrochemical hydrogen pumps. Water-proofing the gas diffusion layer (GDL) on the anode side is a highly effective approach to mitigate the flooding problem and to enhance hydrogen pump performance. In this study, we report a low-cost, wet chemical process for water-proofing a metallic GDL. Silver particles, used as roughening and bonding agents, were first deposited on the porous metallic gas diffusion medium, and then heptadecafluoro-1-decanethiol (HDFT) was applied as a hydrophobic surface modifier. The result was a super-hydrophobic porous metallic GDL. Real electrochemical pump cell tests under simulated flooding conditions revealed that the water management performance of the coated GDL was dramatically improved. |
ArticleNumber | 106777 |
Author | Lee, Myoungseok Huang, Xinyu |
Author_xml | – sequence: 1 givenname: Myoungseok surname: Lee fullname: Lee, Myoungseok – sequence: 2 givenname: Xinyu surname: Huang fullname: Huang, Xinyu email: HUANGXIN@mailbox.sc.edu |
BookMark | eNqFkcFu1DAQhiNUJNrCG3DwC2SxnazX5oBUVaVUKoIDnK2JPc56ldiR7a20r8BT10vg0gOcZjTS_83M_181FyEGbJr3jG4YZeLDYYMTmjhvOOXnkdjtdq-aSyZ3XcsU5Re176RseS_Zm-Yq5wOljCvVXTa_bgLx85LiE1qyP9kUl30cvCEmQvFhJC4mUvZIlpjiMZMRMrHeuWP2MZAJTpiIDwTI97uv7QC5Us63lBTNHmdvYFqpIwayHOeFlEhmX_wIBQmEaJG4KUZbV71tXjuYMr77U6-bn5_vftx-aR-_3T_c3jy2pmeytFtQQnVsGAwVlFFqjRNbzphAZ6kB59SWAwNlhvotU5wKR7vBgJEdKKZkd908rFwb4aCX5GdIJx3B69-DmEYNqXgzoVa04yAkNUa6ftsZSS0C8gEEZ472orI-riyTYs4JnTa-VONiKAn8pBnV54T0Qa8J6XNCek2oivsX4r_H_Ef2aZVhNenJY9LZeAwGrU_V-fqF_zfgGQ3CsSk |
CitedBy_id | crossref_primary_10_1016_j_ijhydene_2022_04_134 crossref_primary_10_1016_j_jpowsour_2022_231121 crossref_primary_10_1039_D0SE01516D crossref_primary_10_1016_j_cej_2024_150733 crossref_primary_10_1016_j_ijhydene_2021_05_121 crossref_primary_10_1016_j_jpowsour_2021_229743 crossref_primary_10_1016_j_apenergy_2024_124728 crossref_primary_10_1016_j_enrev_2022_100002 crossref_primary_10_1021_acsaem_2c00023 crossref_primary_10_3390_catal10111319 crossref_primary_10_1016_j_etran_2025_100407 crossref_primary_10_1016_j_ijhydene_2023_03_109 |
Cites_doi | 10.1016/j.apsusc.2014.08.187 10.1021/la0256533 10.1002/anie.200604596 10.1088/0034-4885/78/8/086501 10.1021/la051308c 10.1016/j.elecom.2019.01.017 10.1016/j.apsusc.2012.10.167 10.1080/19475411.2016.1272502 10.1016/j.ijhydene.2004.12.011 10.1016/j.jpowsour.2007.11.059 10.1016/j.spmi.2012.04.015 10.1021/la991660o 10.1021/la902882b 10.1016/j.phpro.2013.07.045 10.1016/j.apsusc.2008.06.018 10.1016/j.surfcoat.2010.01.033 10.1007/s10800-006-9266-0 |
ContentType | Journal Article |
Copyright | 2020 |
Copyright_xml | – notice: 2020 |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.elecom.2020.106777 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Open Access资源_DOAJ |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1873-1902 |
ExternalDocumentID | oai_doaj_org_article_9032a680cc8f453c80deae2ba621f046 10_1016_j_elecom_2020_106777 S1388248120301284 |
GroupedDBID | --K --M .~1 0R~ 0SF 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNUV ABXDB ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADECG ADEWK ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFPKN AFTJW AFZHZ AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJOXV AJSZI AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BCNDV BKOJK BLXMC CS3 DU5 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ HVGLF HZ~ IHE J1W KOM M41 MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCB SDF SDG SDP SES SEW SPC SSG SSK SSZ T5K UNMZH XFK XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS |
ID | FETCH-LOGICAL-c418t-5a96931bbc060100dcf652116efd0caff952a1a9cb48119206f03bcac83a91983 |
IEDL.DBID | .~1 |
ISSN | 1388-2481 |
IngestDate | Wed Aug 27 01:25:30 EDT 2025 Thu Apr 24 22:59:35 EDT 2025 Tue Jul 01 03:05:00 EDT 2025 Thu Jun 13 14:30:56 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Hydrogen pump Hydrophobic coating Gas diffusion layer Anode flooding Super-hydrophobic surface |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c418t-5a96931bbc060100dcf652116efd0caff952a1a9cb48119206f03bcac83a91983 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1388248120301284 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9032a680cc8f453c80deae2ba621f046 crossref_citationtrail_10_1016_j_elecom_2020_106777 crossref_primary_10_1016_j_elecom_2020_106777 elsevier_sciencedirect_doi_10_1016_j_elecom_2020_106777 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2020 2020-08-00 2020-08-01 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: August 2020 |
PublicationDecade | 2020 |
PublicationTitle | Electrochemistry communications |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Larmour, Bell, Saunders (b0060) 2007; 46 Schondelmaier, Cramm, Klingeler, Morenzin, Zilkens, Eberhardt (b0075) 2002; 18 Subhash Latthe, Basavraj Gurav, Shridhar Maruti, Shrikant Vhatkar (b0110) 2012; 02 Alimohammadi, Gashti, Shamei, Kiumarsi (b0100) 2012; 52 Lee, Huang (b0035) 2019; 100 Sarkar, Saleema (b0055) 2010; 204 Simpson, Hunter, Aytug (b0105) 2015; 78 U. Bossel, B. Eliasson, Hydrogen Economy, (n.d.). (accessed December 1, 2017). Wang, Liu, Wei, Liu, Lian, Jiang, Nishinaga, Kikuchi, Natsui, Suzuki (b0065) 2016; 3 Barbir, Görgün (b0025) 2007; 37 Hydrogen Market: Global Industry Analysis and Forecast 2015−2021, (n.d.). (accessed December 12, 2017). Cao, Jones, Sikka, Wu, Gao (b0045) 2009; 25 Miwa, Nakajima, Fujishima, Hashimoto, Watanabe (b0070) 2000; 16 Fu, He (b0080) 2008; 255 Winter (b0010) 2005; 30 R. Vijay, S.K. Seshadri, P. Haridoss, Gas diffusion layer with PTFE gradients for effective water management in PEM fuel cells, (n.d.). Liu, Luo, Sun, Wu, Jiang, Liu (b0090) 2013; 264 Qian, Shen (b0085) 2005; 21 Perry, Eisman, Benicewicz (b0020) 2008; 177 Liao, Zuo, Guo, Yuan, Zhuang (b0040) 2014; 317 Varshney, Mohapatra, Kumar (b0050) 2016; 7 Coclite, Shi, Gleason (b0095) 2013; 46 Barbir (10.1016/j.elecom.2020.106777_b0025) 2007; 37 Cao (10.1016/j.elecom.2020.106777_b0045) 2009; 25 Perry (10.1016/j.elecom.2020.106777_b0020) 2008; 177 Varshney (10.1016/j.elecom.2020.106777_b0050) 2016; 7 Miwa (10.1016/j.elecom.2020.106777_b0070) 2000; 16 Qian (10.1016/j.elecom.2020.106777_b0085) 2005; 21 Coclite (10.1016/j.elecom.2020.106777_b0095) 2013; 46 Lee (10.1016/j.elecom.2020.106777_b0035) 2019; 100 Simpson (10.1016/j.elecom.2020.106777_b0105) 2015; 78 Liao (10.1016/j.elecom.2020.106777_b0040) 2014; 317 Subhash Latthe (10.1016/j.elecom.2020.106777_b0110) 2012; 02 Alimohammadi (10.1016/j.elecom.2020.106777_b0100) 2012; 52 Winter (10.1016/j.elecom.2020.106777_b0010) 2005; 30 Sarkar (10.1016/j.elecom.2020.106777_b0055) 2010; 204 10.1016/j.elecom.2020.106777_b0015 10.1016/j.elecom.2020.106777_b0005 Fu (10.1016/j.elecom.2020.106777_b0080) 2008; 255 Larmour (10.1016/j.elecom.2020.106777_b0060) 2007; 46 Wang (10.1016/j.elecom.2020.106777_b0065) 2016; 3 Schondelmaier (10.1016/j.elecom.2020.106777_b0075) 2002; 18 Liu (10.1016/j.elecom.2020.106777_b0090) 2013; 264 10.1016/j.elecom.2020.106777_b0030 |
References_xml | – reference: Hydrogen Market: Global Industry Analysis and Forecast 2015−2021, (n.d.). – volume: 46 start-page: 1710 year: 2007 end-page: 1712 ident: b0060 article-title: Remarkably simple fabrication of superhydrophobic surfaces using electroless galvanic deposition publication-title: Angew. Chem. Int. Ed. – volume: 177 start-page: 478 year: 2008 end-page: 484 ident: b0020 article-title: Electrochemical hydrogen pumping using a high-temperature polybenzimidazole (PBI) membrane publication-title: J. Power Sources – reference: (accessed December 1, 2017). – volume: 18 start-page: 6242 year: 2002 end-page: 6245 ident: b0075 article-title: Orientation and self-assembly of hydrophobic fluoroalkylsilanes publication-title: Langmuir – reference: R. Vijay, S.K. Seshadri, P. Haridoss, Gas diffusion layer with PTFE gradients for effective water management in PEM fuel cells, (n.d.). – volume: 21 start-page: 9007 year: 2005 end-page: 9009 ident: b0085 article-title: Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates publication-title: Langmuir – volume: 264 start-page: 872 year: 2013 end-page: 878 ident: b0090 article-title: Fabrication of the superhydrophobic surface on aluminum alloy by anodizing and polymeric coating publication-title: Appl. Surf. Sci. – volume: 37 start-page: 359 year: 2007 end-page: 365 ident: b0025 article-title: Electrochemical hydrogen pump for recirculation of hydrogen in a fuel cell stack publication-title: J. Appl. Electrochem. – volume: 255 start-page: 1776 year: 2008 end-page: 1781 ident: b0080 article-title: Fabrication of super-hydrophobic surfaces on aluminum alloy substrates publication-title: Appl. Surf. Sci. – volume: 7 start-page: 248 year: 2016 end-page: 264 ident: b0050 article-title: Superhydrophobic coatings for aluminium surfaces synthesized by chemical etching process publication-title: Int. J. Smart Nano Mater. – reference: (accessed December 12, 2017). – volume: 100 start-page: 39 year: 2019 end-page: 42 ident: b0035 article-title: Development of a hydrophobic coating for the porous gas diffusion layer in a PEM-based electrochemical hydrogen pump to mitigate anode flooding publication-title: Electrochem. Commun. – volume: 317 start-page: 701 year: 2014 end-page: 709 ident: b0040 article-title: Fabrication of superhydrophobic surface on aluminum by continuous chemical etching and its anti-icing property publication-title: Appl. Surf. Sci. – volume: 16 start-page: 5754 year: 2000 end-page: 5760 ident: b0070 article-title: Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces publication-title: Langmuir – volume: 52 start-page: 50 year: 2012 end-page: 62 ident: b0100 article-title: Deposition of silver nanoparticles on carbon nanotube by chemical reduction method: evaluation of surface, thermal and optical properties publication-title: Superlattices Microstruct. – volume: 02 start-page: 76 year: 2012 end-page: 94 ident: b0110 article-title: Recent progress in preparation of superhydrophobic surfaces: a review publication-title: J. Surf. Eng. Mater. Adv. Technol. – volume: 3 start-page: 4 year: 2016 end-page: 5 ident: b0065 article-title: Robust superhydrophobic surface on Al substrate with durability, corrosion resistance and ice-phobicity publication-title: Nat. Publ. Gr. – volume: 78 year: 2015 ident: b0105 article-title: Superhydrophobic materials and coatings: a review publication-title: Reports Prog. Phys. – volume: 30 start-page: 681 year: 2005 end-page: 685 ident: b0010 article-title: Into the hydrogen energy economy—milestones publication-title: Int. J. Hydrogen Energy – volume: 25 start-page: 12444 year: 2009 end-page: 12448 ident: b0045 article-title: Anti-icing superhydrophobic coatings publication-title: Langmuir – volume: 204 start-page: 2483 year: 2010 end-page: 2486 ident: b0055 article-title: One-step fabrication process of superhydrophobic green coatings publication-title: Surf. Coat. Technol. – volume: 46 start-page: 56 year: 2013 end-page: 61 ident: b0095 article-title: Super-hydrophobic and oloephobic crystalline coatings by initiated chemical vapor deposition publication-title: Phys. Proc. – reference: U. Bossel, B. Eliasson, Hydrogen Economy, (n.d.). – volume: 317 start-page: 701 year: 2014 ident: 10.1016/j.elecom.2020.106777_b0040 article-title: Fabrication of superhydrophobic surface on aluminum by continuous chemical etching and its anti-icing property publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2014.08.187 – volume: 18 start-page: 6242 year: 2002 ident: 10.1016/j.elecom.2020.106777_b0075 article-title: Orientation and self-assembly of hydrophobic fluoroalkylsilanes publication-title: Langmuir doi: 10.1021/la0256533 – volume: 46 start-page: 1710 year: 2007 ident: 10.1016/j.elecom.2020.106777_b0060 article-title: Remarkably simple fabrication of superhydrophobic surfaces using electroless galvanic deposition publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200604596 – volume: 78 year: 2015 ident: 10.1016/j.elecom.2020.106777_b0105 article-title: Superhydrophobic materials and coatings: a review publication-title: Reports Prog. Phys. doi: 10.1088/0034-4885/78/8/086501 – volume: 02 start-page: 76 year: 2012 ident: 10.1016/j.elecom.2020.106777_b0110 article-title: Recent progress in preparation of superhydrophobic surfaces: a review publication-title: J. Surf. Eng. Mater. Adv. Technol. – volume: 21 start-page: 9007 year: 2005 ident: 10.1016/j.elecom.2020.106777_b0085 article-title: Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates publication-title: Langmuir doi: 10.1021/la051308c – volume: 100 start-page: 39 year: 2019 ident: 10.1016/j.elecom.2020.106777_b0035 article-title: Development of a hydrophobic coating for the porous gas diffusion layer in a PEM-based electrochemical hydrogen pump to mitigate anode flooding publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2019.01.017 – ident: 10.1016/j.elecom.2020.106777_b0030 – volume: 264 start-page: 872 year: 2013 ident: 10.1016/j.elecom.2020.106777_b0090 article-title: Fabrication of the superhydrophobic surface on aluminum alloy by anodizing and polymeric coating publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2012.10.167 – ident: 10.1016/j.elecom.2020.106777_b0015 – volume: 3 start-page: 4 year: 2016 ident: 10.1016/j.elecom.2020.106777_b0065 article-title: Robust superhydrophobic surface on Al substrate with durability, corrosion resistance and ice-phobicity publication-title: Nat. Publ. Gr. – volume: 7 start-page: 248 year: 2016 ident: 10.1016/j.elecom.2020.106777_b0050 article-title: Superhydrophobic coatings for aluminium surfaces synthesized by chemical etching process publication-title: Int. J. Smart Nano Mater. doi: 10.1080/19475411.2016.1272502 – volume: 30 start-page: 681 year: 2005 ident: 10.1016/j.elecom.2020.106777_b0010 article-title: Into the hydrogen energy economy—milestones publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2004.12.011 – volume: 177 start-page: 478 year: 2008 ident: 10.1016/j.elecom.2020.106777_b0020 article-title: Electrochemical hydrogen pumping using a high-temperature polybenzimidazole (PBI) membrane publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2007.11.059 – volume: 52 start-page: 50 year: 2012 ident: 10.1016/j.elecom.2020.106777_b0100 article-title: Deposition of silver nanoparticles on carbon nanotube by chemical reduction method: evaluation of surface, thermal and optical properties publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2012.04.015 – volume: 16 start-page: 5754 year: 2000 ident: 10.1016/j.elecom.2020.106777_b0070 article-title: Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces publication-title: Langmuir doi: 10.1021/la991660o – volume: 25 start-page: 12444 year: 2009 ident: 10.1016/j.elecom.2020.106777_b0045 article-title: Anti-icing superhydrophobic coatings publication-title: Langmuir doi: 10.1021/la902882b – volume: 46 start-page: 56 year: 2013 ident: 10.1016/j.elecom.2020.106777_b0095 article-title: Super-hydrophobic and oloephobic crystalline coatings by initiated chemical vapor deposition publication-title: Phys. Proc. doi: 10.1016/j.phpro.2013.07.045 – volume: 255 start-page: 1776 year: 2008 ident: 10.1016/j.elecom.2020.106777_b0080 article-title: Fabrication of super-hydrophobic surfaces on aluminum alloy substrates publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2008.06.018 – ident: 10.1016/j.elecom.2020.106777_b0005 – volume: 204 start-page: 2483 year: 2010 ident: 10.1016/j.elecom.2020.106777_b0055 article-title: One-step fabrication process of superhydrophobic green coatings publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2010.01.033 – volume: 37 start-page: 359 year: 2007 ident: 10.1016/j.elecom.2020.106777_b0025 article-title: Electrochemical hydrogen pump for recirculation of hydrogen in a fuel cell stack publication-title: J. Appl. Electrochem. doi: 10.1007/s10800-006-9266-0 |
SSID | ssj0012993 |
Score | 2.3958874 |
Snippet | •Anode flooding is a critical issue of PEM-based electrochemical hydrogen pump.•Coating the gas diffusion media with Ag-HDFT renders it super-hydrophobic.•The... Anode flooding is a critical issue in proton exchange membrane (PEM)-based electrochemical hydrogen pumps. Water-proofing the gas diffusion layer (GDL) on the... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 106777 |
SubjectTerms | Anode flooding Gas diffusion layer Hydrogen pump Hydrophobic coating Super-hydrophobic surface |
SummonAdditionalLinks | – databaseName: Open Access资源_DOAJ dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27bhUxELVQGmgQT3F5aQpaC9v7sssQJYqQgiiIlG41fpFFYfcquSn4Bb6amfVudGlIQ2vZ45Vn5Dn2Hp8R4kNWKTKwlpi9lTXlOInW17Izqem0TtHNlP-zL-3pef35ornYK_XFnLAiD1wW7qNTlcHWqhBsrpsqWBUTJuOxNTrT4Y53X8p562Fq-X9Am-xMra84Dmqr10dzM7OLC8xM_ArdcFPbdd1fSWnW7t_LTXv55uSJeLwARTgsH_hUPEjjM_HwaK3P9lz8PhxhmK8EUoTLX_F62l5OfggQJmQuMxAcBYJ3QAibjvfwHW-Ay6Hc8v0YXCFhbRhGQPh6fCY5mUVYauKERUSgWKUIgy05HXYT_BxmSY4EOE4xQWbWO031QpyfHH87OpVLZQUZam13skHXukp7H1iORakYckt5XLcpRxUwZ9cY1OiCp7UjDKjarCofMNgKnXa2eikOxmlMrwQEbLJJtesw-ZqwlsUm0HgTve6CN3YjqnVp-7DIjnP1i6t-5Zf96ItDenZIXxyyEfJu1LbIbtzT_xN77a4vi2bPDRRK_RJK_X2htBHd6vN-wR8FV5Cp4Z_Tv_4f078Rj9hkYRe-FQe769v0jhDPzr-fg_sPv2z_JA priority: 102 providerName: Directory of Open Access Journals |
Title | An improved hydrophobic coating for the porous gas diffusion layer in a PEM-based electrochemical hydrogen pump to mitigate anode flooding |
URI | https://dx.doi.org/10.1016/j.elecom.2020.106777 https://doaj.org/article/9032a680cc8f453c80deae2ba621f046 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxQxDI6qcoALKi-xPFY-cA2bzDM5LqtWC6gVElTqbZRnO6jMrJbtoRd-AL8aOzOzai8gcY2cZBRb9jeW_Zmxd1EET8Cam2gVLzDGcaNswesslLWUwetU8n96Vq3Pi08X5cUBW029MFRWOfr-wacnbz2uLMbXXGzadvFV5ogOCwxQhOrRy1IHe1GTlb__tS_zwHCWiHdJmJP01D6Xarxo1ExP_egZLVV1Xd8LT4nF_06UuhN5To7Y4xEywnL4qifsIHRP2cPVNKntGfu97KBNyYHg4erWb_vNVW9bB643VNUMCEwBgR4g1sYffbg0P4EGo9xQpgyuDaJuaDsw8OX4lFNY8zBOx3EjncBwKtoabFD9sOvhR5vIOQKYrvcBItW_41XP2fnJ8bfVmo8zFrgrpNrx0uhK59JaR8QsQngXK4zosgrRC2di1GVmpNHO4tshGhRVFLl1xqncaKlV_oIddn0XXjJwpoxZKHRtgi0QdSlTOtyfeStrZzM1Y_n0tI0bCchpDsZ1M1WafW8GhTSkkGZQyIzx_a7NQMDxD_kPpLW9LNFnp4V-e9mM9tNokWemUsI5FYsyd0r4YEJmTZXJKIpqxupJ5809a8Sj2r9e_-q_d75mjxCM6SG984Yd7rY34S0Cnp2dJ4ueswfLj5_XZ_OUNvgDtNYCvQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEG2FcAgXxCqGtQ5wbKbd3g8cQkg0IZkIiUTKzfSaOAr2aBahXPgAfocfpMpuj5ILSEi5tntTVbnqdet1FWNvvXCWgDVXXhc8wRjHVaETnkuX5lHkbNlR_qdH2eQk-Xyanm6w38NbGKJVBt_f-_TOW4eWcZDmeFbX469RjOgwwQBFqB69bGBWHrirH3huW3zY_4RKfifl3u7xzoSH0gLcJFGx5KkqszKOtDaUj0QIa3yGgSzKnLfCKO_LVKpIlUbjAgiCROZFrI0yRaxKPKfHOO8ddjdBd0FlE97_XPNKMH52mX5pd5y2N7zX60hlVNumpQfwkpqyPM9vxMOubMC1sHgt1O09YPcDRoXtXgwP2YZrHrGtnaE03GP2a7uBuruNcBbOr-y8nZ23ujZgWkU0akAkDIgsAcF9u1rAmVoAVWJZ0dUcXCqE-VA3oODL7pRTHLUQyvGYkL-gnxWNG2Zob7Bs4XvdZQNxoJrWOvBEuMelnrCTW5H8U7bZtI17xsCo1EuXlLlyOkGYV6jU4HhpdZQbLYsRiwfRViZkPKfCG5fVQG27qHqFVKSQqlfIiPH1qFmf8eMf_T-S1tZ9KV9319DOz6pgsFUpYqmyQhhTeDQaUwjrlJNaZTLyIslGLB90Xt0wf5yq_uvyz_975Bu2NTmeHlaH-0cHL9g9-tIzG1-yzeV85V4h2lrq1511A_t227_TH1D7PPk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+hydrophobic+coating+for+the+porous+gas+diffusion+layer+in+a+PEM-based+electrochemical+hydrogen+pump+to+mitigate+anode+flooding&rft.jtitle=Electrochemistry+communications&rft.au=Lee%2C+Myoungseok&rft.au=Huang%2C+Xinyu&rft.date=2020-08-01&rft.issn=1388-2481&rft.volume=117&rft.spage=106777&rft_id=info:doi/10.1016%2Fj.elecom.2020.106777&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_elecom_2020_106777 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1388-2481&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1388-2481&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1388-2481&client=summon |