Densely Deployed Indoor Massive MIMO Experiment: From Small Cells to Spectrum Sharing to Cooperation

Massive MIMO is a key 5G technology that achieves high spectral efficiency and capacity by significantly increasing the number of antennas per cell. Furthermore, due to precoding, massive MIMO allows co-channel interference cancellation across cells. In this work, based on experimental channel data...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 21; no. 13; p. 4346
Main Authors Guevara, Andrea P., Pollin, Sofie
Format Journal Article
LanguageEnglish
Published MDPI 25.06.2021
MDPI AG
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Massive MIMO is a key 5G technology that achieves high spectral efficiency and capacity by significantly increasing the number of antennas per cell. Furthermore, due to precoding, massive MIMO allows co-channel interference cancellation across cells. In this work, based on experimental channel data for an indoor scenario, we analyse the impact of inter and intra-cell interference suppression in terms of spectral efficiency, capacity, user fairness and computational cost for three simulated systems under different cooperation levels. The first scenario assumes a cooperative case where eight neighbouring cells share the spectrum and infrastructure. This scenario provides the highest system performance; however, user fairness is achieved only when there is inter and intra-cell interference suppression. The second scenario considers eight cells that only share the spectrum; with full intra-cell and inter-cell interference cancellation, it is possible to achieve 32% of the optimal capacity with 20% of the computational cost in each distributed CPU, although the total computational cost per system is the highest. The third scenario considers eight independent cells operating in different frequency bands; in this case, intra-cell interference suppression leads to higher spectral efficiency compared to the cooperative case without intra-cell interference suppression.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s21134346