An accurate and universal protein-small molecule batch docking solution using Autodock Vina

As an important theoretical computation method in computer-aided drug design, molecular docking has significantly shifted the paradigm of drug discovery. As one of the open-source docking software, Autodock Vina (Vina) is widely popular, but the lack of relevant experience and inappropriate docking...

Full description

Saved in:
Bibliographic Details
Published inResults in engineering Vol. 19; p. 101335
Main Authors Che, Xinhao, Liu, Qilei, Zhang, Lei
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2023
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As an important theoretical computation method in computer-aided drug design, molecular docking has significantly shifted the paradigm of drug discovery. As one of the open-source docking software, Autodock Vina (Vina) is widely popular, but the lack of relevant experience and inappropriate docking parameters make it unable to perform optimally in practical application scenarios, which leads to potential failure risks in the early stage of drug discovery. In order to simplify the docking steps and determine the most appropriate docking parameters, a universal solution for rigid receptor docking using Vina has been proposed in this paper, and a user-friendly software for the entire process of molecular docking using Vina is developed. The case studies show that our docking solution is able to be applied to different docking scenarios to facilitate a more accurate, faster, and more convenient new drug discovery process. •An accurate and universal batch docking solution using Autodock Vina is proposed.•The optimal parameters for batch docking with Vina are determined.•A user-friendly software interface is developed for docking with Vina.
AbstractList As an important theoretical computation method in computer-aided drug design, molecular docking has significantly shifted the paradigm of drug discovery. As one of the open-source docking software, Autodock Vina (Vina) is widely popular, but the lack of relevant experience and inappropriate docking parameters make it unable to perform optimally in practical application scenarios, which leads to potential failure risks in the early stage of drug discovery. In order to simplify the docking steps and determine the most appropriate docking parameters, a universal solution for rigid receptor docking using Vina has been proposed in this paper, and a user-friendly software for the entire process of molecular docking using Vina is developed. The case studies show that our docking solution is able to be applied to different docking scenarios to facilitate a more accurate, faster, and more convenient new drug discovery process. •An accurate and universal batch docking solution using Autodock Vina is proposed.•The optimal parameters for batch docking with Vina are determined.•A user-friendly software interface is developed for docking with Vina.
As an important theoretical computation method in computer-aided drug design, molecular docking has significantly shifted the paradigm of drug discovery. As one of the open-source docking software, Autodock Vina (Vina) is widely popular, but the lack of relevant experience and inappropriate docking parameters make it unable to perform optimally in practical application scenarios, which leads to potential failure risks in the early stage of drug discovery. In order to simplify the docking steps and determine the most appropriate docking parameters, a universal solution for rigid receptor docking using Vina has been proposed in this paper, and a user-friendly software for the entire process of molecular docking using Vina is developed. The case studies show that our docking solution is able to be applied to different docking scenarios to facilitate a more accurate, faster, and more convenient new drug discovery process.
ArticleNumber 101335
Author Liu, Qilei
Che, Xinhao
Zhang, Lei
Author_xml – sequence: 1
  givenname: Xinhao
  surname: Che
  fullname: Che, Xinhao
– sequence: 2
  givenname: Qilei
  surname: Liu
  fullname: Liu, Qilei
– sequence: 3
  givenname: Lei
  orcidid: 0000-0002-7519-2858
  surname: Zhang
  fullname: Zhang, Lei
  email: keleiz@dlut.edu.cn
BookMark eNqFkMtqHDEQRUWwwePHH3ihH-ixXv3KIjCYxBkweJN444WolqonmmgkI6kN-ftMp40xWSSrUl3pHtA5JychBiTkmrM1Z7y52a-TCxh2a8GEnCMp6w9kJeqeVVxIdvLufEauct4zxkQ3P2xX5GkTKBgzJShIIVg6BfeCKYOnzykWdKHKB_CeHqJHM3mkAxTzg9pofrqwozn6qbgY6JTndTOVOF_RRxfgkpyO4DNevc4L8v3L52-3X6v7h7vt7ea-Mop3parbYWAKesUVE6YBHMdWwaBsIzozclTcDl2namykqbtBikbZuhU17_u2l0rKC7JduDbCXj8nd4D0S0dw-k8Q005DKs541JabXvRt3Qxdo9QAHed9oySOiiMfrTqy1MIyKeaccHzjcaZn33qvF9969q0X38fax79qxhWYxZQEzv-v_Gkp41HSi8Oks3EYDFqX0JTjL9y_Ab8BE0Wfhw
CitedBy_id crossref_primary_10_1007_s40203_024_00267_4
crossref_primary_10_1016_j_fct_2025_115356
crossref_primary_10_3389_fphar_2025_1566772
crossref_primary_10_51847_Une9jqjUCl
crossref_primary_10_1007_s12033_025_01377_w
crossref_primary_10_1111_febs_17380
crossref_primary_10_1016_j_compbiolchem_2024_108170
crossref_primary_10_1002_jccs_202400084
crossref_primary_10_3389_fphar_2024_1410453
crossref_primary_10_22159_ijap_2025_v17s1_10
crossref_primary_10_1007_s12033_024_01131_8
crossref_primary_10_1016_j_foodchem_2024_139520
crossref_primary_10_1016_j_ijbiomac_2025_139951
crossref_primary_10_1016_j_heliyon_2024_e29557
crossref_primary_10_1021_acs_molpharmaceut_4c00048
crossref_primary_10_1016_j_bioorg_2024_107598
crossref_primary_10_1016_j_cej_2024_157658
crossref_primary_10_3390_pathogens14010020
crossref_primary_10_1016_j_chroma_2024_464801
crossref_primary_10_1039_D3CE01109G
crossref_primary_10_1016_j_heliyon_2024_e34544
Cites_doi 10.1007/s10822-010-9352-6
10.3390/ijms21249548
10.1073/pnas.0712278105
10.1109/TVLSI.2022.3217275
10.3390/molecules200713384
10.2174/1568026614666140929124445
10.1021/acs.jmedchem.2c01146
10.1002/minf.202200188
10.1002/minf.201400132
10.1021/acs.jcim.1c00203
10.1038/s41586-020-2117-z
10.3390/ijms20184331
10.1016/j.ces.2022.117962
10.1186/s13062-020-00267-2
10.1016/j.febslet.2006.01.074
10.2174/0929867003375317
10.1038/nbt1007-1110
10.1007/s10822-016-0006-1
10.1021/acs.jmedchem.0c01786
10.1371/journal.pone.0155183
10.1002/jcc.21334
10.1074/jbc.M311191200
10.1038/nprot.2016.051
10.1109/TCBB.2012.82
10.1021/acs.jctc.5b00834
10.1021/acs.jcim.2c01504
10.1021/acs.jcim.0c00373
10.1093/nar/28.1.235
10.1080/17460441.2019.1604677
10.3390/molecules27093041
10.1021/acs.jcim.8b00545
10.1093/bib/bbad014
10.1016/j.tips.2014.12.001
10.1186/s13321-015-0067-5
10.1093/bioinformatics/btv082
10.1002/jcc.21256
10.1093/bioinformatics/btaa579
10.1186/1758-2946-3-33
10.1186/s13321-016-0139-1
10.2174/1570163812666150825110208
10.1111/cbdd.12697
10.3390/molecules24020277
10.1002/jcc.26779
10.3389/fchem.2021.750325
10.1021/acs.jctc.2c01145
10.1038/s41598-017-15571-7
10.1186/1756-0500-4-445
ContentType Journal Article
Copyright 2023 The Author(s)
Copyright_xml – notice: 2023 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.rineng.2023.101335
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2590-1230
ExternalDocumentID oai_doaj_org_article_d1c929756b8644ba8119643ef41e1fd4
10_1016_j_rineng_2023_101335
S2590123023004620
GroupedDBID 0SF
6I.
AAEDW
AAFTH
AALRI
AAXUO
ADBBV
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
FDB
GROUPED_DOAJ
M41
M~E
NCXOZ
OK1
ROL
SSZ
0R~
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c418t-57bb04a941402c6aeff74ab4d628cf1e41db8845e63c58b3264d5725199793433
IEDL.DBID DOA
ISSN 2590-1230
IngestDate Wed Aug 27 01:07:32 EDT 2025
Tue Jul 01 01:37:20 EDT 2025
Thu Apr 24 23:12:13 EDT 2025
Sat Oct 14 15:51:36 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Autodock Vina
Drug discovery
Protein-ligand interaction
Molecular docking
Docking solution
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-57bb04a941402c6aeff74ab4d628cf1e41db8845e63c58b3264d5725199793433
ORCID 0000-0002-7519-2858
OpenAccessLink https://doaj.org/article/d1c929756b8644ba8119643ef41e1fd4
ParticipantIDs doaj_primary_oai_doaj_org_article_d1c929756b8644ba8119643ef41e1fd4
crossref_primary_10_1016_j_rineng_2023_101335
crossref_citationtrail_10_1016_j_rineng_2023_101335
elsevier_sciencedirect_doi_10_1016_j_rineng_2023_101335
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2023
2023-09-00
2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: September 2023
PublicationDecade 2020
PublicationTitle Results in engineering
PublicationYear 2023
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Berman, Westbrook, Feng, Gilliland, Bhat, Weissig, Shindyalov, Bourne (bib43) 2000; 28
Hetenyi, van der Spoel (bib46) 2006; 580
Kochnev, Hellemann, Cassidy, Durrant (bib42) 2020; 36
Towler, Staker, Prasad, Menon, Tang, Parsons, Ryan, Fisher, Williams, Dales, Patane, Pantoliano (bib48) 2004; 279
Sandeep, Nagasree, Hanisha, Kumar, Audocker (bib37) 2011; 4
Nivedha, Thieker, Makeneni, Hu, Woods (bib30) 2016; 12
Ji, Liu, Liu, Deng, Hou, Cao (bib6) 2023; 24
Valdes-Tresanco, Valdes-Tresanco, Valiente, Moreno (bib41) 2020; 15
Lionta, Spyrou, Vassilatis, Cournia (bib4) 2014; 14
Ooms (bib2) 2000; 7
Morris, Huey, Lindstrom, Sanner, Belew, Goodsell, Olson (bib11) 2009; 30
Che, Chai, Zhang, Zhang (bib47) 2022; 261
Zalevsky, Zlobin, Gedzun, Reshetnikov, Lovat, Malyshev, Doronin, Babkin, Golovin (bib31) 2019; 24
Chen (bib35) 2015; 36
Hassan, Alhossary, Mu, Kwoh (bib14) 2017; 7
Quiroga, Villarreal (bib23) 2016; 11
Alhossary, Handoko, Mu, Kwoh (bib13) 2015; 31
Tang, Chen, Lin, Lin, Zhu, Ding, Hu, Ling, Wu (bib15) 2022; 27
Bhutani, Joshi, Raja, Bachhav, Rajanna, Bhutani, Paul, Kumar (bib8) 2021; 64
Ling, Lin, Chen, Qi, Lin, Zhu, Wu, Vina-Fpga (bib18) 2023; 31
Macari, Toti, Pasquadibisceglie, Polticelli, DockingApp (bib28) 2020; 21
Lin, Tanaka, Iwasaki, Gittis, Su, Mikami, Okazaki, Honjo, Minato, Garboczi (bib45) 2008; 105
Hopkins (bib7) 2007; 25
Ferreira, Dos Santos, Oliva, Andricopulo (bib1) 2015; 20
Di Muzio, Toti, Polticelli (bib40) 2017; 31
Dallakyan, Olson (bib38) 2015; 1263
Lu, Wei, Wang, Guo, Zhou, Wang, Liu (bib20) 2021; 9
Boittier, Burns, Gandhi, Ferro (bib32) 2020; 60
Slater, Kontoyianni (bib5) 2019; 14
(bib22) 2023
Li, Leung, Wong, Ballester (bib27) 2015; 34
Feinstein, Brylinski (bib33) 2015; 7
Tanchuk, Tanin, Vovk, Poda (bib25) 2015; 12
O'Boyle, Banck, James, Morley, Vandermeersch, Hutchison (bib44) 2011; 3
Koebel, Schmadeke, Posner, Sirimulla (bib29) 2016; 8
Pinzi, Rastelli (bib3) 2019; 20
Ding, Tang, Mei, Wang, Huang, Hu, Ling, Wu (bib16) 2023; 63
Gao, Sylvester, Song, Claff, Jing, Woodson, Weisse, Cheng, Schakel, Petry, Gutschow, Schiedel, Strater, Kang, Xu, Toth, Tavis, Tollefson, Muller, Liu, Zhan (bib49) 2022; 65
Yu, Cai, Wang, Bo, Zhu, Zheng (bib17) 2023; 19
Forli, Huey, Pique, Sanner, Goodsell, Olson (bib39) 2016; 11
Pham, Nguyen, Tam, T, Pham, Huy, Mai, Tung, Pham, V, Ngo (bib24) 2022; 43
Agarwal, Smith (bib34) 2022; 42
Trott, Olson, Vina (bib9) 2010; 31
Eberhardt, Santos-Martins, Tillack, Forli (bib10) 2021; 61
Handoko, Ouyang, Su, Kwoh, Ong (bib12) 2012; 9
Su, Yang, Du, Feng, Liu, Li, Wang (bib21) 2019; 59
Tanchuk, Tanin, Vovk, Poda (bib26) 2016; 87
Seeliger, de Groot (bib36) 2010; 24
Gorgulla, Boeszoermenyi, Wang, Fischer, Coote, Padmanabha Das, Malets, Radchenko, Moroz, Scott, Fackeldey, Hoffmann, Iavniuk, Wagner, Arthanari (bib19) 2020; 580
Koebel (10.1016/j.rineng.2023.101335_bib29) 2016; 8
Seeliger (10.1016/j.rineng.2023.101335_bib36) 2010; 24
Lu (10.1016/j.rineng.2023.101335_bib20) 2021; 9
Berman (10.1016/j.rineng.2023.101335_bib43) 2000; 28
Handoko (10.1016/j.rineng.2023.101335_bib12) 2012; 9
Ji (10.1016/j.rineng.2023.101335_bib6) 2023; 24
Ferreira (10.1016/j.rineng.2023.101335_bib1) 2015; 20
Ling (10.1016/j.rineng.2023.101335_bib18) 2023; 31
Su (10.1016/j.rineng.2023.101335_bib21) 2019; 59
Morris (10.1016/j.rineng.2023.101335_bib11) 2009; 30
Dallakyan (10.1016/j.rineng.2023.101335_bib38) 2015; 1263
Tanchuk (10.1016/j.rineng.2023.101335_bib25) 2015; 12
Hopkins (10.1016/j.rineng.2023.101335_bib7) 2007; 25
Chen (10.1016/j.rineng.2023.101335_bib35) 2015; 36
Slater (10.1016/j.rineng.2023.101335_bib5) 2019; 14
Zalevsky (10.1016/j.rineng.2023.101335_bib31) 2019; 24
Ooms (10.1016/j.rineng.2023.101335_bib2) 2000; 7
Forli (10.1016/j.rineng.2023.101335_bib39) 2016; 11
Valdes-Tresanco (10.1016/j.rineng.2023.101335_bib41) 2020; 15
Nivedha (10.1016/j.rineng.2023.101335_bib30) 2016; 12
Tanchuk (10.1016/j.rineng.2023.101335_bib26) 2016; 87
Towler (10.1016/j.rineng.2023.101335_bib48) 2004; 279
Macari (10.1016/j.rineng.2023.101335_bib28) 2020; 21
Boittier (10.1016/j.rineng.2023.101335_bib32) 2020; 60
Quiroga (10.1016/j.rineng.2023.101335_bib23) 2016; 11
Bhutani (10.1016/j.rineng.2023.101335_bib8) 2021; 64
Yu (10.1016/j.rineng.2023.101335_bib17) 2023; 19
Trott (10.1016/j.rineng.2023.101335_bib9) 2010; 31
Eberhardt (10.1016/j.rineng.2023.101335_bib10) 2021; 61
Tang (10.1016/j.rineng.2023.101335_bib15) 2022; 27
Di Muzio (10.1016/j.rineng.2023.101335_bib40) 2017; 31
Kochnev (10.1016/j.rineng.2023.101335_bib42) 2020; 36
Gao (10.1016/j.rineng.2023.101335_bib49) 2022; 65
O'Boyle (10.1016/j.rineng.2023.101335_bib44) 2011; 3
Hetenyi (10.1016/j.rineng.2023.101335_bib46) 2006; 580
Alhossary (10.1016/j.rineng.2023.101335_bib13) 2015; 31
Li (10.1016/j.rineng.2023.101335_bib27) 2015; 34
Feinstein (10.1016/j.rineng.2023.101335_bib33) 2015; 7
Hassan (10.1016/j.rineng.2023.101335_bib14) 2017; 7
Gorgulla (10.1016/j.rineng.2023.101335_bib19) 2020; 580
Ding (10.1016/j.rineng.2023.101335_bib16) 2023; 63
Pinzi (10.1016/j.rineng.2023.101335_bib3) 2019; 20
(10.1016/j.rineng.2023.101335_bib22) 2023
Lin (10.1016/j.rineng.2023.101335_bib45) 2008; 105
Che (10.1016/j.rineng.2023.101335_bib47) 2022; 261
Pham (10.1016/j.rineng.2023.101335_bib24) 2022; 43
Lionta (10.1016/j.rineng.2023.101335_bib4) 2014; 14
Agarwal (10.1016/j.rineng.2023.101335_bib34) 2022; 42
Sandeep (10.1016/j.rineng.2023.101335_bib37) 2011; 4
References_xml – volume: 61
  start-page: 3891
  year: 2021
  end-page: 3898
  ident: bib10
  article-title: AutoDock Vina 1.2.0: new docking methods, expanded force field, and Python bindings
  publication-title: J. Chem. Inf. Model.
– volume: 36
  start-page: 4513
  year: 2020
  end-page: 4515
  ident: bib42
  article-title: Webina: an open-source library and web app that runs AutoDock Vina entirely in the web browser
  publication-title: Bioinformatics
– volume: 59
  start-page: 895
  year: 2019
  end-page: 913
  ident: bib21
  article-title: Comparative assessment of scoring functions: the CASF-2016 update
  publication-title: J. Chem. Inf. Model.
– volume: 63
  start-page: 1982
  year: 2023
  end-page: 1998
  ident: bib16
  article-title: Vina-GPU 2.0: further accelerating AutoDock Vina and its derivatives with graphics processing units
  publication-title: J. Chem. Inf. Model.
– volume: 30
  start-page: 2785
  year: 2009
  end-page: 2791
  ident: bib11
  article-title: AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility
  publication-title: J. Comput. Chem.
– volume: 15
  start-page: 12
  year: 2020
  ident: bib41
  article-title: AMDock: a versatile graphical tool for assisting molecular docking with Autodock Vina and Autodock4
  publication-title: Biol. Direct
– volume: 105
  start-page: 3011
  year: 2008
  end-page: 3016
  ident: bib45
  article-title: The PD-1/PD-L1 complex resembles the antigen-binding Fv domains of antibodies and T cell receptors
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 580
  start-page: 663
  year: 2020
  end-page: 668
  ident: bib19
  article-title: An open-source drug discovery platform enables ultra-large virtual screens
  publication-title: Nature
– volume: 9
  year: 2021
  ident: bib20
  article-title: Redesigning Vina@QNLM for ultra-large-scale molecular docking and screening on a Sunway supercomputer
  publication-title: Front. Chem.
– volume: 34
  start-page: 115
  year: 2015
  end-page: 126
  ident: bib27
  article-title: Improving AutoDock Vina using random forest: the growing accuracy of binding affinity prediction by the effective exploitation of larger data sets
  publication-title: Mol Inform
– volume: 24
  start-page: bbad014
  year: 2023
  ident: bib6
  article-title: Comprehensive assessment of nine target prediction web services: which should we choose for target fishing?
  publication-title: Briefings Bioinf.
– volume: 36
  start-page: 78
  year: 2015
  end-page: 95
  ident: bib35
  article-title: Beware of docking
  publication-title: Trends Pharmacol. Sci.
– volume: 21
  start-page: 9548
  year: 2020
  ident: bib28
  article-title: A state-of-the-art novel scoring function for molecular docking in a user-friendly interface to AutoDock Vina
  publication-title: Int. J. Mol. Sci.
– volume: 14
  start-page: 619
  year: 2019
  end-page: 637
  ident: bib5
  article-title: The compromise of virtual screening and its impact on drug discovery
  publication-title: Expet Opin. Drug Discov.
– volume: 31
  start-page: 455
  year: 2010
  end-page: 461
  ident: bib9
  article-title: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading
  publication-title: J. Comput. Chem.
– volume: 279
  start-page: 17996
  year: 2004
  end-page: 18007
  ident: bib48
  article-title: ACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis
  publication-title: J. Biol. Chem.
– volume: 65
  start-page: 13343
  year: 2022
  end-page: 13364
  ident: bib49
  article-title: Discovery and crystallographic studies of trisubstituted piperazine derivatives as non-covalent SARS-CoV-2 main protease inhibitors with high target specificity and low toxicity
  publication-title: J. Med. Chem.
– volume: 580
  start-page: 1447
  year: 2006
  end-page: 1450
  ident: bib46
  article-title: Blind docking of drug-sized compounds to proteins with up to a thousand residues
  publication-title: FEBS (Fed. Eur. Biochem. Soc.) Lett.
– volume: 27
  start-page: 3041
  year: 2022
  ident: bib15
  article-title: Accelerating AutoDock Vina with GPUs
  publication-title: Molecules
– volume: 60
  start-page: 6328
  year: 2020
  end-page: 6343
  ident: bib32
  article-title: GlycoTorch Vina: docking designed and tested for glycosaminoglycans
  publication-title: J. Chem. Inf. Model.
– volume: 42
  year: 2022
  ident: bib34
  article-title: Speed vs accuracy: effect on ligand pose accuracy of varying box size and exhaustiveness in AutoDock Vina
  publication-title: Mol Inform
– volume: 7
  start-page: 141
  year: 2000
  end-page: 158
  ident: bib2
  article-title: Molecular modeling and computer aided drug design. Examples of their applications in medicinal chemistry
  publication-title: Curr. Med. Chem.
– volume: 8
  start-page: 27
  year: 2016
  ident: bib29
  article-title: AutoDock VinaXB: implementation of XBSF, new empirical halogen bond scoring function, into AutoDock Vina
  publication-title: J. Cheminf.
– year: 2023
  ident: bib22
  article-title: Learning models really outperform traditional approaches in molecular docking?
  publication-title: arXiv 2302
– volume: 12
  start-page: 170
  year: 2015
  end-page: 178
  ident: bib25
  article-title: A new scoring function for molecular docking based on AutoDock and AutoDock Vina
  publication-title: Curr. Drug Discov. Technol.
– volume: 3
  start-page: 1
  year: 2011
  end-page: 14
  ident: bib44
  article-title: Open Babel: an open chemical toolbox
  publication-title: J. Cheminf.
– volume: 31
  start-page: 213
  year: 2017
  end-page: 218
  ident: bib40
  article-title: DockingApp: a user friendly interface for facilitated docking simulations with AutoDock Vina
  publication-title: J. Comput. Aided Mol. Des.
– volume: 43
  start-page: 160
  year: 2022
  end-page: 169
  ident: bib24
  article-title: Improving ligand-ranking of AutoDock Vina by changing the empirical parameters
  publication-title: J. Comput. Chem.
– volume: 12
  start-page: 892
  year: 2016
  end-page: 901
  ident: bib30
  article-title: Vina-carb: improving glycosidic angles during carbohydrate docking
  publication-title: J. Chem. Theor. Comput.
– volume: 11
  start-page: 905
  year: 2016
  end-page: 919
  ident: bib39
  article-title: Computational protein-ligand docking and virtual drug screening with the AutoDock suite
  publication-title: Nat. Protoc.
– volume: 261
  start-page: 10
  year: 2022
  ident: bib47
  article-title: Prediction of ligand binding sites using improved blind docking method with a Machine Learning-Based scoring function
  publication-title: Chem. Eng. Sci.
– volume: 64
  start-page: 2339
  year: 2021
  end-page: 2381
  ident: bib8
  article-title: US FDA approved drugs from 2015-june 2020: a perspective
  publication-title: J. Med. Chem.
– volume: 25
  start-page: 1110
  year: 2007
  end-page: 1111
  ident: bib7
  article-title: Network pharmacology
  publication-title: Nat. Biotechnol.
– volume: 24
  start-page: 417
  year: 2010
  end-page: 422
  ident: bib36
  article-title: Ligand docking and binding site analysis with PyMOL and Autodock/Vina
  publication-title: J. Comput. Aided Mol. Des.
– volume: 87
  start-page: 618
  year: 2016
  end-page: 625
  ident: bib26
  article-title: A new, improved hybrid scoring function for molecular docking and scoring based on AutoDock and AutoDock Vina
  publication-title: Chem. Biol. Drug Des.
– volume: 31
  start-page: 2214
  year: 2015
  end-page: 2216
  ident: bib13
  article-title: Fast, accurate, and reliable molecular docking with QuickVina 2
  publication-title: Bioinformatics
– volume: 4
  start-page: 1
  year: 2011
  end-page: 4
  ident: bib37
  article-title: A GUI for virtual screening with AUTODOCK Vina
  publication-title: BMC Res. Notes
– volume: 14
  start-page: 1923
  year: 2014
  end-page: 1938
  ident: bib4
  article-title: Structure-based virtual screening for drug discovery: principles, applications and recent advances
  publication-title: Curr. Top. Med. Chem.
– volume: 9
  start-page: 1266
  year: 2012
  end-page: 1272
  ident: bib12
  article-title: QuickVina: accelerating AutoDock Vina using gradient-based heuristics for global optimization
  publication-title: IEEE ACM Trans. Comput. Biol. Bioinf
– volume: 7
  start-page: 18
  year: 2015
  ident: bib33
  article-title: Calculating an optimal box size for ligand docking and virtual screening against experimental and predicted binding pockets
  publication-title: J. Cheminf.
– volume: 11
  year: 2016
  ident: bib23
  article-title: Vinardo: a scoring function based on Autodock Vina improves scoring, docking, and virtual screening
  publication-title: PLoS One
– volume: 1263
  start-page: 243
  year: 2015
  end-page: 250
  ident: bib38
  article-title: Small-molecule library screening by docking with PyRx, Methods in molecular biology (Clifton
  publication-title: N.J
– volume: 19
  start-page: 3336
  year: 2023
  end-page: 3345
  ident: bib17
  article-title: Uni-dock: GPU-accelerated docking enables ultralarge virtual screening
  publication-title: J. Chem. Theor. Comput.
– volume: 20
  start-page: 13384
  year: 2015
  end-page: 13421
  ident: bib1
  article-title: Molecular docking and structure-based drug design strategies
  publication-title: Molecules
– volume: 24
  start-page: 12
  year: 2019
  ident: bib31
  article-title: PeptoGridRescoring function for AutoDock Vina to identify new bioactive molecules from short peptide libraries
  publication-title: Molecules
– volume: 28
  start-page: 235
  year: 2000
  end-page: 242
  ident: bib43
  article-title: The protein data bank
  publication-title: Nucleic Acids Res.
– volume: 7
  year: 2017
  ident: bib14
  article-title: Protein-ligand blind docking using QuickVina-W with inter-process spatio-temporal integration
  publication-title: Sci. Rep.
– volume: 31
  start-page: 484
  year: 2023
  end-page: 497
  ident: bib18
  article-title: A hardware-accelerated molecular docking tool with fixed-point quantization and low-level parallelism
  publication-title: IEEE Trans. Very Large Scale Integr. Syst.
– volume: 20
  start-page: 4331
  year: 2019
  ident: bib3
  article-title: Molecular docking: shifting paradigms in drug discovery
  publication-title: Int. J. Mol. Sci.
– volume: 24
  start-page: 417
  issue: 5
  year: 2010
  ident: 10.1016/j.rineng.2023.101335_bib36
  article-title: Ligand docking and binding site analysis with PyMOL and Autodock/Vina
  publication-title: J. Comput. Aided Mol. Des.
  doi: 10.1007/s10822-010-9352-6
– volume: 21
  start-page: 9548
  issue: 24
  year: 2020
  ident: 10.1016/j.rineng.2023.101335_bib28
  article-title: A state-of-the-art novel scoring function for molecular docking in a user-friendly interface to AutoDock Vina
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms21249548
– volume: 105
  start-page: 3011
  issue: 8
  year: 2008
  ident: 10.1016/j.rineng.2023.101335_bib45
  article-title: The PD-1/PD-L1 complex resembles the antigen-binding Fv domains of antibodies and T cell receptors
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0712278105
– volume: 31
  start-page: 484
  issue: 4
  year: 2023
  ident: 10.1016/j.rineng.2023.101335_bib18
  article-title: A hardware-accelerated molecular docking tool with fixed-point quantization and low-level parallelism
  publication-title: IEEE Trans. Very Large Scale Integr. Syst.
  doi: 10.1109/TVLSI.2022.3217275
– volume: 20
  start-page: 13384
  issue: 7
  year: 2015
  ident: 10.1016/j.rineng.2023.101335_bib1
  article-title: Molecular docking and structure-based drug design strategies
  publication-title: Molecules
  doi: 10.3390/molecules200713384
– volume: 14
  start-page: 1923
  issue: 16
  year: 2014
  ident: 10.1016/j.rineng.2023.101335_bib4
  article-title: Structure-based virtual screening for drug discovery: principles, applications and recent advances
  publication-title: Curr. Top. Med. Chem.
  doi: 10.2174/1568026614666140929124445
– volume: 65
  start-page: 13343
  issue: 19
  year: 2022
  ident: 10.1016/j.rineng.2023.101335_bib49
  article-title: Discovery and crystallographic studies of trisubstituted piperazine derivatives as non-covalent SARS-CoV-2 main protease inhibitors with high target specificity and low toxicity
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.2c01146
– volume: 42
  issue: 2
  year: 2022
  ident: 10.1016/j.rineng.2023.101335_bib34
  article-title: Speed vs accuracy: effect on ligand pose accuracy of varying box size and exhaustiveness in AutoDock Vina
  publication-title: Mol Inform
  doi: 10.1002/minf.202200188
– volume: 34
  start-page: 115
  issue: 2–3
  year: 2015
  ident: 10.1016/j.rineng.2023.101335_bib27
  article-title: Improving AutoDock Vina using random forest: the growing accuracy of binding affinity prediction by the effective exploitation of larger data sets
  publication-title: Mol Inform
  doi: 10.1002/minf.201400132
– volume: 61
  start-page: 3891
  issue: 8
  year: 2021
  ident: 10.1016/j.rineng.2023.101335_bib10
  article-title: AutoDock Vina 1.2.0: new docking methods, expanded force field, and Python bindings
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.1c00203
– volume: 580
  start-page: 663
  issue: 7805
  year: 2020
  ident: 10.1016/j.rineng.2023.101335_bib19
  article-title: An open-source drug discovery platform enables ultra-large virtual screens
  publication-title: Nature
  doi: 10.1038/s41586-020-2117-z
– volume: 20
  start-page: 4331
  issue: 18
  year: 2019
  ident: 10.1016/j.rineng.2023.101335_bib3
  article-title: Molecular docking: shifting paradigms in drug discovery
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20184331
– volume: 261
  start-page: 10
  year: 2022
  ident: 10.1016/j.rineng.2023.101335_bib47
  article-title: Prediction of ligand binding sites using improved blind docking method with a Machine Learning-Based scoring function
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2022.117962
– volume: 15
  start-page: 12
  issue: 1
  year: 2020
  ident: 10.1016/j.rineng.2023.101335_bib41
  article-title: AMDock: a versatile graphical tool for assisting molecular docking with Autodock Vina and Autodock4
  publication-title: Biol. Direct
  doi: 10.1186/s13062-020-00267-2
– volume: 580
  start-page: 1447
  issue: 5
  year: 2006
  ident: 10.1016/j.rineng.2023.101335_bib46
  article-title: Blind docking of drug-sized compounds to proteins with up to a thousand residues
  publication-title: FEBS (Fed. Eur. Biochem. Soc.) Lett.
  doi: 10.1016/j.febslet.2006.01.074
– volume: 7
  start-page: 141
  issue: 2
  year: 2000
  ident: 10.1016/j.rineng.2023.101335_bib2
  article-title: Molecular modeling and computer aided drug design. Examples of their applications in medicinal chemistry
  publication-title: Curr. Med. Chem.
  doi: 10.2174/0929867003375317
– volume: 25
  start-page: 1110
  issue: 10
  year: 2007
  ident: 10.1016/j.rineng.2023.101335_bib7
  article-title: Network pharmacology
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1007-1110
– volume: 31
  start-page: 213
  issue: 2
  year: 2017
  ident: 10.1016/j.rineng.2023.101335_bib40
  article-title: DockingApp: a user friendly interface for facilitated docking simulations with AutoDock Vina
  publication-title: J. Comput. Aided Mol. Des.
  doi: 10.1007/s10822-016-0006-1
– volume: 64
  start-page: 2339
  issue: 5
  year: 2021
  ident: 10.1016/j.rineng.2023.101335_bib8
  article-title: US FDA approved drugs from 2015-june 2020: a perspective
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.0c01786
– volume: 11
  issue: 5
  year: 2016
  ident: 10.1016/j.rineng.2023.101335_bib23
  article-title: Vinardo: a scoring function based on Autodock Vina improves scoring, docking, and virtual screening
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0155183
– volume: 31
  start-page: 455
  issue: 2
  year: 2010
  ident: 10.1016/j.rineng.2023.101335_bib9
  article-title: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21334
– volume: 279
  start-page: 17996
  issue: 17
  year: 2004
  ident: 10.1016/j.rineng.2023.101335_bib48
  article-title: ACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M311191200
– volume: 11
  start-page: 905
  issue: 5
  year: 2016
  ident: 10.1016/j.rineng.2023.101335_bib39
  article-title: Computational protein-ligand docking and virtual drug screening with the AutoDock suite
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2016.051
– volume: 9
  start-page: 1266
  issue: 5
  year: 2012
  ident: 10.1016/j.rineng.2023.101335_bib12
  article-title: QuickVina: accelerating AutoDock Vina using gradient-based heuristics for global optimization
  publication-title: IEEE ACM Trans. Comput. Biol. Bioinf
  doi: 10.1109/TCBB.2012.82
– volume: 12
  start-page: 892
  issue: 2
  year: 2016
  ident: 10.1016/j.rineng.2023.101335_bib30
  article-title: Vina-carb: improving glycosidic angles during carbohydrate docking
  publication-title: J. Chem. Theor. Comput.
  doi: 10.1021/acs.jctc.5b00834
– volume: 63
  start-page: 1982
  issue: 7
  year: 2023
  ident: 10.1016/j.rineng.2023.101335_bib16
  article-title: Vina-GPU 2.0: further accelerating AutoDock Vina and its derivatives with graphics processing units
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.2c01504
– volume: 60
  start-page: 6328
  issue: 12
  year: 2020
  ident: 10.1016/j.rineng.2023.101335_bib32
  article-title: GlycoTorch Vina: docking designed and tested for glycosaminoglycans
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.0c00373
– volume: 28
  start-page: 235
  issue: 1
  year: 2000
  ident: 10.1016/j.rineng.2023.101335_bib43
  article-title: The protein data bank
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/28.1.235
– volume: 14
  start-page: 619
  issue: 7
  year: 2019
  ident: 10.1016/j.rineng.2023.101335_bib5
  article-title: The compromise of virtual screening and its impact on drug discovery
  publication-title: Expet Opin. Drug Discov.
  doi: 10.1080/17460441.2019.1604677
– volume: 27
  start-page: 3041
  issue: 9
  year: 2022
  ident: 10.1016/j.rineng.2023.101335_bib15
  article-title: Accelerating AutoDock Vina with GPUs
  publication-title: Molecules
  doi: 10.3390/molecules27093041
– volume: 59
  start-page: 895
  issue: 2
  year: 2019
  ident: 10.1016/j.rineng.2023.101335_bib21
  article-title: Comparative assessment of scoring functions: the CASF-2016 update
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.8b00545
– volume: 24
  start-page: bbad014
  issue: 2
  year: 2023
  ident: 10.1016/j.rineng.2023.101335_bib6
  article-title: Comprehensive assessment of nine target prediction web services: which should we choose for target fishing?
  publication-title: Briefings Bioinf.
  doi: 10.1093/bib/bbad014
– volume: 36
  start-page: 78
  issue: 2
  year: 2015
  ident: 10.1016/j.rineng.2023.101335_bib35
  article-title: Beware of docking
  publication-title: Trends Pharmacol. Sci.
  doi: 10.1016/j.tips.2014.12.001
– volume: 7
  start-page: 18
  year: 2015
  ident: 10.1016/j.rineng.2023.101335_bib33
  article-title: Calculating an optimal box size for ligand docking and virtual screening against experimental and predicted binding pockets
  publication-title: J. Cheminf.
  doi: 10.1186/s13321-015-0067-5
– volume: 31
  start-page: 2214
  issue: 13
  year: 2015
  ident: 10.1016/j.rineng.2023.101335_bib13
  article-title: Fast, accurate, and reliable molecular docking with QuickVina 2
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv082
– year: 2023
  ident: 10.1016/j.rineng.2023.101335_bib22
  article-title: Learning models really outperform traditional approaches in molecular docking?
  publication-title: arXiv 2302
– volume: 30
  start-page: 2785
  issue: 16
  year: 2009
  ident: 10.1016/j.rineng.2023.101335_bib11
  article-title: AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21256
– volume: 36
  start-page: 4513
  issue: 16
  year: 2020
  ident: 10.1016/j.rineng.2023.101335_bib42
  article-title: Webina: an open-source library and web app that runs AutoDock Vina entirely in the web browser
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa579
– volume: 3
  start-page: 1
  issue: 1
  year: 2011
  ident: 10.1016/j.rineng.2023.101335_bib44
  article-title: Open Babel: an open chemical toolbox
  publication-title: J. Cheminf.
  doi: 10.1186/1758-2946-3-33
– volume: 8
  start-page: 27
  year: 2016
  ident: 10.1016/j.rineng.2023.101335_bib29
  article-title: AutoDock VinaXB: implementation of XBSF, new empirical halogen bond scoring function, into AutoDock Vina
  publication-title: J. Cheminf.
  doi: 10.1186/s13321-016-0139-1
– volume: 1263
  start-page: 243
  year: 2015
  ident: 10.1016/j.rineng.2023.101335_bib38
  article-title: Small-molecule library screening by docking with PyRx, Methods in molecular biology (Clifton
  publication-title: N.J
– volume: 12
  start-page: 170
  issue: 3
  year: 2015
  ident: 10.1016/j.rineng.2023.101335_bib25
  article-title: A new scoring function for molecular docking based on AutoDock and AutoDock Vina
  publication-title: Curr. Drug Discov. Technol.
  doi: 10.2174/1570163812666150825110208
– volume: 87
  start-page: 618
  issue: 4
  year: 2016
  ident: 10.1016/j.rineng.2023.101335_bib26
  article-title: A new, improved hybrid scoring function for molecular docking and scoring based on AutoDock and AutoDock Vina
  publication-title: Chem. Biol. Drug Des.
  doi: 10.1111/cbdd.12697
– volume: 24
  start-page: 12
  issue: 2
  year: 2019
  ident: 10.1016/j.rineng.2023.101335_bib31
  article-title: PeptoGridRescoring function for AutoDock Vina to identify new bioactive molecules from short peptide libraries
  publication-title: Molecules
  doi: 10.3390/molecules24020277
– volume: 43
  start-page: 160
  issue: 3
  year: 2022
  ident: 10.1016/j.rineng.2023.101335_bib24
  article-title: Improving ligand-ranking of AutoDock Vina by changing the empirical parameters
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.26779
– volume: 9
  year: 2021
  ident: 10.1016/j.rineng.2023.101335_bib20
  article-title: Redesigning Vina@QNLM for ultra-large-scale molecular docking and screening on a Sunway supercomputer
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2021.750325
– volume: 19
  start-page: 3336
  issue: 11
  year: 2023
  ident: 10.1016/j.rineng.2023.101335_bib17
  article-title: Uni-dock: GPU-accelerated docking enables ultralarge virtual screening
  publication-title: J. Chem. Theor. Comput.
  doi: 10.1021/acs.jctc.2c01145
– volume: 7
  issue: 1
  year: 2017
  ident: 10.1016/j.rineng.2023.101335_bib14
  article-title: Protein-ligand blind docking using QuickVina-W with inter-process spatio-temporal integration
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-15571-7
– volume: 4
  start-page: 1
  issue: 1
  year: 2011
  ident: 10.1016/j.rineng.2023.101335_bib37
  article-title: A GUI for virtual screening with AUTODOCK Vina
  publication-title: BMC Res. Notes
  doi: 10.1186/1756-0500-4-445
SSID ssj0002810137
Score 2.4089305
Snippet As an important theoretical computation method in computer-aided drug design, molecular docking has significantly shifted the paradigm of drug discovery. As...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 101335
SubjectTerms Autodock Vina
Docking solution
Drug discovery
Molecular docking
Protein-ligand interaction
Title An accurate and universal protein-small molecule batch docking solution using Autodock Vina
URI https://dx.doi.org/10.1016/j.rineng.2023.101335
https://doaj.org/article/d1c929756b8644ba8119643ef41e1fd4
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIpygveWAN1LWTOGNBrSqkMlFUiSHys7RqUwTJym_nbCclE11YMjh-ROez7y767juEbplNY0NjiE54ZiMmNI-EzkiUgHVnOusRKlyi8Pg5GU3Y0zSetkp9OUxYoAcOgrvXRGUu-zORHEy3FJx4CiljGTHEas8ECjavFUwt_C8jUhNmgnvv4Ae02-TNeXCXy6wrZneudrhror7a269d8vT9LfPUMjnDQ3RQ-4q4H77xCO2Y4hjttxgET9Bbv8BCqcoRPmBRaFwFoAUM8wwM8yL6WonlEq9CGVyDJdy971jDNQgT4EbzsMO_z3C_KtfuFX6dF-IUTYaDl8dRVNdLiBQjvIziVMouExmDoKmnEmGsTZmQTCc9riwxjGjJOYtNQlXMJThuTMepS13N4JQySs_QbrEuzDnCSlLmudu7iYKQJpUWDju3XMOVwDQVHUQbaeWqJhN3NS2WeYMaW-RBxrmTcR5k3EHRZtRHINPY0v_BbcSmr6PC9g2gIHmtIPk2BemgtNnGvPYqgrcAU83_XP7iP5a_RHtuygBLu0K75WdlrsGPKeWNV1l4jr8HP2JI7Y8
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+accurate+and+universal+protein-small+molecule+batch+docking+solution+using+Autodock+Vina&rft.jtitle=Results+in+engineering&rft.au=Che%2C+Xinhao&rft.au=Liu%2C+Qilei&rft.au=Zhang%2C+Lei&rft.date=2023-09-01&rft.issn=2590-1230&rft.eissn=2590-1230&rft.volume=19&rft.spage=101335&rft_id=info:doi/10.1016%2Fj.rineng.2023.101335&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rineng_2023_101335
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-1230&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-1230&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-1230&client=summon