Talbot lithography: Self-imaging of complex structures

The authors present a self-imaging lithographic technique, capable of patterning large area periodic structures of arbitrary content with nanoscale resolution. They start from the original concept of Talbot imaging of binary gratings—and introduce the generalized Talbot imaging (GTI) where periodic...

Full description

Saved in:
Bibliographic Details
Published inJournal of vacuum science & technology. B, Microelectronics and nanometer structures processing, measurement and phenomena Vol. 27; no. 6; pp. 2931 - 2937
Main Authors Isoyan, A., Jiang, F., Cheng, Y. C., Cerrina, F., Wachulak, P., Urbanski, L., Rocca, J., Menoni, C., Marconi, M.
Format Journal Article
LanguageEnglish
Published American Vacuum Society 01.11.2009
Online AccessGet full text

Cover

Loading…
Abstract The authors present a self-imaging lithographic technique, capable of patterning large area periodic structures of arbitrary content with nanoscale resolution. They start from the original concept of Talbot imaging of binary gratings—and introduce the generalized Talbot imaging (GTI) where periodic structures of arbitrary shape and content form high-definition self-images. This effect can be used to create the complex, periodic patterns needed in the many lithographic fabrication steps of modern semiconductor devices. Since the process is diffraction limited, the achievable resolution depends only on the wavelength, mask patterning, and degree of coherence of the source. Their approach removes all the complex extreme ultraviolet (EUV) reflective masks and optics, replacing them with nanopatterned transmission masks and makes the whole process simple and cost effective. They have successfully verified the GTI concept using first a He–Ne laser, and then demonstrated its potential as a nanolithography method using a compact table-top soft x-ray (EUV) 46.9 nm laser source. These sources provide the high degree of coherence needed by diffraction-based imaging and are extendable to shorter wavelengths. They have recorded EUV GTI images up to the sixth Talbot plane, with consistent high quality good results, clearly demonstrating the ability of the GTI method to record high-resolution patterns at large distances.
AbstractList The authors present a self-imaging lithographic technique, capable of patterning large area periodic structures of arbitrary content with nanoscale resolution. They start from the original concept of Talbot imaging of binary gratings—and introduce the generalized Talbot imaging (GTI) where periodic structures of arbitrary shape and content form high-definition self-images. This effect can be used to create the complex, periodic patterns needed in the many lithographic fabrication steps of modern semiconductor devices. Since the process is diffraction limited, the achievable resolution depends only on the wavelength, mask patterning, and degree of coherence of the source. Their approach removes all the complex extreme ultraviolet (EUV) reflective masks and optics, replacing them with nanopatterned transmission masks and makes the whole process simple and cost effective. They have successfully verified the GTI concept using first a He–Ne laser, and then demonstrated its potential as a nanolithography method using a compact table-top soft x-ray (EUV) 46.9nm laser source. These sources provide the high degree of coherence needed by diffraction-based imaging and are extendable to shorter wavelengths. They have recorded EUV GTI images up to the sixth Talbot plane, with consistent high quality good results, clearly demonstrating the ability of the GTI method to record high-resolution patterns at large distances.
The authors present a self-imaging lithographic technique, capable of patterning large area periodic structures of arbitrary content with nanoscale resolution. They start from the original concept of Talbot imaging of binary gratings—and introduce the generalized Talbot imaging (GTI) where periodic structures of arbitrary shape and content form high-definition self-images. This effect can be used to create the complex, periodic patterns needed in the many lithographic fabrication steps of modern semiconductor devices. Since the process is diffraction limited, the achievable resolution depends only on the wavelength, mask patterning, and degree of coherence of the source. Their approach removes all the complex extreme ultraviolet (EUV) reflective masks and optics, replacing them with nanopatterned transmission masks and makes the whole process simple and cost effective. They have successfully verified the GTI concept using first a He–Ne laser, and then demonstrated its potential as a nanolithography method using a compact table-top soft x-ray (EUV) 46.9 nm laser source. These sources provide the high degree of coherence needed by diffraction-based imaging and are extendable to shorter wavelengths. They have recorded EUV GTI images up to the sixth Talbot plane, with consistent high quality good results, clearly demonstrating the ability of the GTI method to record high-resolution patterns at large distances.
Author Wachulak, P.
Jiang, F.
Cheng, Y. C.
Cerrina, F.
Urbanski, L.
Marconi, M.
Isoyan, A.
Rocca, J.
Menoni, C.
Author_xml – sequence: 1
  givenname: A.
  surname: Isoyan
  fullname: Isoyan, A.
  email: isoyan@wisc.edu
  organization: Center for NanoTechnology, University of Wisconsin-Madison, Wisconsin 53706
– sequence: 2
  givenname: F.
  surname: Jiang
  fullname: Jiang, F.
  organization: Center for NanoTechnology, University of Wisconsin-Madison, Wisconsin 53706
– sequence: 3
  givenname: Y. C.
  surname: Cheng
  fullname: Cheng, Y. C.
  organization: Center for NanoTechnology, University of Wisconsin-Madison, Wisconsin 53706
– sequence: 4
  givenname: F.
  surname: Cerrina
  fullname: Cerrina, F.
  email: fcerrina@wisc.edu
  organization: Center for NanoTechnology, University of Wisconsin-Madison, Wisconsin 53706
– sequence: 5
  givenname: P.
  surname: Wachulak
  fullname: Wachulak, P.
  organization: NSF ERC for Extreme Ultraviolet Science and Technology, Department of Electrical and Computer Engineering, Colorado State University—Fort Collins, Colorado 80523
– sequence: 6
  givenname: L.
  surname: Urbanski
  fullname: Urbanski, L.
  organization: NSF ERC for Extreme Ultraviolet Science and Technology, Department of Electrical and Computer Engineering, Colorado State University—Fort Collins, Colorado 80523
– sequence: 7
  givenname: J.
  surname: Rocca
  fullname: Rocca, J.
  organization: NSF ERC for Extreme Ultraviolet Science and Technology, Department of Electrical and Computer Engineering, Colorado State University—Fort Collins, Colorado 80523
– sequence: 8
  givenname: C.
  surname: Menoni
  fullname: Menoni, C.
  organization: NSF ERC for Extreme Ultraviolet Science and Technology, Department of Electrical and Computer Engineering, Colorado State University—Fort Collins, Colorado 80523
– sequence: 9
  givenname: M.
  surname: Marconi
  fullname: Marconi, M.
  organization: NSF ERC for Extreme Ultraviolet Science and Technology, Department of Electrical and Computer Engineering, Colorado State University—Fort Collins, Colorado 80523
BookMark eNqNkF1LwzAUhoNMcJte-A96q9Atp2naTLyR4RcMvHBeh9M02SpdU5JM3L-30okiKl6dc_E8L7zviAwa22hCToFOACCbwoQlXECaHpAh8ITGgmf5oPtpDjHQhB2RkffPlNKMMzYk2RLrwoaorsLarhy2691F9KhrE1cbXFXNKrImUnbT1vo18sFtVdg67Y_JocHa65P9HZOnm-vl_C5ePNzez68WsUpBhJhTzTKtDOZKldwwAIE5ctBJgaKY0SznQnADWiR5YcqZSbCgIqUKOUOuDRuTaZ-rnPXeaSNVFTBUtgkOq1oCle-1Jch97c44-2a0rqvidj-ylz3rP1J_h_ud5JedOv383_pf8It1n6BsS8PeAC1eirE
CODEN JVTBD9
CitedBy_id crossref_primary_10_1117_1_JNP_8_084089
crossref_primary_10_1364_JOSAA_31_001436
crossref_primary_10_1116_1_4826344
crossref_primary_10_1039_C6NR05365C
crossref_primary_10_1134_S1063784214090072
crossref_primary_10_1038_srep30476
crossref_primary_10_1116_1_4767440
crossref_primary_10_1117_1_JMM_23_4_043002
crossref_primary_10_1016_j_optlastec_2019_105658
crossref_primary_10_1364_OL_39_006969
crossref_primary_10_1007_s41871_021_00108_4
crossref_primary_10_1088_0022_3727_48_37_375101
crossref_primary_10_1109_LPT_2016_2602334
crossref_primary_10_1364_OL_38_005004
crossref_primary_10_1002_andp_202200543
crossref_primary_10_1364_OE_27_029510
crossref_primary_10_1007_s12596_022_00828_w
crossref_primary_10_7567_APEX_8_062004
crossref_primary_10_1016_j_ijleo_2024_171973
crossref_primary_10_1088_1361_6528_ab8764
crossref_primary_10_1103_PhysRevA_101_043815
crossref_primary_10_1515_aot_2015_0022
crossref_primary_10_1515_nanoph_2023_0145
crossref_primary_10_1002_admt_201600238
crossref_primary_10_1007_s00348_019_2870_7
crossref_primary_10_1364_OE_21_028380
crossref_primary_10_1016_j_ijleo_2017_12_157
crossref_primary_10_1016_j_mee_2015_03_047
crossref_primary_10_1088_1612_2011_11_9_095402
crossref_primary_10_1002_lpor_202400922
crossref_primary_10_1016_j_mee_2014_10_010
crossref_primary_10_1103_PhysRevLett_118_133903
crossref_primary_10_1134_S0021364017130136
crossref_primary_10_1364_OE_20_014284
crossref_primary_10_1063_1_4937899
crossref_primary_10_1117_1_JMM_15_4_043502
crossref_primary_10_1364_OE_26_022218
crossref_primary_10_1021_nn402637a
crossref_primary_10_1364_OE_431698
crossref_primary_10_1364_OE_27_005918
crossref_primary_10_1103_PhysRevA_91_033817
crossref_primary_10_1016_j_wavemoti_2015_02_012
crossref_primary_10_1364_JOSAA_32_001132
crossref_primary_10_1002_adfm_201501274
crossref_primary_10_1364_OL_37_003633
crossref_primary_10_1016_j_mee_2014_05_019
crossref_primary_10_1109_JPHOT_2013_2252332
crossref_primary_10_1016_j_mee_2015_02_046
crossref_primary_10_1103_PhysRevApplied_14_054067
crossref_primary_10_1103_PhysRevA_85_033837
crossref_primary_10_1021_acsanm_3c01249
crossref_primary_10_1364_JOSAA_375703
crossref_primary_10_1039_C7RA02878D
crossref_primary_10_1364_OE_21_007608
crossref_primary_10_1088_2053_1591_acece2
crossref_primary_10_1088_1361_6528_ab2282
crossref_primary_10_1016_j_optlaseng_2020_106400
crossref_primary_10_1021_acsomega_4c03039
crossref_primary_10_1364_AO_55_0000A1
crossref_primary_10_1209_0295_5075_adac07
crossref_primary_10_1364_OE_23_025532
crossref_primary_10_1002_adma_201503746
crossref_primary_10_1007_s11468_012_9463_0
crossref_primary_10_1016_j_mne_2024_100267
crossref_primary_10_1364_OE_24_00A276
crossref_primary_10_1364_OL_39_002278
crossref_primary_10_1039_D0AN01544J
crossref_primary_10_1002_lpor_202300055
crossref_primary_10_1109_JPHOT_2015_2447938
crossref_primary_10_1116_1_4758758
crossref_primary_10_1016_j_optcom_2012_06_073
crossref_primary_10_1364_OE_20_004903
crossref_primary_10_1016_j_physe_2023_115662
crossref_primary_10_1002_adfm_202203109
crossref_primary_10_1021_nl2011824
crossref_primary_10_1038_s42005_019_0253_2
crossref_primary_10_1016_j_ijleo_2016_06_003
crossref_primary_10_1016_j_optlaseng_2021_106755
crossref_primary_10_7498_aps_64_114102
crossref_primary_10_1109_JPHOT_2016_2553847
crossref_primary_10_1116_1_3653507
Cites_doi 10.1364/JOSAA.22.001500
10.1117/1.3129837
10.1117/1.3112006
10.1117/1.2358112
10.1117/1.3156651
10.1117/1.3116559
10.1364/OE.16.009106
10.1063/1.2430774
10.1117/1.3124188
10.1103/PhysRevLett.81.5804
10.1103/PhysRevA.63.033802
10.1116/1.588613
10.1103/PhysRevA.49.R2213
10.1103/PhysRevA.72.053807
10.1038/nphoton.2007.280
10.1016/0030-4018(93)90772-W
10.1364/OL.24.001115
10.1080/14786448108626995
ContentType Journal Article
Copyright American Vacuum Society
2009 American Vacuum Society
Copyright_xml – notice: American Vacuum Society
– notice: 2009 American Vacuum Society
DBID AAYXX
CITATION
DOI 10.1116/1.3258144
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1520-8567
EndPage 2937
ExternalDocumentID 10_1116_1_3258144
GrantInformation_xml – fundername: NSF
  grantid: DMR-0084402
– fundername: NSF
  grantid: DMR-0425880
– fundername: NSF
  grantid: EEC-0310717
– fundername: UNSPECIFIED
  grantid: 2005-OC-985-985.007
GroupedDBID .DC
29L
5-Q
5GY
AAAAW
AAEUA
ABFTF
ABJNI
ACBRY
ADLOM
AENEX
AGTJO
AI.
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BAUXJ
H~9
M43
M71
M73
RAW
RIP
RNS
ROL
RQS
VAS
VH1
WH7
XFK
AAYXX
ADMLS
CITATION
ID FETCH-LOGICAL-c418t-50e36ecfa7ccd5f3118a7a51e2ba8b90675885f1e827bfd9f2ab0840ca53a5ef3
ISSN 1071-1023
IngestDate Tue Jul 01 04:29:23 EDT 2025
Thu Apr 24 23:09:10 EDT 2025
Fri Jun 21 00:19:50 EDT 2024
Fri Jun 21 00:16:44 EDT 2024
Sun Jul 14 10:05:11 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License 1071-1023/2009/27(6)/2931/7/$25.00
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c418t-50e36ecfa7ccd5f3118a7a51e2ba8b90675885f1e827bfd9f2ab0840ca53a5ef3
PageCount 7
ParticipantIDs scitation_primary_10_1116_1_3258144Talbot_lithography
crossref_citationtrail_10_1116_1_3258144
scitation_primary_10_1116_1_3258144
crossref_primary_10_1116_1_3258144
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-11-01
PublicationDateYYYYMMDD 2009-11-01
PublicationDate_xml – month: 11
  year: 2009
  text: 2009-11-01
  day: 01
PublicationDecade 2000
PublicationTitle Journal of vacuum science & technology. B, Microelectronics and nanometer structures processing, measurement and phenomena
PublicationYear 2009
Publisher American Vacuum Society
Publisher_xml – name: American Vacuum Society
References Berry, Marzoli, Schleich (c17) 2001; 14
Wang, Granados, Pedaci, Alessi, Luther, Berrill, Rocca (c24) 2008; 2
Benware, Macchietto, Moreno, Rocca (c21) 1998; 81
Wang, Larotonda, Luther, Alessi, Berrill, Shlyaptsev, Rocca (c23) 2005; 72
Noponen, Turunen (c13) 1993; 98
Cerrina (c3) 2009; 8
Auzelyte (c5) 2009; 8
Isoyan, Wüest, Wallace, Jiang, Cerrina (c6) 2008; 16
Wachulak (c9) 2009; 8
Savas, Schattenburg, Carter, Smith (c2) 1996; 14
Lohmann, Knuppertz, Jahns (c11) 2005; 22
Clauser, Li (c12) 1994; 49
Gronheid, Leeson (c4) 2009; 8
Macchietto, Benware, Rocca (c20) 1999; 24
Cheng, Isoyan, Wallace, Khan, Cerrina (c7) 2007; 90
Jiang, Cheng, Isoyan, Cerrina (c8) 2009; 8
Rayleigh (c16) 1881; 11
Lin (c1) 2006; 5
Talbot (c10) 1836; 9
Liu, Seminario, Tomasel, Chang, Rocca, Attwood (c22) 2001; 6303
Wang, Y.; Larotonda, M.; Luther, B.; Alessi, D.; Berrill, M.; Shlyaptsev, V.; Rocca, J. 2005; 72
Talbot, W. 1836; 9
Liu, Y.; Seminario, M.; Tomasel, F.; Chang, C.; Rocca, J.; Attwood, D. 2001; 6303
Gronheid, R.; Leeson, M. 2009; 8
Jiang, F.; Cheng, Y.-C.; Isoyan, A.; Cerrina, F. 2009; 8
Wachulak, P. 2009; 8
Lohmann, A.; Knuppertz, H.; Jahns, J. 2005; 22
Noponen, E.; Turunen, J. 1993; 98
Berry, M.; Marzoli, I.; Schleich, W. 2001; 14
Cerrina, F. 2009; 8
Cheng, Y.-C.; Isoyan, A.; Wallace, J.; Khan, M.; Cerrina, F. 2007; 90
Clauser, J.; Li, S. 1994; 49
Benware, B.; Macchietto, C.; Moreno, C.; Rocca, J. 1998; 81
Wang, Y.; Granados, E.; Pedaci, F.; Alessi, D.; Luther, B.; Berrill, M.; Rocca, J. 2008; 2
Lin, B. 2006; 5
Macchietto, C.; Benware, B.; Rocca, J. 1999; 24
Rayleigh, L. 1881; 11
Savas, T.; Schattenburg, M.; Carter, J.; Smith, H. 1996; 14
Isoyan, A.; Wüest, A.; Wallace, J.; Jiang, F.; Cerrina, F. 2008; 16
Auzelyte, V. 2009; 8
2023071607162741600_c14
(2023071607162741600_c2) 1996; 14
(2023071607162741600_c9) 2009; 8
(2023071607162741600_c3) 2009; 8
(2023071607162741600_c13) 1993; 98
(2023071607162741600_c7) 2007; 90
(2023071607162741600_c10) 1836; 9
(2023071607162741600_c11) 2005; 22
(2023071607162741600_c24) 2008; 2
(2023071607162741600_c5) 2009; 8
(2023071607162741600_c15) 2005
(2023071607162741600_c20) 1999; 24
(2023071607162741600_c18) 1999
(2023071607162741600_c23) 2005; 72
(2023071607162741600_c16) 1881; 11
2023071607162741600_c19
(2023071607162741600_c1) 2006; 5
(2023071607162741600_c12) 1994; 49
(2023071607162741600_c22) 2001; 6303
(2023071607162741600_c21) 1998; 81
(2023071607162741600_c8) 2009; 8
(2023071607162741600_c4) 2009; 8
(2023071607162741600_c6) 2008; 16
(2023071607162741600_c17) 2001; 14
References_xml – volume: 8
  start-page: 021205
  issn: 1932-5150
  year: 2009
  ident: c4
  publication-title: J. Micro/Nanolith. MEMS MOEMS
– volume: 90
  start-page: 023116
  issn: 0003-6951
  year: 2007
  ident: c7
  publication-title: Appl. Phys. Lett.
– volume: 14
  start-page: 39
  issn: 0953-8585
  year: 2001
  ident: c17
  publication-title: Phys. World
– volume: 49
  start-page: R2213
  issn: 1050-2947
  year: 1994
  ident: c12
  publication-title: Phys. Rev. A
– volume: 24
  start-page: 1115
  issn: 0146-9592
  year: 1999
  ident: c20
  publication-title: Opt. Lett.
– volume: 9
  start-page: 403
  issn: 0031-8086
  year: 1836
  ident: c10
  publication-title: Philos. Mag.
– volume: 16
  start-page: 9106
  issn: 1094-4087
  year: 2008
  ident: c6
  publication-title: Opt. Express
– volume: 5
  start-page: 33005
  issn: 1537-1646
  year: 2006
  ident: c1
  publication-title: J. Microlithogr., Microfabr., Microsyst.
– volume: 8
  start-page: 021201
  issn: 1932-5150
  year: 2009
  ident: c3
  publication-title: J. Micro/Nanolith. MEMS MOEMS
– volume: 8
  start-page: 021203
  issn: 1932-5150
  year: 2009
  ident: c8
  publication-title: J. Micro/Nanolith. MEMS MOEMS
– volume: 14
  start-page: 4167
  issn: 0734-211X
  year: 1996
  ident: c2
  publication-title: J. Vac. Sci. Technol. B
– volume: 72
  start-page: 053807
  issn: 1050-2947
  year: 2005
  ident: c23
  publication-title: Phys. Rev. A
– volume: 8
  start-page: 021204
  issn: 1932-5150
  year: 2009
  ident: c5
  publication-title: J. Micro/Nanolith. MEMS MOEMS
– volume: 8
  start-page: 021206
  issn: 1932-5150
  year: 2009
  ident: c9
  publication-title: J. Micro/Nanolith. MEMS MOEMS
– volume: 22
  start-page: 1500
  issn: 0740-3232
  year: 2005
  ident: c11
  publication-title: J. Opt. Soc. Am. A
– volume: 2
  start-page: 94
  issn: 1749-4885
  year: 2008
  ident: c24
  publication-title: Nat. Photonics
– volume: 11
  start-page: 196
  issn: 0031-8086
  year: 1881
  ident: c16
  publication-title: Philos. Mag.
– volume: 98
  start-page: 132
  issn: 0030-4018
  year: 1993
  ident: c13
  publication-title: Opt. Commun.
– volume: 81
  start-page: 5804
  issn: 0031-9007
  year: 1998
  ident: c21
  publication-title: Phys. Rev. Lett.
– volume: 6303
  start-page: 033802
  issn: 1050-2947
  year: 2001
  ident: c22
  publication-title: Phys. Rev. A
– volume: 22
  start-page: 1500
  year: 2005
  publication-title: J. Opt. Soc. Am. A
  doi: 10.1364/JOSAA.22.001500
– volume: 9
  start-page: 403
  year: 1836
  publication-title: Philos. Mag.
– volume: 8
  start-page: 021206
  year: 2009
  publication-title: J. Micro/Nanolith. MEMS MOEMS
  doi: 10.1117/1.3129837
– volume: 8
  start-page: 021203
  year: 2009
  publication-title: J. Micro/Nanolith. MEMS MOEMS
  doi: 10.1117/1.3112006
– volume: 5
  start-page: 33005
  year: 2006
  publication-title: J. Microlithogr., Microfabr., Microsyst.
  doi: 10.1117/1.2358112
– volume: 8
  start-page: 021201
  year: 2009
  publication-title: J. Micro/Nanolith. MEMS MOEMS
  doi: 10.1117/1.3156651
– volume: 8
  start-page: 021204
  year: 2009
  publication-title: J. Micro/Nanolith. MEMS MOEMS
  doi: 10.1117/1.3116559
– volume: 16
  start-page: 9106
  year: 2008
  publication-title: Opt. Express
  doi: 10.1364/OE.16.009106
– volume: 90
  start-page: 023116
  year: 2007
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2430774
– volume: 8
  start-page: 021205
  year: 2009
  publication-title: J. Micro/Nanolith. MEMS MOEMS
  doi: 10.1117/1.3124188
– volume: 81
  start-page: 5804
  year: 1998
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.81.5804
– volume: 11
  start-page: 196
  year: 1881
  publication-title: Philos. Mag.
– volume: 6303
  start-page: 033802
  year: 2001
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.63.033802
– volume: 14
  start-page: 4167
  year: 1996
  publication-title: J. Vac. Sci. Technol. B
  doi: 10.1116/1.588613
– volume: 49
  start-page: R2213
  year: 1994
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.49.R2213
– volume: 72
  start-page: 053807
  year: 2005
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.72.053807
– volume: 2
  start-page: 94
  year: 2008
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2007.280
– volume: 98
  start-page: 132
  year: 1993
  publication-title: Opt. Commun.
  doi: 10.1016/0030-4018(93)90772-W
– volume: 14
  start-page: 39
  year: 2001
  publication-title: Phys. World
– volume: 24
  start-page: 1115
  year: 1999
  publication-title: Opt. Lett.
  doi: 10.1364/OL.24.001115
– ident: 2023071607162741600_c14
– volume: 8
  start-page: 021204
  year: 2009
  ident: 2023071607162741600_c5
  publication-title: J. Micro/Nanolith. MEMS MOEMS
  doi: 10.1117/1.3116559
– volume: 90
  start-page: 023116
  year: 2007
  ident: 2023071607162741600_c7
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2430774
– volume: 24
  start-page: 1115
  year: 1999
  ident: 2023071607162741600_c20
  publication-title: Opt. Lett.
  doi: 10.1364/OL.24.001115
– volume: 2
  start-page: 94
  year: 2008
  ident: 2023071607162741600_c24
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2007.280
– volume: 14
  start-page: 39
  year: 2001
  ident: 2023071607162741600_c17
  publication-title: Phys. World
– volume: 6303
  start-page: 033802
  year: 2001
  ident: 2023071607162741600_c22
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.63.033802
– start-page: 88
  volume-title: Introduction to Fourier Optics
  year: 2005
  ident: 2023071607162741600_c15
– volume: 8
  start-page: 021203
  year: 2009
  ident: 2023071607162741600_c8
  publication-title: J. Micro/Nanolith. MEMS MOEMS
  doi: 10.1117/1.3112006
– volume: 11
  start-page: 196
  year: 1881
  ident: 2023071607162741600_c16
  publication-title: Philos. Mag.
  doi: 10.1080/14786448108626995
– volume: 98
  start-page: 132
  year: 1993
  ident: 2023071607162741600_c13
  publication-title: Opt. Commun.
  doi: 10.1016/0030-4018(93)90772-W
– volume: 49
  start-page: R2213
  year: 1994
  ident: 2023071607162741600_c12
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.49.R2213
– volume: 8
  start-page: 021205
  issue: 2
  year: 2009
  ident: 2023071607162741600_c4
  publication-title: J. Micro/Nanolith. MEMS MOEMS
  doi: 10.1117/1.3124188
– volume: 9
  start-page: 403
  year: 1836
  ident: 2023071607162741600_c10
  publication-title: Philos. Mag.
– volume: 81
  start-page: 5804
  year: 1998
  ident: 2023071607162741600_c21
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.81.5804
– volume: 22
  start-page: 1500
  year: 2005
  ident: 2023071607162741600_c11
  publication-title: J. Opt. Soc. Am. A
  doi: 10.1364/JOSAA.22.001500
– start-page: 489
  volume-title: Principles of Optics
  year: 1999
  ident: 2023071607162741600_c18
– ident: 2023071607162741600_c19
– volume: 5
  start-page: 33005
  year: 2006
  ident: 2023071607162741600_c1
  publication-title: J. Microlithogr., Microfabr., Microsyst.
  doi: 10.1117/1.2358112
– volume: 72
  start-page: 053807
  year: 2005
  ident: 2023071607162741600_c23
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.72.053807
– volume: 14
  start-page: 4167
  year: 1996
  ident: 2023071607162741600_c2
  publication-title: J. Vac. Sci. Technol. B
  doi: 10.1116/1.588613
– volume: 16
  start-page: 9106
  year: 2008
  ident: 2023071607162741600_c6
  publication-title: Opt. Express
  doi: 10.1364/OE.16.009106
– volume: 8
  start-page: 021201
  year: 2009
  ident: 2023071607162741600_c3
  publication-title: J. Micro/Nanolith. MEMS MOEMS
  doi: 10.1117/1.3156651
– volume: 8
  start-page: 021206
  year: 2009
  ident: 2023071607162741600_c9
  publication-title: J. Micro/Nanolith. MEMS MOEMS
  doi: 10.1117/1.3129837
SSID ssj0006533
Score 2.2982514
Snippet The authors present a self-imaging lithographic technique, capable of patterning large area periodic structures of arbitrary content with nanoscale resolution....
SourceID crossref
scitation
SourceType Enrichment Source
Index Database
Publisher
StartPage 2931
Title Talbot lithography: Self-imaging of complex structures
URI http://dx.doi.org/10.1116/1.3258144
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1db9Mw0CqdEOwBwQCx8aEIeECKkiVxnDi8lcI0IcbLNjSeItu1tUltUpV0An4LP5ZLfPmYKGjsJUpPZ6e5u_o-eh-EvE6pBp9LhV5i2MyLGWOeAMXkgbLRQqpA8CaYc_Q5OTyNP56xs9Ho1yBraV1JX_3cWFdyE64CDPhaV8n-B2e7TQEA98BfuAKH4Xo9Hou5LKu6jPgcO0_XDv6xnhvvYoHjhzBrXH93bavY9QqzBv-0SC-FWq8XblvpUwtF1UXeffcdptmvyn52ju3wXIiiXNR5NYNnuEtbgoAzUxZ9LNL2JjjX9ZpC9LJZ_rDB2InfpfVcYDT7oANNYV0D-uq70x5a95e01W2I2gYyMqzo60Sv_Yfqi31ZzFodnM1gDXl1pwmruvC8Bu-XMzvRoz3QbbMBFNwrp3OGGke3H9O_aJEmoOHTiHFwOG-RrQickGhMtibvjz4dd5o-AVvZ5rTaL4adq2D5frf4ir1zBzhoMywGRszJfXIPee1MrCg9ICNd7JDtQU_KHXK7yQlW3x6SxIqXMxCvt85QuJzSOChcTs_4R-T04MPJ9NDDMRueikNeeSzQNNHKiFSpGTMUXE6RChbqSAous8al5MyEmkepNLPMREIGPA6UYFQwbehjMi7KQj8hDjexSE0kA6pUTAORJVEoGQ-0pCqhabpL3rTEyFtK1KNQ5rn1RZM8zJFuu-Rlh7q0jVc2Ib3qKPovLHYNLEvTfEDTjbtflqt-Tb6cmb0b7v6U3O1_Bc_IGNikn4OBW8kXKGe_AVevqMY
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Talbot+lithography%3A+Self-imaging+of+complex+structures&rft.jtitle=Journal+of+vacuum+science+%26+technology.+B%2C+Microelectronics+and+nanometer+structures+processing%2C+measurement+and+phenomena&rft.au=Isoyan%2C+A.&rft.au=Jiang%2C+F.&rft.au=Cheng%2C+Y.+C.&rft.au=Cerrina%2C+F.&rft.date=2009-11-01&rft.pub=American+Vacuum+Society&rft.issn=1071-1023&rft.eissn=1520-8567&rft.volume=27&rft.issue=6&rft.spage=2931&rft.epage=2937&rft_id=info:doi/10.1116%2F1.3258144
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1071-1023&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1071-1023&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1071-1023&client=summon