Talbot lithography: Self-imaging of complex structures
The authors present a self-imaging lithographic technique, capable of patterning large area periodic structures of arbitrary content with nanoscale resolution. They start from the original concept of Talbot imaging of binary gratings—and introduce the generalized Talbot imaging (GTI) where periodic...
Saved in:
Published in | Journal of vacuum science & technology. B, Microelectronics and nanometer structures processing, measurement and phenomena Vol. 27; no. 6; pp. 2931 - 2937 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Vacuum Society
01.11.2009
|
Online Access | Get full text |
Cover
Loading…
Abstract | The authors present a self-imaging lithographic technique, capable of patterning large area periodic structures of arbitrary content with nanoscale resolution. They start from the original concept of Talbot imaging of binary gratings—and introduce the generalized Talbot imaging (GTI) where periodic structures of arbitrary shape and content form high-definition self-images. This effect can be used to create the complex, periodic patterns needed in the many lithographic fabrication steps of modern semiconductor devices. Since the process is diffraction limited, the achievable resolution depends only on the wavelength, mask patterning, and degree of coherence of the source. Their approach removes all the complex extreme ultraviolet (EUV) reflective masks and optics, replacing them with nanopatterned transmission masks and makes the whole process simple and cost effective. They have successfully verified the GTI concept using first a He–Ne laser, and then demonstrated its potential as a nanolithography method using a compact table-top soft x-ray (EUV)
46.9
nm
laser source. These sources provide the high degree of coherence needed by diffraction-based imaging and are extendable to shorter wavelengths. They have recorded EUV GTI images up to the sixth Talbot plane, with consistent high quality good results, clearly demonstrating the ability of the GTI method to record high-resolution patterns at large distances. |
---|---|
AbstractList | The authors present a self-imaging lithographic technique, capable of patterning large area periodic structures of arbitrary content with nanoscale resolution. They start from the original concept of Talbot imaging of binary gratings—and introduce the generalized Talbot imaging (GTI) where periodic structures of arbitrary shape and content form high-definition self-images. This effect can be used to create the complex, periodic patterns needed in the many lithographic fabrication steps of modern semiconductor devices. Since the process is diffraction limited, the achievable resolution depends only on the wavelength, mask patterning, and degree of coherence of the source. Their approach removes all the complex extreme ultraviolet (EUV) reflective masks and optics, replacing them with nanopatterned transmission masks and makes the whole process simple and cost effective. They have successfully verified the GTI concept using first a He–Ne laser, and then demonstrated its potential as a nanolithography method using a compact table-top soft x-ray (EUV) 46.9nm laser source. These sources provide the high degree of coherence needed by diffraction-based imaging and are extendable to shorter wavelengths. They have recorded EUV GTI images up to the sixth Talbot plane, with consistent high quality good results, clearly demonstrating the ability of the GTI method to record high-resolution patterns at large distances. The authors present a self-imaging lithographic technique, capable of patterning large area periodic structures of arbitrary content with nanoscale resolution. They start from the original concept of Talbot imaging of binary gratings—and introduce the generalized Talbot imaging (GTI) where periodic structures of arbitrary shape and content form high-definition self-images. This effect can be used to create the complex, periodic patterns needed in the many lithographic fabrication steps of modern semiconductor devices. Since the process is diffraction limited, the achievable resolution depends only on the wavelength, mask patterning, and degree of coherence of the source. Their approach removes all the complex extreme ultraviolet (EUV) reflective masks and optics, replacing them with nanopatterned transmission masks and makes the whole process simple and cost effective. They have successfully verified the GTI concept using first a He–Ne laser, and then demonstrated its potential as a nanolithography method using a compact table-top soft x-ray (EUV) 46.9 nm laser source. These sources provide the high degree of coherence needed by diffraction-based imaging and are extendable to shorter wavelengths. They have recorded EUV GTI images up to the sixth Talbot plane, with consistent high quality good results, clearly demonstrating the ability of the GTI method to record high-resolution patterns at large distances. |
Author | Wachulak, P. Jiang, F. Cheng, Y. C. Cerrina, F. Urbanski, L. Marconi, M. Isoyan, A. Rocca, J. Menoni, C. |
Author_xml | – sequence: 1 givenname: A. surname: Isoyan fullname: Isoyan, A. email: isoyan@wisc.edu organization: Center for NanoTechnology, University of Wisconsin-Madison, Wisconsin 53706 – sequence: 2 givenname: F. surname: Jiang fullname: Jiang, F. organization: Center for NanoTechnology, University of Wisconsin-Madison, Wisconsin 53706 – sequence: 3 givenname: Y. C. surname: Cheng fullname: Cheng, Y. C. organization: Center for NanoTechnology, University of Wisconsin-Madison, Wisconsin 53706 – sequence: 4 givenname: F. surname: Cerrina fullname: Cerrina, F. email: fcerrina@wisc.edu organization: Center for NanoTechnology, University of Wisconsin-Madison, Wisconsin 53706 – sequence: 5 givenname: P. surname: Wachulak fullname: Wachulak, P. organization: NSF ERC for Extreme Ultraviolet Science and Technology, Department of Electrical and Computer Engineering, Colorado State University—Fort Collins, Colorado 80523 – sequence: 6 givenname: L. surname: Urbanski fullname: Urbanski, L. organization: NSF ERC for Extreme Ultraviolet Science and Technology, Department of Electrical and Computer Engineering, Colorado State University—Fort Collins, Colorado 80523 – sequence: 7 givenname: J. surname: Rocca fullname: Rocca, J. organization: NSF ERC for Extreme Ultraviolet Science and Technology, Department of Electrical and Computer Engineering, Colorado State University—Fort Collins, Colorado 80523 – sequence: 8 givenname: C. surname: Menoni fullname: Menoni, C. organization: NSF ERC for Extreme Ultraviolet Science and Technology, Department of Electrical and Computer Engineering, Colorado State University—Fort Collins, Colorado 80523 – sequence: 9 givenname: M. surname: Marconi fullname: Marconi, M. organization: NSF ERC for Extreme Ultraviolet Science and Technology, Department of Electrical and Computer Engineering, Colorado State University—Fort Collins, Colorado 80523 |
BookMark | eNqNkF1LwzAUhoNMcJte-A96q9Atp2naTLyR4RcMvHBeh9M02SpdU5JM3L-30okiKl6dc_E8L7zviAwa22hCToFOACCbwoQlXECaHpAh8ITGgmf5oPtpDjHQhB2RkffPlNKMMzYk2RLrwoaorsLarhy2691F9KhrE1cbXFXNKrImUnbT1vo18sFtVdg67Y_JocHa65P9HZOnm-vl_C5ePNzez68WsUpBhJhTzTKtDOZKldwwAIE5ctBJgaKY0SznQnADWiR5YcqZSbCgIqUKOUOuDRuTaZ-rnPXeaSNVFTBUtgkOq1oCle-1Jch97c44-2a0rqvidj-ylz3rP1J_h_ud5JedOv383_pf8It1n6BsS8PeAC1eirE |
CODEN | JVTBD9 |
CitedBy_id | crossref_primary_10_1117_1_JNP_8_084089 crossref_primary_10_1364_JOSAA_31_001436 crossref_primary_10_1116_1_4826344 crossref_primary_10_1039_C6NR05365C crossref_primary_10_1134_S1063784214090072 crossref_primary_10_1038_srep30476 crossref_primary_10_1116_1_4767440 crossref_primary_10_1117_1_JMM_23_4_043002 crossref_primary_10_1016_j_optlastec_2019_105658 crossref_primary_10_1364_OL_39_006969 crossref_primary_10_1007_s41871_021_00108_4 crossref_primary_10_1088_0022_3727_48_37_375101 crossref_primary_10_1109_LPT_2016_2602334 crossref_primary_10_1364_OL_38_005004 crossref_primary_10_1002_andp_202200543 crossref_primary_10_1364_OE_27_029510 crossref_primary_10_1007_s12596_022_00828_w crossref_primary_10_7567_APEX_8_062004 crossref_primary_10_1016_j_ijleo_2024_171973 crossref_primary_10_1088_1361_6528_ab8764 crossref_primary_10_1103_PhysRevA_101_043815 crossref_primary_10_1515_aot_2015_0022 crossref_primary_10_1515_nanoph_2023_0145 crossref_primary_10_1002_admt_201600238 crossref_primary_10_1007_s00348_019_2870_7 crossref_primary_10_1364_OE_21_028380 crossref_primary_10_1016_j_ijleo_2017_12_157 crossref_primary_10_1016_j_mee_2015_03_047 crossref_primary_10_1088_1612_2011_11_9_095402 crossref_primary_10_1002_lpor_202400922 crossref_primary_10_1016_j_mee_2014_10_010 crossref_primary_10_1103_PhysRevLett_118_133903 crossref_primary_10_1134_S0021364017130136 crossref_primary_10_1364_OE_20_014284 crossref_primary_10_1063_1_4937899 crossref_primary_10_1117_1_JMM_15_4_043502 crossref_primary_10_1364_OE_26_022218 crossref_primary_10_1021_nn402637a crossref_primary_10_1364_OE_431698 crossref_primary_10_1364_OE_27_005918 crossref_primary_10_1103_PhysRevA_91_033817 crossref_primary_10_1016_j_wavemoti_2015_02_012 crossref_primary_10_1364_JOSAA_32_001132 crossref_primary_10_1002_adfm_201501274 crossref_primary_10_1364_OL_37_003633 crossref_primary_10_1016_j_mee_2014_05_019 crossref_primary_10_1109_JPHOT_2013_2252332 crossref_primary_10_1016_j_mee_2015_02_046 crossref_primary_10_1103_PhysRevApplied_14_054067 crossref_primary_10_1103_PhysRevA_85_033837 crossref_primary_10_1021_acsanm_3c01249 crossref_primary_10_1364_JOSAA_375703 crossref_primary_10_1039_C7RA02878D crossref_primary_10_1364_OE_21_007608 crossref_primary_10_1088_2053_1591_acece2 crossref_primary_10_1088_1361_6528_ab2282 crossref_primary_10_1016_j_optlaseng_2020_106400 crossref_primary_10_1021_acsomega_4c03039 crossref_primary_10_1364_AO_55_0000A1 crossref_primary_10_1209_0295_5075_adac07 crossref_primary_10_1364_OE_23_025532 crossref_primary_10_1002_adma_201503746 crossref_primary_10_1007_s11468_012_9463_0 crossref_primary_10_1016_j_mne_2024_100267 crossref_primary_10_1364_OE_24_00A276 crossref_primary_10_1364_OL_39_002278 crossref_primary_10_1039_D0AN01544J crossref_primary_10_1002_lpor_202300055 crossref_primary_10_1109_JPHOT_2015_2447938 crossref_primary_10_1116_1_4758758 crossref_primary_10_1016_j_optcom_2012_06_073 crossref_primary_10_1364_OE_20_004903 crossref_primary_10_1016_j_physe_2023_115662 crossref_primary_10_1002_adfm_202203109 crossref_primary_10_1021_nl2011824 crossref_primary_10_1038_s42005_019_0253_2 crossref_primary_10_1016_j_ijleo_2016_06_003 crossref_primary_10_1016_j_optlaseng_2021_106755 crossref_primary_10_7498_aps_64_114102 crossref_primary_10_1109_JPHOT_2016_2553847 crossref_primary_10_1116_1_3653507 |
Cites_doi | 10.1364/JOSAA.22.001500 10.1117/1.3129837 10.1117/1.3112006 10.1117/1.2358112 10.1117/1.3156651 10.1117/1.3116559 10.1364/OE.16.009106 10.1063/1.2430774 10.1117/1.3124188 10.1103/PhysRevLett.81.5804 10.1103/PhysRevA.63.033802 10.1116/1.588613 10.1103/PhysRevA.49.R2213 10.1103/PhysRevA.72.053807 10.1038/nphoton.2007.280 10.1016/0030-4018(93)90772-W 10.1364/OL.24.001115 10.1080/14786448108626995 |
ContentType | Journal Article |
Copyright | American Vacuum Society 2009 American Vacuum Society |
Copyright_xml | – notice: American Vacuum Society – notice: 2009 American Vacuum Society |
DBID | AAYXX CITATION |
DOI | 10.1116/1.3258144 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1520-8567 |
EndPage | 2937 |
ExternalDocumentID | 10_1116_1_3258144 |
GrantInformation_xml | – fundername: NSF grantid: DMR-0084402 – fundername: NSF grantid: DMR-0425880 – fundername: NSF grantid: EEC-0310717 – fundername: UNSPECIFIED grantid: 2005-OC-985-985.007 |
GroupedDBID | .DC 29L 5-Q 5GY AAAAW AAEUA ABFTF ABJNI ACBRY ADLOM AENEX AGTJO AI. ALMA_UNASSIGNED_HOLDINGS ARCSS BAUXJ H~9 M43 M71 M73 RAW RIP RNS ROL RQS VAS VH1 WH7 XFK AAYXX ADMLS CITATION |
ID | FETCH-LOGICAL-c418t-50e36ecfa7ccd5f3118a7a51e2ba8b90675885f1e827bfd9f2ab0840ca53a5ef3 |
ISSN | 1071-1023 |
IngestDate | Tue Jul 01 04:29:23 EDT 2025 Thu Apr 24 23:09:10 EDT 2025 Fri Jun 21 00:19:50 EDT 2024 Fri Jun 21 00:16:44 EDT 2024 Sun Jul 14 10:05:11 EDT 2019 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | 1071-1023/2009/27(6)/2931/7/$25.00 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c418t-50e36ecfa7ccd5f3118a7a51e2ba8b90675885f1e827bfd9f2ab0840ca53a5ef3 |
PageCount | 7 |
ParticipantIDs | scitation_primary_10_1116_1_3258144Talbot_lithography crossref_citationtrail_10_1116_1_3258144 scitation_primary_10_1116_1_3258144 crossref_primary_10_1116_1_3258144 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-11-01 |
PublicationDateYYYYMMDD | 2009-11-01 |
PublicationDate_xml | – month: 11 year: 2009 text: 2009-11-01 day: 01 |
PublicationDecade | 2000 |
PublicationTitle | Journal of vacuum science & technology. B, Microelectronics and nanometer structures processing, measurement and phenomena |
PublicationYear | 2009 |
Publisher | American Vacuum Society |
Publisher_xml | – name: American Vacuum Society |
References | Berry, Marzoli, Schleich (c17) 2001; 14 Wang, Granados, Pedaci, Alessi, Luther, Berrill, Rocca (c24) 2008; 2 Benware, Macchietto, Moreno, Rocca (c21) 1998; 81 Wang, Larotonda, Luther, Alessi, Berrill, Shlyaptsev, Rocca (c23) 2005; 72 Noponen, Turunen (c13) 1993; 98 Cerrina (c3) 2009; 8 Auzelyte (c5) 2009; 8 Isoyan, Wüest, Wallace, Jiang, Cerrina (c6) 2008; 16 Wachulak (c9) 2009; 8 Savas, Schattenburg, Carter, Smith (c2) 1996; 14 Lohmann, Knuppertz, Jahns (c11) 2005; 22 Clauser, Li (c12) 1994; 49 Gronheid, Leeson (c4) 2009; 8 Macchietto, Benware, Rocca (c20) 1999; 24 Cheng, Isoyan, Wallace, Khan, Cerrina (c7) 2007; 90 Jiang, Cheng, Isoyan, Cerrina (c8) 2009; 8 Rayleigh (c16) 1881; 11 Lin (c1) 2006; 5 Talbot (c10) 1836; 9 Liu, Seminario, Tomasel, Chang, Rocca, Attwood (c22) 2001; 6303 Wang, Y.; Larotonda, M.; Luther, B.; Alessi, D.; Berrill, M.; Shlyaptsev, V.; Rocca, J. 2005; 72 Talbot, W. 1836; 9 Liu, Y.; Seminario, M.; Tomasel, F.; Chang, C.; Rocca, J.; Attwood, D. 2001; 6303 Gronheid, R.; Leeson, M. 2009; 8 Jiang, F.; Cheng, Y.-C.; Isoyan, A.; Cerrina, F. 2009; 8 Wachulak, P. 2009; 8 Lohmann, A.; Knuppertz, H.; Jahns, J. 2005; 22 Noponen, E.; Turunen, J. 1993; 98 Berry, M.; Marzoli, I.; Schleich, W. 2001; 14 Cerrina, F. 2009; 8 Cheng, Y.-C.; Isoyan, A.; Wallace, J.; Khan, M.; Cerrina, F. 2007; 90 Clauser, J.; Li, S. 1994; 49 Benware, B.; Macchietto, C.; Moreno, C.; Rocca, J. 1998; 81 Wang, Y.; Granados, E.; Pedaci, F.; Alessi, D.; Luther, B.; Berrill, M.; Rocca, J. 2008; 2 Lin, B. 2006; 5 Macchietto, C.; Benware, B.; Rocca, J. 1999; 24 Rayleigh, L. 1881; 11 Savas, T.; Schattenburg, M.; Carter, J.; Smith, H. 1996; 14 Isoyan, A.; Wüest, A.; Wallace, J.; Jiang, F.; Cerrina, F. 2008; 16 Auzelyte, V. 2009; 8 2023071607162741600_c14 (2023071607162741600_c2) 1996; 14 (2023071607162741600_c9) 2009; 8 (2023071607162741600_c3) 2009; 8 (2023071607162741600_c13) 1993; 98 (2023071607162741600_c7) 2007; 90 (2023071607162741600_c10) 1836; 9 (2023071607162741600_c11) 2005; 22 (2023071607162741600_c24) 2008; 2 (2023071607162741600_c5) 2009; 8 (2023071607162741600_c15) 2005 (2023071607162741600_c20) 1999; 24 (2023071607162741600_c18) 1999 (2023071607162741600_c23) 2005; 72 (2023071607162741600_c16) 1881; 11 2023071607162741600_c19 (2023071607162741600_c1) 2006; 5 (2023071607162741600_c12) 1994; 49 (2023071607162741600_c22) 2001; 6303 (2023071607162741600_c21) 1998; 81 (2023071607162741600_c8) 2009; 8 (2023071607162741600_c4) 2009; 8 (2023071607162741600_c6) 2008; 16 (2023071607162741600_c17) 2001; 14 |
References_xml | – volume: 8 start-page: 021205 issn: 1932-5150 year: 2009 ident: c4 publication-title: J. Micro/Nanolith. MEMS MOEMS – volume: 90 start-page: 023116 issn: 0003-6951 year: 2007 ident: c7 publication-title: Appl. Phys. Lett. – volume: 14 start-page: 39 issn: 0953-8585 year: 2001 ident: c17 publication-title: Phys. World – volume: 49 start-page: R2213 issn: 1050-2947 year: 1994 ident: c12 publication-title: Phys. Rev. A – volume: 24 start-page: 1115 issn: 0146-9592 year: 1999 ident: c20 publication-title: Opt. Lett. – volume: 9 start-page: 403 issn: 0031-8086 year: 1836 ident: c10 publication-title: Philos. Mag. – volume: 16 start-page: 9106 issn: 1094-4087 year: 2008 ident: c6 publication-title: Opt. Express – volume: 5 start-page: 33005 issn: 1537-1646 year: 2006 ident: c1 publication-title: J. Microlithogr., Microfabr., Microsyst. – volume: 8 start-page: 021201 issn: 1932-5150 year: 2009 ident: c3 publication-title: J. Micro/Nanolith. MEMS MOEMS – volume: 8 start-page: 021203 issn: 1932-5150 year: 2009 ident: c8 publication-title: J. Micro/Nanolith. MEMS MOEMS – volume: 14 start-page: 4167 issn: 0734-211X year: 1996 ident: c2 publication-title: J. Vac. Sci. Technol. B – volume: 72 start-page: 053807 issn: 1050-2947 year: 2005 ident: c23 publication-title: Phys. Rev. A – volume: 8 start-page: 021204 issn: 1932-5150 year: 2009 ident: c5 publication-title: J. Micro/Nanolith. MEMS MOEMS – volume: 8 start-page: 021206 issn: 1932-5150 year: 2009 ident: c9 publication-title: J. Micro/Nanolith. MEMS MOEMS – volume: 22 start-page: 1500 issn: 0740-3232 year: 2005 ident: c11 publication-title: J. Opt. Soc. Am. A – volume: 2 start-page: 94 issn: 1749-4885 year: 2008 ident: c24 publication-title: Nat. Photonics – volume: 11 start-page: 196 issn: 0031-8086 year: 1881 ident: c16 publication-title: Philos. Mag. – volume: 98 start-page: 132 issn: 0030-4018 year: 1993 ident: c13 publication-title: Opt. Commun. – volume: 81 start-page: 5804 issn: 0031-9007 year: 1998 ident: c21 publication-title: Phys. Rev. Lett. – volume: 6303 start-page: 033802 issn: 1050-2947 year: 2001 ident: c22 publication-title: Phys. Rev. A – volume: 22 start-page: 1500 year: 2005 publication-title: J. Opt. Soc. Am. A doi: 10.1364/JOSAA.22.001500 – volume: 9 start-page: 403 year: 1836 publication-title: Philos. Mag. – volume: 8 start-page: 021206 year: 2009 publication-title: J. Micro/Nanolith. MEMS MOEMS doi: 10.1117/1.3129837 – volume: 8 start-page: 021203 year: 2009 publication-title: J. Micro/Nanolith. MEMS MOEMS doi: 10.1117/1.3112006 – volume: 5 start-page: 33005 year: 2006 publication-title: J. Microlithogr., Microfabr., Microsyst. doi: 10.1117/1.2358112 – volume: 8 start-page: 021201 year: 2009 publication-title: J. Micro/Nanolith. MEMS MOEMS doi: 10.1117/1.3156651 – volume: 8 start-page: 021204 year: 2009 publication-title: J. Micro/Nanolith. MEMS MOEMS doi: 10.1117/1.3116559 – volume: 16 start-page: 9106 year: 2008 publication-title: Opt. Express doi: 10.1364/OE.16.009106 – volume: 90 start-page: 023116 year: 2007 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2430774 – volume: 8 start-page: 021205 year: 2009 publication-title: J. Micro/Nanolith. MEMS MOEMS doi: 10.1117/1.3124188 – volume: 81 start-page: 5804 year: 1998 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.81.5804 – volume: 11 start-page: 196 year: 1881 publication-title: Philos. Mag. – volume: 6303 start-page: 033802 year: 2001 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.63.033802 – volume: 14 start-page: 4167 year: 1996 publication-title: J. Vac. Sci. Technol. B doi: 10.1116/1.588613 – volume: 49 start-page: R2213 year: 1994 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.49.R2213 – volume: 72 start-page: 053807 year: 2005 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.72.053807 – volume: 2 start-page: 94 year: 2008 publication-title: Nat. Photonics doi: 10.1038/nphoton.2007.280 – volume: 98 start-page: 132 year: 1993 publication-title: Opt. Commun. doi: 10.1016/0030-4018(93)90772-W – volume: 14 start-page: 39 year: 2001 publication-title: Phys. World – volume: 24 start-page: 1115 year: 1999 publication-title: Opt. Lett. doi: 10.1364/OL.24.001115 – ident: 2023071607162741600_c14 – volume: 8 start-page: 021204 year: 2009 ident: 2023071607162741600_c5 publication-title: J. Micro/Nanolith. MEMS MOEMS doi: 10.1117/1.3116559 – volume: 90 start-page: 023116 year: 2007 ident: 2023071607162741600_c7 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2430774 – volume: 24 start-page: 1115 year: 1999 ident: 2023071607162741600_c20 publication-title: Opt. Lett. doi: 10.1364/OL.24.001115 – volume: 2 start-page: 94 year: 2008 ident: 2023071607162741600_c24 publication-title: Nat. Photonics doi: 10.1038/nphoton.2007.280 – volume: 14 start-page: 39 year: 2001 ident: 2023071607162741600_c17 publication-title: Phys. World – volume: 6303 start-page: 033802 year: 2001 ident: 2023071607162741600_c22 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.63.033802 – start-page: 88 volume-title: Introduction to Fourier Optics year: 2005 ident: 2023071607162741600_c15 – volume: 8 start-page: 021203 year: 2009 ident: 2023071607162741600_c8 publication-title: J. Micro/Nanolith. MEMS MOEMS doi: 10.1117/1.3112006 – volume: 11 start-page: 196 year: 1881 ident: 2023071607162741600_c16 publication-title: Philos. Mag. doi: 10.1080/14786448108626995 – volume: 98 start-page: 132 year: 1993 ident: 2023071607162741600_c13 publication-title: Opt. Commun. doi: 10.1016/0030-4018(93)90772-W – volume: 49 start-page: R2213 year: 1994 ident: 2023071607162741600_c12 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.49.R2213 – volume: 8 start-page: 021205 issue: 2 year: 2009 ident: 2023071607162741600_c4 publication-title: J. Micro/Nanolith. MEMS MOEMS doi: 10.1117/1.3124188 – volume: 9 start-page: 403 year: 1836 ident: 2023071607162741600_c10 publication-title: Philos. Mag. – volume: 81 start-page: 5804 year: 1998 ident: 2023071607162741600_c21 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.81.5804 – volume: 22 start-page: 1500 year: 2005 ident: 2023071607162741600_c11 publication-title: J. Opt. Soc. Am. A doi: 10.1364/JOSAA.22.001500 – start-page: 489 volume-title: Principles of Optics year: 1999 ident: 2023071607162741600_c18 – ident: 2023071607162741600_c19 – volume: 5 start-page: 33005 year: 2006 ident: 2023071607162741600_c1 publication-title: J. Microlithogr., Microfabr., Microsyst. doi: 10.1117/1.2358112 – volume: 72 start-page: 053807 year: 2005 ident: 2023071607162741600_c23 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.72.053807 – volume: 14 start-page: 4167 year: 1996 ident: 2023071607162741600_c2 publication-title: J. Vac. Sci. Technol. B doi: 10.1116/1.588613 – volume: 16 start-page: 9106 year: 2008 ident: 2023071607162741600_c6 publication-title: Opt. Express doi: 10.1364/OE.16.009106 – volume: 8 start-page: 021201 year: 2009 ident: 2023071607162741600_c3 publication-title: J. Micro/Nanolith. MEMS MOEMS doi: 10.1117/1.3156651 – volume: 8 start-page: 021206 year: 2009 ident: 2023071607162741600_c9 publication-title: J. Micro/Nanolith. MEMS MOEMS doi: 10.1117/1.3129837 |
SSID | ssj0006533 |
Score | 2.2982514 |
Snippet | The authors present a self-imaging lithographic technique, capable of patterning large area periodic structures of arbitrary content with nanoscale resolution.... |
SourceID | crossref scitation |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 2931 |
Title | Talbot lithography: Self-imaging of complex structures |
URI | http://dx.doi.org/10.1116/1.3258144 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1db9Mw0CqdEOwBwQCx8aEIeECKkiVxnDi8lcI0IcbLNjSeItu1tUltUpV0An4LP5ZLfPmYKGjsJUpPZ6e5u_o-eh-EvE6pBp9LhV5i2MyLGWOeAMXkgbLRQqpA8CaYc_Q5OTyNP56xs9Ho1yBraV1JX_3cWFdyE64CDPhaV8n-B2e7TQEA98BfuAKH4Xo9Hou5LKu6jPgcO0_XDv6xnhvvYoHjhzBrXH93bavY9QqzBv-0SC-FWq8XblvpUwtF1UXeffcdptmvyn52ju3wXIiiXNR5NYNnuEtbgoAzUxZ9LNL2JjjX9ZpC9LJZ_rDB2InfpfVcYDT7oANNYV0D-uq70x5a95e01W2I2gYyMqzo60Sv_Yfqi31ZzFodnM1gDXl1pwmruvC8Bu-XMzvRoz3QbbMBFNwrp3OGGke3H9O_aJEmoOHTiHFwOG-RrQickGhMtibvjz4dd5o-AVvZ5rTaL4adq2D5frf4ir1zBzhoMywGRszJfXIPee1MrCg9ICNd7JDtQU_KHXK7yQlW3x6SxIqXMxCvt85QuJzSOChcTs_4R-T04MPJ9NDDMRueikNeeSzQNNHKiFSpGTMUXE6RChbqSAous8al5MyEmkepNLPMREIGPA6UYFQwbehjMi7KQj8hDjexSE0kA6pUTAORJVEoGQ-0pCqhabpL3rTEyFtK1KNQ5rn1RZM8zJFuu-Rlh7q0jVc2Ib3qKPovLHYNLEvTfEDTjbtflqt-Tb6cmb0b7v6U3O1_Bc_IGNikn4OBW8kXKGe_AVevqMY |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Talbot+lithography%3A+Self-imaging+of+complex+structures&rft.jtitle=Journal+of+vacuum+science+%26+technology.+B%2C+Microelectronics+and+nanometer+structures+processing%2C+measurement+and+phenomena&rft.au=Isoyan%2C+A.&rft.au=Jiang%2C+F.&rft.au=Cheng%2C+Y.+C.&rft.au=Cerrina%2C+F.&rft.date=2009-11-01&rft.pub=American+Vacuum+Society&rft.issn=1071-1023&rft.eissn=1520-8567&rft.volume=27&rft.issue=6&rft.spage=2931&rft.epage=2937&rft_id=info:doi/10.1116%2F1.3258144 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1071-1023&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1071-1023&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1071-1023&client=summon |