Effect of soil acidification on the growth and nitrogen use efficiency of maize in Ultisols

Purpose To examine the effect of soil acidification on growth and nitrogen (N) uptake by maize in Ultisols. Materials and methods A clay Ultisol derived from Quaternary red earth and a sandy Ultisol derived from tertiary red sandstone were used in this study. A pot experiment was conducted with maiz...

Full description

Saved in:
Bibliographic Details
Published inJournal of soils and sediments Vol. 20; no. 3; pp. 1435 - 1445
Main Authors Pan, Xiaoying, Baquy, M. Abdulaha-Al, Guan, Peng, Yan, Jing, Wang, Ruhai, Xu, Renkou, Xie, Lu
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose To examine the effect of soil acidification on growth and nitrogen (N) uptake by maize in Ultisols. Materials and methods A clay Ultisol derived from Quaternary red earth and a sandy Ultisol derived from tertiary red sandstone were used in this study. A pot experiment was conducted with maize growing in the two Ultisols acidified to different pH values. Urea with 15 N abundance of 10.11% was used to investigate the distribution of N fertilizer between soil and plant. Total N content and 15 N abundance in plant and soil samples were determined by elemental analysis-isotope mass spectrometry. Results and discussion Critical soil pHs of 4.8 and 5.0 were observed for maize growing in the clay and sandy Ultisols, respectively. Below the critical soil pH, increasing soil pH significantly increased maize height and the yield of maize shoots and roots (both P < 0.05), but changes in soil pH showed no significant effect on maize growth above the critical soil pH in both Ultisols. Maize growing in the sandy Ultisol was more sensitive to changes in soil pH than in the clay Ultisol. Increase in the pH in both Ultisols also increased N accumulation in maize, the N derived from fertilizer in maize, physiological N use efficiency, and N use efficiency (NUE) by maize. Changes in soil pH had a greater effect on these parameters below the critical soil pH, compared to above. The change in soil pH had a greater effect on N accumulation in maize, the N derived from fertilizer in maize, and NUE in the sandy Ultisol than in the clay Ultisol. The NUE increased by 24.4% at pH 6.0, compared with pH 4.0 in the clay Ultisol, while the NUE at pH 5.0 was 4.8 times that at pH 4.0 in the sandy Ultisol. The increase in soil pH increased the ratio of N accumulation in maize/soil residue N and decreased the potential loss of fertilizer N from both Ultisols. Conclusions Soil acidification inhibited maize growth, reduced N uptake by maize, and thus, decreased NUE. To maintain soil pH of acidic soils above the critical values for crops is of practical importance for sustainable food production in acidic soils.
AbstractList PurposeTo examine the effect of soil acidification on growth and nitrogen (N) uptake by maize in Ultisols.Materials and methodsA clay Ultisol derived from Quaternary red earth and a sandy Ultisol derived from tertiary red sandstone were used in this study. A pot experiment was conducted with maize growing in the two Ultisols acidified to different pH values. Urea with 15N abundance of 10.11% was used to investigate the distribution of N fertilizer between soil and plant. Total N content and 15N abundance in plant and soil samples were determined by elemental analysis-isotope mass spectrometry.Results and discussionCritical soil pHs of 4.8 and 5.0 were observed for maize growing in the clay and sandy Ultisols, respectively. Below the critical soil pH, increasing soil pH significantly increased maize height and the yield of maize shoots and roots (both P < 0.05), but changes in soil pH showed no significant effect on maize growth above the critical soil pH in both Ultisols. Maize growing in the sandy Ultisol was more sensitive to changes in soil pH than in the clay Ultisol. Increase in the pH in both Ultisols also increased N accumulation in maize, the N derived from fertilizer in maize, physiological N use efficiency, and N use efficiency (NUE) by maize. Changes in soil pH had a greater effect on these parameters below the critical soil pH, compared to above. The change in soil pH had a greater effect on N accumulation in maize, the N derived from fertilizer in maize, and NUE in the sandy Ultisol than in the clay Ultisol. The NUE increased by 24.4% at pH 6.0, compared with pH 4.0 in the clay Ultisol, while the NUE at pH 5.0 was 4.8 times that at pH 4.0 in the sandy Ultisol. The increase in soil pH increased the ratio of N accumulation in maize/soil residue N and decreased the potential loss of fertilizer N from both Ultisols.ConclusionsSoil acidification inhibited maize growth, reduced N uptake by maize, and thus, decreased NUE. To maintain soil pH of acidic soils above the critical values for crops is of practical importance for sustainable food production in acidic soils.
PURPOSE: To examine the effect of soil acidification on growth and nitrogen (N) uptake by maize in Ultisols. MATERIALS AND METHODS: A clay Ultisol derived from Quaternary red earth and a sandy Ultisol derived from tertiary red sandstone were used in this study. A pot experiment was conducted with maize growing in the two Ultisols acidified to different pH values. Urea with ¹⁵N abundance of 10.11% was used to investigate the distribution of N fertilizer between soil and plant. Total N content and ¹⁵N abundance in plant and soil samples were determined by elemental analysis-isotope mass spectrometry. RESULTS AND DISCUSSION: Critical soil pHs of 4.8 and 5.0 were observed for maize growing in the clay and sandy Ultisols, respectively. Below the critical soil pH, increasing soil pH significantly increased maize height and the yield of maize shoots and roots (both P < 0.05), but changes in soil pH showed no significant effect on maize growth above the critical soil pH in both Ultisols. Maize growing in the sandy Ultisol was more sensitive to changes in soil pH than in the clay Ultisol. Increase in the pH in both Ultisols also increased N accumulation in maize, the N derived from fertilizer in maize, physiological N use efficiency, and N use efficiency (NUE) by maize. Changes in soil pH had a greater effect on these parameters below the critical soil pH, compared to above. The change in soil pH had a greater effect on N accumulation in maize, the N derived from fertilizer in maize, and NUE in the sandy Ultisol than in the clay Ultisol. The NUE increased by 24.4% at pH 6.0, compared with pH 4.0 in the clay Ultisol, while the NUE at pH 5.0 was 4.8 times that at pH 4.0 in the sandy Ultisol. The increase in soil pH increased the ratio of N accumulation in maize/soil residue N and decreased the potential loss of fertilizer N from both Ultisols. CONCLUSIONS: Soil acidification inhibited maize growth, reduced N uptake by maize, and thus, decreased NUE. To maintain soil pH of acidic soils above the critical values for crops is of practical importance for sustainable food production in acidic soils.
Purpose To examine the effect of soil acidification on growth and nitrogen (N) uptake by maize in Ultisols. Materials and methods A clay Ultisol derived from Quaternary red earth and a sandy Ultisol derived from tertiary red sandstone were used in this study. A pot experiment was conducted with maize growing in the two Ultisols acidified to different pH values. Urea with 15 N abundance of 10.11% was used to investigate the distribution of N fertilizer between soil and plant. Total N content and 15 N abundance in plant and soil samples were determined by elemental analysis-isotope mass spectrometry. Results and discussion Critical soil pHs of 4.8 and 5.0 were observed for maize growing in the clay and sandy Ultisols, respectively. Below the critical soil pH, increasing soil pH significantly increased maize height and the yield of maize shoots and roots (both P < 0.05), but changes in soil pH showed no significant effect on maize growth above the critical soil pH in both Ultisols. Maize growing in the sandy Ultisol was more sensitive to changes in soil pH than in the clay Ultisol. Increase in the pH in both Ultisols also increased N accumulation in maize, the N derived from fertilizer in maize, physiological N use efficiency, and N use efficiency (NUE) by maize. Changes in soil pH had a greater effect on these parameters below the critical soil pH, compared to above. The change in soil pH had a greater effect on N accumulation in maize, the N derived from fertilizer in maize, and NUE in the sandy Ultisol than in the clay Ultisol. The NUE increased by 24.4% at pH 6.0, compared with pH 4.0 in the clay Ultisol, while the NUE at pH 5.0 was 4.8 times that at pH 4.0 in the sandy Ultisol. The increase in soil pH increased the ratio of N accumulation in maize/soil residue N and decreased the potential loss of fertilizer N from both Ultisols. Conclusions Soil acidification inhibited maize growth, reduced N uptake by maize, and thus, decreased NUE. To maintain soil pH of acidic soils above the critical values for crops is of practical importance for sustainable food production in acidic soils.
Author Baquy, M. Abdulaha-Al
Wang, Ruhai
Xie, Lu
Xu, Renkou
Yan, Jing
Pan, Xiaoying
Guan, Peng
Author_xml – sequence: 1
  givenname: Xiaoying
  surname: Pan
  fullname: Pan, Xiaoying
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences
– sequence: 2
  givenname: M. Abdulaha-Al
  surname: Baquy
  fullname: Baquy, M. Abdulaha-Al
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences
– sequence: 3
  givenname: Peng
  surname: Guan
  fullname: Guan, Peng
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences
– sequence: 4
  givenname: Jing
  surname: Yan
  fullname: Yan, Jing
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences
– sequence: 5
  givenname: Ruhai
  surname: Wang
  fullname: Wang, Ruhai
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences
– sequence: 6
  givenname: Renkou
  surname: Xu
  fullname: Xu, Renkou
  email: rkxu@issas.ac.cn
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences
– sequence: 7
  givenname: Lu
  surname: Xie
  fullname: Xie, Lu
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences
BookMark eNp9kE1LBCEYgCUK2t36A52ELl2mdHRmnGMsfUHQpU4dxNHXzZjVTV2i_fW5u0HQIRAU3ueRl2eKDn3wgNAZJZeUkO4qUcpaURHaV6RuaFNtDtCEtpRXHRfksLw5KyNKxDGapvROCOvKeIJeb6wFnXGwOAU3YqWdcdZplV3wuJz8BngRw2d-w8ob7F2OYQEerxNgsIV04PXX1l8qtwHsPH4Zs0thTCfoyKoxwenPPUPPtzfP8_vq8enuYX79WGlORa64YoK23UCpMbq3TWuEAcuIEtYAM8a2zdDonsOgWmXpQPnASM8ZGzrVW81m6GL_7SqGjzWkLJcuaRhH5SGsk6yZEB3vSdsU9PwP-h7W0ZflCtXVbc141xdK7CkdQ0oRrNQu74LkqNwoKZHb6HIfXZbochddbopa_1FX0S1V_PpfYnspFdgvIP5u9Y_1DVwzmCM
CitedBy_id crossref_primary_10_1017_S0376892924000298
crossref_primary_10_1016_j_rhisph_2022_100604
crossref_primary_10_3390_su141912287
crossref_primary_10_1016_j_jenvman_2024_122465
crossref_primary_10_1016_j_pedsph_2023_07_011
crossref_primary_10_1007_s11356_020_10891_0
crossref_primary_10_1016_j_jenvman_2022_115395
crossref_primary_10_1016_j_agee_2022_108089
crossref_primary_10_3389_fmicb_2022_929725
crossref_primary_10_3390_agriculture14020285
crossref_primary_10_1007_s42729_025_02366_3
crossref_primary_10_1016_j_rhisph_2025_101028
crossref_primary_10_3390_su15010179
crossref_primary_10_19159_tutad_1260531
crossref_primary_10_1007_s11738_023_03527_6
crossref_primary_10_12677_HJSS_2022_103013
crossref_primary_10_1007_s12298_021_01113_z
crossref_primary_10_1016_j_envpol_2021_116993
crossref_primary_10_1016_j_jia_2022_08_054
crossref_primary_10_3390_agriculture12020234
crossref_primary_10_3390_jof7070554
crossref_primary_10_1007_s11368_021_03126_3
crossref_primary_10_1016_j_scitotenv_2021_152630
crossref_primary_10_1016_j_scitotenv_2024_171631
crossref_primary_10_1007_s42729_025_02213_5
crossref_primary_10_1080_00103624_2023_2282997
crossref_primary_10_3390_agriculture14101728
crossref_primary_10_3390_agronomy13082110
crossref_primary_10_1007_s11104_024_06775_8
crossref_primary_10_1021_acs_est_4c02368
crossref_primary_10_1007_s42729_023_01128_3
crossref_primary_10_1016_j_scitotenv_2022_159253
crossref_primary_10_1007_s44378_024_00014_3
crossref_primary_10_1016_j_fcr_2025_109757
crossref_primary_10_1007_s11104_021_04913_0
crossref_primary_10_1007_s42832_023_0206_2
crossref_primary_10_3390_agronomy12092149
crossref_primary_10_1080_01448765_2024_2438378
crossref_primary_10_3390_plants13131760
crossref_primary_10_7831_ras_13_1_66
Cites_doi 10.5194/se-8-149-2017
10.1016/B978-0-08-092407-6.50010-9
10.1038/nature13609
10.1071/CP15284
10.1080/01904160009382005
10.1023/A:1009712404335
10.2134/agronmonogr12.2ed
10.1016/j.fcr.2011.01.006
10.1007/BF00009558
10.1016/j.soilbio.2005.08.006
10.1007/978-3-540-31211-6
10.1007/s10705-016-9780-3
10.1093/jxb/err248
10.1073/pnas.1116437108
10.1016/j.foreco.2005.05.025
10.1038/srep34754
10.1007/s11368-013-0695-1
10.1105/TPC.010016
10.1007/s11368-017-1887-x
10.1016/j.eja.2012.01.006
10.1071/AR9900359
10.2134/jeq1985.00472425001400010005x
10.2134/agronj2009.0252
10.2307/1311905
10.1104/pp.101.4.1263
10.1007/s11356-017-1014-y
10.1080/01904167.2013.864306
10.1016/j.agee.2015.03.032
10.1016/j.fcr.2004.03.008
10.1016/S1002-0160(07)60043-5
10.1126/science.294.5545.1268
10.1023/A:1009802225307
10.5194/bg-11-3031-2014
10.1007/BF00192809
10.1016/j.fcr.2004.01.023
10.1093/jexbot/51.347.1057
10.1071/SR9900539
10.1007/BF01054455
10.1016/S1002-0160(09)60109-0
10.2136/sssaj2010.0315
10.1007/s13280-010-0076-6
10.1016/j.catena.2009.11.002
10.1080/00380768.1995.10419571
10.1038/s41598-018-33591-9
10.2136/sssaj2010.0187
10.2136/sssaj1970.03615995003400060023x
10.2134/agronj1982.00021962007400030037x
10.2134/agronj2006.0128
10.1126/science.1182570
10.1104/pp.102.3.975
10.1023/A:1021107026067
10.1104/pp.98.2.632
10.1016/j.fcr.2017.03.013
10.1007/BF00009577
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2019
Journal of Soils and Sediments is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019
– notice: Journal of Soils and Sediments is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7ST
7UA
7X2
7XB
88I
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H96
H97
HCIFZ
L.G
M0K
M2P
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
PYCSY
Q9U
SOI
7S9
L.6
DOI 10.1007/s11368-019-02515-z
DatabaseName CrossRef
ProQuest Central (Corporate)
Environment Abstracts
Water Resources Abstracts
Agricultural Science Collection
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
SciTech Premium Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Agricultural Science Database
Science Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Agricultural Science Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest SciTech Collection
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Environment Abstracts
ProQuest Central (Alumni)
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Agricultural Science Database
AGRICOLA

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1614-7480
EndPage 1445
ExternalDocumentID 10_1007_s11368_019_02515_z
GrantInformation_xml – fundername: National Key Research and Development of China
  grantid: 2016YFD0200302
GroupedDBID -5A
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
203
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
4P2
5GY
5VS
67M
67Z
6NX
7X2
7XC
88I
8CJ
8FE
8FH
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
APEBS
ARMRJ
ATCPS
AXYYD
AYJHY
AZQEC
B-.
BA0
BDATZ
BENPR
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1J
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
L8X
LAS
LK5
LLZTM
M0K
M2P
M4Y
M7R
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
PATMY
PCBAR
PF0
PQQKQ
PROAC
PT4
PYCSY
Q2X
QOS
R89
R9I
RMD
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7U
Z7Y
ZMTXR
~02
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7ST
7UA
7XB
8FK
ABRTQ
C1K
F1W
H96
H97
L.G
PKEHL
PQEST
PQUKI
Q9U
SOI
7S9
L.6
ID FETCH-LOGICAL-c418t-4a38167b11ddc9f56d8def30a8fde3ddf65b5c94eba6af1b14b309433b7a9fc3
IEDL.DBID BENPR
ISSN 1439-0108
IngestDate Mon Jul 21 10:48:36 EDT 2025
Sat Jul 26 00:10:00 EDT 2025
Tue Jul 01 01:38:18 EDT 2025
Thu Apr 24 23:10:18 EDT 2025
Fri Feb 21 02:33:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Nitrogen use efficiency
Maize growth
Soil acidification
Ultisol
N labeling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-4a38167b11ddc9f56d8def30a8fde3ddf65b5c94eba6af1b14b309433b7a9fc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2372623479
PQPubID 54474
PageCount 11
ParticipantIDs proquest_miscellaneous_2388749065
proquest_journals_2372623479
crossref_citationtrail_10_1007_s11368_019_02515_z
crossref_primary_10_1007_s11368_019_02515_z
springer_journals_10_1007_s11368_019_02515_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Dordrecht
PublicationTitle Journal of soils and sediments
PublicationTitleAbbrev J Soils Sediments
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References WangSJLuoSSYueSCShenYFLiSQFate of 15N fertilizer under different nitrogen split applications to plastic mulched maize in semiarid farmlandNutr Cycl Agroecosyst20161051291401:CAS:528:DC%2BC28Xms1KgtLY%3D
HofmeierMRoelckeMHanYLanTBergmannHBöhmDCaiZCNiederRNitrogen management in a rice–wheat system in the Taihu region: recommendations based on field experiments and surveysAgric Ecosyst Environ201520960731:CAS:528:DC%2BC2MXlslClsr0%3D
von UexküllHRMutertEGlobal extent, development and economic impact of acid soilsPlant Soil1995171115
TilmanDBalzerCHillJBefortBLGlobal food demand and the sustainable intensification of agriculturePNAS201110820260202641:CAS:528:DC%2BC3MXhs1yqsbnM
ZhuZLChenDLNitrogen fertilizer use in China–Contributions to food production, impacts on the environment and best management strategiesNutr Cycl Agroecosyst2002631171271:CAS:528:DC%2BD38XovVCmtbg%3D
ChartresCJCummingRWBeattieJABowrnanGMWoodJTAcidification of soils on a transect from plains to slopes, south western New-South-WalesAust J Soil Res1990285395481:CAS:528:DyaK3cXlslSqtrw%3D
RengelZElliottDCMechanism of aluminum inhibition of net 45Ca2+ uptake by amaranthus protoplastsPlant Physiol1992986326381:CAS:528:DyaK38XhsVGksb0%3D
SchroderJLZhangHLGirmaKRaunWRPennCJPaytonMESoil acidification from long-term use of nitrogen fertilizers on winter wheatSoil Sci Soc Am J2011759579641:CAS:528:DC%2BC3MXnsFylsb0%3D
EvansCEKampratEJLime response as related to percent Al saturation, solution Al, and organic matter contentSoil Sci Soc Am Proc1970348938961:CAS:528:DyaE3MXht1Wrtg%3D%3D
ZhangHMWangBRXuMGFanTLCrop yield and soil responses to long-term fertilization on a red soil in Southern ChinaPedosphere2009191992071:CAS:528:DC%2BD1MXkvFCltb8%3D
KariukiSKZhangHSchroderJLEdwardsJPaytonMCarverBFRaunWRKrenzerEGHard red winter wheat cultivar responses to a pH and aluminum concentration gradientAgron J20079988981:CAS:528:DC%2BD2sXhs12ju70%3D
NicholBEOliveiraLAClassADMSiddiqiMYThe effects of aluminum on the influx of calcium, potassium, ammonium, nitrate, and phosphate in an aluminum sensitive cultivar of barley (Hordeum vdgare 1.)Plant Physiol1993101126312661:CAS:528:DyaK3sXit1Ort74%3D
KaiserJThe other global pollutant: nitrogen proves tough to curbScience2001294126812691:CAS:528:DC%2BD3MXotlKntrY%3D
ShiZLJingQCaiJJiangDCaoWXDaiTBThe fates of 15N fertilizer in relation to root distributions of winter wheat under different N splitsEur J Agron20124086931:CAS:528:DC%2BC38XlvFehsrY%3D
KamprathEJSoil acidity and liming2003North CarolinaSoil Science Society of North Carolina
LiuKLuanSInternal aluminum block of plant inward K+ channelsPlant Cell200113145314651:CAS:528:DC%2BD3MXkvVakt7k%3D
DoganIOzyigitIIDemirGInfluence of aluminum on mineral nutrient uptake and accumulation inurtica piluliferalJ Plant Nutr2014374694811:CAS:528:DC%2BC3sXhvFCqt7fJ
JiangCQLuDJZuCLZhouJMWangHYRoot-zone fertilization improves crop yields and minimizes nitrogen loss in summer maize in ChinaSci Rep2018815139
ZhuJGHanYLiuGZhangYLShaoXHNitrogen in percolation water in paddy fields with a rice/wheat rotationNutr Cycl Agroecosyst20005775821:CAS:528:DC%2BD3cXlt1yjt78%3D
HuangJWGrunesDLKochianLVAluminum effects on the kinetics of calcium uptake into cells of the wheat root apex: quantification of calcium fluxes using a calcium-selective vibrating microelectrodePlanta19921884144211:CAS:528:DyaK3sXjsVSmtg%3D%3D
BaquyM. Abdulaha-AlLiJiu-yuShiRen-yongKamranMuhammad AqeelXuRen-kouHigher cation exchange capacity determined lower critical soil pH and higher Al concentration for soybeanEnvironmental Science and Pollution Research201725769806989
RichterJRoelckeMThe N-cycle as determined by intensive agriculture – examples from central Europe and ChinaNutr Cycl Agroecosyst2000573346
RaoIMZeiglerRSVeraRSarkarungSSelection and breeding for acid-soil tolerance in cropsBioscience199343454465
YuTRChemistry of variable charge soils1997NewYorkOxford University Press
XiongYLiQSoils of China1990BeijingScience Press
ValleSRPinochetDCalderiniDFUptake and use efficiency of N, P, K, Ca and Al by Al-sensitive and Al-tolerant cultivars of wheat under a wide range of soil Al concentrationsField Crop Res2011121392400
YaoYLZhangMTianYHZhaoMZhangBWZhaoMZengKYinBUrea deep placement for minimizing NH3 loss in an intensive rice cropping systemField Crop Res2018218254266
National Bureau of Statistics of China (2018) http://data.stats.gov.cn/easyquery.htm?cn=C01.
MalkanthiDRRYokoyamaKYoshidaTMoritsuguMMatsushitaKEffects of low pH and Al on growth and nutrient uptake of several plantsSoil Sci Plant Nutr1995411611651:CAS:528:DyaK2MXkvFyktbk%3D
BaquyMAALiJYJiangJMehmoodKShiRYXuRKCritical pH and exchangeable Al of four acidic soils derived from different parent materials for maize cropsJ Soils Sediments201818149014991:CAS:528:DC%2BC2sXhvFersr3P
PansuDMGautheyrouJHandbook of soil analysis2006Berlin HeidelbergSpringer
HuZYXuCKZhouLNSunBHHeYQZhouJCaoZHContribution of atmospheric nitrogen compounds to N deposition in a broadleaf forest of southern ChinaPedosphere2007173603651:CAS:528:DC%2BD2sXmvVOrtbg%3D
KeltjensWGMagnesium uptake by Al-stressed maize plants with special emphasis on cation interactions at root exchange sitesPlant Soil19951711411461:CAS:528:DyaK2MXmsVCjsrk%3D
RhoadsF. M.ManningA.Soybean, corn, and wheat yields with variable soil pH on Plinthic AcrisolsFertilizer Research1989193137142
Adams F (1984) Soil acidity and liming (2nd). Madison, Wisconsin, USA.
BaquyMAALiJYXuCYMehmoodKXuRKDetermination of critical pH and Al concentration of acidic Ultisols for wheat and canola cropsSolid Earth20178149159
ReussJOJohnsonDWEffect of soil processes on the acidification of water by acid depositionJ Environ Qual1986142631
LoftonJGodseyCBZhangHDetermining aluminum tolerance and critical soil pH for winter canola production for acidic soils in temperate regionsAgron J20101023273321:CAS:528:DC%2BC3cXhvFSku74%3D
LidonFCAzinheiraHGBarreiroMGAluminum toxicity in maize: biomass production and nutrient uptake and translocationJ Plant Nutr2000231511601:CAS:528:DC%2BD3cXhtVSrtrs%3D
ChenXPCuiZLFanMSVitousekPZhaoMMaWQWangZLZhangWJYanXYYangJCDengXPGaoQZhangQGuoSWRenJLiSQYeYLWangZHHuangJLTangQYSunYXPengXLZhangJWHeMRZhuYJXueJQWangGLWuLAnNWuLQMaLZhangWFZhangFSProducing more grain with lower environmental costsNature20145144864891:CAS:528:DC%2BC2cXhvVSmur3L
LiaoHYanXLAdvanced plant nutrition2003BeijingScience Press(in Chinese)
WarembourgFRKnowlesRBlackburnTHNitrogen fixation in soil and plant systemsNitrogen Isotope Techniques1993San DiegoAcademic Press127156
FanMSShenJBYuanLXJiangRFChenXPDaviesWJZhangFSImproving crop productivity and resource use efficiency to ensure food security and environmental quality in ChinaJ Exp Bot20126313241:CAS:528:DC%2BC3MXhs1yms77P
LiuDLHelyarKRConyersMKFisherRPoileGJResponse of wheat, triticale and barley to lime application in semi-arid soilsField Crop Res200490287301
DuanYHXuMGWangBRYangXYHuangSMGaoSDLong-term evaluation of manure application on maize yield and nitrogen use efficiency in ChinaSoil Sci Soc Am J201175156215731:CAS:528:DC%2BC3MXhtVeis77O
ZhouJXiaFLiuXMHeYXuJMBrookesPCEffects of nitrogen fertilizer on the acidification of two typical acid soils in South ChinaJ Soils Sediments2014144154221:CAS:528:DC%2BC2cXisFSiur0%3D
van SchöllLKeltjensWGHofflandEvan BreemenNEffect of ectomycorrhizal colonization on the uptake of Ca, Mg and Al by Pinus sylvestris under aluminium toxicityForest Ecol Manag2005215352360
ChenZMWangHYLiuXWLuDJZhouJMThe fates of 15N-labeled fertilizer in a wheat-soil system as influenced by fertilization practice in a loamy soilSci Rep20166347541:CAS:528:DC%2BC28Xhs1GnsbjP
JiangJXuRKZhaoAZComparison of the surface chemical properties of four soils derived from Quaternary red earth as related to soil evolutionCatena2010801541611:CAS:528:DC%2BC3cXot1yluw%3D%3D
WangGLYeYLChenXPCuiZLDetermining the optimal nitrogen rate for summer maize in China by integrating agronomic, economic, and environmental aspectsBiogeosciences20141130313041
Meriño-Gergichevich C, Alberdi M, Ivanov A, Reyes-Díaz M (2010) Al3+-Ca2+ Interaction in plants growing in acid soils: Alphytotoxicity response to calcareous amendments. J Soil Sci Plant Nutr 10: 217–243
RyanPRKochianLVlnteraction between aluminum toxicity and calcium uptake at the root apex in near-isogenic lines of wheat (Triticum aestivum L.) differing in aluminum tolerancePlant Physiol19931029759821:CAS:528:DyaK3sXltleitLY%3D
AlvaAKAsherCJEdwardsDGEffect of solution pH, external calcium concentration, and aluminium activity on nodulation and early growth of cowpeaAust J Agric Res1990413593651:CAS:528:DyaK3cXlsFWgu7Y%3D
Rengel Z, Bose J, Chen Q, Tripathi BN (2015) Magnesium alleviates plant toxicity of aluminium and heavy metals. Crop Pasture Sci 66:1298–1307
GuoJHLiuXJZhangYShenJLHanWXZhangWFChristiePGouldingKWTVitousekPMZhangFSSignificant acidification in major Chinese croplandsScience2010327100810101:CAS:528:DC%2BC3cXitVSjtbg%3D
JiangLGDaiTBJiangDJiangDCaoWXGanXQWeiSQCharacterizing physiological N-use efficiency as influenced by nitrogen management in three rice cultivarsField Crop Res200488239250
KemmittSJWrightDGouldingKWTJonesDLpH regulation of carbon and nitrogen dynamics in two agricultural soilsSoil Biol Biochem2006388989111:CAS:528:DC%2BD28XjvFSisb4%3D
KiddPSProctorJEffects of aluminium on the growth and mineral composition of Betula pendula RothJ Exp Bot200051105710661:CAS:528:DC%2BD3cXktVCksr4%3D
MollRHKamprathEJJacksonWAAnalysis and interpretation of factors which contribute to efficiency of nitrogen utilizationAgron J198274562564
CuiZLChenXPZhangFSCurrent nitrogen management status and measures to improve the intensive wheat–maize system in ChinaAmbio2010393763841:CAS:528:DC%2BC3cXhtFSju7rJ
PR Ryan (2515_CR44) 1993; 102
ZL Zhu (2515_CR60) 2002; 63
GL Wang (2515_CR51) 2014; 11
I Dogan (2515_CR10) 2014; 37
XP Chen (2515_CR7) 2014; 514
J Kaiser (2515_CR21) 2001; 294
JO Reuss (2515_CR41) 1986; 14
MAA Baquy (2515_CR3) 2017; 8
DL Liu (2515_CR29) 2004; 90
MS Fan (2515_CR13) 2012; 63
2515_CR40
HM Zhang (2515_CR57) 2009; 19
FR Warembourg (2515_CR53) 1993
SR Valle (2515_CR48) 2011; 121
FC Lidon (2515_CR28) 2000; 23
MAA Baquy (2515_CR4) 2018; 18
ZM Chen (2515_CR8) 2016; 6
J Richter (2515_CR43) 2000; 57
HR von Uexküll (2515_CR50) 1995; 171
JW Huang (2515_CR17) 1992; 188
M Hofmeier (2515_CR15) 2015; 209
CE Evans (2515_CR12) 1970; 34
DM Pansu (2515_CR37) 2006
JH Guo (2515_CR14) 2010; 327
LG Jiang (2515_CR20) 2004; 88
CQ Jiang (2515_CR18) 2018; 8
RH Moll (2515_CR34) 1982; 74
ZY Hu (2515_CR16) 2007; 17
EJ Kamprath (2515_CR22) 2003
J Zhou (2515_CR58) 2014; 14
ZL Cui (2515_CR9) 2010; 39
F. M. Rhoads (2515_CR42) 1989; 19
YL Yao (2515_CR55) 2018; 218
K Liu (2515_CR30) 2001; 13
J Lofton (2515_CR31) 2010; 102
ZL Shi (2515_CR46) 2012; 40
2515_CR1
L van Schöll (2515_CR49) 2005; 215
PS Kidd (2515_CR26) 2000; 51
J Jiang (2515_CR19) 2010; 80
DRR Malkanthi (2515_CR32) 1995; 41
IM Rao (2515_CR38) 1993; 43
JL Schroder (2515_CR45) 2011; 75
M. Abdulaha-Al Baquy (2515_CR5) 2017; 25
WG Keltjens (2515_CR24) 1995; 171
Y Xiong (2515_CR54) 1990
YH Duan (2515_CR11) 2011; 75
H Liao (2515_CR27) 2003
BE Nichol (2515_CR36) 1993; 101
CJ Chartres (2515_CR6) 1990; 28
SK Kariuki (2515_CR23) 2007; 99
D Tilman (2515_CR47) 2011; 108
SJ Wang (2515_CR52) 2016; 105
SJ Kemmitt (2515_CR25) 2006; 38
JG Zhu (2515_CR59) 2000; 57
2515_CR35
TR Yu (2515_CR56) 1997
Z Rengel (2515_CR39) 1992; 98
AK Alva (2515_CR2) 1990; 41
2515_CR33
References_xml – reference: HofmeierMRoelckeMHanYLanTBergmannHBöhmDCaiZCNiederRNitrogen management in a rice–wheat system in the Taihu region: recommendations based on field experiments and surveysAgric Ecosyst Environ201520960731:CAS:528:DC%2BC2MXlslClsr0%3D
– reference: Meriño-Gergichevich C, Alberdi M, Ivanov A, Reyes-Díaz M (2010) Al3+-Ca2+ Interaction in plants growing in acid soils: Alphytotoxicity response to calcareous amendments. J Soil Sci Plant Nutr 10: 217–243
– reference: BaquyMAALiJYJiangJMehmoodKShiRYXuRKCritical pH and exchangeable Al of four acidic soils derived from different parent materials for maize cropsJ Soils Sediments201818149014991:CAS:528:DC%2BC2sXhvFersr3P
– reference: National Bureau of Statistics of China (2018) http://data.stats.gov.cn/easyquery.htm?cn=C01.
– reference: KaiserJThe other global pollutant: nitrogen proves tough to curbScience2001294126812691:CAS:528:DC%2BD3MXotlKntrY%3D
– reference: ReussJOJohnsonDWEffect of soil processes on the acidification of water by acid depositionJ Environ Qual1986142631
– reference: RyanPRKochianLVlnteraction between aluminum toxicity and calcium uptake at the root apex in near-isogenic lines of wheat (Triticum aestivum L.) differing in aluminum tolerancePlant Physiol19931029759821:CAS:528:DyaK3sXltleitLY%3D
– reference: ChenZMWangHYLiuXWLuDJZhouJMThe fates of 15N-labeled fertilizer in a wheat-soil system as influenced by fertilization practice in a loamy soilSci Rep20166347541:CAS:528:DC%2BC28Xhs1GnsbjP
– reference: FanMSShenJBYuanLXJiangRFChenXPDaviesWJZhangFSImproving crop productivity and resource use efficiency to ensure food security and environmental quality in ChinaJ Exp Bot20126313241:CAS:528:DC%2BC3MXhs1yms77P
– reference: RhoadsF. M.ManningA.Soybean, corn, and wheat yields with variable soil pH on Plinthic AcrisolsFertilizer Research1989193137142
– reference: WarembourgFRKnowlesRBlackburnTHNitrogen fixation in soil and plant systemsNitrogen Isotope Techniques1993San DiegoAcademic Press127156
– reference: LiuDLHelyarKRConyersMKFisherRPoileGJResponse of wheat, triticale and barley to lime application in semi-arid soilsField Crop Res200490287301
– reference: von UexküllHRMutertEGlobal extent, development and economic impact of acid soilsPlant Soil1995171115
– reference: KiddPSProctorJEffects of aluminium on the growth and mineral composition of Betula pendula RothJ Exp Bot200051105710661:CAS:528:DC%2BD3cXktVCksr4%3D
– reference: LoftonJGodseyCBZhangHDetermining aluminum tolerance and critical soil pH for winter canola production for acidic soils in temperate regionsAgron J20101023273321:CAS:528:DC%2BC3cXhvFSku74%3D
– reference: Rengel Z, Bose J, Chen Q, Tripathi BN (2015) Magnesium alleviates plant toxicity of aluminium and heavy metals. Crop Pasture Sci 66:1298–1307
– reference: BaquyMAALiJYXuCYMehmoodKXuRKDetermination of critical pH and Al concentration of acidic Ultisols for wheat and canola cropsSolid Earth20178149159
– reference: NicholBEOliveiraLAClassADMSiddiqiMYThe effects of aluminum on the influx of calcium, potassium, ammonium, nitrate, and phosphate in an aluminum sensitive cultivar of barley (Hordeum vdgare 1.)Plant Physiol1993101126312661:CAS:528:DyaK3sXit1Ort74%3D
– reference: KemmittSJWrightDGouldingKWTJonesDLpH regulation of carbon and nitrogen dynamics in two agricultural soilsSoil Biol Biochem2006388989111:CAS:528:DC%2BD28XjvFSisb4%3D
– reference: MollRHKamprathEJJacksonWAAnalysis and interpretation of factors which contribute to efficiency of nitrogen utilizationAgron J198274562564
– reference: ZhangHMWangBRXuMGFanTLCrop yield and soil responses to long-term fertilization on a red soil in Southern ChinaPedosphere2009191992071:CAS:528:DC%2BD1MXkvFCltb8%3D
– reference: DoganIOzyigitIIDemirGInfluence of aluminum on mineral nutrient uptake and accumulation inurtica piluliferalJ Plant Nutr2014374694811:CAS:528:DC%2BC3sXhvFCqt7fJ
– reference: RaoIMZeiglerRSVeraRSarkarungSSelection and breeding for acid-soil tolerance in cropsBioscience199343454465
– reference: DuanYHXuMGWangBRYangXYHuangSMGaoSDLong-term evaluation of manure application on maize yield and nitrogen use efficiency in ChinaSoil Sci Soc Am J201175156215731:CAS:528:DC%2BC3MXhtVeis77O
– reference: WangGLYeYLChenXPCuiZLDetermining the optimal nitrogen rate for summer maize in China by integrating agronomic, economic, and environmental aspectsBiogeosciences20141130313041
– reference: RichterJRoelckeMThe N-cycle as determined by intensive agriculture – examples from central Europe and ChinaNutr Cycl Agroecosyst2000573346
– reference: XiongYLiQSoils of China1990BeijingScience Press
– reference: AlvaAKAsherCJEdwardsDGEffect of solution pH, external calcium concentration, and aluminium activity on nodulation and early growth of cowpeaAust J Agric Res1990413593651:CAS:528:DyaK3cXlsFWgu7Y%3D
– reference: YuTRChemistry of variable charge soils1997NewYorkOxford University Press
– reference: LiuKLuanSInternal aluminum block of plant inward K+ channelsPlant Cell200113145314651:CAS:528:DC%2BD3MXkvVakt7k%3D
– reference: SchroderJLZhangHLGirmaKRaunWRPennCJPaytonMESoil acidification from long-term use of nitrogen fertilizers on winter wheatSoil Sci Soc Am J2011759579641:CAS:528:DC%2BC3MXnsFylsb0%3D
– reference: HuangJWGrunesDLKochianLVAluminum effects on the kinetics of calcium uptake into cells of the wheat root apex: quantification of calcium fluxes using a calcium-selective vibrating microelectrodePlanta19921884144211:CAS:528:DyaK3sXjsVSmtg%3D%3D
– reference: BaquyM. Abdulaha-AlLiJiu-yuShiRen-yongKamranMuhammad AqeelXuRen-kouHigher cation exchange capacity determined lower critical soil pH and higher Al concentration for soybeanEnvironmental Science and Pollution Research201725769806989
– reference: EvansCEKampratEJLime response as related to percent Al saturation, solution Al, and organic matter contentSoil Sci Soc Am Proc1970348938961:CAS:528:DyaE3MXht1Wrtg%3D%3D
– reference: ShiZLJingQCaiJJiangDCaoWXDaiTBThe fates of 15N fertilizer in relation to root distributions of winter wheat under different N splitsEur J Agron20124086931:CAS:528:DC%2BC38XlvFehsrY%3D
– reference: ZhuZLChenDLNitrogen fertilizer use in China–Contributions to food production, impacts on the environment and best management strategiesNutr Cycl Agroecosyst2002631171271:CAS:528:DC%2BD38XovVCmtbg%3D
– reference: MalkanthiDRRYokoyamaKYoshidaTMoritsuguMMatsushitaKEffects of low pH and Al on growth and nutrient uptake of several plantsSoil Sci Plant Nutr1995411611651:CAS:528:DyaK2MXkvFyktbk%3D
– reference: van SchöllLKeltjensWGHofflandEvan BreemenNEffect of ectomycorrhizal colonization on the uptake of Ca, Mg and Al by Pinus sylvestris under aluminium toxicityForest Ecol Manag2005215352360
– reference: CuiZLChenXPZhangFSCurrent nitrogen management status and measures to improve the intensive wheat–maize system in ChinaAmbio2010393763841:CAS:528:DC%2BC3cXhtFSju7rJ
– reference: ChartresCJCummingRWBeattieJABowrnanGMWoodJTAcidification of soils on a transect from plains to slopes, south western New-South-WalesAust J Soil Res1990285395481:CAS:528:DyaK3cXlslSqtrw%3D
– reference: JiangJXuRKZhaoAZComparison of the surface chemical properties of four soils derived from Quaternary red earth as related to soil evolutionCatena2010801541611:CAS:528:DC%2BC3cXot1yluw%3D%3D
– reference: RengelZElliottDCMechanism of aluminum inhibition of net 45Ca2+ uptake by amaranthus protoplastsPlant Physiol1992986326381:CAS:528:DyaK38XhsVGksb0%3D
– reference: JiangLGDaiTBJiangDJiangDCaoWXGanXQWeiSQCharacterizing physiological N-use efficiency as influenced by nitrogen management in three rice cultivarsField Crop Res200488239250
– reference: HuZYXuCKZhouLNSunBHHeYQZhouJCaoZHContribution of atmospheric nitrogen compounds to N deposition in a broadleaf forest of southern ChinaPedosphere2007173603651:CAS:528:DC%2BD2sXmvVOrtbg%3D
– reference: ChenXPCuiZLFanMSVitousekPZhaoMMaWQWangZLZhangWJYanXYYangJCDengXPGaoQZhangQGuoSWRenJLiSQYeYLWangZHHuangJLTangQYSunYXPengXLZhangJWHeMRZhuYJXueJQWangGLWuLAnNWuLQMaLZhangWFZhangFSProducing more grain with lower environmental costsNature20145144864891:CAS:528:DC%2BC2cXhvVSmur3L
– reference: TilmanDBalzerCHillJBefortBLGlobal food demand and the sustainable intensification of agriculturePNAS201110820260202641:CAS:528:DC%2BC3MXhs1yqsbnM
– reference: KamprathEJSoil acidity and liming2003North CarolinaSoil Science Society of North Carolina
– reference: LidonFCAzinheiraHGBarreiroMGAluminum toxicity in maize: biomass production and nutrient uptake and translocationJ Plant Nutr2000231511601:CAS:528:DC%2BD3cXhtVSrtrs%3D
– reference: LiaoHYanXLAdvanced plant nutrition2003BeijingScience Press(in Chinese)
– reference: ZhouJXiaFLiuXMHeYXuJMBrookesPCEffects of nitrogen fertilizer on the acidification of two typical acid soils in South ChinaJ Soils Sediments2014144154221:CAS:528:DC%2BC2cXisFSiur0%3D
– reference: PansuDMGautheyrouJHandbook of soil analysis2006Berlin HeidelbergSpringer
– reference: KeltjensWGMagnesium uptake by Al-stressed maize plants with special emphasis on cation interactions at root exchange sitesPlant Soil19951711411461:CAS:528:DyaK2MXmsVCjsrk%3D
– reference: ValleSRPinochetDCalderiniDFUptake and use efficiency of N, P, K, Ca and Al by Al-sensitive and Al-tolerant cultivars of wheat under a wide range of soil Al concentrationsField Crop Res2011121392400
– reference: JiangCQLuDJZuCLZhouJMWangHYRoot-zone fertilization improves crop yields and minimizes nitrogen loss in summer maize in ChinaSci Rep2018815139
– reference: Adams F (1984) Soil acidity and liming (2nd). Madison, Wisconsin, USA.
– reference: YaoYLZhangMTianYHZhaoMZhangBWZhaoMZengKYinBUrea deep placement for minimizing NH3 loss in an intensive rice cropping systemField Crop Res2018218254266
– reference: ZhuJGHanYLiuGZhangYLShaoXHNitrogen in percolation water in paddy fields with a rice/wheat rotationNutr Cycl Agroecosyst20005775821:CAS:528:DC%2BD3cXlt1yjt78%3D
– reference: WangSJLuoSSYueSCShenYFLiSQFate of 15N fertilizer under different nitrogen split applications to plastic mulched maize in semiarid farmlandNutr Cycl Agroecosyst20161051291401:CAS:528:DC%2BC28Xms1KgtLY%3D
– reference: KariukiSKZhangHSchroderJLEdwardsJPaytonMCarverBFRaunWRKrenzerEGHard red winter wheat cultivar responses to a pH and aluminum concentration gradientAgron J20079988981:CAS:528:DC%2BD2sXhs12ju70%3D
– reference: GuoJHLiuXJZhangYShenJLHanWXZhangWFChristiePGouldingKWTVitousekPMZhangFSSignificant acidification in major Chinese croplandsScience2010327100810101:CAS:528:DC%2BC3cXitVSjtbg%3D
– ident: 2515_CR33
– volume: 8
  start-page: 149
  year: 2017
  ident: 2515_CR3
  publication-title: Solid Earth
  doi: 10.5194/se-8-149-2017
– start-page: 127
  volume-title: Nitrogen Isotope Techniques
  year: 1993
  ident: 2515_CR53
  doi: 10.1016/B978-0-08-092407-6.50010-9
– volume: 514
  start-page: 486
  year: 2014
  ident: 2515_CR7
  publication-title: Nature
  doi: 10.1038/nature13609
– ident: 2515_CR40
  doi: 10.1071/CP15284
– volume: 23
  start-page: 151
  year: 2000
  ident: 2515_CR28
  publication-title: J Plant Nutr
  doi: 10.1080/01904160009382005
– volume: 57
  start-page: 75
  year: 2000
  ident: 2515_CR59
  publication-title: Nutr Cycl Agroecosyst
  doi: 10.1023/A:1009712404335
– ident: 2515_CR1
  doi: 10.2134/agronmonogr12.2ed
– volume: 121
  start-page: 392
  year: 2011
  ident: 2515_CR48
  publication-title: Field Crop Res
  doi: 10.1016/j.fcr.2011.01.006
– volume: 171
  start-page: 1
  year: 1995
  ident: 2515_CR50
  publication-title: Plant Soil
  doi: 10.1007/BF00009558
– volume: 38
  start-page: 898
  year: 2006
  ident: 2515_CR25
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2005.08.006
– volume-title: Handbook of soil analysis
  year: 2006
  ident: 2515_CR37
  doi: 10.1007/978-3-540-31211-6
– volume-title: Soils of China
  year: 1990
  ident: 2515_CR54
– volume: 105
  start-page: 129
  year: 2016
  ident: 2515_CR52
  publication-title: Nutr Cycl Agroecosyst
  doi: 10.1007/s10705-016-9780-3
– volume: 63
  start-page: 13
  year: 2012
  ident: 2515_CR13
  publication-title: J Exp Bot
  doi: 10.1093/jxb/err248
– volume: 108
  start-page: 20260
  year: 2011
  ident: 2515_CR47
  publication-title: PNAS
  doi: 10.1073/pnas.1116437108
– volume: 215
  start-page: 352
  year: 2005
  ident: 2515_CR49
  publication-title: Forest Ecol Manag
  doi: 10.1016/j.foreco.2005.05.025
– volume: 6
  start-page: 34754
  year: 2016
  ident: 2515_CR8
  publication-title: Sci Rep
  doi: 10.1038/srep34754
– volume: 14
  start-page: 415
  year: 2014
  ident: 2515_CR58
  publication-title: J Soils Sediments
  doi: 10.1007/s11368-013-0695-1
– volume: 13
  start-page: 1453
  year: 2001
  ident: 2515_CR30
  publication-title: Plant Cell
  doi: 10.1105/TPC.010016
– volume: 18
  start-page: 1490
  year: 2018
  ident: 2515_CR4
  publication-title: J Soils Sediments
  doi: 10.1007/s11368-017-1887-x
– volume: 40
  start-page: 86
  year: 2012
  ident: 2515_CR46
  publication-title: Eur J Agron
  doi: 10.1016/j.eja.2012.01.006
– volume: 41
  start-page: 359
  year: 1990
  ident: 2515_CR2
  publication-title: Aust J Agric Res
  doi: 10.1071/AR9900359
– volume: 14
  start-page: 26
  year: 1986
  ident: 2515_CR41
  publication-title: J Environ Qual
  doi: 10.2134/jeq1985.00472425001400010005x
– volume-title: Advanced plant nutrition
  year: 2003
  ident: 2515_CR27
– volume: 102
  start-page: 327
  year: 2010
  ident: 2515_CR31
  publication-title: Agron J
  doi: 10.2134/agronj2009.0252
– volume: 43
  start-page: 454
  year: 1993
  ident: 2515_CR38
  publication-title: Bioscience
  doi: 10.2307/1311905
– volume: 101
  start-page: 1263
  year: 1993
  ident: 2515_CR36
  publication-title: Plant Physiol
  doi: 10.1104/pp.101.4.1263
– volume: 25
  start-page: 6980
  issue: 7
  year: 2017
  ident: 2515_CR5
  publication-title: Environmental Science and Pollution Research
  doi: 10.1007/s11356-017-1014-y
– volume-title: Chemistry of variable charge soils
  year: 1997
  ident: 2515_CR56
– ident: 2515_CR35
– volume: 37
  start-page: 469
  year: 2014
  ident: 2515_CR10
  publication-title: J Plant Nutr
  doi: 10.1080/01904167.2013.864306
– volume-title: Soil acidity and liming
  year: 2003
  ident: 2515_CR22
– volume: 209
  start-page: 60
  year: 2015
  ident: 2515_CR15
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/j.agee.2015.03.032
– volume: 90
  start-page: 287
  year: 2004
  ident: 2515_CR29
  publication-title: Field Crop Res
  doi: 10.1016/j.fcr.2004.03.008
– volume: 17
  start-page: 360
  year: 2007
  ident: 2515_CR16
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(07)60043-5
– volume: 294
  start-page: 1268
  year: 2001
  ident: 2515_CR21
  publication-title: Science
  doi: 10.1126/science.294.5545.1268
– volume: 57
  start-page: 33
  year: 2000
  ident: 2515_CR43
  publication-title: Nutr Cycl Agroecosyst
  doi: 10.1023/A:1009802225307
– volume: 11
  start-page: 3031
  year: 2014
  ident: 2515_CR51
  publication-title: Biogeosciences
  doi: 10.5194/bg-11-3031-2014
– volume: 188
  start-page: 414
  year: 1992
  ident: 2515_CR17
  publication-title: Planta
  doi: 10.1007/BF00192809
– volume: 88
  start-page: 239
  year: 2004
  ident: 2515_CR20
  publication-title: Field Crop Res
  doi: 10.1016/j.fcr.2004.01.023
– volume: 51
  start-page: 1057
  year: 2000
  ident: 2515_CR26
  publication-title: J Exp Bot
  doi: 10.1093/jexbot/51.347.1057
– volume: 28
  start-page: 539
  year: 1990
  ident: 2515_CR6
  publication-title: Aust J Soil Res
  doi: 10.1071/SR9900539
– volume: 19
  start-page: 137
  issue: 3
  year: 1989
  ident: 2515_CR42
  publication-title: Fertilizer Research
  doi: 10.1007/BF01054455
– volume: 19
  start-page: 199
  year: 2009
  ident: 2515_CR57
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(09)60109-0
– volume: 75
  start-page: 1562
  year: 2011
  ident: 2515_CR11
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj2010.0315
– volume: 39
  start-page: 376
  year: 2010
  ident: 2515_CR9
  publication-title: Ambio
  doi: 10.1007/s13280-010-0076-6
– volume: 80
  start-page: 154
  year: 2010
  ident: 2515_CR19
  publication-title: Catena
  doi: 10.1016/j.catena.2009.11.002
– volume: 41
  start-page: 161
  year: 1995
  ident: 2515_CR32
  publication-title: Soil Sci Plant Nutr
  doi: 10.1080/00380768.1995.10419571
– volume: 8
  start-page: 15139
  year: 2018
  ident: 2515_CR18
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-33591-9
– volume: 75
  start-page: 957
  year: 2011
  ident: 2515_CR45
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj2010.0187
– volume: 34
  start-page: 893
  year: 1970
  ident: 2515_CR12
  publication-title: Soil Sci Soc Am Proc
  doi: 10.2136/sssaj1970.03615995003400060023x
– volume: 74
  start-page: 562
  year: 1982
  ident: 2515_CR34
  publication-title: Agron J
  doi: 10.2134/agronj1982.00021962007400030037x
– volume: 99
  start-page: 88
  year: 2007
  ident: 2515_CR23
  publication-title: Agron J
  doi: 10.2134/agronj2006.0128
– volume: 327
  start-page: 1008
  year: 2010
  ident: 2515_CR14
  publication-title: Science
  doi: 10.1126/science.1182570
– volume: 102
  start-page: 975
  year: 1993
  ident: 2515_CR44
  publication-title: Plant Physiol
  doi: 10.1104/pp.102.3.975
– volume: 63
  start-page: 117
  year: 2002
  ident: 2515_CR60
  publication-title: Nutr Cycl Agroecosyst
  doi: 10.1023/A:1021107026067
– volume: 98
  start-page: 632
  year: 1992
  ident: 2515_CR39
  publication-title: Plant Physiol
  doi: 10.1104/pp.98.2.632
– volume: 218
  start-page: 254
  year: 2018
  ident: 2515_CR55
  publication-title: Field Crop Res
  doi: 10.1016/j.fcr.2017.03.013
– volume: 171
  start-page: 141
  year: 1995
  ident: 2515_CR24
  publication-title: Plant Soil
  doi: 10.1007/BF00009577
SSID ssj0037161
Score 2.4455864
Snippet Purpose To examine the effect of soil acidification on growth and nitrogen (N) uptake by maize in Ultisols. Materials and methods A clay Ultisol derived from...
PurposeTo examine the effect of soil acidification on growth and nitrogen (N) uptake by maize in Ultisols.Materials and methodsA clay Ultisol derived from...
PURPOSE: To examine the effect of soil acidification on growth and nitrogen (N) uptake by maize in Ultisols. MATERIALS AND METHODS: A clay Ultisol derived from...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1435
SubjectTerms Abundance
Accumulation
acid soils
Acidic soils
Acidification
Clay
Corn
Crop residues
crop yield
crops
Earth and Environmental Science
Efficiency
Environment
Environmental Physics
Fertilizers
Food production
Growth
Mass spectrometry
Mass spectroscopy
Nitrogen
nitrogen fertilizers
Nitrogen isotopes
nutrient use efficiency
pH effects
Quaternary
roots
Sandstone
Sandy soils
Sec 3 • Remediation and Management of Contaminated or Degraded Lands • Research Article
Sedimentary rocks
Shoots
Soil
Soil acidification
Soil chemistry
Soil investigations
Soil pH
soil sampling
Soil Science & Conservation
Soils
stable isotopes
sustainable agriculture
Sustainable food systems
Sustainable production
Tertiary
total nitrogen
Ultisols
Uptake
Urea
Zea mays
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86L3oQP7E6JYI3LSxN-pHjEMfw4GmDgYeS5mMWZitrd9lf70vWrigqCL3lJYWX95Lf4733C0J3A6YDHTDji1gmPpMk9LkRlnJfahWbUIWZq_J9icZT9jwLZ01TWNVWu7cpSXdSd81uhEa28Ir7FheH_noX7YU2dgcrngbD9vylEAG4MAuuWpAeJE2rzM9rfL2OOoz5LS3qbpvRETpsYCIebvb1GO3o4gQdDOfLhipDn6LXDfEwLg2uynyBhcyVrftxqsbwAbTDc4iy6zcsCoXBd5clmAteVRprxxxh2y7t_HeRrzXOCzxd1DkYY3WGJqOnyePYb55K8CUjSe0zYROAcUaIUpKbMFKJ0oYORGKUpkqZCHQuOdOZiIQhGWEZtTWFNIsFN5Keo15RFvoCYcWJ4GEAEoOMUSG4EhJgkgbHZpLH2kOkVVgqGxpx-5rFIu0IkK2SU1By6pScrj10v53zsSHR-FO63-5D2jhUlQY0DgCpsZh76HY7DK5g8xui0OXKysCJyTiAKg89tPvXLfH7Hy__J36F9gMbdbtKtD7q1cuVvgZoUmc3zhI_Aeaq2_g
  priority: 102
  providerName: Springer Nature
Title Effect of soil acidification on the growth and nitrogen use efficiency of maize in Ultisols
URI https://link.springer.com/article/10.1007/s11368-019-02515-z
https://www.proquest.com/docview/2372623479
https://www.proquest.com/docview/2388749065
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Na9swFH-0yaU9jK4fNFsbNOitM40s-UOnkZZ0ZYVSSgMdOxhZH60htbvYueSv35MjN2ywgG-SLHh6n3pPvwdwNuImNCG3gUxUGnBFo0BY6SD3ldGJjXSUt1W-d_HNlP94ip78hVvtyyo7ndgqal0pd0d-EbIkRFPNE_Ht7Xfguka57KpvobENfVTBKQZf_cvJ3f1Dp4sZRgNtyIVmF4PmUeqfzawez1EWu0IuHEEjHwXLv03T2t_8J0XaWp7rPfjgXUYyXp3xR9gy5T7sjp_nHjbDHMCvFQgxqSypq2JGpCq0qwFqyU7wQzePPGPE3bwQWWqCcjyvkHXIojbEtCgS7gmmW_8qi6UhRUmms6ZAxqwP4fF68nh1E_i2CYHiNG0CLl0yMMkp1VoJG8U61caykUytNkxrGyP9leAml7G0NKc8Z66-kOWJFFaxI-iVVWmOgWhBpYhCnDHKOZNSaKnQZTIo5FyJxAyAdgTLlIcUd50tZtkaDNkROUMiZy2Rs-UAzt_XvK0ANTbOPunOIfPCVWdrVhjAl_dhFAuX65ClqRZuDmpPLtDBGsDX7vzWv_j_jp827_gZdkIXcbdVaCfQa-YLc4puSZMPoT_-_vN2MvQ8OITtaTj-A3G_4mg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JahRB9BEnB81BjAsZjaaEeNLGqa7qpQ4i0SRMTDKITCDgoaiuJWkYu-N0D-L8k__oq14yGDC3QN9qa9579ZZ6G8DuiNvQhtwFKtFpwDWNAuGUL7mvrUlcZKKsifKdxOMz_uU8Ol-DP30ujA-r7Hliw6hNqf0b-fuQJSGKap6Ij1c_A981yntX-xYaLVkc29-_0GSrPhztI37fhOHhwfTzOOi6CgSa07QOuPK-siSj1BgtXBSb1FjHRip1xjJjXIy_pwW3mYqVoxnlGfPhdyxLlHCa4bb3YJ0ztGQGsP7pYPL1W8_6GRofjYWHUh5t9FHaZem0uXqUxT5uDEdQp4iC5b-ScKXe3vDINoLu8BE87DRUsteS1Cas2eIxbOxdzLsqHfYJfG9rHpPSkarMZ0Tp3PiQowbLBD_UKskFGvj1JVGFIcg25iVSKllUltimaIXP-PTrf6h8aUlekLNZneM9qJ7C9C7g-QwGRVnYLSBGUCWiEGeMMs6UEkZp1NAs8hSuRWKHQHuASd1VMPeNNGZyVXvZA1kikGUDZLkcwtvrNVdt_Y5bZ2_3eJDdXa7kivKG8Pp6GG-hd62owpYLPweZNReozw3hXY-_1Rb_P_H57SfuwP3x9PREnhxNjl_Ag9Ab-00A3DYM6vnCvkSNqM5edXRIQN4x5f8FUAQedQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3ZahRBsIgbEPMgnrgxagv6pEOmp3uOfpAQTZbEyBIkgYAPTU8fcWAzk-zMIu6f-XepniOLgnkLzFtfQ1V1HV0XwLuQ28hG3AUq1VnANY0D4ZQvua-tSV1s4ryN8p0mB6f861l8tgZ_hlwYH1Y58MSWUZtK-zfy7YilEYpqnopt14dFHO9Ndi6vAt9Byntah3YaHYkc2d-_0HyrPx3uIa7fR9Fk_-TLQdB3GAg0p1kTcOX9ZmlOqTFauDgxmbGOhSpzxjJjXIK_qgW3uUqUoznlOfOheCxPlXCa4bb3YD1Foygcwfrn_enx90EMMDREWmsPJT7a62HWZ-x0eXuUJT6GDEdQv4iD5d9ScaXq_uOdbYXe5BE87LVVstuR12NYs-UT2Ng9n_cVO-xT-NHVPyaVI3VVzIjShfHhRy3GCX6oYZJzNPabn0SVhiALmVdItWRRW2LbAhY--9Ovv1DF0pKiJKezpsA7UT-Dk7uA53MYlVVpXwAxgioRRzgjzDlTShilUVuzyF-4FqkdAx0AJnVfzdw31ZjJVR1mD2SJQJYtkOVyDB9u1lx2tTxunb014EH297qWKyocw9ubYbyR3s2iSlst_Bxk3FygbjeGjwP-Vlv8_8TN2098A_eR4uW3w-nRS3gQebu_jYXbglEzX9hXqBw1-eueDAnIOyb8a3nMIqo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+soil+acidification+on+the+growth+and+nitrogen+use+efficiency+of+maize+in+Ultisols&rft.jtitle=Journal+of+soils+and+sediments&rft.au=Pan+Xiaoying&rft.au=Abdulaha-Al%2C+Baquy+M&rft.au=Guan+Peng&rft.au=Yan%2C+Jing&rft.date=2020-03-01&rft.pub=Springer+Nature+B.V&rft.issn=1439-0108&rft.eissn=1614-7480&rft.volume=20&rft.issue=3&rft.spage=1435&rft.epage=1445&rft_id=info:doi/10.1007%2Fs11368-019-02515-z&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1439-0108&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1439-0108&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1439-0108&client=summon