Effect of soil acidification on the growth and nitrogen use efficiency of maize in Ultisols
Purpose To examine the effect of soil acidification on growth and nitrogen (N) uptake by maize in Ultisols. Materials and methods A clay Ultisol derived from Quaternary red earth and a sandy Ultisol derived from tertiary red sandstone were used in this study. A pot experiment was conducted with maiz...
Saved in:
Published in | Journal of soils and sediments Vol. 20; no. 3; pp. 1435 - 1445 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.03.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose
To examine the effect of soil acidification on growth and nitrogen (N) uptake by maize in Ultisols.
Materials and methods
A clay Ultisol derived from Quaternary red earth and a sandy Ultisol derived from tertiary red sandstone were used in this study. A pot experiment was conducted with maize growing in the two Ultisols acidified to different pH values. Urea with
15
N abundance of 10.11% was used to investigate the distribution of N fertilizer between soil and plant. Total N content and
15
N abundance in plant and soil samples were determined by elemental analysis-isotope mass spectrometry.
Results and discussion
Critical soil pHs of 4.8 and 5.0 were observed for maize growing in the clay and sandy Ultisols, respectively. Below the critical soil pH, increasing soil pH significantly increased maize height and the yield of maize shoots and roots (both
P
< 0.05), but changes in soil pH showed no significant effect on maize growth above the critical soil pH in both Ultisols. Maize growing in the sandy Ultisol was more sensitive to changes in soil pH than in the clay Ultisol. Increase in the pH in both Ultisols also increased N accumulation in maize, the N derived from fertilizer in maize, physiological N use efficiency, and N use efficiency (NUE) by maize. Changes in soil pH had a greater effect on these parameters below the critical soil pH, compared to above. The change in soil pH had a greater effect on N accumulation in maize, the N derived from fertilizer in maize, and NUE in the sandy Ultisol than in the clay Ultisol. The NUE increased by 24.4% at pH 6.0, compared with pH 4.0 in the clay Ultisol, while the NUE at pH 5.0 was 4.8 times that at pH 4.0 in the sandy Ultisol. The increase in soil pH increased the ratio of N accumulation in maize/soil residue N and decreased the potential loss of fertilizer N from both Ultisols.
Conclusions
Soil acidification inhibited maize growth, reduced N uptake by maize, and thus, decreased NUE. To maintain soil pH of acidic soils above the critical values for crops is of practical importance for sustainable food production in acidic soils. |
---|---|
AbstractList | PurposeTo examine the effect of soil acidification on growth and nitrogen (N) uptake by maize in Ultisols.Materials and methodsA clay Ultisol derived from Quaternary red earth and a sandy Ultisol derived from tertiary red sandstone were used in this study. A pot experiment was conducted with maize growing in the two Ultisols acidified to different pH values. Urea with 15N abundance of 10.11% was used to investigate the distribution of N fertilizer between soil and plant. Total N content and 15N abundance in plant and soil samples were determined by elemental analysis-isotope mass spectrometry.Results and discussionCritical soil pHs of 4.8 and 5.0 were observed for maize growing in the clay and sandy Ultisols, respectively. Below the critical soil pH, increasing soil pH significantly increased maize height and the yield of maize shoots and roots (both P < 0.05), but changes in soil pH showed no significant effect on maize growth above the critical soil pH in both Ultisols. Maize growing in the sandy Ultisol was more sensitive to changes in soil pH than in the clay Ultisol. Increase in the pH in both Ultisols also increased N accumulation in maize, the N derived from fertilizer in maize, physiological N use efficiency, and N use efficiency (NUE) by maize. Changes in soil pH had a greater effect on these parameters below the critical soil pH, compared to above. The change in soil pH had a greater effect on N accumulation in maize, the N derived from fertilizer in maize, and NUE in the sandy Ultisol than in the clay Ultisol. The NUE increased by 24.4% at pH 6.0, compared with pH 4.0 in the clay Ultisol, while the NUE at pH 5.0 was 4.8 times that at pH 4.0 in the sandy Ultisol. The increase in soil pH increased the ratio of N accumulation in maize/soil residue N and decreased the potential loss of fertilizer N from both Ultisols.ConclusionsSoil acidification inhibited maize growth, reduced N uptake by maize, and thus, decreased NUE. To maintain soil pH of acidic soils above the critical values for crops is of practical importance for sustainable food production in acidic soils. PURPOSE: To examine the effect of soil acidification on growth and nitrogen (N) uptake by maize in Ultisols. MATERIALS AND METHODS: A clay Ultisol derived from Quaternary red earth and a sandy Ultisol derived from tertiary red sandstone were used in this study. A pot experiment was conducted with maize growing in the two Ultisols acidified to different pH values. Urea with ¹⁵N abundance of 10.11% was used to investigate the distribution of N fertilizer between soil and plant. Total N content and ¹⁵N abundance in plant and soil samples were determined by elemental analysis-isotope mass spectrometry. RESULTS AND DISCUSSION: Critical soil pHs of 4.8 and 5.0 were observed for maize growing in the clay and sandy Ultisols, respectively. Below the critical soil pH, increasing soil pH significantly increased maize height and the yield of maize shoots and roots (both P < 0.05), but changes in soil pH showed no significant effect on maize growth above the critical soil pH in both Ultisols. Maize growing in the sandy Ultisol was more sensitive to changes in soil pH than in the clay Ultisol. Increase in the pH in both Ultisols also increased N accumulation in maize, the N derived from fertilizer in maize, physiological N use efficiency, and N use efficiency (NUE) by maize. Changes in soil pH had a greater effect on these parameters below the critical soil pH, compared to above. The change in soil pH had a greater effect on N accumulation in maize, the N derived from fertilizer in maize, and NUE in the sandy Ultisol than in the clay Ultisol. The NUE increased by 24.4% at pH 6.0, compared with pH 4.0 in the clay Ultisol, while the NUE at pH 5.0 was 4.8 times that at pH 4.0 in the sandy Ultisol. The increase in soil pH increased the ratio of N accumulation in maize/soil residue N and decreased the potential loss of fertilizer N from both Ultisols. CONCLUSIONS: Soil acidification inhibited maize growth, reduced N uptake by maize, and thus, decreased NUE. To maintain soil pH of acidic soils above the critical values for crops is of practical importance for sustainable food production in acidic soils. Purpose To examine the effect of soil acidification on growth and nitrogen (N) uptake by maize in Ultisols. Materials and methods A clay Ultisol derived from Quaternary red earth and a sandy Ultisol derived from tertiary red sandstone were used in this study. A pot experiment was conducted with maize growing in the two Ultisols acidified to different pH values. Urea with 15 N abundance of 10.11% was used to investigate the distribution of N fertilizer between soil and plant. Total N content and 15 N abundance in plant and soil samples were determined by elemental analysis-isotope mass spectrometry. Results and discussion Critical soil pHs of 4.8 and 5.0 were observed for maize growing in the clay and sandy Ultisols, respectively. Below the critical soil pH, increasing soil pH significantly increased maize height and the yield of maize shoots and roots (both P < 0.05), but changes in soil pH showed no significant effect on maize growth above the critical soil pH in both Ultisols. Maize growing in the sandy Ultisol was more sensitive to changes in soil pH than in the clay Ultisol. Increase in the pH in both Ultisols also increased N accumulation in maize, the N derived from fertilizer in maize, physiological N use efficiency, and N use efficiency (NUE) by maize. Changes in soil pH had a greater effect on these parameters below the critical soil pH, compared to above. The change in soil pH had a greater effect on N accumulation in maize, the N derived from fertilizer in maize, and NUE in the sandy Ultisol than in the clay Ultisol. The NUE increased by 24.4% at pH 6.0, compared with pH 4.0 in the clay Ultisol, while the NUE at pH 5.0 was 4.8 times that at pH 4.0 in the sandy Ultisol. The increase in soil pH increased the ratio of N accumulation in maize/soil residue N and decreased the potential loss of fertilizer N from both Ultisols. Conclusions Soil acidification inhibited maize growth, reduced N uptake by maize, and thus, decreased NUE. To maintain soil pH of acidic soils above the critical values for crops is of practical importance for sustainable food production in acidic soils. |
Author | Baquy, M. Abdulaha-Al Wang, Ruhai Xie, Lu Xu, Renkou Yan, Jing Pan, Xiaoying Guan, Peng |
Author_xml | – sequence: 1 givenname: Xiaoying surname: Pan fullname: Pan, Xiaoying organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences – sequence: 2 givenname: M. Abdulaha-Al surname: Baquy fullname: Baquy, M. Abdulaha-Al organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences – sequence: 3 givenname: Peng surname: Guan fullname: Guan, Peng organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences – sequence: 4 givenname: Jing surname: Yan fullname: Yan, Jing organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences – sequence: 5 givenname: Ruhai surname: Wang fullname: Wang, Ruhai organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences – sequence: 6 givenname: Renkou surname: Xu fullname: Xu, Renkou email: rkxu@issas.ac.cn organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences – sequence: 7 givenname: Lu surname: Xie fullname: Xie, Lu organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences |
BookMark | eNp9kE1LBCEYgCUK2t36A52ELl2mdHRmnGMsfUHQpU4dxNHXzZjVTV2i_fW5u0HQIRAU3ueRl2eKDn3wgNAZJZeUkO4qUcpaURHaV6RuaFNtDtCEtpRXHRfksLw5KyNKxDGapvROCOvKeIJeb6wFnXGwOAU3YqWdcdZplV3wuJz8BngRw2d-w8ob7F2OYQEerxNgsIV04PXX1l8qtwHsPH4Zs0thTCfoyKoxwenPPUPPtzfP8_vq8enuYX79WGlORa64YoK23UCpMbq3TWuEAcuIEtYAM8a2zdDonsOgWmXpQPnASM8ZGzrVW81m6GL_7SqGjzWkLJcuaRhH5SGsk6yZEB3vSdsU9PwP-h7W0ZflCtXVbc141xdK7CkdQ0oRrNQu74LkqNwoKZHb6HIfXZbochddbopa_1FX0S1V_PpfYnspFdgvIP5u9Y_1DVwzmCM |
CitedBy_id | crossref_primary_10_1017_S0376892924000298 crossref_primary_10_1016_j_rhisph_2022_100604 crossref_primary_10_3390_su141912287 crossref_primary_10_1016_j_jenvman_2024_122465 crossref_primary_10_1016_j_pedsph_2023_07_011 crossref_primary_10_1007_s11356_020_10891_0 crossref_primary_10_1016_j_jenvman_2022_115395 crossref_primary_10_1016_j_agee_2022_108089 crossref_primary_10_3389_fmicb_2022_929725 crossref_primary_10_3390_agriculture14020285 crossref_primary_10_1007_s42729_025_02366_3 crossref_primary_10_1016_j_rhisph_2025_101028 crossref_primary_10_3390_su15010179 crossref_primary_10_19159_tutad_1260531 crossref_primary_10_1007_s11738_023_03527_6 crossref_primary_10_12677_HJSS_2022_103013 crossref_primary_10_1007_s12298_021_01113_z crossref_primary_10_1016_j_envpol_2021_116993 crossref_primary_10_1016_j_jia_2022_08_054 crossref_primary_10_3390_agriculture12020234 crossref_primary_10_3390_jof7070554 crossref_primary_10_1007_s11368_021_03126_3 crossref_primary_10_1016_j_scitotenv_2021_152630 crossref_primary_10_1016_j_scitotenv_2024_171631 crossref_primary_10_1007_s42729_025_02213_5 crossref_primary_10_1080_00103624_2023_2282997 crossref_primary_10_3390_agriculture14101728 crossref_primary_10_3390_agronomy13082110 crossref_primary_10_1007_s11104_024_06775_8 crossref_primary_10_1021_acs_est_4c02368 crossref_primary_10_1007_s42729_023_01128_3 crossref_primary_10_1016_j_scitotenv_2022_159253 crossref_primary_10_1007_s44378_024_00014_3 crossref_primary_10_1016_j_fcr_2025_109757 crossref_primary_10_1007_s11104_021_04913_0 crossref_primary_10_1007_s42832_023_0206_2 crossref_primary_10_3390_agronomy12092149 crossref_primary_10_1080_01448765_2024_2438378 crossref_primary_10_3390_plants13131760 crossref_primary_10_7831_ras_13_1_66 |
Cites_doi | 10.5194/se-8-149-2017 10.1016/B978-0-08-092407-6.50010-9 10.1038/nature13609 10.1071/CP15284 10.1080/01904160009382005 10.1023/A:1009712404335 10.2134/agronmonogr12.2ed 10.1016/j.fcr.2011.01.006 10.1007/BF00009558 10.1016/j.soilbio.2005.08.006 10.1007/978-3-540-31211-6 10.1007/s10705-016-9780-3 10.1093/jxb/err248 10.1073/pnas.1116437108 10.1016/j.foreco.2005.05.025 10.1038/srep34754 10.1007/s11368-013-0695-1 10.1105/TPC.010016 10.1007/s11368-017-1887-x 10.1016/j.eja.2012.01.006 10.1071/AR9900359 10.2134/jeq1985.00472425001400010005x 10.2134/agronj2009.0252 10.2307/1311905 10.1104/pp.101.4.1263 10.1007/s11356-017-1014-y 10.1080/01904167.2013.864306 10.1016/j.agee.2015.03.032 10.1016/j.fcr.2004.03.008 10.1016/S1002-0160(07)60043-5 10.1126/science.294.5545.1268 10.1023/A:1009802225307 10.5194/bg-11-3031-2014 10.1007/BF00192809 10.1016/j.fcr.2004.01.023 10.1093/jexbot/51.347.1057 10.1071/SR9900539 10.1007/BF01054455 10.1016/S1002-0160(09)60109-0 10.2136/sssaj2010.0315 10.1007/s13280-010-0076-6 10.1016/j.catena.2009.11.002 10.1080/00380768.1995.10419571 10.1038/s41598-018-33591-9 10.2136/sssaj2010.0187 10.2136/sssaj1970.03615995003400060023x 10.2134/agronj1982.00021962007400030037x 10.2134/agronj2006.0128 10.1126/science.1182570 10.1104/pp.102.3.975 10.1023/A:1021107026067 10.1104/pp.98.2.632 10.1016/j.fcr.2017.03.013 10.1007/BF00009577 |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2019 Journal of Soils and Sediments is a copyright of Springer, (2019). All Rights Reserved. |
Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019 – notice: Journal of Soils and Sediments is a copyright of Springer, (2019). All Rights Reserved. |
DBID | AAYXX CITATION 3V. 7ST 7UA 7X2 7XB 88I 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H96 H97 HCIFZ L.G M0K M2P PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI PYCSY Q9U SOI 7S9 L.6 |
DOI | 10.1007/s11368-019-02515-z |
DatabaseName | CrossRef ProQuest Central (Corporate) Environment Abstracts Water Resources Abstracts Agricultural Science Collection ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional Agricultural Science Database Science Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Agricultural Science Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest SciTech Collection Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic Environment Abstracts ProQuest Central (Alumni) ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Agricultural Science Database AGRICOLA |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1614-7480 |
EndPage | 1445 |
ExternalDocumentID | 10_1007_s11368_019_02515_z |
GrantInformation_xml | – fundername: National Key Research and Development of China grantid: 2016YFD0200302 |
GroupedDBID | -5A -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 203 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 4P2 5GY 5VS 67M 67Z 6NX 7X2 7XC 88I 8CJ 8FE 8FH 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG APEBS ARMRJ ATCPS AXYYD AYJHY AZQEC B-. BA0 BDATZ BENPR BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D1J DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS ECGQY EDH EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV L8X LAS LK5 LLZTM M0K M2P M4Y M7R MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM PATMY PCBAR PF0 PQQKQ PROAC PT4 PYCSY Q2X QOS R89 R9I RMD ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7U Z7Y ZMTXR ~02 ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7ST 7UA 7XB 8FK ABRTQ C1K F1W H96 H97 L.G PKEHL PQEST PQUKI Q9U SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c418t-4a38167b11ddc9f56d8def30a8fde3ddf65b5c94eba6af1b14b309433b7a9fc3 |
IEDL.DBID | BENPR |
ISSN | 1439-0108 |
IngestDate | Mon Jul 21 10:48:36 EDT 2025 Sat Jul 26 00:10:00 EDT 2025 Tue Jul 01 01:38:18 EDT 2025 Thu Apr 24 23:10:18 EDT 2025 Fri Feb 21 02:33:47 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Nitrogen use efficiency Maize growth Soil acidification Ultisol N labeling |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c418t-4a38167b11ddc9f56d8def30a8fde3ddf65b5c94eba6af1b14b309433b7a9fc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2372623479 |
PQPubID | 54474 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2388749065 proquest_journals_2372623479 crossref_citationtrail_10_1007_s11368_019_02515_z crossref_primary_10_1007_s11368_019_02515_z springer_journals_10_1007_s11368_019_02515_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-01 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Dordrecht |
PublicationTitle | Journal of soils and sediments |
PublicationTitleAbbrev | J Soils Sediments |
PublicationYear | 2020 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | WangSJLuoSSYueSCShenYFLiSQFate of 15N fertilizer under different nitrogen split applications to plastic mulched maize in semiarid farmlandNutr Cycl Agroecosyst20161051291401:CAS:528:DC%2BC28Xms1KgtLY%3D HofmeierMRoelckeMHanYLanTBergmannHBöhmDCaiZCNiederRNitrogen management in a rice–wheat system in the Taihu region: recommendations based on field experiments and surveysAgric Ecosyst Environ201520960731:CAS:528:DC%2BC2MXlslClsr0%3D von UexküllHRMutertEGlobal extent, development and economic impact of acid soilsPlant Soil1995171115 TilmanDBalzerCHillJBefortBLGlobal food demand and the sustainable intensification of agriculturePNAS201110820260202641:CAS:528:DC%2BC3MXhs1yqsbnM ZhuZLChenDLNitrogen fertilizer use in China–Contributions to food production, impacts on the environment and best management strategiesNutr Cycl Agroecosyst2002631171271:CAS:528:DC%2BD38XovVCmtbg%3D ChartresCJCummingRWBeattieJABowrnanGMWoodJTAcidification of soils on a transect from plains to slopes, south western New-South-WalesAust J Soil Res1990285395481:CAS:528:DyaK3cXlslSqtrw%3D RengelZElliottDCMechanism of aluminum inhibition of net 45Ca2+ uptake by amaranthus protoplastsPlant Physiol1992986326381:CAS:528:DyaK38XhsVGksb0%3D SchroderJLZhangHLGirmaKRaunWRPennCJPaytonMESoil acidification from long-term use of nitrogen fertilizers on winter wheatSoil Sci Soc Am J2011759579641:CAS:528:DC%2BC3MXnsFylsb0%3D EvansCEKampratEJLime response as related to percent Al saturation, solution Al, and organic matter contentSoil Sci Soc Am Proc1970348938961:CAS:528:DyaE3MXht1Wrtg%3D%3D ZhangHMWangBRXuMGFanTLCrop yield and soil responses to long-term fertilization on a red soil in Southern ChinaPedosphere2009191992071:CAS:528:DC%2BD1MXkvFCltb8%3D KariukiSKZhangHSchroderJLEdwardsJPaytonMCarverBFRaunWRKrenzerEGHard red winter wheat cultivar responses to a pH and aluminum concentration gradientAgron J20079988981:CAS:528:DC%2BD2sXhs12ju70%3D NicholBEOliveiraLAClassADMSiddiqiMYThe effects of aluminum on the influx of calcium, potassium, ammonium, nitrate, and phosphate in an aluminum sensitive cultivar of barley (Hordeum vdgare 1.)Plant Physiol1993101126312661:CAS:528:DyaK3sXit1Ort74%3D KaiserJThe other global pollutant: nitrogen proves tough to curbScience2001294126812691:CAS:528:DC%2BD3MXotlKntrY%3D ShiZLJingQCaiJJiangDCaoWXDaiTBThe fates of 15N fertilizer in relation to root distributions of winter wheat under different N splitsEur J Agron20124086931:CAS:528:DC%2BC38XlvFehsrY%3D KamprathEJSoil acidity and liming2003North CarolinaSoil Science Society of North Carolina LiuKLuanSInternal aluminum block of plant inward K+ channelsPlant Cell200113145314651:CAS:528:DC%2BD3MXkvVakt7k%3D DoganIOzyigitIIDemirGInfluence of aluminum on mineral nutrient uptake and accumulation inurtica piluliferalJ Plant Nutr2014374694811:CAS:528:DC%2BC3sXhvFCqt7fJ JiangCQLuDJZuCLZhouJMWangHYRoot-zone fertilization improves crop yields and minimizes nitrogen loss in summer maize in ChinaSci Rep2018815139 ZhuJGHanYLiuGZhangYLShaoXHNitrogen in percolation water in paddy fields with a rice/wheat rotationNutr Cycl Agroecosyst20005775821:CAS:528:DC%2BD3cXlt1yjt78%3D HuangJWGrunesDLKochianLVAluminum effects on the kinetics of calcium uptake into cells of the wheat root apex: quantification of calcium fluxes using a calcium-selective vibrating microelectrodePlanta19921884144211:CAS:528:DyaK3sXjsVSmtg%3D%3D BaquyM. Abdulaha-AlLiJiu-yuShiRen-yongKamranMuhammad AqeelXuRen-kouHigher cation exchange capacity determined lower critical soil pH and higher Al concentration for soybeanEnvironmental Science and Pollution Research201725769806989 RichterJRoelckeMThe N-cycle as determined by intensive agriculture – examples from central Europe and ChinaNutr Cycl Agroecosyst2000573346 RaoIMZeiglerRSVeraRSarkarungSSelection and breeding for acid-soil tolerance in cropsBioscience199343454465 YuTRChemistry of variable charge soils1997NewYorkOxford University Press XiongYLiQSoils of China1990BeijingScience Press ValleSRPinochetDCalderiniDFUptake and use efficiency of N, P, K, Ca and Al by Al-sensitive and Al-tolerant cultivars of wheat under a wide range of soil Al concentrationsField Crop Res2011121392400 YaoYLZhangMTianYHZhaoMZhangBWZhaoMZengKYinBUrea deep placement for minimizing NH3 loss in an intensive rice cropping systemField Crop Res2018218254266 National Bureau of Statistics of China (2018) http://data.stats.gov.cn/easyquery.htm?cn=C01. MalkanthiDRRYokoyamaKYoshidaTMoritsuguMMatsushitaKEffects of low pH and Al on growth and nutrient uptake of several plantsSoil Sci Plant Nutr1995411611651:CAS:528:DyaK2MXkvFyktbk%3D BaquyMAALiJYJiangJMehmoodKShiRYXuRKCritical pH and exchangeable Al of four acidic soils derived from different parent materials for maize cropsJ Soils Sediments201818149014991:CAS:528:DC%2BC2sXhvFersr3P PansuDMGautheyrouJHandbook of soil analysis2006Berlin HeidelbergSpringer HuZYXuCKZhouLNSunBHHeYQZhouJCaoZHContribution of atmospheric nitrogen compounds to N deposition in a broadleaf forest of southern ChinaPedosphere2007173603651:CAS:528:DC%2BD2sXmvVOrtbg%3D KeltjensWGMagnesium uptake by Al-stressed maize plants with special emphasis on cation interactions at root exchange sitesPlant Soil19951711411461:CAS:528:DyaK2MXmsVCjsrk%3D RhoadsF. M.ManningA.Soybean, corn, and wheat yields with variable soil pH on Plinthic AcrisolsFertilizer Research1989193137142 Adams F (1984) Soil acidity and liming (2nd). Madison, Wisconsin, USA. BaquyMAALiJYXuCYMehmoodKXuRKDetermination of critical pH and Al concentration of acidic Ultisols for wheat and canola cropsSolid Earth20178149159 ReussJOJohnsonDWEffect of soil processes on the acidification of water by acid depositionJ Environ Qual1986142631 LoftonJGodseyCBZhangHDetermining aluminum tolerance and critical soil pH for winter canola production for acidic soils in temperate regionsAgron J20101023273321:CAS:528:DC%2BC3cXhvFSku74%3D LidonFCAzinheiraHGBarreiroMGAluminum toxicity in maize: biomass production and nutrient uptake and translocationJ Plant Nutr2000231511601:CAS:528:DC%2BD3cXhtVSrtrs%3D ChenXPCuiZLFanMSVitousekPZhaoMMaWQWangZLZhangWJYanXYYangJCDengXPGaoQZhangQGuoSWRenJLiSQYeYLWangZHHuangJLTangQYSunYXPengXLZhangJWHeMRZhuYJXueJQWangGLWuLAnNWuLQMaLZhangWFZhangFSProducing more grain with lower environmental costsNature20145144864891:CAS:528:DC%2BC2cXhvVSmur3L LiaoHYanXLAdvanced plant nutrition2003BeijingScience Press(in Chinese) WarembourgFRKnowlesRBlackburnTHNitrogen fixation in soil and plant systemsNitrogen Isotope Techniques1993San DiegoAcademic Press127156 FanMSShenJBYuanLXJiangRFChenXPDaviesWJZhangFSImproving crop productivity and resource use efficiency to ensure food security and environmental quality in ChinaJ Exp Bot20126313241:CAS:528:DC%2BC3MXhs1yms77P LiuDLHelyarKRConyersMKFisherRPoileGJResponse of wheat, triticale and barley to lime application in semi-arid soilsField Crop Res200490287301 DuanYHXuMGWangBRYangXYHuangSMGaoSDLong-term evaluation of manure application on maize yield and nitrogen use efficiency in ChinaSoil Sci Soc Am J201175156215731:CAS:528:DC%2BC3MXhtVeis77O ZhouJXiaFLiuXMHeYXuJMBrookesPCEffects of nitrogen fertilizer on the acidification of two typical acid soils in South ChinaJ Soils Sediments2014144154221:CAS:528:DC%2BC2cXisFSiur0%3D van SchöllLKeltjensWGHofflandEvan BreemenNEffect of ectomycorrhizal colonization on the uptake of Ca, Mg and Al by Pinus sylvestris under aluminium toxicityForest Ecol Manag2005215352360 ChenZMWangHYLiuXWLuDJZhouJMThe fates of 15N-labeled fertilizer in a wheat-soil system as influenced by fertilization practice in a loamy soilSci Rep20166347541:CAS:528:DC%2BC28Xhs1GnsbjP JiangJXuRKZhaoAZComparison of the surface chemical properties of four soils derived from Quaternary red earth as related to soil evolutionCatena2010801541611:CAS:528:DC%2BC3cXot1yluw%3D%3D WangGLYeYLChenXPCuiZLDetermining the optimal nitrogen rate for summer maize in China by integrating agronomic, economic, and environmental aspectsBiogeosciences20141130313041 Meriño-Gergichevich C, Alberdi M, Ivanov A, Reyes-Díaz M (2010) Al3+-Ca2+ Interaction in plants growing in acid soils: Alphytotoxicity response to calcareous amendments. J Soil Sci Plant Nutr 10: 217–243 RyanPRKochianLVlnteraction between aluminum toxicity and calcium uptake at the root apex in near-isogenic lines of wheat (Triticum aestivum L.) differing in aluminum tolerancePlant Physiol19931029759821:CAS:528:DyaK3sXltleitLY%3D AlvaAKAsherCJEdwardsDGEffect of solution pH, external calcium concentration, and aluminium activity on nodulation and early growth of cowpeaAust J Agric Res1990413593651:CAS:528:DyaK3cXlsFWgu7Y%3D Rengel Z, Bose J, Chen Q, Tripathi BN (2015) Magnesium alleviates plant toxicity of aluminium and heavy metals. Crop Pasture Sci 66:1298–1307 GuoJHLiuXJZhangYShenJLHanWXZhangWFChristiePGouldingKWTVitousekPMZhangFSSignificant acidification in major Chinese croplandsScience2010327100810101:CAS:528:DC%2BC3cXitVSjtbg%3D JiangLGDaiTBJiangDJiangDCaoWXGanXQWeiSQCharacterizing physiological N-use efficiency as influenced by nitrogen management in three rice cultivarsField Crop Res200488239250 KemmittSJWrightDGouldingKWTJonesDLpH regulation of carbon and nitrogen dynamics in two agricultural soilsSoil Biol Biochem2006388989111:CAS:528:DC%2BD28XjvFSisb4%3D KiddPSProctorJEffects of aluminium on the growth and mineral composition of Betula pendula RothJ Exp Bot200051105710661:CAS:528:DC%2BD3cXktVCksr4%3D MollRHKamprathEJJacksonWAAnalysis and interpretation of factors which contribute to efficiency of nitrogen utilizationAgron J198274562564 CuiZLChenXPZhangFSCurrent nitrogen management status and measures to improve the intensive wheat–maize system in ChinaAmbio2010393763841:CAS:528:DC%2BC3cXhtFSju7rJ PR Ryan (2515_CR44) 1993; 102 ZL Zhu (2515_CR60) 2002; 63 GL Wang (2515_CR51) 2014; 11 I Dogan (2515_CR10) 2014; 37 XP Chen (2515_CR7) 2014; 514 J Kaiser (2515_CR21) 2001; 294 JO Reuss (2515_CR41) 1986; 14 MAA Baquy (2515_CR3) 2017; 8 DL Liu (2515_CR29) 2004; 90 MS Fan (2515_CR13) 2012; 63 2515_CR40 HM Zhang (2515_CR57) 2009; 19 FR Warembourg (2515_CR53) 1993 SR Valle (2515_CR48) 2011; 121 FC Lidon (2515_CR28) 2000; 23 MAA Baquy (2515_CR4) 2018; 18 ZM Chen (2515_CR8) 2016; 6 J Richter (2515_CR43) 2000; 57 HR von Uexküll (2515_CR50) 1995; 171 JW Huang (2515_CR17) 1992; 188 M Hofmeier (2515_CR15) 2015; 209 CE Evans (2515_CR12) 1970; 34 DM Pansu (2515_CR37) 2006 JH Guo (2515_CR14) 2010; 327 LG Jiang (2515_CR20) 2004; 88 CQ Jiang (2515_CR18) 2018; 8 RH Moll (2515_CR34) 1982; 74 ZY Hu (2515_CR16) 2007; 17 EJ Kamprath (2515_CR22) 2003 J Zhou (2515_CR58) 2014; 14 ZL Cui (2515_CR9) 2010; 39 F. M. Rhoads (2515_CR42) 1989; 19 YL Yao (2515_CR55) 2018; 218 K Liu (2515_CR30) 2001; 13 J Lofton (2515_CR31) 2010; 102 ZL Shi (2515_CR46) 2012; 40 2515_CR1 L van Schöll (2515_CR49) 2005; 215 PS Kidd (2515_CR26) 2000; 51 J Jiang (2515_CR19) 2010; 80 DRR Malkanthi (2515_CR32) 1995; 41 IM Rao (2515_CR38) 1993; 43 JL Schroder (2515_CR45) 2011; 75 M. Abdulaha-Al Baquy (2515_CR5) 2017; 25 WG Keltjens (2515_CR24) 1995; 171 Y Xiong (2515_CR54) 1990 YH Duan (2515_CR11) 2011; 75 H Liao (2515_CR27) 2003 BE Nichol (2515_CR36) 1993; 101 CJ Chartres (2515_CR6) 1990; 28 SK Kariuki (2515_CR23) 2007; 99 D Tilman (2515_CR47) 2011; 108 SJ Wang (2515_CR52) 2016; 105 SJ Kemmitt (2515_CR25) 2006; 38 JG Zhu (2515_CR59) 2000; 57 2515_CR35 TR Yu (2515_CR56) 1997 Z Rengel (2515_CR39) 1992; 98 AK Alva (2515_CR2) 1990; 41 2515_CR33 |
References_xml | – reference: HofmeierMRoelckeMHanYLanTBergmannHBöhmDCaiZCNiederRNitrogen management in a rice–wheat system in the Taihu region: recommendations based on field experiments and surveysAgric Ecosyst Environ201520960731:CAS:528:DC%2BC2MXlslClsr0%3D – reference: Meriño-Gergichevich C, Alberdi M, Ivanov A, Reyes-Díaz M (2010) Al3+-Ca2+ Interaction in plants growing in acid soils: Alphytotoxicity response to calcareous amendments. J Soil Sci Plant Nutr 10: 217–243 – reference: BaquyMAALiJYJiangJMehmoodKShiRYXuRKCritical pH and exchangeable Al of four acidic soils derived from different parent materials for maize cropsJ Soils Sediments201818149014991:CAS:528:DC%2BC2sXhvFersr3P – reference: National Bureau of Statistics of China (2018) http://data.stats.gov.cn/easyquery.htm?cn=C01. – reference: KaiserJThe other global pollutant: nitrogen proves tough to curbScience2001294126812691:CAS:528:DC%2BD3MXotlKntrY%3D – reference: ReussJOJohnsonDWEffect of soil processes on the acidification of water by acid depositionJ Environ Qual1986142631 – reference: RyanPRKochianLVlnteraction between aluminum toxicity and calcium uptake at the root apex in near-isogenic lines of wheat (Triticum aestivum L.) differing in aluminum tolerancePlant Physiol19931029759821:CAS:528:DyaK3sXltleitLY%3D – reference: ChenZMWangHYLiuXWLuDJZhouJMThe fates of 15N-labeled fertilizer in a wheat-soil system as influenced by fertilization practice in a loamy soilSci Rep20166347541:CAS:528:DC%2BC28Xhs1GnsbjP – reference: FanMSShenJBYuanLXJiangRFChenXPDaviesWJZhangFSImproving crop productivity and resource use efficiency to ensure food security and environmental quality in ChinaJ Exp Bot20126313241:CAS:528:DC%2BC3MXhs1yms77P – reference: RhoadsF. M.ManningA.Soybean, corn, and wheat yields with variable soil pH on Plinthic AcrisolsFertilizer Research1989193137142 – reference: WarembourgFRKnowlesRBlackburnTHNitrogen fixation in soil and plant systemsNitrogen Isotope Techniques1993San DiegoAcademic Press127156 – reference: LiuDLHelyarKRConyersMKFisherRPoileGJResponse of wheat, triticale and barley to lime application in semi-arid soilsField Crop Res200490287301 – reference: von UexküllHRMutertEGlobal extent, development and economic impact of acid soilsPlant Soil1995171115 – reference: KiddPSProctorJEffects of aluminium on the growth and mineral composition of Betula pendula RothJ Exp Bot200051105710661:CAS:528:DC%2BD3cXktVCksr4%3D – reference: LoftonJGodseyCBZhangHDetermining aluminum tolerance and critical soil pH for winter canola production for acidic soils in temperate regionsAgron J20101023273321:CAS:528:DC%2BC3cXhvFSku74%3D – reference: Rengel Z, Bose J, Chen Q, Tripathi BN (2015) Magnesium alleviates plant toxicity of aluminium and heavy metals. Crop Pasture Sci 66:1298–1307 – reference: BaquyMAALiJYXuCYMehmoodKXuRKDetermination of critical pH and Al concentration of acidic Ultisols for wheat and canola cropsSolid Earth20178149159 – reference: NicholBEOliveiraLAClassADMSiddiqiMYThe effects of aluminum on the influx of calcium, potassium, ammonium, nitrate, and phosphate in an aluminum sensitive cultivar of barley (Hordeum vdgare 1.)Plant Physiol1993101126312661:CAS:528:DyaK3sXit1Ort74%3D – reference: KemmittSJWrightDGouldingKWTJonesDLpH regulation of carbon and nitrogen dynamics in two agricultural soilsSoil Biol Biochem2006388989111:CAS:528:DC%2BD28XjvFSisb4%3D – reference: MollRHKamprathEJJacksonWAAnalysis and interpretation of factors which contribute to efficiency of nitrogen utilizationAgron J198274562564 – reference: ZhangHMWangBRXuMGFanTLCrop yield and soil responses to long-term fertilization on a red soil in Southern ChinaPedosphere2009191992071:CAS:528:DC%2BD1MXkvFCltb8%3D – reference: DoganIOzyigitIIDemirGInfluence of aluminum on mineral nutrient uptake and accumulation inurtica piluliferalJ Plant Nutr2014374694811:CAS:528:DC%2BC3sXhvFCqt7fJ – reference: RaoIMZeiglerRSVeraRSarkarungSSelection and breeding for acid-soil tolerance in cropsBioscience199343454465 – reference: DuanYHXuMGWangBRYangXYHuangSMGaoSDLong-term evaluation of manure application on maize yield and nitrogen use efficiency in ChinaSoil Sci Soc Am J201175156215731:CAS:528:DC%2BC3MXhtVeis77O – reference: WangGLYeYLChenXPCuiZLDetermining the optimal nitrogen rate for summer maize in China by integrating agronomic, economic, and environmental aspectsBiogeosciences20141130313041 – reference: RichterJRoelckeMThe N-cycle as determined by intensive agriculture – examples from central Europe and ChinaNutr Cycl Agroecosyst2000573346 – reference: XiongYLiQSoils of China1990BeijingScience Press – reference: AlvaAKAsherCJEdwardsDGEffect of solution pH, external calcium concentration, and aluminium activity on nodulation and early growth of cowpeaAust J Agric Res1990413593651:CAS:528:DyaK3cXlsFWgu7Y%3D – reference: YuTRChemistry of variable charge soils1997NewYorkOxford University Press – reference: LiuKLuanSInternal aluminum block of plant inward K+ channelsPlant Cell200113145314651:CAS:528:DC%2BD3MXkvVakt7k%3D – reference: SchroderJLZhangHLGirmaKRaunWRPennCJPaytonMESoil acidification from long-term use of nitrogen fertilizers on winter wheatSoil Sci Soc Am J2011759579641:CAS:528:DC%2BC3MXnsFylsb0%3D – reference: HuangJWGrunesDLKochianLVAluminum effects on the kinetics of calcium uptake into cells of the wheat root apex: quantification of calcium fluxes using a calcium-selective vibrating microelectrodePlanta19921884144211:CAS:528:DyaK3sXjsVSmtg%3D%3D – reference: BaquyM. Abdulaha-AlLiJiu-yuShiRen-yongKamranMuhammad AqeelXuRen-kouHigher cation exchange capacity determined lower critical soil pH and higher Al concentration for soybeanEnvironmental Science and Pollution Research201725769806989 – reference: EvansCEKampratEJLime response as related to percent Al saturation, solution Al, and organic matter contentSoil Sci Soc Am Proc1970348938961:CAS:528:DyaE3MXht1Wrtg%3D%3D – reference: ShiZLJingQCaiJJiangDCaoWXDaiTBThe fates of 15N fertilizer in relation to root distributions of winter wheat under different N splitsEur J Agron20124086931:CAS:528:DC%2BC38XlvFehsrY%3D – reference: ZhuZLChenDLNitrogen fertilizer use in China–Contributions to food production, impacts on the environment and best management strategiesNutr Cycl Agroecosyst2002631171271:CAS:528:DC%2BD38XovVCmtbg%3D – reference: MalkanthiDRRYokoyamaKYoshidaTMoritsuguMMatsushitaKEffects of low pH and Al on growth and nutrient uptake of several plantsSoil Sci Plant Nutr1995411611651:CAS:528:DyaK2MXkvFyktbk%3D – reference: van SchöllLKeltjensWGHofflandEvan BreemenNEffect of ectomycorrhizal colonization on the uptake of Ca, Mg and Al by Pinus sylvestris under aluminium toxicityForest Ecol Manag2005215352360 – reference: CuiZLChenXPZhangFSCurrent nitrogen management status and measures to improve the intensive wheat–maize system in ChinaAmbio2010393763841:CAS:528:DC%2BC3cXhtFSju7rJ – reference: ChartresCJCummingRWBeattieJABowrnanGMWoodJTAcidification of soils on a transect from plains to slopes, south western New-South-WalesAust J Soil Res1990285395481:CAS:528:DyaK3cXlslSqtrw%3D – reference: JiangJXuRKZhaoAZComparison of the surface chemical properties of four soils derived from Quaternary red earth as related to soil evolutionCatena2010801541611:CAS:528:DC%2BC3cXot1yluw%3D%3D – reference: RengelZElliottDCMechanism of aluminum inhibition of net 45Ca2+ uptake by amaranthus protoplastsPlant Physiol1992986326381:CAS:528:DyaK38XhsVGksb0%3D – reference: JiangLGDaiTBJiangDJiangDCaoWXGanXQWeiSQCharacterizing physiological N-use efficiency as influenced by nitrogen management in three rice cultivarsField Crop Res200488239250 – reference: HuZYXuCKZhouLNSunBHHeYQZhouJCaoZHContribution of atmospheric nitrogen compounds to N deposition in a broadleaf forest of southern ChinaPedosphere2007173603651:CAS:528:DC%2BD2sXmvVOrtbg%3D – reference: ChenXPCuiZLFanMSVitousekPZhaoMMaWQWangZLZhangWJYanXYYangJCDengXPGaoQZhangQGuoSWRenJLiSQYeYLWangZHHuangJLTangQYSunYXPengXLZhangJWHeMRZhuYJXueJQWangGLWuLAnNWuLQMaLZhangWFZhangFSProducing more grain with lower environmental costsNature20145144864891:CAS:528:DC%2BC2cXhvVSmur3L – reference: TilmanDBalzerCHillJBefortBLGlobal food demand and the sustainable intensification of agriculturePNAS201110820260202641:CAS:528:DC%2BC3MXhs1yqsbnM – reference: KamprathEJSoil acidity and liming2003North CarolinaSoil Science Society of North Carolina – reference: LidonFCAzinheiraHGBarreiroMGAluminum toxicity in maize: biomass production and nutrient uptake and translocationJ Plant Nutr2000231511601:CAS:528:DC%2BD3cXhtVSrtrs%3D – reference: LiaoHYanXLAdvanced plant nutrition2003BeijingScience Press(in Chinese) – reference: ZhouJXiaFLiuXMHeYXuJMBrookesPCEffects of nitrogen fertilizer on the acidification of two typical acid soils in South ChinaJ Soils Sediments2014144154221:CAS:528:DC%2BC2cXisFSiur0%3D – reference: PansuDMGautheyrouJHandbook of soil analysis2006Berlin HeidelbergSpringer – reference: KeltjensWGMagnesium uptake by Al-stressed maize plants with special emphasis on cation interactions at root exchange sitesPlant Soil19951711411461:CAS:528:DyaK2MXmsVCjsrk%3D – reference: ValleSRPinochetDCalderiniDFUptake and use efficiency of N, P, K, Ca and Al by Al-sensitive and Al-tolerant cultivars of wheat under a wide range of soil Al concentrationsField Crop Res2011121392400 – reference: JiangCQLuDJZuCLZhouJMWangHYRoot-zone fertilization improves crop yields and minimizes nitrogen loss in summer maize in ChinaSci Rep2018815139 – reference: Adams F (1984) Soil acidity and liming (2nd). Madison, Wisconsin, USA. – reference: YaoYLZhangMTianYHZhaoMZhangBWZhaoMZengKYinBUrea deep placement for minimizing NH3 loss in an intensive rice cropping systemField Crop Res2018218254266 – reference: ZhuJGHanYLiuGZhangYLShaoXHNitrogen in percolation water in paddy fields with a rice/wheat rotationNutr Cycl Agroecosyst20005775821:CAS:528:DC%2BD3cXlt1yjt78%3D – reference: WangSJLuoSSYueSCShenYFLiSQFate of 15N fertilizer under different nitrogen split applications to plastic mulched maize in semiarid farmlandNutr Cycl Agroecosyst20161051291401:CAS:528:DC%2BC28Xms1KgtLY%3D – reference: KariukiSKZhangHSchroderJLEdwardsJPaytonMCarverBFRaunWRKrenzerEGHard red winter wheat cultivar responses to a pH and aluminum concentration gradientAgron J20079988981:CAS:528:DC%2BD2sXhs12ju70%3D – reference: GuoJHLiuXJZhangYShenJLHanWXZhangWFChristiePGouldingKWTVitousekPMZhangFSSignificant acidification in major Chinese croplandsScience2010327100810101:CAS:528:DC%2BC3cXitVSjtbg%3D – ident: 2515_CR33 – volume: 8 start-page: 149 year: 2017 ident: 2515_CR3 publication-title: Solid Earth doi: 10.5194/se-8-149-2017 – start-page: 127 volume-title: Nitrogen Isotope Techniques year: 1993 ident: 2515_CR53 doi: 10.1016/B978-0-08-092407-6.50010-9 – volume: 514 start-page: 486 year: 2014 ident: 2515_CR7 publication-title: Nature doi: 10.1038/nature13609 – ident: 2515_CR40 doi: 10.1071/CP15284 – volume: 23 start-page: 151 year: 2000 ident: 2515_CR28 publication-title: J Plant Nutr doi: 10.1080/01904160009382005 – volume: 57 start-page: 75 year: 2000 ident: 2515_CR59 publication-title: Nutr Cycl Agroecosyst doi: 10.1023/A:1009712404335 – ident: 2515_CR1 doi: 10.2134/agronmonogr12.2ed – volume: 121 start-page: 392 year: 2011 ident: 2515_CR48 publication-title: Field Crop Res doi: 10.1016/j.fcr.2011.01.006 – volume: 171 start-page: 1 year: 1995 ident: 2515_CR50 publication-title: Plant Soil doi: 10.1007/BF00009558 – volume: 38 start-page: 898 year: 2006 ident: 2515_CR25 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2005.08.006 – volume-title: Handbook of soil analysis year: 2006 ident: 2515_CR37 doi: 10.1007/978-3-540-31211-6 – volume-title: Soils of China year: 1990 ident: 2515_CR54 – volume: 105 start-page: 129 year: 2016 ident: 2515_CR52 publication-title: Nutr Cycl Agroecosyst doi: 10.1007/s10705-016-9780-3 – volume: 63 start-page: 13 year: 2012 ident: 2515_CR13 publication-title: J Exp Bot doi: 10.1093/jxb/err248 – volume: 108 start-page: 20260 year: 2011 ident: 2515_CR47 publication-title: PNAS doi: 10.1073/pnas.1116437108 – volume: 215 start-page: 352 year: 2005 ident: 2515_CR49 publication-title: Forest Ecol Manag doi: 10.1016/j.foreco.2005.05.025 – volume: 6 start-page: 34754 year: 2016 ident: 2515_CR8 publication-title: Sci Rep doi: 10.1038/srep34754 – volume: 14 start-page: 415 year: 2014 ident: 2515_CR58 publication-title: J Soils Sediments doi: 10.1007/s11368-013-0695-1 – volume: 13 start-page: 1453 year: 2001 ident: 2515_CR30 publication-title: Plant Cell doi: 10.1105/TPC.010016 – volume: 18 start-page: 1490 year: 2018 ident: 2515_CR4 publication-title: J Soils Sediments doi: 10.1007/s11368-017-1887-x – volume: 40 start-page: 86 year: 2012 ident: 2515_CR46 publication-title: Eur J Agron doi: 10.1016/j.eja.2012.01.006 – volume: 41 start-page: 359 year: 1990 ident: 2515_CR2 publication-title: Aust J Agric Res doi: 10.1071/AR9900359 – volume: 14 start-page: 26 year: 1986 ident: 2515_CR41 publication-title: J Environ Qual doi: 10.2134/jeq1985.00472425001400010005x – volume-title: Advanced plant nutrition year: 2003 ident: 2515_CR27 – volume: 102 start-page: 327 year: 2010 ident: 2515_CR31 publication-title: Agron J doi: 10.2134/agronj2009.0252 – volume: 43 start-page: 454 year: 1993 ident: 2515_CR38 publication-title: Bioscience doi: 10.2307/1311905 – volume: 101 start-page: 1263 year: 1993 ident: 2515_CR36 publication-title: Plant Physiol doi: 10.1104/pp.101.4.1263 – volume: 25 start-page: 6980 issue: 7 year: 2017 ident: 2515_CR5 publication-title: Environmental Science and Pollution Research doi: 10.1007/s11356-017-1014-y – volume-title: Chemistry of variable charge soils year: 1997 ident: 2515_CR56 – ident: 2515_CR35 – volume: 37 start-page: 469 year: 2014 ident: 2515_CR10 publication-title: J Plant Nutr doi: 10.1080/01904167.2013.864306 – volume-title: Soil acidity and liming year: 2003 ident: 2515_CR22 – volume: 209 start-page: 60 year: 2015 ident: 2515_CR15 publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2015.03.032 – volume: 90 start-page: 287 year: 2004 ident: 2515_CR29 publication-title: Field Crop Res doi: 10.1016/j.fcr.2004.03.008 – volume: 17 start-page: 360 year: 2007 ident: 2515_CR16 publication-title: Pedosphere doi: 10.1016/S1002-0160(07)60043-5 – volume: 294 start-page: 1268 year: 2001 ident: 2515_CR21 publication-title: Science doi: 10.1126/science.294.5545.1268 – volume: 57 start-page: 33 year: 2000 ident: 2515_CR43 publication-title: Nutr Cycl Agroecosyst doi: 10.1023/A:1009802225307 – volume: 11 start-page: 3031 year: 2014 ident: 2515_CR51 publication-title: Biogeosciences doi: 10.5194/bg-11-3031-2014 – volume: 188 start-page: 414 year: 1992 ident: 2515_CR17 publication-title: Planta doi: 10.1007/BF00192809 – volume: 88 start-page: 239 year: 2004 ident: 2515_CR20 publication-title: Field Crop Res doi: 10.1016/j.fcr.2004.01.023 – volume: 51 start-page: 1057 year: 2000 ident: 2515_CR26 publication-title: J Exp Bot doi: 10.1093/jexbot/51.347.1057 – volume: 28 start-page: 539 year: 1990 ident: 2515_CR6 publication-title: Aust J Soil Res doi: 10.1071/SR9900539 – volume: 19 start-page: 137 issue: 3 year: 1989 ident: 2515_CR42 publication-title: Fertilizer Research doi: 10.1007/BF01054455 – volume: 19 start-page: 199 year: 2009 ident: 2515_CR57 publication-title: Pedosphere doi: 10.1016/S1002-0160(09)60109-0 – volume: 75 start-page: 1562 year: 2011 ident: 2515_CR11 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2010.0315 – volume: 39 start-page: 376 year: 2010 ident: 2515_CR9 publication-title: Ambio doi: 10.1007/s13280-010-0076-6 – volume: 80 start-page: 154 year: 2010 ident: 2515_CR19 publication-title: Catena doi: 10.1016/j.catena.2009.11.002 – volume: 41 start-page: 161 year: 1995 ident: 2515_CR32 publication-title: Soil Sci Plant Nutr doi: 10.1080/00380768.1995.10419571 – volume: 8 start-page: 15139 year: 2018 ident: 2515_CR18 publication-title: Sci Rep doi: 10.1038/s41598-018-33591-9 – volume: 75 start-page: 957 year: 2011 ident: 2515_CR45 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2010.0187 – volume: 34 start-page: 893 year: 1970 ident: 2515_CR12 publication-title: Soil Sci Soc Am Proc doi: 10.2136/sssaj1970.03615995003400060023x – volume: 74 start-page: 562 year: 1982 ident: 2515_CR34 publication-title: Agron J doi: 10.2134/agronj1982.00021962007400030037x – volume: 99 start-page: 88 year: 2007 ident: 2515_CR23 publication-title: Agron J doi: 10.2134/agronj2006.0128 – volume: 327 start-page: 1008 year: 2010 ident: 2515_CR14 publication-title: Science doi: 10.1126/science.1182570 – volume: 102 start-page: 975 year: 1993 ident: 2515_CR44 publication-title: Plant Physiol doi: 10.1104/pp.102.3.975 – volume: 63 start-page: 117 year: 2002 ident: 2515_CR60 publication-title: Nutr Cycl Agroecosyst doi: 10.1023/A:1021107026067 – volume: 98 start-page: 632 year: 1992 ident: 2515_CR39 publication-title: Plant Physiol doi: 10.1104/pp.98.2.632 – volume: 218 start-page: 254 year: 2018 ident: 2515_CR55 publication-title: Field Crop Res doi: 10.1016/j.fcr.2017.03.013 – volume: 171 start-page: 141 year: 1995 ident: 2515_CR24 publication-title: Plant Soil doi: 10.1007/BF00009577 |
SSID | ssj0037161 |
Score | 2.4455864 |
Snippet | Purpose
To examine the effect of soil acidification on growth and nitrogen (N) uptake by maize in Ultisols.
Materials and methods
A clay Ultisol derived from... PurposeTo examine the effect of soil acidification on growth and nitrogen (N) uptake by maize in Ultisols.Materials and methodsA clay Ultisol derived from... PURPOSE: To examine the effect of soil acidification on growth and nitrogen (N) uptake by maize in Ultisols. MATERIALS AND METHODS: A clay Ultisol derived from... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1435 |
SubjectTerms | Abundance Accumulation acid soils Acidic soils Acidification Clay Corn Crop residues crop yield crops Earth and Environmental Science Efficiency Environment Environmental Physics Fertilizers Food production Growth Mass spectrometry Mass spectroscopy Nitrogen nitrogen fertilizers Nitrogen isotopes nutrient use efficiency pH effects Quaternary roots Sandstone Sandy soils Sec 3 • Remediation and Management of Contaminated or Degraded Lands • Research Article Sedimentary rocks Shoots Soil Soil acidification Soil chemistry Soil investigations Soil pH soil sampling Soil Science & Conservation Soils stable isotopes sustainable agriculture Sustainable food systems Sustainable production Tertiary total nitrogen Ultisols Uptake Urea Zea mays |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86L3oQP7E6JYI3LSxN-pHjEMfw4GmDgYeS5mMWZitrd9lf70vWrigqCL3lJYWX95Lf4733C0J3A6YDHTDji1gmPpMk9LkRlnJfahWbUIWZq_J9icZT9jwLZ01TWNVWu7cpSXdSd81uhEa28Ir7FheH_noX7YU2dgcrngbD9vylEAG4MAuuWpAeJE2rzM9rfL2OOoz5LS3qbpvRETpsYCIebvb1GO3o4gQdDOfLhipDn6LXDfEwLg2uynyBhcyVrftxqsbwAbTDc4iy6zcsCoXBd5clmAteVRprxxxh2y7t_HeRrzXOCzxd1DkYY3WGJqOnyePYb55K8CUjSe0zYROAcUaIUpKbMFKJ0oYORGKUpkqZCHQuOdOZiIQhGWEZtTWFNIsFN5Keo15RFvoCYcWJ4GEAEoOMUSG4EhJgkgbHZpLH2kOkVVgqGxpx-5rFIu0IkK2SU1By6pScrj10v53zsSHR-FO63-5D2jhUlQY0DgCpsZh76HY7DK5g8xui0OXKysCJyTiAKg89tPvXLfH7Hy__J36F9gMbdbtKtD7q1cuVvgZoUmc3zhI_Aeaq2_g priority: 102 providerName: Springer Nature |
Title | Effect of soil acidification on the growth and nitrogen use efficiency of maize in Ultisols |
URI | https://link.springer.com/article/10.1007/s11368-019-02515-z https://www.proquest.com/docview/2372623479 https://www.proquest.com/docview/2388749065 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Na9swFH-0yaU9jK4fNFsbNOitM40s-UOnkZZ0ZYVSSgMdOxhZH60htbvYueSv35MjN2ywgG-SLHh6n3pPvwdwNuImNCG3gUxUGnBFo0BY6SD3ldGJjXSUt1W-d_HNlP94ip78hVvtyyo7ndgqal0pd0d-EbIkRFPNE_Ht7Xfguka57KpvobENfVTBKQZf_cvJ3f1Dp4sZRgNtyIVmF4PmUeqfzawez1EWu0IuHEEjHwXLv03T2t_8J0XaWp7rPfjgXUYyXp3xR9gy5T7sjp_nHjbDHMCvFQgxqSypq2JGpCq0qwFqyU7wQzePPGPE3bwQWWqCcjyvkHXIojbEtCgS7gmmW_8qi6UhRUmms6ZAxqwP4fF68nh1E_i2CYHiNG0CLl0yMMkp1VoJG8U61caykUytNkxrGyP9leAml7G0NKc8Z66-kOWJFFaxI-iVVWmOgWhBpYhCnDHKOZNSaKnQZTIo5FyJxAyAdgTLlIcUd50tZtkaDNkROUMiZy2Rs-UAzt_XvK0ANTbOPunOIfPCVWdrVhjAl_dhFAuX65ClqRZuDmpPLtDBGsDX7vzWv_j_jp827_gZdkIXcbdVaCfQa-YLc4puSZMPoT_-_vN2MvQ8OITtaTj-A3G_4mg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JahRB9BEnB81BjAsZjaaEeNLGqa7qpQ4i0SRMTDKITCDgoaiuJWkYu-N0D-L8k__oq14yGDC3QN9qa9579ZZ6G8DuiNvQhtwFKtFpwDWNAuGUL7mvrUlcZKKsifKdxOMz_uU8Ol-DP30ujA-r7Hliw6hNqf0b-fuQJSGKap6Ij1c_A981yntX-xYaLVkc29-_0GSrPhztI37fhOHhwfTzOOi6CgSa07QOuPK-siSj1BgtXBSb1FjHRip1xjJjXIy_pwW3mYqVoxnlGfPhdyxLlHCa4bb3YJ0ztGQGsP7pYPL1W8_6GRofjYWHUh5t9FHaZem0uXqUxT5uDEdQp4iC5b-ScKXe3vDINoLu8BE87DRUsteS1Cas2eIxbOxdzLsqHfYJfG9rHpPSkarMZ0Tp3PiQowbLBD_UKskFGvj1JVGFIcg25iVSKllUltimaIXP-PTrf6h8aUlekLNZneM9qJ7C9C7g-QwGRVnYLSBGUCWiEGeMMs6UEkZp1NAs8hSuRWKHQHuASd1VMPeNNGZyVXvZA1kikGUDZLkcwtvrNVdt_Y5bZ2_3eJDdXa7kivKG8Pp6GG-hd62owpYLPweZNReozw3hXY-_1Rb_P_H57SfuwP3x9PREnhxNjl_Ag9Ab-00A3DYM6vnCvkSNqM5edXRIQN4x5f8FUAQedQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3ZahRBsIgbEPMgnrgxagv6pEOmp3uOfpAQTZbEyBIkgYAPTU8fcWAzk-zMIu6f-XepniOLgnkLzFtfQ1V1HV0XwLuQ28hG3AUq1VnANY0D4ZQvua-tSV1s4ryN8p0mB6f861l8tgZ_hlwYH1Y58MSWUZtK-zfy7YilEYpqnopt14dFHO9Ndi6vAt9Byntah3YaHYkc2d-_0HyrPx3uIa7fR9Fk_-TLQdB3GAg0p1kTcOX9ZmlOqTFauDgxmbGOhSpzxjJjXIK_qgW3uUqUoznlOfOheCxPlXCa4bb3YD1Foygcwfrn_enx90EMMDREWmsPJT7a62HWZ-x0eXuUJT6GDEdQv4iD5d9ScaXq_uOdbYXe5BE87LVVstuR12NYs-UT2Ng9n_cVO-xT-NHVPyaVI3VVzIjShfHhRy3GCX6oYZJzNPabn0SVhiALmVdItWRRW2LbAhY--9Ovv1DF0pKiJKezpsA7UT-Dk7uA53MYlVVpXwAxgioRRzgjzDlTShilUVuzyF-4FqkdAx0AJnVfzdw31ZjJVR1mD2SJQJYtkOVyDB9u1lx2tTxunb014EH297qWKyocw9ubYbyR3s2iSlst_Bxk3FygbjeGjwP-Vlv8_8TN2098A_eR4uW3w-nRS3gQebu_jYXbglEzX9hXqBw1-eueDAnIOyb8a3nMIqo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+soil+acidification+on+the+growth+and+nitrogen+use+efficiency+of+maize+in+Ultisols&rft.jtitle=Journal+of+soils+and+sediments&rft.au=Pan+Xiaoying&rft.au=Abdulaha-Al%2C+Baquy+M&rft.au=Guan+Peng&rft.au=Yan%2C+Jing&rft.date=2020-03-01&rft.pub=Springer+Nature+B.V&rft.issn=1439-0108&rft.eissn=1614-7480&rft.volume=20&rft.issue=3&rft.spage=1435&rft.epage=1445&rft_id=info:doi/10.1007%2Fs11368-019-02515-z&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1439-0108&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1439-0108&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1439-0108&client=summon |