An approach to estimation in relative survival regression

The goal of relative survival methodology is to compare the survival experience of a cohort with that of the background population. Most often an additive excess hazard model is employed, which assumes that each person's hazard is a sum of 2 components-the population hazard obtained from life t...

Full description

Saved in:
Bibliographic Details
Published inBiostatistics (Oxford, England) Vol. 10; no. 1; pp. 136 - 146
Main Authors Perme, Maja Pohar, Henderson, Robin, Stare, Janez
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.01.2009
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text
ISSN1465-4644
1468-4357
1468-4357
DOI10.1093/biostatistics/kxn021

Cover

Loading…
Abstract The goal of relative survival methodology is to compare the survival experience of a cohort with that of the background population. Most often an additive excess hazard model is employed, which assumes that each person's hazard is a sum of 2 components-the population hazard obtained from life tables and an excess hazard attributable to the specific condition. Usually covariate effects on the excess hazard are assumed to have a proportional hazards structure with parametrically modelled baseline. In this paper, we introduce a new fitting procedure using the expectation-maximization algorithm, treating the cause of death as missing data. The method requires no assumptions about the baseline excess hazard thus reducing the risk of bias through misspecification. It accommodates the possibility of knowledge of cause of death for some patients, and as a side effect, the method yields an estimate of the ratio between the excess and the population hazard for each subject. More importantly, it estimates the baseline excess hazard flexibly with no additional degrees of freedom spent. Finally, it is a generalization of the Cox model, meaning that all the wealth of options in existing software for the Cox model can be used in relative survival. The method is applied to a data set on survival after myocardial infarction, where it shows how a particular form of the hazard function could be missed using the existing methods.
AbstractList The goal of relative survival methodology is to compare the survival experience of a cohort with that of the background population. Most often an additive excess hazard model is employed, which assumes that each person's hazard is a sum of 2 components--the population hazard obtained from life tables and an excess hazard attributable to the specific condition. Usually covariate effects on the excess hazard are assumed to have a proportional hazards structure with parametrically modelled baseline. In this paper, we introduce a new fitting procedure using the expectation-maximization algorithm, treating the cause of death as missing data. The method requires no assumptions about the baseline excess hazard thus reducing the risk of bias through misspecification. It accommodates the possibility of knowledge of cause of death for some patients, and as a side effect, the method yields an estimate of the ratio between the excess and the population hazard for each subject. More importantly, it estimates the baseline excess hazard flexibly with no additional degrees of freedom spent. Finally, it is a generalization of the Cox model, meaning that all the wealth of options in existing software for the Cox model can be used in relative survival. The method is applied to a data set on survival after myocardial infarction, where it shows how a particular form of the hazard function could be missed using the existing methods.
The goal of relative survival methodology is to compare the survival experience of a cohort with that of the background population. Most often an additive excess hazard model is employed, which assumes that each person's hazard is a sum of 2 components--the population hazard obtained from life tables and an excess hazard attributable to the specific condition. Usually covariate effects on the excess hazard are assumed to have a proportional hazards structure with parametrically modelled baseline. In this paper, we introduce a new fitting procedure using the expectation-maximization algorithm, treating the cause of death as missing data. The method requires no assumptions about the baseline excess hazard thus reducing the risk of bias through misspecification. It accommodates the possibility of knowledge of cause of death for some patients, and as a side effect, the method yields an estimate of the ratio between the excess and the population hazard for each subject. More importantly, it estimates the baseline excess hazard flexibly with no additional degrees of freedom spent. Finally, it is a generalization of the Cox model, meaning that all the wealth of options in existing software for the Cox model can be used in relative survival. The method is applied to a data set on survival after myocardial infarction, where it shows how a particular form of the hazard function could be missed using the existing methods.The goal of relative survival methodology is to compare the survival experience of a cohort with that of the background population. Most often an additive excess hazard model is employed, which assumes that each person's hazard is a sum of 2 components--the population hazard obtained from life tables and an excess hazard attributable to the specific condition. Usually covariate effects on the excess hazard are assumed to have a proportional hazards structure with parametrically modelled baseline. In this paper, we introduce a new fitting procedure using the expectation-maximization algorithm, treating the cause of death as missing data. The method requires no assumptions about the baseline excess hazard thus reducing the risk of bias through misspecification. It accommodates the possibility of knowledge of cause of death for some patients, and as a side effect, the method yields an estimate of the ratio between the excess and the population hazard for each subject. More importantly, it estimates the baseline excess hazard flexibly with no additional degrees of freedom spent. Finally, it is a generalization of the Cox model, meaning that all the wealth of options in existing software for the Cox model can be used in relative survival. The method is applied to a data set on survival after myocardial infarction, where it shows how a particular form of the hazard function could be missed using the existing methods.
The goal of relative survival methodology is to compare the survival experience of a cohort with that of the background population. Most often an additive excess hazard model is employed, which assumes that each person's hazard is a sum of 2 components--the population hazard obtained from life tables and an excess hazard attributable to the specific condition. Usually covariate effects on the excess hazard are assumed to have a proportional hazards structure with parametrically modelled baseline. In this paper, we introduce a new fitting procedure using the expectation-maximization algorithm, treating the cause of death as missing data. The method requires no assumptions about the baseline excess hazard thus reducing the risk of bias through misspecification. It accommodates the possibility of knowledge of cause of death for some patients, and as a side effect, the method yields an estimate of the ratio between the excess and the population hazard for each subject. More importantly, it estimates the baseline excess hazard flexibly with no additional degrees of freedom spent. Finally, it is a generalization of the Cox model, meaning that all the wealth of options in existing software for the Cox model can be used in relative survival. The method is applied to a data set on survival after myocardial infarction, where it shows how a particular form of the hazard function could be missed using the existing methods. [PUBLICATION ABSTRACT]
Author Perme, Maja Pohar
Henderson, Robin
Stare, Janez
Author_xml – sequence: 1
  givenname: Maja Pohar
  surname: Perme
  fullname: Perme, Maja Pohar
  email: maja.pohar@mf.uni-lj.si
– sequence: 2
  givenname: Robin
  surname: Henderson
  fullname: Henderson, Robin
  email: maja.pohar@mf.uni-lj.si
– sequence: 3
  givenname: Janez
  surname: Stare
  fullname: Stare, Janez
  email: maja.pohar@mf.uni-lj.si
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18599516$$D View this record in MEDLINE/PubMed
BookMark eNqNkMtOwzAURC1URB_wBwhFLNiF-hUnZldVvKRKbGBtOa4DLqkd7KSCv8c0BYkuEKt7dX1mNJ4xGFhnNQCnCF4iyMm0NC60sjWhNSpMX98txOgAjBBlRUpJlg-2e5ZSRukQjENYQYgxYeQIDFGRcZ4hNgJ8ZhPZNN5J9ZK0LtHRbh1dnU2MTbyu477RSej8xmxkHS_PXocQ34_BYSXroE92cwKebq4f53fp4uH2fj5bpIqiok0pJziXla4URGXONKvYUmZ5zCJLIjFdkorCrKScEo3zssI5w1hijRXXvESITMBF7xtDvnUxn1iboHRdS6tdFwRjOSGk4BE83wNXrvM2ZhMYUkooj-AEnO2grlzrpWh8_K7_EN-NROCqB5R3IXhdCWXabSGtl6YWCIqv-sWv-kVffxTTPfGP_9-yaS9zXfM_xSdfl6DK
CitedBy_id crossref_primary_10_1016_S0140_6736_14_62038_9
crossref_primary_10_1016_j_jgo_2018_05_004
crossref_primary_10_1186_1471_2288_13_102
crossref_primary_10_3109_0284186X_2012_731522
crossref_primary_10_1007_s13304_019_00662_z
crossref_primary_10_1080_0284186X_2018_1454603
crossref_primary_10_1111_biom_12568
crossref_primary_10_1002_jha2_202
crossref_primary_10_1093_jnci_djae227
crossref_primary_10_1186_s12874_017_0351_3
crossref_primary_10_1016_j_canep_2013_04_001
crossref_primary_10_5691_jjb_44_129
crossref_primary_10_1002_sim_7645
crossref_primary_10_1080_09720510_2016_1228322
crossref_primary_10_1016_j_ygyno_2016_11_019
crossref_primary_10_1186_1471_2458_14_95
crossref_primary_10_1001_jamanetworkopen_2023_30018
crossref_primary_10_1007_s10552_012_0141_5
crossref_primary_10_1002_sim_8010
crossref_primary_10_1002_ijc_34291
crossref_primary_10_1002_sim_8693
crossref_primary_10_1038_leu_2014_251
crossref_primary_10_1111_j_1541_0420_2011_01640_x
crossref_primary_10_1038_s41375_018_0054_8
crossref_primary_10_1007_s42081_023_00190_6
crossref_primary_10_1093_biostatistics_kxz017
crossref_primary_10_1016_j_canep_2011_05_010
crossref_primary_10_1016_j_beha_2023_101474
crossref_primary_10_1093_aje_kws288
crossref_primary_10_1093_biostatistics_kxy008
crossref_primary_10_1093_dote_doac100
crossref_primary_10_1111_jep_12081
crossref_primary_10_1007_s42952_020_00058_5
crossref_primary_10_1002_bimj_202200127
crossref_primary_10_1007_s10120_021_01225_1
crossref_primary_10_1016_S2352_3026_17_30052_2
crossref_primary_10_1016_j_ejca_2023_04_002
crossref_primary_10_1002_sim_4464
crossref_primary_10_1111_rssc_12566
crossref_primary_10_1177_0962280220934501
crossref_primary_10_1186_s12982_015_0043_6
crossref_primary_10_1002_sim_9171
crossref_primary_10_1186_s12874_019_0830_9
crossref_primary_10_1038_s41416_018_0090_1
Cites_doi 10.1111/j.2517-6161.1977.tb01600.x
10.2307/2530964
10.1002/sim.2414
10.1002/sim.1484
10.1016/j.cmpb.2006.01.004
10.1111/j.1467-9876.2005.00473.x
10.1002/sim.1597
10.1016/j.cmpb.2005.01.001
10.1111/j.2517-6161.1982.tb01203.x
10.1093/biomet/83.1.127
10.1002/sim.4780100112
10.1002/sim.4780090506
10.1002/sim.2399
ContentType Journal Article
Copyright The Author 2008. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oxfordjournals.org. 2009
The Author 2008. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oxfordjournals.org.
Copyright_xml – notice: The Author 2008. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oxfordjournals.org. 2009
– notice: The Author 2008. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oxfordjournals.org.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
NAPCQ
P64
RC3
7X8
DOI 10.1093/biostatistics/kxn021
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Nursing & Allied Health Premium
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1468-4357
EndPage 146
ExternalDocumentID 1614399171
18599516
10_1093_biostatistics_kxn021
10.1093/biostatistics/kxn021
Genre Journal Article
Feature
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
4.4
48X
53G
5GY
5VS
5WA
6PF
70D
AAIJN
AAJKP
AAJQQ
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUAY
AAUQX
AAVAP
AAWTL
ABDTM
ABEUO
ABIXL
ABJNI
ABLJU
ABNKS
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABZBJ
ACGFS
ACIPB
ACIWK
ACPRK
ACUFI
ACYTK
ADBBV
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADOCK
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFIYH
AFOFC
AFRAH
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIJHB
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
APWMN
ATGXG
AXUDD
AZVOD
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQUQU
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EBD
EBS
EE~
EJD
EMOBN
F5P
F9B
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
H13
H5~
HAR
HW0
HZ~
IOX
J21
KBUDW
KOP
KQ8
KSI
KSN
M-Z
M49
N9A
NGC
NMDNZ
NOMLY
NTWIH
NU-
O0~
O9-
ODMLO
OJQWA
OJZSN
OK1
OVD
OWPYF
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
RD5
RHF
RIG
RNI
ROL
ROX
RUSNO
RW1
RXO
RZO
SV3
TEORI
TJP
TN5
TR2
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
AAYXX
ABDFA
ABEJV
ABGNP
ABPQP
ABVGC
ACUXJ
ADNBA
ADYJX
AGORE
AJBYB
AJNCP
ALXQX
ANAKG
CITATION
JXSIZ
AHGBF
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
NAPCQ
P64
RC3
7X8
ID FETCH-LOGICAL-c418t-49327afefc01b76e6f6da57002ab3a24d3f405b4943e27bf27622a2e2c9e9b113
ISSN 1465-4644
1468-4357
IngestDate Thu Jul 10 23:51:28 EDT 2025
Mon Jun 30 11:03:41 EDT 2025
Mon Jul 21 05:58:44 EDT 2025
Tue Jul 01 03:45:50 EDT 2025
Thu Apr 24 23:04:36 EDT 2025
Wed Aug 28 03:24:21 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Relative survival
Additive model
EM algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c418t-49327afefc01b76e6f6da57002ab3a24d3f405b4943e27bf27622a2e2c9e9b113
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://academic.oup.com/biostatistics/article-pdf/10/1/136/752793/kxn021.pdf
PMID 18599516
PQID 204434973
PQPubID 26167
PageCount 11
ParticipantIDs proquest_miscellaneous_66733389
proquest_journals_204434973
pubmed_primary_18599516
crossref_citationtrail_10_1093_biostatistics_kxn021
crossref_primary_10_1093_biostatistics_kxn021
oup_primary_10_1093_biostatistics_kxn021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-01-01
PublicationDateYYYYMMDD 2009-01-01
PublicationDate_xml – month: 01
  year: 2009
  text: 2009-01-01
  day: 01
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Biostatistics (Oxford, England)
PublicationTitleAlternate Biostatistics
PublicationYear 2009
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Stare (17_19716250) 2005; 24
Andersen (1_13769514) 1985; 41
(6_31415369) 1961; 6
(12_25338201) 1982; 44
Giorgi (9_18821903) 2005; 78
Lambert (11_19716231) 2005; 24
Pohar (13_21726845) 2006; 81
SASIENI (15_20298138) 1996; 83
Cheuvart (3_9418581) 1991; 10
Dickman (5_17973185) 2004; 23
(10_31415370) 1987; 36
(4_24606831) 1977; 39
Est  ve (7_5658767) 1990; 9
(16_31415371) 2005; 54
Giorgi (8_17783969) 2003; 22
References_xml – volume: 39
  start-page: 1
  year: 1977
  ident: 4_24606831
  publication-title: JOURNAL OF THE ROYAL STATISTICAL SOCIETY
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume: 41
  start-page: 921
  issn: 0006-341X
  issue: 4
  year: 1985
  ident: 1_13769514
  publication-title: Biometrics
  doi: 10.2307/2530964
– volume: 24
  start-page: 3911
  issn: 0277-6715
  issue: 24
  year: 2005
  ident: 17_19716250
  publication-title: Statistics in medicine
  doi: 10.1002/sim.2414
– volume: 36
  start-page: 309
  year: 1987
  ident: 10_31415370
  publication-title: JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C
– volume: 22
  start-page: 2767
  issn: 0277-6715
  issue: 17
  year: 2003
  ident: 8_17783969
  publication-title: Statistics in medicine
  doi: 10.1002/sim.1484
– volume: 6
  start-page: 101
  year: 1961
  ident: 6_31415369
  publication-title: THE RELATIVE SURVIVAL RATE A STATISTICAL METHODOLOGY
– volume: 81
  start-page: 272
  issn: 0169-2607
  issue: 3
  year: 2006
  ident: 13_21726845
  publication-title: Computer methods and programs in biomedicine
  doi: 10.1016/j.cmpb.2006.01.004
– volume: 54
  start-page: 115
  year: 2005
  ident: 16_31415371
  publication-title: JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C
  doi: 10.1111/j.1467-9876.2005.00473.x
– volume: 23
  start-page: 51
  issn: 0277-6715
  issue: 1
  year: 2004
  ident: 5_17973185
  publication-title: Statistics in medicine
  doi: 10.1002/sim.1597
– volume: 78
  start-page: 175
  issn: 0169-2607
  issue: 2
  year: 2005
  ident: 9_18821903
  publication-title: Computer methods and programs in biomedicine
  doi: 10.1016/j.cmpb.2005.01.001
– volume: 44
  start-page: 226
  year: 1982
  ident: 12_25338201
  publication-title: JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B
  doi: 10.1111/j.2517-6161.1982.tb01203.x
– volume: 83
  start-page: 127
  issn: 0006-3444
  issue: 1
  year: 1996
  ident: 15_20298138
  publication-title: Biometrika
  doi: 10.1093/biomet/83.1.127
– volume: 10
  start-page: 65
  issn: 0277-6715
  issue: 1
  year: 1991
  ident: 3_9418581
  publication-title: Statistics in medicine
  doi: 10.1002/sim.4780100112
– volume: 9
  start-page: 529
  issn: 0277-6715
  issue: 5
  year: 1990
  ident: 7_5658767
  publication-title: Statistics in medicine
  doi: 10.1002/sim.4780090506
– volume: 24
  start-page: 3871
  issn: 0277-6715
  issue: 24
  year: 2005
  ident: 11_19716231
  publication-title: Statistics in medicine
  doi: 10.1002/sim.2399
SSID ssj0022363
Score 2.072734
Snippet The goal of relative survival methodology is to compare the survival experience of a cohort with that of the background population. Most often an additive...
SourceID proquest
pubmed
crossref
oup
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 136
SubjectTerms Algorithms
Bias
Biometry - methods
Estimating techniques
Follow-Up Studies
Humans
Likelihood Functions
Myocardial Infarction - mortality
Proportional Hazards Models
Risk Factors
Statistical analysis
Survival Analysis
Title An approach to estimation in relative survival regression
URI https://www.ncbi.nlm.nih.gov/pubmed/18599516
https://www.proquest.com/docview/204434973
https://www.proquest.com/docview/66733389
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgCIkXxDdlfPiBB6TJWWK7_nisEGgaAg1pk_YW2Y6DpiEX0XQa_PWc43w0FMHGS9S66bXJXc53Z_9-h9Dr2KRIK8WJK2RNeEVrooT2xCor64KCRVQRO_zxkzg44Yen89Nxu22LLmls5n7-EVfyP1qFMdBrRMleQ7ODUBiA16BfOIKG4XglHS_CwAkeY8hImJGQiCNK5cLvrdbgDi5aAv8vaddrmCzlni0jqqgjbI7so5f9hveuw8dGteAIHHmqZWd7R9lYSG0hMh1UfxiGQDZVuA-zSXFBbxQXkj_kYk64SBSNme_HFIEoS06caL5lLMkjFkxsTK5dvXHLbydOK7t5wfD-_DLkCT89Jcr-bQIbthWmBXVWTuSUScpNdItCJhGbXHz4PCw0QXDUNtsbrrNHV2q2P5Gyn6RMopcJInIrMWkDlON76G6XWeBFMpP76IYPD9Dt1Gv0x0OkFwH3xoKbJR6NBZ8F3BsL7o0Fj8byCJ28f3f89oB0fTOI44VqCIeYXJra1y4vrBRe1KIysY8BNZYZyitWQ5huuebMU2lrChMiNdRTp722RcEeo52wDP4pwoU1lbGQNFBXxVTfzp2qnMwrw503Ss4Q6-9H6TpS-djb5Gv5N13MEBm-9S2Rqvzj_Ddwq6946m6vj7J7UlclzTlnXEs2Q6-GT8GNxrUxE_xyvSpj91sGwfsMPUlKHH9NRU6-Qjy75p_eRXfGJ-o52mm-r_0LCGAb-7I1wV8-X6Nm
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+approach+to+estimation+in+relative+survival+regression&rft.jtitle=Biostatistics+%28Oxford%2C+England%29&rft.au=Perme%2C+M.+P.&rft.au=Henderson%2C+R.&rft.au=Stare%2C+J.&rft.date=2009-01-01&rft.issn=1465-4644&rft.eissn=1468-4357&rft.volume=10&rft.issue=1&rft.spage=136&rft.epage=146&rft_id=info:doi/10.1093%2Fbiostatistics%2Fkxn021&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_biostatistics_kxn021
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1465-4644&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1465-4644&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1465-4644&client=summon