An approach to estimation in relative survival regression
The goal of relative survival methodology is to compare the survival experience of a cohort with that of the background population. Most often an additive excess hazard model is employed, which assumes that each person's hazard is a sum of 2 components-the population hazard obtained from life t...
Saved in:
Published in | Biostatistics (Oxford, England) Vol. 10; no. 1; pp. 136 - 146 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.01.2009
Oxford Publishing Limited (England) |
Subjects | |
Online Access | Get full text |
ISSN | 1465-4644 1468-4357 1468-4357 |
DOI | 10.1093/biostatistics/kxn021 |
Cover
Loading…
Abstract | The goal of relative survival methodology is to compare the survival experience of a cohort with that of the background population. Most often an additive excess hazard model is employed, which assumes that each person's hazard is a sum of 2 components-the population hazard obtained from life tables and an excess hazard attributable to the specific condition. Usually covariate effects on the excess hazard are assumed to have a proportional hazards structure with parametrically modelled baseline. In this paper, we introduce a new fitting procedure using the expectation-maximization algorithm, treating the cause of death as missing data. The method requires no assumptions about the baseline excess hazard thus reducing the risk of bias through misspecification. It accommodates the possibility of knowledge of cause of death for some patients, and as a side effect, the method yields an estimate of the ratio between the excess and the population hazard for each subject. More importantly, it estimates the baseline excess hazard flexibly with no additional degrees of freedom spent. Finally, it is a generalization of the Cox model, meaning that all the wealth of options in existing software for the Cox model can be used in relative survival. The method is applied to a data set on survival after myocardial infarction, where it shows how a particular form of the hazard function could be missed using the existing methods. |
---|---|
AbstractList | The goal of relative survival methodology is to compare the survival experience of a cohort with that of the background population. Most often an additive excess hazard model is employed, which assumes that each person's hazard is a sum of 2 components--the population hazard obtained from life tables and an excess hazard attributable to the specific condition. Usually covariate effects on the excess hazard are assumed to have a proportional hazards structure with parametrically modelled baseline. In this paper, we introduce a new fitting procedure using the expectation-maximization algorithm, treating the cause of death as missing data. The method requires no assumptions about the baseline excess hazard thus reducing the risk of bias through misspecification. It accommodates the possibility of knowledge of cause of death for some patients, and as a side effect, the method yields an estimate of the ratio between the excess and the population hazard for each subject. More importantly, it estimates the baseline excess hazard flexibly with no additional degrees of freedom spent. Finally, it is a generalization of the Cox model, meaning that all the wealth of options in existing software for the Cox model can be used in relative survival. The method is applied to a data set on survival after myocardial infarction, where it shows how a particular form of the hazard function could be missed using the existing methods. The goal of relative survival methodology is to compare the survival experience of a cohort with that of the background population. Most often an additive excess hazard model is employed, which assumes that each person's hazard is a sum of 2 components--the population hazard obtained from life tables and an excess hazard attributable to the specific condition. Usually covariate effects on the excess hazard are assumed to have a proportional hazards structure with parametrically modelled baseline. In this paper, we introduce a new fitting procedure using the expectation-maximization algorithm, treating the cause of death as missing data. The method requires no assumptions about the baseline excess hazard thus reducing the risk of bias through misspecification. It accommodates the possibility of knowledge of cause of death for some patients, and as a side effect, the method yields an estimate of the ratio between the excess and the population hazard for each subject. More importantly, it estimates the baseline excess hazard flexibly with no additional degrees of freedom spent. Finally, it is a generalization of the Cox model, meaning that all the wealth of options in existing software for the Cox model can be used in relative survival. The method is applied to a data set on survival after myocardial infarction, where it shows how a particular form of the hazard function could be missed using the existing methods.The goal of relative survival methodology is to compare the survival experience of a cohort with that of the background population. Most often an additive excess hazard model is employed, which assumes that each person's hazard is a sum of 2 components--the population hazard obtained from life tables and an excess hazard attributable to the specific condition. Usually covariate effects on the excess hazard are assumed to have a proportional hazards structure with parametrically modelled baseline. In this paper, we introduce a new fitting procedure using the expectation-maximization algorithm, treating the cause of death as missing data. The method requires no assumptions about the baseline excess hazard thus reducing the risk of bias through misspecification. It accommodates the possibility of knowledge of cause of death for some patients, and as a side effect, the method yields an estimate of the ratio between the excess and the population hazard for each subject. More importantly, it estimates the baseline excess hazard flexibly with no additional degrees of freedom spent. Finally, it is a generalization of the Cox model, meaning that all the wealth of options in existing software for the Cox model can be used in relative survival. The method is applied to a data set on survival after myocardial infarction, where it shows how a particular form of the hazard function could be missed using the existing methods. The goal of relative survival methodology is to compare the survival experience of a cohort with that of the background population. Most often an additive excess hazard model is employed, which assumes that each person's hazard is a sum of 2 components--the population hazard obtained from life tables and an excess hazard attributable to the specific condition. Usually covariate effects on the excess hazard are assumed to have a proportional hazards structure with parametrically modelled baseline. In this paper, we introduce a new fitting procedure using the expectation-maximization algorithm, treating the cause of death as missing data. The method requires no assumptions about the baseline excess hazard thus reducing the risk of bias through misspecification. It accommodates the possibility of knowledge of cause of death for some patients, and as a side effect, the method yields an estimate of the ratio between the excess and the population hazard for each subject. More importantly, it estimates the baseline excess hazard flexibly with no additional degrees of freedom spent. Finally, it is a generalization of the Cox model, meaning that all the wealth of options in existing software for the Cox model can be used in relative survival. The method is applied to a data set on survival after myocardial infarction, where it shows how a particular form of the hazard function could be missed using the existing methods. [PUBLICATION ABSTRACT] |
Author | Perme, Maja Pohar Henderson, Robin Stare, Janez |
Author_xml | – sequence: 1 givenname: Maja Pohar surname: Perme fullname: Perme, Maja Pohar email: maja.pohar@mf.uni-lj.si – sequence: 2 givenname: Robin surname: Henderson fullname: Henderson, Robin email: maja.pohar@mf.uni-lj.si – sequence: 3 givenname: Janez surname: Stare fullname: Stare, Janez email: maja.pohar@mf.uni-lj.si |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18599516$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkMtOwzAURC1URB_wBwhFLNiF-hUnZldVvKRKbGBtOa4DLqkd7KSCv8c0BYkuEKt7dX1mNJ4xGFhnNQCnCF4iyMm0NC60sjWhNSpMX98txOgAjBBlRUpJlg-2e5ZSRukQjENYQYgxYeQIDFGRcZ4hNgJ8ZhPZNN5J9ZK0LtHRbh1dnU2MTbyu477RSej8xmxkHS_PXocQ34_BYSXroE92cwKebq4f53fp4uH2fj5bpIqiok0pJziXla4URGXONKvYUmZ5zCJLIjFdkorCrKScEo3zssI5w1hijRXXvESITMBF7xtDvnUxn1iboHRdS6tdFwRjOSGk4BE83wNXrvM2ZhMYUkooj-AEnO2grlzrpWh8_K7_EN-NROCqB5R3IXhdCWXabSGtl6YWCIqv-sWv-kVffxTTPfGP_9-yaS9zXfM_xSdfl6DK |
CitedBy_id | crossref_primary_10_1016_S0140_6736_14_62038_9 crossref_primary_10_1016_j_jgo_2018_05_004 crossref_primary_10_1186_1471_2288_13_102 crossref_primary_10_3109_0284186X_2012_731522 crossref_primary_10_1007_s13304_019_00662_z crossref_primary_10_1080_0284186X_2018_1454603 crossref_primary_10_1111_biom_12568 crossref_primary_10_1002_jha2_202 crossref_primary_10_1093_jnci_djae227 crossref_primary_10_1186_s12874_017_0351_3 crossref_primary_10_1016_j_canep_2013_04_001 crossref_primary_10_5691_jjb_44_129 crossref_primary_10_1002_sim_7645 crossref_primary_10_1080_09720510_2016_1228322 crossref_primary_10_1016_j_ygyno_2016_11_019 crossref_primary_10_1186_1471_2458_14_95 crossref_primary_10_1001_jamanetworkopen_2023_30018 crossref_primary_10_1007_s10552_012_0141_5 crossref_primary_10_1002_sim_8010 crossref_primary_10_1002_ijc_34291 crossref_primary_10_1002_sim_8693 crossref_primary_10_1038_leu_2014_251 crossref_primary_10_1111_j_1541_0420_2011_01640_x crossref_primary_10_1038_s41375_018_0054_8 crossref_primary_10_1007_s42081_023_00190_6 crossref_primary_10_1093_biostatistics_kxz017 crossref_primary_10_1016_j_canep_2011_05_010 crossref_primary_10_1016_j_beha_2023_101474 crossref_primary_10_1093_aje_kws288 crossref_primary_10_1093_biostatistics_kxy008 crossref_primary_10_1093_dote_doac100 crossref_primary_10_1111_jep_12081 crossref_primary_10_1007_s42952_020_00058_5 crossref_primary_10_1002_bimj_202200127 crossref_primary_10_1007_s10120_021_01225_1 crossref_primary_10_1016_S2352_3026_17_30052_2 crossref_primary_10_1016_j_ejca_2023_04_002 crossref_primary_10_1002_sim_4464 crossref_primary_10_1111_rssc_12566 crossref_primary_10_1177_0962280220934501 crossref_primary_10_1186_s12982_015_0043_6 crossref_primary_10_1002_sim_9171 crossref_primary_10_1186_s12874_019_0830_9 crossref_primary_10_1038_s41416_018_0090_1 |
Cites_doi | 10.1111/j.2517-6161.1977.tb01600.x 10.2307/2530964 10.1002/sim.2414 10.1002/sim.1484 10.1016/j.cmpb.2006.01.004 10.1111/j.1467-9876.2005.00473.x 10.1002/sim.1597 10.1016/j.cmpb.2005.01.001 10.1111/j.2517-6161.1982.tb01203.x 10.1093/biomet/83.1.127 10.1002/sim.4780100112 10.1002/sim.4780090506 10.1002/sim.2399 |
ContentType | Journal Article |
Copyright | The Author 2008. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oxfordjournals.org. 2009 The Author 2008. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oxfordjournals.org. |
Copyright_xml | – notice: The Author 2008. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oxfordjournals.org. 2009 – notice: The Author 2008. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oxfordjournals.org. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. NAPCQ P64 RC3 7X8 |
DOI | 10.1093/biostatistics/kxn021 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nursing & Allied Health Premium Genetics Abstracts Biotechnology Research Abstracts Technology Research Database ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Nursing & Allied Health Premium |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1468-4357 |
EndPage | 146 |
ExternalDocumentID | 1614399171 18599516 10_1093_biostatistics_kxn021 10.1093/biostatistics/kxn021 |
Genre | Journal Article Feature |
GroupedDBID | --- -E4 .2P .I3 0R~ 1TH 23N 2WC 4.4 48X 53G 5GY 5VS 5WA 6PF 70D AAIJN AAJKP AAJQQ AAMVS AAOGV AAPQZ AAPXW AARHZ AASNB AAUAY AAUQX AAVAP AAWTL ABDTM ABEUO ABIXL ABJNI ABLJU ABNKS ABPTD ABQLI ABQTQ ABWST ABXVV ABZBJ ACGFS ACIPB ACIWK ACPRK ACUFI ACYTK ADBBV ADEYI ADEZT ADGZP ADHKW ADHZD ADIPN ADOCK ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZXQ AECKG AEGPL AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFIYH AFOFC AFRAH AFXEN AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIJHB AJEEA AJEUX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT APWMN ATGXG AXUDD AZVOD BAWUL BAYMD BCRHZ BEYMZ BHONS BQUQU BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EBD EBS EE~ EJD EMOBN F5P F9B FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC H13 H5~ HAR HW0 HZ~ IOX J21 KBUDW KOP KQ8 KSI KSN M-Z M49 N9A NGC NMDNZ NOMLY NTWIH NU- O0~ O9- ODMLO OJQWA OJZSN OK1 OVD OWPYF P2P PAFKI PEELM PQQKQ Q1. Q5Y RD5 RHF RIG RNI ROL ROX RUSNO RW1 RXO RZO SV3 TEORI TJP TN5 TR2 W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ~91 AAYXX ABDFA ABEJV ABGNP ABPQP ABVGC ACUXJ ADNBA ADYJX AGORE AJBYB AJNCP ALXQX ANAKG CITATION JXSIZ AHGBF CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. NAPCQ P64 RC3 7X8 |
ID | FETCH-LOGICAL-c418t-49327afefc01b76e6f6da57002ab3a24d3f405b4943e27bf27622a2e2c9e9b113 |
ISSN | 1465-4644 1468-4357 |
IngestDate | Thu Jul 10 23:51:28 EDT 2025 Mon Jun 30 11:03:41 EDT 2025 Mon Jul 21 05:58:44 EDT 2025 Tue Jul 01 03:45:50 EDT 2025 Thu Apr 24 23:04:36 EDT 2025 Wed Aug 28 03:24:21 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Relative survival Additive model EM algorithm |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c418t-49327afefc01b76e6f6da57002ab3a24d3f405b4943e27bf27622a2e2c9e9b113 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://academic.oup.com/biostatistics/article-pdf/10/1/136/752793/kxn021.pdf |
PMID | 18599516 |
PQID | 204434973 |
PQPubID | 26167 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_66733389 proquest_journals_204434973 pubmed_primary_18599516 crossref_citationtrail_10_1093_biostatistics_kxn021 crossref_primary_10_1093_biostatistics_kxn021 oup_primary_10_1093_biostatistics_kxn021 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-01-01 |
PublicationDateYYYYMMDD | 2009-01-01 |
PublicationDate_xml | – month: 01 year: 2009 text: 2009-01-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Biostatistics (Oxford, England) |
PublicationTitleAlternate | Biostatistics |
PublicationYear | 2009 |
Publisher | Oxford University Press Oxford Publishing Limited (England) |
Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
References | Stare (17_19716250) 2005; 24 Andersen (1_13769514) 1985; 41 (6_31415369) 1961; 6 (12_25338201) 1982; 44 Giorgi (9_18821903) 2005; 78 Lambert (11_19716231) 2005; 24 Pohar (13_21726845) 2006; 81 SASIENI (15_20298138) 1996; 83 Cheuvart (3_9418581) 1991; 10 Dickman (5_17973185) 2004; 23 (10_31415370) 1987; 36 (4_24606831) 1977; 39 Est ve (7_5658767) 1990; 9 (16_31415371) 2005; 54 Giorgi (8_17783969) 2003; 22 |
References_xml | – volume: 39 start-page: 1 year: 1977 ident: 4_24606831 publication-title: JOURNAL OF THE ROYAL STATISTICAL SOCIETY doi: 10.1111/j.2517-6161.1977.tb01600.x – volume: 41 start-page: 921 issn: 0006-341X issue: 4 year: 1985 ident: 1_13769514 publication-title: Biometrics doi: 10.2307/2530964 – volume: 24 start-page: 3911 issn: 0277-6715 issue: 24 year: 2005 ident: 17_19716250 publication-title: Statistics in medicine doi: 10.1002/sim.2414 – volume: 36 start-page: 309 year: 1987 ident: 10_31415370 publication-title: JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C – volume: 22 start-page: 2767 issn: 0277-6715 issue: 17 year: 2003 ident: 8_17783969 publication-title: Statistics in medicine doi: 10.1002/sim.1484 – volume: 6 start-page: 101 year: 1961 ident: 6_31415369 publication-title: THE RELATIVE SURVIVAL RATE A STATISTICAL METHODOLOGY – volume: 81 start-page: 272 issn: 0169-2607 issue: 3 year: 2006 ident: 13_21726845 publication-title: Computer methods and programs in biomedicine doi: 10.1016/j.cmpb.2006.01.004 – volume: 54 start-page: 115 year: 2005 ident: 16_31415371 publication-title: JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C doi: 10.1111/j.1467-9876.2005.00473.x – volume: 23 start-page: 51 issn: 0277-6715 issue: 1 year: 2004 ident: 5_17973185 publication-title: Statistics in medicine doi: 10.1002/sim.1597 – volume: 78 start-page: 175 issn: 0169-2607 issue: 2 year: 2005 ident: 9_18821903 publication-title: Computer methods and programs in biomedicine doi: 10.1016/j.cmpb.2005.01.001 – volume: 44 start-page: 226 year: 1982 ident: 12_25338201 publication-title: JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B doi: 10.1111/j.2517-6161.1982.tb01203.x – volume: 83 start-page: 127 issn: 0006-3444 issue: 1 year: 1996 ident: 15_20298138 publication-title: Biometrika doi: 10.1093/biomet/83.1.127 – volume: 10 start-page: 65 issn: 0277-6715 issue: 1 year: 1991 ident: 3_9418581 publication-title: Statistics in medicine doi: 10.1002/sim.4780100112 – volume: 9 start-page: 529 issn: 0277-6715 issue: 5 year: 1990 ident: 7_5658767 publication-title: Statistics in medicine doi: 10.1002/sim.4780090506 – volume: 24 start-page: 3871 issn: 0277-6715 issue: 24 year: 2005 ident: 11_19716231 publication-title: Statistics in medicine doi: 10.1002/sim.2399 |
SSID | ssj0022363 |
Score | 2.072734 |
Snippet | The goal of relative survival methodology is to compare the survival experience of a cohort with that of the background population. Most often an additive... |
SourceID | proquest pubmed crossref oup |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 136 |
SubjectTerms | Algorithms Bias Biometry - methods Estimating techniques Follow-Up Studies Humans Likelihood Functions Myocardial Infarction - mortality Proportional Hazards Models Risk Factors Statistical analysis Survival Analysis |
Title | An approach to estimation in relative survival regression |
URI | https://www.ncbi.nlm.nih.gov/pubmed/18599516 https://www.proquest.com/docview/204434973 https://www.proquest.com/docview/66733389 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgCIkXxDdlfPiBB6TJWWK7_nisEGgaAg1pk_YW2Y6DpiEX0XQa_PWc43w0FMHGS9S66bXJXc53Z_9-h9Dr2KRIK8WJK2RNeEVrooT2xCor64KCRVQRO_zxkzg44Yen89Nxu22LLmls5n7-EVfyP1qFMdBrRMleQ7ODUBiA16BfOIKG4XglHS_CwAkeY8hImJGQiCNK5cLvrdbgDi5aAv8vaddrmCzlni0jqqgjbI7so5f9hveuw8dGteAIHHmqZWd7R9lYSG0hMh1UfxiGQDZVuA-zSXFBbxQXkj_kYk64SBSNme_HFIEoS06caL5lLMkjFkxsTK5dvXHLbydOK7t5wfD-_DLkCT89Jcr-bQIbthWmBXVWTuSUScpNdItCJhGbXHz4PCw0QXDUNtsbrrNHV2q2P5Gyn6RMopcJInIrMWkDlON76G6XWeBFMpP76IYPD9Dt1Gv0x0OkFwH3xoKbJR6NBZ8F3BsL7o0Fj8byCJ28f3f89oB0fTOI44VqCIeYXJra1y4vrBRe1KIysY8BNZYZyitWQ5huuebMU2lrChMiNdRTp722RcEeo52wDP4pwoU1lbGQNFBXxVTfzp2qnMwrw503Ss4Q6-9H6TpS-djb5Gv5N13MEBm-9S2Rqvzj_Ddwq6946m6vj7J7UlclzTlnXEs2Q6-GT8GNxrUxE_xyvSpj91sGwfsMPUlKHH9NRU6-Qjy75p_eRXfGJ-o52mm-r_0LCGAb-7I1wV8-X6Nm |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+approach+to+estimation+in+relative+survival+regression&rft.jtitle=Biostatistics+%28Oxford%2C+England%29&rft.au=Perme%2C+M.+P.&rft.au=Henderson%2C+R.&rft.au=Stare%2C+J.&rft.date=2009-01-01&rft.issn=1465-4644&rft.eissn=1468-4357&rft.volume=10&rft.issue=1&rft.spage=136&rft.epage=146&rft_id=info:doi/10.1093%2Fbiostatistics%2Fkxn021&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_biostatistics_kxn021 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1465-4644&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1465-4644&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1465-4644&client=summon |