Design optimization of lattice structures with stress constraints

[Display omitted] •Computational and experimental evaluations of effective mechanical properties.•Homogenization-based stress-constrained optimization of lattice structures.•Implementation of unit cell orthotropic properties in the optimization process.•Experimental investigation of optimized lattic...

Full description

Saved in:
Bibliographic Details
Published inMaterials & design Vol. 210; p. 110026
Main Authors Fernandes, Rossana R., Tamijani, Ali Y.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.11.2021
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Computational and experimental evaluations of effective mechanical properties.•Homogenization-based stress-constrained optimization of lattice structures.•Implementation of unit cell orthotropic properties in the optimization process.•Experimental investigation of optimized lattice structure stiffnesses and strengths. This paper presents an experimentally validated framework used to perform topology and orientation (morphology) optimization of lattice structures subject to stress constraints. The effective stiffnesses and yield stresses of a unit cell are obtained using numerical homogenization and validated experimentally. Due to the orthotropic behavior of the unit cell, the modified Hill’s yield criterion is used to describe the lattice strength. The effective orthotropic properties are implemented via macrostructure topology optimization to further improve the lattice structure stiffness. Homogenization-based optimization is performed using a coarse mesh and the optimized design is projected onto a fine mesh. This reduces the computational cost significantly. Finally, the projected design is post-processed to ensure the fabrication feasibility of the optimized lattice structure. The framework is tested for two cases: an L-shaped bracket and a single-edge notched bend (SENB) problem. A comparison of the compliance-based and stress-constrained designs used in the two cases demonstrates that the changes in the optimal material distribution that occur upon implementing the stress constraint result in higher yield strength. The SENB lattice structures are additively manufactured and the stiffnesses and yield strength of the optimized designs are compared to those obtained numerically.
AbstractList This paper presents an experimentally validated framework used to perform topology and orientation (morphology) optimization of lattice structures subject to stress constraints. The effective stiffnesses and yield stresses of a unit cell are obtained using numerical homogenization and validated experimentally. Due to the orthotropic behavior of the unit cell, the modified Hill’s yield criterion is used to describe the lattice strength. The effective orthotropic properties are implemented via macrostructure topology optimization to further improve the lattice structure stiffness. Homogenization-based optimization is performed using a coarse mesh and the optimized design is projected onto a fine mesh. This reduces the computational cost significantly. Finally, the projected design is post-processed to ensure the fabrication feasibility of the optimized lattice structure. The framework is tested for two cases: an L-shaped bracket and a single-edge notched bend (SENB) problem. A comparison of the compliance-based and stress-constrained designs used in the two cases demonstrates that the changes in the optimal material distribution that occur upon implementing the stress constraint result in higher yield strength. The SENB lattice structures are additively manufactured and the stiffnesses and yield strength of the optimized designs are compared to those obtained numerically.
[Display omitted] •Computational and experimental evaluations of effective mechanical properties.•Homogenization-based stress-constrained optimization of lattice structures.•Implementation of unit cell orthotropic properties in the optimization process.•Experimental investigation of optimized lattice structure stiffnesses and strengths. This paper presents an experimentally validated framework used to perform topology and orientation (morphology) optimization of lattice structures subject to stress constraints. The effective stiffnesses and yield stresses of a unit cell are obtained using numerical homogenization and validated experimentally. Due to the orthotropic behavior of the unit cell, the modified Hill’s yield criterion is used to describe the lattice strength. The effective orthotropic properties are implemented via macrostructure topology optimization to further improve the lattice structure stiffness. Homogenization-based optimization is performed using a coarse mesh and the optimized design is projected onto a fine mesh. This reduces the computational cost significantly. Finally, the projected design is post-processed to ensure the fabrication feasibility of the optimized lattice structure. The framework is tested for two cases: an L-shaped bracket and a single-edge notched bend (SENB) problem. A comparison of the compliance-based and stress-constrained designs used in the two cases demonstrates that the changes in the optimal material distribution that occur upon implementing the stress constraint result in higher yield strength. The SENB lattice structures are additively manufactured and the stiffnesses and yield strength of the optimized designs are compared to those obtained numerically.
ArticleNumber 110026
Author Tamijani, Ali Y.
Fernandes, Rossana R.
Author_xml – sequence: 1
  givenname: Rossana R.
  surname: Fernandes
  fullname: Fernandes, Rossana R.
  email: fernanr5@my.erau.edu
– sequence: 2
  givenname: Ali Y.
  surname: Tamijani
  fullname: Tamijani, Ali Y.
  email: tamijana@erau.edu
BookMark eNqFkMtOAjEUhhuDiYC-gYt5AbCntMyMCxOCNxISN7puzrRnsARmSFs0-vQWxrhwoatzSf8vp9-A9Zq2IcYugY-Bw_RqPd5itBTGggsYA3AupiesD0U-GUko8x7rp40cgcjVGRuEsE4vRD6RfTa7peBWTdbuotu6T4yuTUOdbTBGZygL0e9N3HsK2buLr4eZQshM26QOXRPDOTutcRPo4rsO2cv93fP8cbR8eljMZ8uRkVDEdAeg5Fgizy0IqwTkhGB5Xig5BVGpgvOKDNQCsCQorEFSWJCF0kqh1GTIFh3XtrjWO--26D90i04fF61fafTp5g1pgEQtVSFyAsmNRFRFVQkwdVWbyk4TS3Ys49sQPNU_POD6oFSvdadUH5TqTmmKXf-KGRePyg4uNv-Fb7owJUlvjrwOxlFjyDpPJqZfuL8BX5gRlvA
CitedBy_id crossref_primary_10_1007_s42401_024_00303_3
crossref_primary_10_1016_j_compstruc_2024_107370
crossref_primary_10_1016_j_matdes_2024_112887
crossref_primary_10_1007_s12206_022_2105_3
crossref_primary_10_1016_j_matdes_2024_113209
crossref_primary_10_1016_j_matdes_2025_113614
crossref_primary_10_46519_ij3dptdi_1452986
crossref_primary_10_1016_j_paerosci_2024_101021
crossref_primary_10_1016_j_cja_2024_103373
crossref_primary_10_3390_ma15092993
crossref_primary_10_1002_jsp2_1285
crossref_primary_10_3390_ma15249072
crossref_primary_10_1111_ffe_13711
crossref_primary_10_1016_j_heliyon_2023_e13539
crossref_primary_10_1016_j_mtcomm_2022_104850
crossref_primary_10_1590_1980_5373_mr_2022_0060
crossref_primary_10_1016_j_ijimpeng_2023_104528
crossref_primary_10_1007_s40964_025_01026_3
crossref_primary_10_54365_adyumbd_1440934
Cites_doi 10.1007/BF01196941
10.1007/s00419-015-1106-4
10.1007/BF00369853
10.1007/s00158-010-0602-y
10.1007/BF01742752
10.1002/(SICI)1097-0207(19981230)43:8<1453::AID-NME480>3.0.CO;2-2
10.1007/s00158-009-0440-y
10.1016/j.matdes.2020.109155
10.1002/nme.1064
10.1016/j.cma.2020.112979
10.1007/s00158-012-0880-7
10.1364/OE.20.015263
10.1016/j.cma.2018.10.010
10.1016/j.ijsolstr.2017.11.013
10.1016/j.cma.2021.113749
10.1016/0020-7403(68)90021-0
10.1002/nme.3072
10.1016/j.commatsci.2013.09.006
10.1016/0045-7825(90)90148-F
10.1016/j.cma.2019.02.031
10.1002/nme.6548
10.1080/17452759.2019.1647488
10.1007/s00158-017-1709-1
10.1137/070688900
10.1016/S0022-5096(01)00010-2
10.1016/j.camwa.2018.08.007
10.1007/s00158-020-02681-6
10.1002/nme.1620240207
10.1016/S0045-7949(98)00131-X
ContentType Journal Article
Copyright 2021 The Authors
Copyright_xml – notice: 2021 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.matdes.2021.110026
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-4197
ExternalDocumentID oai_doaj_org_article_1178595827e140c4aa58bb21cfbfcbd6
10_1016_j_matdes_2021_110026
S0264127521005815
GroupedDBID --K
--M
-~X
.~1
0SF
1B1
1~.
4.4
457
4G.
5GY
5VS
6I.
7-5
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BCNDV
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GROUPED_DOAJ
IHE
J1W
KOM
M41
MO0
NCXOZ
OAUVE
OK1
P2P
PC.
Q38
ROL
SDF
SDG
SDP
SPC
SSM
SST
SSZ
T5K
~G-
0R~
29M
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
JJJVA
MAGPM
O9-
P-8
P-9
R2-
RIG
RNS
RPZ
SEW
SMS
SSH
WUQ
EFKBS
ID FETCH-LOGICAL-c418t-411a40a9a07d12d5217ea1d07854612b5800bec1f21a9e18dcae5a8ed19d42553
IEDL.DBID DOA
ISSN 0264-1275
IngestDate Wed Aug 27 01:27:39 EDT 2025
Tue Jul 01 02:24:03 EDT 2025
Thu Apr 24 22:58:08 EDT 2025
Fri Feb 23 02:41:19 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Cellular solids
Topology optimization
Morphology optimization
Homogenization
Additive manufacturing
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-411a40a9a07d12d5217ea1d07854612b5800bec1f21a9e18dcae5a8ed19d42553
OpenAccessLink https://doaj.org/article/1178595827e140c4aa58bb21cfbfcbd6
ParticipantIDs doaj_primary_oai_doaj_org_article_1178595827e140c4aa58bb21cfbfcbd6
crossref_primary_10_1016_j_matdes_2021_110026
crossref_citationtrail_10_1016_j_matdes_2021_110026
elsevier_sciencedirect_doi_10_1016_j_matdes_2021_110026
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-15
PublicationDateYYYYMMDD 2021-11-15
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-15
  day: 15
PublicationDecade 2020
PublicationTitle Materials & design
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Guedes, Kikuchi (b0080) 1990; 83
Alacoque, Watkins, Tamijani (b0120) 2021; 379
Clausen, Andreassen (b0155) 2017; 56
Lazarov, Wang, Sigmund (b0160) 2016; 86
Stutz, Groen, Sigmund, Bærentzen (b0125) 2020; 62
Yu, Huang, Zou, Shao, Liu (b0055) 2020; 15
Andreassen, Andreasen (b0090) 2014; 83
S.G. Johnson, The NLopt nonlinear-optimization package.
Rumpf, Pazos (b0170) 2012; 20
Tamijani, Velasco, Alacoque (b0075) 2020
Yang, Chen (b0030) 1996; 12
Allaire, Geoffroy-Donders, Pantz (b0015) 2019; 78
Da Silva, Aage, Beck, Sigmund (b0165) 2021; 122
Holmberg, Torstenfelt, Klarbring (b0045) 2013; 48
Wang, Lazarov, Sigmund (b0150) 2011; 43
Duysinx, Bendsøe (b0020) 1998; 43
J. Groen, F. Stutz, N. Aage, J.A. Bærentzen, O. Sigmund, De-homogenization of optimal multi-scale 3D topologies, arXiv preprint arXiv:1910.13002, 2019.
Groen, Sigmund (b0010) 2017
Le, Norato, Bruns, Ha, Tortorelli (b0040) 2010; 41
Cheng, Bai, To (b0050) 2019; 344
Gharibi, Tamijani (b0065) 2021
Groen, Wu, Sigmund (b0115) 2019; 349
F. Hecht, O. Pironneau, freefem+, 2013.
Tamijani, Gharibi, Kobayashi, Kolonay (b0070) 2018; 135
.
Lazarov, Sigmund (b0145) 2011; 86
Guest, Prévost, Belytschko (b0100) 2004; 61
Rozvany, Sobieszczanski-Sobieski (b0025) 1992; 4
Hassani, Hinton (b0085) 1998; 69
Deshpande, Fleck, Ashby (b0105) 2001; 49
Hollister, Kikuchi (b0095) 1992; 10
Sved, Ginos (b0110) 1968; 10
Svanberg (b0130) 1987; 24
Duysinx, Sigmund (b0035) 1998
P.G. Donders, Homogenization method for topology optmization of struc-tures built with lattice materials, 2018.
Pantz, Trabelsi (b0005) 2008; 47
Rumpf (10.1016/j.matdes.2021.110026_b0170) 2012; 20
Svanberg (10.1016/j.matdes.2021.110026_b0130) 1987; 24
10.1016/j.matdes.2021.110026_b0135
Stutz (10.1016/j.matdes.2021.110026_b0125) 2020; 62
Cheng (10.1016/j.matdes.2021.110026_b0050) 2019; 344
10.1016/j.matdes.2021.110026_b0175
Tamijani (10.1016/j.matdes.2021.110026_b0070) 2018; 135
Gharibi (10.1016/j.matdes.2021.110026_b0065) 2021
Alacoque (10.1016/j.matdes.2021.110026_b0120) 2021; 379
Clausen (10.1016/j.matdes.2021.110026_b0155) 2017; 56
Hassani (10.1016/j.matdes.2021.110026_b0085) 1998; 69
Duysinx (10.1016/j.matdes.2021.110026_b0020) 1998; 43
Yang (10.1016/j.matdes.2021.110026_b0030) 1996; 12
Le (10.1016/j.matdes.2021.110026_b0040) 2010; 41
Lazarov (10.1016/j.matdes.2021.110026_b0145) 2011; 86
Lazarov (10.1016/j.matdes.2021.110026_b0160) 2016; 86
Deshpande (10.1016/j.matdes.2021.110026_b0105) 2001; 49
Rozvany (10.1016/j.matdes.2021.110026_b0025) 1992; 4
Sved (10.1016/j.matdes.2021.110026_b0110) 1968; 10
Guest (10.1016/j.matdes.2021.110026_b0100) 2004; 61
Guedes (10.1016/j.matdes.2021.110026_b0080) 1990; 83
Hollister (10.1016/j.matdes.2021.110026_b0095) 1992; 10
10.1016/j.matdes.2021.110026_b0140
Pantz (10.1016/j.matdes.2021.110026_b0005) 2008; 47
Allaire (10.1016/j.matdes.2021.110026_b0015) 2019; 78
Tamijani (10.1016/j.matdes.2021.110026_b0075) 2020
Groen (10.1016/j.matdes.2021.110026_b0010) 2017
10.1016/j.matdes.2021.110026_b0060
Andreassen (10.1016/j.matdes.2021.110026_b0090) 2014; 83
Holmberg (10.1016/j.matdes.2021.110026_b0045) 2013; 48
Groen (10.1016/j.matdes.2021.110026_b0115) 2019; 349
Da Silva (10.1016/j.matdes.2021.110026_b0165) 2021; 122
Duysinx (10.1016/j.matdes.2021.110026_b0035) 1998
Yu (10.1016/j.matdes.2021.110026_b0055) 2020; 15
Wang (10.1016/j.matdes.2021.110026_b0150) 2011; 43
References_xml – volume: 20
  start-page: 15263
  year: 2012
  end-page: 15274
  ident: b0170
  article-title: Synthesis of spatially variant lattices
  publication-title: Opt. Express
– volume: 69
  start-page: 707
  year: 1998
  end-page: 717
  ident: b0085
  article-title: A review of homogenization and topology optimization I—homogenization theory for media with periodic structure
  publication-title: Comput. Struct.
– start-page: 4906
  year: 1998
  ident: b0035
  article-title: New developments in handling stress constraints in optimal material distribution
  publication-title: 7th AIAA/USAF/NASA/ISSMO symposium on multidisciplinary analysis and optimization
– reference: F. Hecht, O. Pironneau, freefem+, 2013.
– volume: 61
  start-page: 238
  year: 2004
  end-page: 254
  ident: b0100
  article-title: Achieving minimum length scale in topology optimization using nodal design variables and projection functions
  publication-title: Int. J. Numer. Meth. Eng.
– reference: S.G. Johnson, The NLopt nonlinear-optimization package.
– volume: 78
  start-page: 2197
  year: 2019
  end-page: 2229
  ident: b0015
  article-title: Topology optimization of modulated and oriented periodic microstructures by the homogenization method
  publication-title: Comput. Math. Appl.
– volume: 12
  start-page: 98
  year: 1996
  end-page: 105
  ident: b0030
  article-title: Stress-based topology optimization
  publication-title: Struct. Optimiz.
– volume: 15
  start-page: 35
  year: 2020
  end-page: 48
  ident: b0055
  article-title: Stress-constrained shell-lattice infill structural optimisation for additive manufacturing
  publication-title: Virt. Phys. Prototyp.
– volume: 86
  start-page: 765
  year: 2011
  end-page: 781
  ident: b0145
  article-title: Filters in topology optimization based on Helmholtz-type differential equations
  publication-title: Int. J. Numer. Meth. Eng.
– volume: 49
  start-page: 1747
  year: 2001
  end-page: 1769
  ident: b0105
  article-title: Effective properties of the octet-truss lattice material
  publication-title: J. Mech. Phys. Solids
– year: 2017
  ident: b0010
  article-title: Homogenization-based topology optimization for high-resolution manufacturable micro-structures
  publication-title: Int. J. Numer. Meth. Eng.
– reference: P.G. Donders, Homogenization method for topology optmization of struc-tures built with lattice materials, 2018.
– volume: 10
  start-page: 73
  year: 1992
  end-page: 95
  ident: b0095
  article-title: A comparison of homogenization and standard mechanics analyses for periodic porous composites
  publication-title: Comput. Mech.
– volume: 43
  start-page: 767
  year: 2011
  end-page: 784
  ident: b0150
  article-title: On projection methods, convergence and robust formulations in topology optimization
  publication-title: Struct. Multidiscip. Optim.
– volume: 56
  start-page: 1147
  year: 2017
  end-page: 1155
  ident: b0155
  article-title: On filter boundary conditions in topology optimization
  publication-title: Struct. Multidiscip. Optim.
– volume: 344
  start-page: 334
  year: 2019
  end-page: 359
  ident: b0050
  article-title: Functionally graded lattice structure topology optimization for the design of additive manufactured components with stress constraints
  publication-title: Comput. Meth. Appl. Mech. Eng.
– volume: 83
  start-page: 488
  year: 2014
  end-page: 495
  ident: b0090
  article-title: How to determine composite material properties using numerical homogenization
  publication-title: Comput. Mater. Sci.
– volume: 83
  start-page: 143
  year: 1990
  end-page: 198
  ident: b0080
  article-title: Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods
  publication-title: Comput. Meth. Appl. Mech. Eng.
– volume: 10
  start-page: 803
  year: 1968
  end-page: 805
  ident: b0110
  article-title: Structural optimization under multiple loading
  publication-title: Int. J. Mech. Sci.
– volume: 41
  start-page: 605
  year: 2010
  end-page: 620
  ident: b0040
  article-title: Stress-based topology optimization for continua
  publication-title: Struct. Multidiscip. Optim.
– year: 2020
  ident: b0075
  article-title: Topological and morphological Design of Additively-Manufacturable Spatially-Varying Periodic Cellular Solids
  publication-title: Mater. Des.
– reference: J. Groen, F. Stutz, N. Aage, J.A. Bærentzen, O. Sigmund, De-homogenization of optimal multi-scale 3D topologies, arXiv preprint arXiv:1910.13002, 2019.
– start-page: 1
  year: 2021
  end-page: 10
  ident: b0065
  article-title: Load-Path-Based Topology Optimization of Two-Dimensional Continuum Structures
  publication-title: AIAA J.
– volume: 135
  start-page: 99
  year: 2018
  end-page: 109
  ident: b0070
  article-title: Load paths visualization in plane elasticity using load function method
  publication-title: Int. J. Solids Struct.
– volume: 349
  start-page: 722
  year: 2019
  end-page: 742
  ident: b0115
  article-title: Homogenization-based stiffness optimization and projection of 2D coated structures with orthotropic infill
  publication-title: Comput. Meth. Appl. Mech. Eng.
– reference: .
– volume: 379
  year: 2021
  ident: b0120
  article-title: Stress-based and robust topology optimization for thermoelastic multi-material periodic microstructures
  publication-title: Comput. Meth. Appl. Mech. Eng.
– volume: 48
  start-page: 33
  year: 2013
  end-page: 47
  ident: b0045
  article-title: Stress constrained topology optimization
  publication-title: Struct. Multidiscip. Optim.
– volume: 62
  start-page: 2279
  year: 2020
  end-page: 2295
  ident: b0125
  article-title: Singularity aware de-homogenization for high-resolution topology optimized structures
  publication-title: Struct. Multidiscip. Optim.
– volume: 24
  start-page: 359
  year: 1987
  end-page: 373
  ident: b0130
  article-title: The method of moving asymptotes—a new method for structural optimization
  publication-title: Int. J. Numer. Meth. Eng.
– volume: 47
  start-page: 1380
  year: 2008
  end-page: 1398
  ident: b0005
  article-title: A post-treatment of the homogenization method for shape optimization
  publication-title: SIAM J. Control Optim.
– volume: 86
  start-page: 189
  year: 2016
  end-page: 218
  ident: b0160
  article-title: Length scale and manufacturability in density-based topology optimization
  publication-title: Arch. Appl. Mech.
– volume: 122
  start-page: 548
  year: 2021
  end-page: 578
  ident: b0165
  article-title: Large scale three-dimensional manufacturing tolerant stress-constrained topology optimization
  publication-title: Int. J. Numer. Meth. Eng.
– volume: 43
  start-page: 1453
  year: 1998
  end-page: 1478
  ident: b0020
  article-title: Topology optimization of continuum structures with local stress constraints
  publication-title: Int. J. Numer. Meth. Eng.
– volume: 4
  start-page: 244
  year: 1992
  end-page: 246
  ident: b0025
  article-title: New optimality criteria methods: forcing uniqueness of the adjoint strains by corner-rounding at constraint intersections
  publication-title: Struct. Optimiz.
– volume: 12
  start-page: 98
  issue: 2–3
  year: 1996
  ident: 10.1016/j.matdes.2021.110026_b0030
  article-title: Stress-based topology optimization
  publication-title: Struct. Optimiz.
  doi: 10.1007/BF01196941
– volume: 86
  start-page: 189
  issue: 1–2
  year: 2016
  ident: 10.1016/j.matdes.2021.110026_b0160
  article-title: Length scale and manufacturability in density-based topology optimization
  publication-title: Arch. Appl. Mech.
  doi: 10.1007/s00419-015-1106-4
– volume: 10
  start-page: 73
  issue: 2
  year: 1992
  ident: 10.1016/j.matdes.2021.110026_b0095
  article-title: A comparison of homogenization and standard mechanics analyses for periodic porous composites
  publication-title: Comput. Mech.
  doi: 10.1007/BF00369853
– volume: 43
  start-page: 767
  issue: 6
  year: 2011
  ident: 10.1016/j.matdes.2021.110026_b0150
  article-title: On projection methods, convergence and robust formulations in topology optimization
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-010-0602-y
– volume: 4
  start-page: 244
  issue: 3–4
  year: 1992
  ident: 10.1016/j.matdes.2021.110026_b0025
  article-title: New optimality criteria methods: forcing uniqueness of the adjoint strains by corner-rounding at constraint intersections
  publication-title: Struct. Optimiz.
  doi: 10.1007/BF01742752
– volume: 43
  start-page: 1453
  issue: 8
  year: 1998
  ident: 10.1016/j.matdes.2021.110026_b0020
  article-title: Topology optimization of continuum structures with local stress constraints
  publication-title: Int. J. Numer. Meth. Eng.
  doi: 10.1002/(SICI)1097-0207(19981230)43:8<1453::AID-NME480>3.0.CO;2-2
– volume: 41
  start-page: 605
  issue: 4
  year: 2010
  ident: 10.1016/j.matdes.2021.110026_b0040
  article-title: Stress-based topology optimization for continua
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-009-0440-y
– year: 2020
  ident: 10.1016/j.matdes.2021.110026_b0075
  article-title: Topological and morphological Design of Additively-Manufacturable Spatially-Varying Periodic Cellular Solids
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2020.109155
– volume: 61
  start-page: 238
  issue: 2
  year: 2004
  ident: 10.1016/j.matdes.2021.110026_b0100
  article-title: Achieving minimum length scale in topology optimization using nodal design variables and projection functions
  publication-title: Int. J. Numer. Meth. Eng.
  doi: 10.1002/nme.1064
– ident: 10.1016/j.matdes.2021.110026_b0175
  doi: 10.1016/j.cma.2020.112979
– volume: 48
  start-page: 33
  issue: 1
  year: 2013
  ident: 10.1016/j.matdes.2021.110026_b0045
  article-title: Stress constrained topology optimization
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-012-0880-7
– volume: 20
  start-page: 15263
  issue: 14
  year: 2012
  ident: 10.1016/j.matdes.2021.110026_b0170
  article-title: Synthesis of spatially variant lattices
  publication-title: Opt. Express
  doi: 10.1364/OE.20.015263
– start-page: 1
  year: 2021
  ident: 10.1016/j.matdes.2021.110026_b0065
  article-title: Load-Path-Based Topology Optimization of Two-Dimensional Continuum Structures
  publication-title: AIAA J.
– volume: 344
  start-page: 334
  year: 2019
  ident: 10.1016/j.matdes.2021.110026_b0050
  article-title: Functionally graded lattice structure topology optimization for the design of additive manufactured components with stress constraints
  publication-title: Comput. Meth. Appl. Mech. Eng.
  doi: 10.1016/j.cma.2018.10.010
– volume: 135
  start-page: 99
  year: 2018
  ident: 10.1016/j.matdes.2021.110026_b0070
  article-title: Load paths visualization in plane elasticity using load function method
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2017.11.013
– ident: 10.1016/j.matdes.2021.110026_b0140
– ident: 10.1016/j.matdes.2021.110026_b0135
– year: 2017
  ident: 10.1016/j.matdes.2021.110026_b0010
  article-title: Homogenization-based topology optimization for high-resolution manufacturable micro-structures
  publication-title: Int. J. Numer. Meth. Eng.
– volume: 379
  year: 2021
  ident: 10.1016/j.matdes.2021.110026_b0120
  article-title: Stress-based and robust topology optimization for thermoelastic multi-material periodic microstructures
  publication-title: Comput. Meth. Appl. Mech. Eng.
  doi: 10.1016/j.cma.2021.113749
– ident: 10.1016/j.matdes.2021.110026_b0060
– volume: 10
  start-page: 803
  issue: 10
  year: 1968
  ident: 10.1016/j.matdes.2021.110026_b0110
  article-title: Structural optimization under multiple loading
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/0020-7403(68)90021-0
– volume: 86
  start-page: 765
  issue: 6
  year: 2011
  ident: 10.1016/j.matdes.2021.110026_b0145
  article-title: Filters in topology optimization based on Helmholtz-type differential equations
  publication-title: Int. J. Numer. Meth. Eng.
  doi: 10.1002/nme.3072
– volume: 83
  start-page: 488
  year: 2014
  ident: 10.1016/j.matdes.2021.110026_b0090
  article-title: How to determine composite material properties using numerical homogenization
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2013.09.006
– volume: 83
  start-page: 143
  issue: 2
  year: 1990
  ident: 10.1016/j.matdes.2021.110026_b0080
  article-title: Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods
  publication-title: Comput. Meth. Appl. Mech. Eng.
  doi: 10.1016/0045-7825(90)90148-F
– volume: 349
  start-page: 722
  year: 2019
  ident: 10.1016/j.matdes.2021.110026_b0115
  article-title: Homogenization-based stiffness optimization and projection of 2D coated structures with orthotropic infill
  publication-title: Comput. Meth. Appl. Mech. Eng.
  doi: 10.1016/j.cma.2019.02.031
– volume: 122
  start-page: 548
  issue: 2
  year: 2021
  ident: 10.1016/j.matdes.2021.110026_b0165
  article-title: Large scale three-dimensional manufacturing tolerant stress-constrained topology optimization
  publication-title: Int. J. Numer. Meth. Eng.
  doi: 10.1002/nme.6548
– volume: 15
  start-page: 35
  issue: 1
  year: 2020
  ident: 10.1016/j.matdes.2021.110026_b0055
  article-title: Stress-constrained shell-lattice infill structural optimisation for additive manufacturing
  publication-title: Virt. Phys. Prototyp.
  doi: 10.1080/17452759.2019.1647488
– volume: 56
  start-page: 1147
  issue: 5
  year: 2017
  ident: 10.1016/j.matdes.2021.110026_b0155
  article-title: On filter boundary conditions in topology optimization
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-017-1709-1
– volume: 47
  start-page: 1380
  issue: 3
  year: 2008
  ident: 10.1016/j.matdes.2021.110026_b0005
  article-title: A post-treatment of the homogenization method for shape optimization
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/070688900
– volume: 49
  start-page: 1747
  issue: 8
  year: 2001
  ident: 10.1016/j.matdes.2021.110026_b0105
  article-title: Effective properties of the octet-truss lattice material
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/S0022-5096(01)00010-2
– start-page: 4906
  year: 1998
  ident: 10.1016/j.matdes.2021.110026_b0035
  article-title: New developments in handling stress constraints in optimal material distribution
– volume: 78
  start-page: 2197
  issue: 7
  year: 2019
  ident: 10.1016/j.matdes.2021.110026_b0015
  article-title: Topology optimization of modulated and oriented periodic microstructures by the homogenization method
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2018.08.007
– volume: 62
  start-page: 2279
  issue: 5
  year: 2020
  ident: 10.1016/j.matdes.2021.110026_b0125
  article-title: Singularity aware de-homogenization for high-resolution topology optimized structures
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-020-02681-6
– volume: 24
  start-page: 359
  issue: 2
  year: 1987
  ident: 10.1016/j.matdes.2021.110026_b0130
  article-title: The method of moving asymptotes—a new method for structural optimization
  publication-title: Int. J. Numer. Meth. Eng.
  doi: 10.1002/nme.1620240207
– volume: 69
  start-page: 707
  issue: 6
  year: 1998
  ident: 10.1016/j.matdes.2021.110026_b0085
  article-title: A review of homogenization and topology optimization I—homogenization theory for media with periodic structure
  publication-title: Comput. Struct.
  doi: 10.1016/S0045-7949(98)00131-X
SSID ssj0022734
Score 2.4576461
Snippet [Display omitted] •Computational and experimental evaluations of effective mechanical properties.•Homogenization-based stress-constrained optimization of...
This paper presents an experimentally validated framework used to perform topology and orientation (morphology) optimization of lattice structures subject to...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 110026
SubjectTerms Additive manufacturing
Cellular solids
Homogenization
Morphology optimization
Topology optimization
SummonAdditionalLinks – databaseName: ScienceDirect Journal Collection
  dbid: AIKHN
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqdoEB8RTlJQ-sUWMnTpyxFKoCogtU6hbZsYOKSltB-P_cxU4VFpAYY9mO9Z19D-vuMyHXKktkphXe2iQiQAsV6ESFgQ0Niy3Xpawf7XuaJpNZ_DAX8w4ZNbUwmFbpdb_T6bW29i0Dj-Zgs1gMniF6iJGeHIKWUEgsNO9xsK5hl_SG94-T6TbuQgYXd9WCFH2paCro6jQv8AuNRd5uzjAlvmZZaFmomsi_Zahaxme8T_a810iHbmEHpGNXh2S3xSV4RIa3dS4GXYMOePfFlXRd0qWqML-NOqLYL4iuKd69UlckQgv0D_GZiOrzmMzGdy-jSeDfRwiKmMkqiBlTcagyFaaGcQNApFYxA0ZfxOC4aAHOIIiIlZypzDJpCmWFktawzMBRFdEJ6a7WK3tKqLARi2RpbSllrBTXCfS2GbdpGUZGh30SNZjkhScPx8Ut8yZL7C13SOaIZO6Q7JNgO2rjyDP-6H-DcG_7IvV13bD-eM297JGdHDnZJE8tBIcFrFZIrTkrSl0W2sAkaSOs_MdOgqkWv_7-7N8jz8kOfmGNIhMXpAsStZfgrFT6ym_Gbx9V55w
  priority: 102
  providerName: Elsevier
Title Design optimization of lattice structures with stress constraints
URI https://dx.doi.org/10.1016/j.matdes.2021.110026
https://doaj.org/article/1178595827e140c4aa58bb21cfbfcbd6
Volume 210
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQWWBAPEV5VB5YI2InTpyxPKoCohOVull2bEug0iIR_j93dlJlogtr5NjW57PuO-vuO0JudFXIymh8tSlEgh4qMYVOE5daljtuvAxN-15nxXSePy_EotfqC3PCojxwBO6WYfv4SkheOogF6lxrIY3hrPbG18YGsW3weV0w1YZaKNoSX1dQla8UXdFcyOwCKmgdSnVzhlnwQVih55SCdn_PN_X8zeSQHLREkY7jBo_Ijlsdk_2efOAJGT-E9Au6hmv_2dZT0rWnS91gShuN2rA_EFBTfG6lsS6E1kgJsTNE831K5pPHt_tp0rZESOqcySbJGdN5qiudlpZxC763dJpZ8PMiB65iBPA_OBXmOdOVY9LW2gktnWWVhdspsjMyWK1X7pxQ4TKWSe-clxJQ5aaA0a7irvRpZk06JFmHiapbvXDc3FJ1iWEfKiKpEEkVkRySZPPXV9TL2DL-DuHejEW16_ABbEC1NqC22cCQlN1hqZY4REIAU73_ufzFfyx_SfZwSqxQZOKKDOBw3TVQlcaMyO746WU6GwXr_AUR6udP
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwELYQDMCAeIo3HmCMGrtx4gwM5aWWQhdAYgt2fEFF0CIoQvwu_iB3iVOVBSQk1sR2nM_2Pay77xjbN2msU2vo1iZWAWmowMYmDCB0IgJpC10W7bvsxe2b6PxW3U6xzzoXhsIqveyvZHoprf2Thkez8dzvN67Qe4iInhydllBpUUdWduHjHf2218POCS7ygZRnp9fH7cCXFgjySOhREAlhotCkJkyckA7HSMAIh_pSRajzrUI7Cv9OFFKYFIR2uQFlNDiROtzlVCoC5f4MsWHhsZppdbrt3tjPI8aY6mqHKAETVWfslWFlaIc6IJ5wKSgEv2R1mNCIZeGACcU4oezOFtmCt1J5qwJiiU3BYJnNT3AXrrDWSRn7wYcoc558MicfFvzRjCiejlfEtG_ozXO66-VVUgrPyR6lshSj11V28y-grbHpwXAA64wraIqmLgAKrSNjpI2xNaQSkiJsOhtusGaNSZZ7snKa3GNWR6U9ZBWSGSGZVUhusGDc67ki6_il_RHBPW5LVNvlg-HLfeb3GrGhEweclgmgM5rjbJW2Voq8sEVuHQ6S1IuVfdu5OFT_x89v_rnnHpttX19eZBedXneLzdEbyo8UaptN4-rCDhpKI7vrNyZnd_99Fr4AGPEjyg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+optimization+of+lattice+structures+with+stress+constraints&rft.jtitle=Materials+%26+design&rft.au=Rossana+R.+Fernandes&rft.au=Ali+Y.+Tamijani&rft.date=2021-11-15&rft.pub=Elsevier&rft.issn=0264-1275&rft.volume=210&rft.spage=110026&rft_id=info:doi/10.1016%2Fj.matdes.2021.110026&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1178595827e140c4aa58bb21cfbfcbd6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-1275&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-1275&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-1275&client=summon