Excellent ductility of an austenitic stainless steel at a high strength level achieved by a simple process
[Display omitted] •A new austenitic stainless steel with high strength and excellent ductility was designed and manufactured by simple method.•The elongation of samples is up to 53.5–61 % under the yield and ultimate tensile strength level of 600–707 and 977–1020 MPa.•The product of strength and pla...
Saved in:
Published in | Materials & design Vol. 239; p. 112796 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.03.2024
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•A new austenitic stainless steel with high strength and excellent ductility was designed and manufactured by simple method.•The elongation of samples is up to 53.5–61 % under the yield and ultimate tensile strength level of 600–707 and 977–1020 MPa.•The product of strength and plasticity of this steel is the highest value comparing with other austenitic stainless steels.•There is the highest yield strength in this steel comparing with other austenitic stainless steels at the same elongation.•The excellent mechanical property of this steel is ascribed to a new multi-element collaborative strengthening mechanism.
In the pursuit of simultaneously improving the yield strength and plasticity of austenitic stainless steel, a new austenitic stainless steel was fabricated by induction smelting using a pure N2 atmosphere, hot forging, cryogenic rolling, and annealing. The material was characterized by microstructures with 3–4 μm uniform finer grains, fine precipitates, high thermal stability austenite, and extensive high-angle grain boundaries. The elongation after fracture, yield strength, and ultimate tensile strength of the samples reached 53.5 %, 707 MPa, and 1020 MPa, respectively, as well as 61 %, 600 MPa, and 977 MPa, respectively, at the same time. Moreover, a high strain hardening rate was achieved in the new stainless steel. The appropriate uniform finer grains not only played a role in grain-refined strengthening but also provided intragranular spaces and sufficient mean free available paths for dislocation accumulation and movement. Precipitates, which were coherent or semi-coherent with the matrix, provided interfaces for dislocation accumulation and obstructions for dislocation movement. Extensive high-angle grain boundaries with appropriate finer grains served as another important factor for excellent ductility due to the inhabitation and resulting deviation of crack propagation. In addition, strain-induced mechanical twinning in the current austenitic stainless steel contributed to excellent ductility and high strength. |
---|---|
AbstractList | [Display omitted]
•A new austenitic stainless steel with high strength and excellent ductility was designed and manufactured by simple method.•The elongation of samples is up to 53.5–61 % under the yield and ultimate tensile strength level of 600–707 and 977–1020 MPa.•The product of strength and plasticity of this steel is the highest value comparing with other austenitic stainless steels.•There is the highest yield strength in this steel comparing with other austenitic stainless steels at the same elongation.•The excellent mechanical property of this steel is ascribed to a new multi-element collaborative strengthening mechanism.
In the pursuit of simultaneously improving the yield strength and plasticity of austenitic stainless steel, a new austenitic stainless steel was fabricated by induction smelting using a pure N2 atmosphere, hot forging, cryogenic rolling, and annealing. The material was characterized by microstructures with 3–4 μm uniform finer grains, fine precipitates, high thermal stability austenite, and extensive high-angle grain boundaries. The elongation after fracture, yield strength, and ultimate tensile strength of the samples reached 53.5 %, 707 MPa, and 1020 MPa, respectively, as well as 61 %, 600 MPa, and 977 MPa, respectively, at the same time. Moreover, a high strain hardening rate was achieved in the new stainless steel. The appropriate uniform finer grains not only played a role in grain-refined strengthening but also provided intragranular spaces and sufficient mean free available paths for dislocation accumulation and movement. Precipitates, which were coherent or semi-coherent with the matrix, provided interfaces for dislocation accumulation and obstructions for dislocation movement. Extensive high-angle grain boundaries with appropriate finer grains served as another important factor for excellent ductility due to the inhabitation and resulting deviation of crack propagation. In addition, strain-induced mechanical twinning in the current austenitic stainless steel contributed to excellent ductility and high strength. In the pursuit of simultaneously improving the yield strength and plasticity of austenitic stainless steel, a new austenitic stainless steel was fabricated by induction smelting using a pure N2 atmosphere, hot forging, cryogenic rolling, and annealing. The material was characterized by microstructures with 3–4 μm uniform finer grains, fine precipitates, high thermal stability austenite, and extensive high-angle grain boundaries. The elongation after fracture, yield strength, and ultimate tensile strength of the samples reached 53.5 %, 707 MPa, and 1020 MPa, respectively, as well as 61 %, 600 MPa, and 977 MPa, respectively, at the same time. Moreover, a high strain hardening rate was achieved in the new stainless steel. The appropriate uniform finer grains not only played a role in grain-refined strengthening but also provided intragranular spaces and sufficient mean free available paths for dislocation accumulation and movement. Precipitates, which were coherent or semi-coherent with the matrix, provided interfaces for dislocation accumulation and obstructions for dislocation movement. Extensive high-angle grain boundaries with appropriate finer grains served as another important factor for excellent ductility due to the inhabitation and resulting deviation of crack propagation. In addition, strain-induced mechanical twinning in the current austenitic stainless steel contributed to excellent ductility and high strength. |
ArticleNumber | 112796 |
Author | Tian, Kai Shi, Xiaobin Wang, Yongqiang Li, Na Du, Juan Zheng, Chengsi Hu, Chaojun |
Author_xml | – sequence: 1 givenname: Yongqiang surname: Wang fullname: Wang, Yongqiang organization: Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, Anhui University of Technology, Maanshan 243002, China – sequence: 2 givenname: Chaojun surname: Hu fullname: Hu, Chaojun organization: Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, Anhui University of Technology, Maanshan 243002, China – sequence: 3 givenname: Kai surname: Tian fullname: Tian, Kai organization: Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, Anhui University of Technology, Maanshan 243002, China – sequence: 4 givenname: Na surname: Li fullname: Li, Na email: linaustb@163.com organization: School of Metallurgical Engineering, Anhui University of Technology, Maanshan 243002, China – sequence: 5 givenname: Juan surname: Du fullname: Du, Juan organization: Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, Anhui University of Technology, Maanshan 243002, China – sequence: 6 givenname: Xiaobin surname: Shi fullname: Shi, Xiaobin organization: Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, Anhui University of Technology, Maanshan 243002, China – sequence: 7 givenname: Chengsi surname: Zheng fullname: Zheng, Chengsi organization: Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, Anhui University of Technology, Maanshan 243002, China |
BookMark | eNqFkcFu3CAQhlGVSN2kfYMeeAFvAWNjcqhURWkbKVIu6RmNYdjFYu0VkKj79mXj5tJDe2KY4f80P_8VuZiXGQn5xNmWM95_nrYHKA7zVjAht5wLpft3ZMMH1TaSa3VBNkz0sqmD7j25ynliTAjVyg2Z7n5ZjBHnQt2zLSGGcqKLpzBTeM4F51CCpblAmCPmXCvESKFQoPuw29d7wnlX9jTiy3lg96EWjo6n-iKHwzEiPabFVu0HcukhZvz457wmP7_dPd3-aB4ev9_ffn1orORDaSRzjmndtdCJlvNBaMalHr3lg_Sj6rlyo7KDAtFD9eP50HWdcL1wfgSmuvaa3K9ct8BkjikcIJ3MAsG8Npa0M5Cqq4hm6DVCr1Cr1kslxrEixhY80y0bOq8r62Zl2bTknNAbGwqUsMwlQYiGM3NOwExmTcCcEzBrAlUs_xK_LfMf2ZdVhvWTXgImk23A2aILCW2pLsK_Ab8BGrqk9g |
CitedBy_id | crossref_primary_10_1080_21663831_2024_2438879 crossref_primary_10_1016_j_jmrt_2024_11_128 crossref_primary_10_1016_j_msea_2025_148036 crossref_primary_10_1016_j_mtcomm_2024_110329 |
Cites_doi | 10.1038/s41598-019-57208-x 10.1016/j.pmatsci.2023.101194 10.1016/j.mattod.2017.02.003 10.1016/j.matchar.2022.112360 10.1016/S1359-6462(02)00282-8 10.1002/adem.201800402 10.1016/j.actamat.2005.05.005 10.1038/nmat1141 10.1016/j.actamat.2011.07.061 10.1007/s10853-018-2322-4 10.1016/j.matdes.2010.01.049 10.1016/0921-5093(95)10031-8 10.1016/j.msea.2010.11.034 10.1016/j.actamat.2016.04.045 10.1007/s11661-004-1007-6 10.1016/j.mser.2009.03.001 10.1038/s41586-022-04459-w 10.1016/j.msea.2016.04.070 10.1016/j.matdes.2017.09.050 10.1016/j.matpr.2021.01.341 10.1016/j.pmatsci.2005.08.003 10.1016/j.actamat.2021.116773 10.1002/adma.200600310 10.1016/j.matchemphys.2022.126837 10.1016/j.msea.2016.08.106 10.1016/j.matchar.2022.112182 10.1016/j.msea.2006.02.350 10.1016/j.actbio.2015.10.043 10.1016/j.actamat.2010.12.035 10.1016/j.msea.2004.01.059 10.1016/j.msea.2023.144820 10.1016/j.msea.2022.144385 10.1016/j.actamat.2007.07.015 10.1179/026708300773002636 10.1016/S0013-4686(02)00841-1 10.1016/j.msea.2006.08.095 10.1007/BF02641927 10.1016/j.actamat.2015.08.030 10.1016/j.actamat.2017.02.004 10.1016/j.msea.2018.04.022 10.1007/s11661-016-3839-2 10.1016/j.actamat.2004.08.011 10.1016/j.actamat.2014.01.001 10.3724/SP.J.1037.2012.00305 10.1149/1.1838615 10.1016/j.actamat.2010.05.049 10.1016/j.jmbbm.2021.104489 10.1016/j.msea.2023.145187 10.1038/ncomms4580 10.1016/j.corsci.2008.09.038 10.1016/j.jmrt.2021.12.117 |
ContentType | Journal Article |
Copyright | 2024 The Authors |
Copyright_xml | – notice: 2024 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.matdes.2024.112796 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-4197 |
ExternalDocumentID | oai_doaj_org_article_869ea67e973f472bbfbab3af093085f9 10_1016_j_matdes_2024_112796 S0264127524001680 |
GroupedDBID | --K --M -~X .~1 0R~ 0SF 1B1 1~. 29M 4.4 457 4G. 5GY 5VS 6I. 7-5 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAFTH AAIAV AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BCNDV BJAXD BKOJK BLXMC EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HVGLF HZ~ IHE J1W JJJVA KOM M41 MAGPM MO0 NCXOZ O9- OAUVE OK1 P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SEW SMS SPC SSM SST SSZ T5K WUQ ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS |
ID | FETCH-LOGICAL-c418t-40dd09953a523118290149bfc184fb7617db7c87a26a275f185552d62dfba0753 |
IEDL.DBID | AIKHN |
ISSN | 0264-1275 |
IngestDate | Wed Aug 27 01:29:13 EDT 2025 Tue Jul 01 00:34:34 EDT 2025 Thu Apr 24 22:58:09 EDT 2025 Sat Mar 30 16:18:54 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Austenitic stainless steel High-angle grain boundaries Ductility and strength Precipitates Multi-element synergistic strengthening |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c418t-40dd09953a523118290149bfc184fb7617db7c87a26a275f185552d62dfba0753 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0264127524001680 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_869ea67e973f472bbfbab3af093085f9 crossref_citationtrail_10_1016_j_matdes_2024_112796 crossref_primary_10_1016_j_matdes_2024_112796 elsevier_sciencedirect_doi_10_1016_j_matdes_2024_112796 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2024 2024-03-00 2024-03-01 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: March 2024 |
PublicationDecade | 2020 |
PublicationTitle | Materials & design |
PublicationYear | 2024 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Dini, Najafizadeh, Ueji, Monir-Vaghefi (b0250) 2010; 31 Sheng, Wei, Li, Man, Chen, Ma, Zheng, Zhan, La, Zhao, Husain (b0135) 2022; 17 Lei, Wang, Zhang, Luo, Lu, Lu (b0035) 2021; 208 Song, Ponge, Raabe, Speer, Matlock (b0165) 2006; 441 Tian, Gorbatov, Borgenstam, Ruban, Hedström (b0215) 2017; 48 You, Wang, Shang (b0245) 2012; 48 Zhao, Liao, Cheng, Ma, Zhu (b0045) 2006; 18 Wu, Yang, Yuan, Chen, Zhu (b0195) 2016; 112 Kim, De Cooman (b0225) 2016; 676 Allain, Chateau, Bouaziz, Migot, Guelton (b0235) 2004; 387–389 Kumar, Mangipudi, Sastry, Singh, Dhanasekaran, Sivaprasad (b0005) 2020; 10 Li, Ma, Qin, Chen, Zhao, Liu, Gao (b0020) 2023; 870 Pierce, Jiménez, Bentley, Raabe, Oskay, Wittig (b0240) 2014; 68 Lambert-Perlade, Gourgues, Besson, Sturel, Pineau (b0150) 2004; 35 Tsuji, Ito, Saito, Minamino (b0170) 2002; 47 Ji, Zhou, Vivegananthan, See Wu, Gao, Zhou (b0060) 2023; 140 Tikhonova, Belyakov, Kaibyshev (b0025) 2023; 877 Liu, Zhou, Zhang (b0105) 2022; 192 Li, Cao, Gao, Li, Zhu (b0120) 2018; 53 Ma, Zhu (b0040) 2017; 20 Lo, Shek, Lai (b0030) 2009; 65 Yu, Kao, Chang (b0175) 2005; 53 Curtze, Kuokkala (b0230) 2010; 58 Li, Zong, Li, Jin, Chen, Cabral, Chen, Huang, Chen, Ren, Yu, Han, Ding, Sha, Lian, Liao, Ma, Sun (b0050) 2022; 604 Cheng, Luo, Wang, Pan, Jiang, Li (b0085) 2022; 292 Pierce, Jiménez, Bentley, Raabe, Wittig (b0220) 2015; 100 Jin, Jung, Lee (b0180) 2007; 449–451 Zhao, Wu, Lu, Sun, Du (b0110) 2022; 194 Chatterjee (b0130) 2021; 46 Muley, Vidvans, Chaudhari, Udainiya (b0145) 2016; 30 Meyers, Mishra, Benson (b0190) 2006; 51 Liang, Zhang, Zhang, Wang, Reddy, Wang (b0090) 2023; 35 Li, Gao, Cao, Huang, Gao, Mao, Li (b0100) 2018; 20 Rawers, Grujicic (b0095) 1996; 207 Ueno, Kakihata, Kaneko, Hashimoto, Vinogradov (b0075) 2011; 59 Wei, Li, Zhu, Liu, Lei, Wang, Wu, Mi, Liu, Wang, Gao (b0055) 2014; 5 Guo, Lee, Morris (b0155) 2004; 52 Saada, Kruml (b0185) 2011; 59 Dong, Li, Somani, Misra (b0115) 2021; 119 Gourgues, Flower, Lindley (b0160) 2000; 16 Olsson, Landolt (b0255) 2003; 48 Krawczynska, Chrominski, Ura-Binczyk, Kulczyk, Lewandowska (b0140) 2017; 136 Ravi Kumar, Sharma, Mahato (b0125) 2011; 528 Galindo-Nava, Rivera-Díaz-del-Castillo (b0200) 2017; 128 Ningshen, Mudali, Amarendra, Rai (b0010) 2009; 51 Talonen, Hänninen (b0210) 2007; 55 Schramm, Reed (b0205) 1975; 6 Frankel (b0260) 1998; 145 Zhu, Liao (b0065) 2004; 3 Chen, Liu, Wang, Lu, Wang (b0080) 2016; 667 Niu, Wu, Zhang, Gong, Tang (b0070) 2018; 725 Li, Jiang, La, Kang, Wei (b0015) 2022; 861 Dini (10.1016/j.matdes.2024.112796_b0250) 2010; 31 Liu (10.1016/j.matdes.2024.112796_b0105) 2022; 192 Tsuji (10.1016/j.matdes.2024.112796_b0170) 2002; 47 Lo (10.1016/j.matdes.2024.112796_b0030) 2009; 65 Kim (10.1016/j.matdes.2024.112796_b0225) 2016; 676 Wu (10.1016/j.matdes.2024.112796_b0195) 2016; 112 Chatterjee (10.1016/j.matdes.2024.112796_b0130) 2021; 46 Jin (10.1016/j.matdes.2024.112796_b0180) 2007; 449–451 You (10.1016/j.matdes.2024.112796_b0245) 2012; 48 Allain (10.1016/j.matdes.2024.112796_b0235) 2004; 387–389 Zhao (10.1016/j.matdes.2024.112796_b0045) 2006; 18 Chen (10.1016/j.matdes.2024.112796_b0080) 2016; 667 Pierce (10.1016/j.matdes.2024.112796_b0240) 2014; 68 Ueno (10.1016/j.matdes.2024.112796_b0075) 2011; 59 Zhu (10.1016/j.matdes.2024.112796_b0065) 2004; 3 Galindo-Nava (10.1016/j.matdes.2024.112796_b0200) 2017; 128 Frankel (10.1016/j.matdes.2024.112796_b0260) 1998; 145 Ji (10.1016/j.matdes.2024.112796_b0060) 2023; 140 Gourgues (10.1016/j.matdes.2024.112796_b0160) 2000; 16 Guo (10.1016/j.matdes.2024.112796_b0155) 2004; 52 Muley (10.1016/j.matdes.2024.112796_b0145) 2016; 30 Meyers (10.1016/j.matdes.2024.112796_b0190) 2006; 51 Zhao (10.1016/j.matdes.2024.112796_b0110) 2022; 194 Schramm (10.1016/j.matdes.2024.112796_b0205) 1975; 6 Tian (10.1016/j.matdes.2024.112796_b0215) 2017; 48 Wei (10.1016/j.matdes.2024.112796_b0055) 2014; 5 Liang (10.1016/j.matdes.2024.112796_b0090) 2023; 35 Sheng (10.1016/j.matdes.2024.112796_b0135) 2022; 17 Ningshen (10.1016/j.matdes.2024.112796_b0010) 2009; 51 Yu (10.1016/j.matdes.2024.112796_b0175) 2005; 53 Li (10.1016/j.matdes.2024.112796_b0100) 2018; 20 Olsson (10.1016/j.matdes.2024.112796_b0255) 2003; 48 Curtze (10.1016/j.matdes.2024.112796_b0230) 2010; 58 Song (10.1016/j.matdes.2024.112796_b0165) 2006; 441 Talonen (10.1016/j.matdes.2024.112796_b0210) 2007; 55 Li (10.1016/j.matdes.2024.112796_b0015) 2022; 861 Ravi Kumar (10.1016/j.matdes.2024.112796_b0125) 2011; 528 Li (10.1016/j.matdes.2024.112796_b0050) 2022; 604 Lambert-Perlade (10.1016/j.matdes.2024.112796_b0150) 2004; 35 Ma (10.1016/j.matdes.2024.112796_b0040) 2017; 20 Tikhonova (10.1016/j.matdes.2024.112796_b0025) 2023; 877 Kumar (10.1016/j.matdes.2024.112796_b0005) 2020; 10 Rawers (10.1016/j.matdes.2024.112796_b0095) 1996; 207 Cheng (10.1016/j.matdes.2024.112796_b0085) 2022; 292 Lei (10.1016/j.matdes.2024.112796_b0035) 2021; 208 Krawczynska (10.1016/j.matdes.2024.112796_b0140) 2017; 136 Dong (10.1016/j.matdes.2024.112796_b0115) 2021; 119 Li (10.1016/j.matdes.2024.112796_b0120) 2018; 53 Niu (10.1016/j.matdes.2024.112796_b0070) 2018; 725 Pierce (10.1016/j.matdes.2024.112796_b0220) 2015; 100 Li (10.1016/j.matdes.2024.112796_b0020) 2023; 870 Saada (10.1016/j.matdes.2024.112796_b0185) 2011; 59 |
References_xml | – volume: 51 start-page: 322 year: 2009 end-page: 329 ident: b0010 article-title: Corrosion assessment of nitric acid grade austenitic stainless steels publication-title: Corros. Sci. – volume: 48 start-page: 1290 year: 2012 end-page: 1298 ident: b0245 article-title: Influence of austenitizing tempearature on the microstructure and impact toughness of a high strength low alloy HSLA100 steel publication-title: Acta Metal. Sin. – volume: 65 start-page: 39 year: 2009 end-page: 104 ident: b0030 article-title: Recent developments in stainless steels publication-title: Mater. Sci. Eng. R – volume: 30 start-page: 408 year: 2016 end-page: 419 ident: b0145 article-title: An assessment of ultra fine grained 316L stainless steel for implant applications publication-title: Acta Biomater. – volume: 31 start-page: 3395 year: 2010 end-page: 3402 ident: b0250 article-title: Tensile deformation behavior of high manganese austenitic steel: the role of grain size publication-title: Mater. Des. – volume: 10 start-page: 354 year: 2020 ident: b0005 article-title: Excellent combination of tensile ductility and strength due to nanotwinning and a biamodal structure in cryorolled austenitic stainless steel publication-title: Sci. Rep. – volume: 207 start-page: 188 year: 1996 end-page: 194 ident: b0095 article-title: Effects of metal composition and temperature on the yield strength of nitrogen strengthened stainless steels publication-title: Mater. Sci. Eng. A – volume: 870 year: 2023 ident: b0020 article-title: The microstructure and mechanical properties of 316L austenitic stainless steel prepared by forge and laser melting deposition publication-title: Mater. Sci. Eng. A – volume: 55 start-page: 6108 year: 2007 end-page: 6118 ident: b0210 article-title: Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steels publication-title: Acta Mater. – volume: 194 year: 2022 ident: b0110 article-title: Effect of grain size on mechanical property and corrosion behavior of a metastable austenitic stainless steel publication-title: Mater Charact – volume: 112 start-page: 337 year: 2016 end-page: 346 ident: b0195 article-title: Combining gradient structure and TRIP effect to produce austenite stainless steel with high strength and ductility publication-title: Acta Mater. – volume: 48 start-page: 1 year: 2017 end-page: 7 ident: b0215 article-title: Deformation microstructure and deformation-induced martensite in austenitic fe-cr-ni alloys depending on stacking fault energy publication-title: Metall. Mater. Trans. A – volume: 46 start-page: 10604 year: 2021 end-page: 10611 ident: b0130 article-title: Effect of repeated warm rolling cold rolling and annealing on the microstructure and mechanical properties of AISI 301LN grade austenitic stainless steel publication-title: Mater. Today Proceedings – volume: 725 start-page: 187 year: 2018 end-page: 195 ident: b0070 article-title: Heterogeneous nano/ultrafine-grained medium mn austenitic stainless steel with high strength and ductility publication-title: Mater. Sci. Eng. A – volume: 58 start-page: 5129 year: 2010 end-page: 5141 ident: b0230 article-title: Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate publication-title: Acta Mater. – volume: 18 start-page: 2280 year: 2006 end-page: 2283 ident: b0045 article-title: Simultaneously increasing the ductility and strength of nanostructured alloys publication-title: Adv. Mater. – volume: 604 start-page: 273 year: 2022 end-page: 279 ident: b0050 article-title: Uniting tensile ductility with ultrahigh strength via composition undulation publication-title: Nature – volume: 292 year: 2022 ident: b0085 article-title: Electrochemical corrosion and passive behavior of a new high-nitrogen austenitic stainless steel in chloride environment publication-title: Mater. Chem. Phys. – volume: 35 start-page: 1039 year: 2004 end-page: 1053 ident: b0150 article-title: Mechanisms and modeling of cleavage fracture in simulated heat-affected zone microstructures of a high-strength low alloy steel publication-title: Metall. Mater. Trans. A – volume: 68 start-page: 238 year: 2014 end-page: 253 ident: b0240 article-title: The influence of manganese content on the stacking fault and austenite/ε-martensite interfacial energies in Fe–Mn–(Al–Si) steels investigated by experiment and theory publication-title: Acta Mater. – volume: 145 start-page: 2186 year: 1998 end-page: 2198 ident: b0260 article-title: Pitting corrosion of metals a review of the critical factors publication-title: J. Electrochem. Soc. – volume: 5 start-page: 3580 year: 2014 ident: b0055 article-title: Evading the strength–ductility trade-off dilemma in steel through gradient hierarchical nanotwins publication-title: Nat. Commun. – volume: 3 start-page: 351 year: 2004 end-page: 352 ident: b0065 article-title: Retaining ductility publication-title: Nat. Mater. – volume: 35 year: 2023 ident: b0090 article-title: Effects of nitrogen on the microstructure and mechanical properties of an austenitic stainless steel with incomplete recrystallization annealing publication-title: Mater. Today Commun. – volume: 387–389 start-page: 158 year: 2004 end-page: 162 ident: b0235 article-title: Correlations between the calculated stacking fault energy and the plasticity mechanisms in fe-mn-C alloys publication-title: Mater. Sci. Eng. A – volume: 53 start-page: 4019 year: 2005 end-page: 4028 ident: b0175 article-title: Transition of tensile deformation behaviors in ultrafine-grained aluminum publication-title: Acta Mater. – volume: 53 start-page: 10442 year: 2018 end-page: 10456 ident: b0120 article-title: Superior strength and ductility of 316L stainless steel with heterogeneous lamella structure publication-title: J. Mater. Sci. – volume: 17 start-page: 404 year: 2022 end-page: 411 ident: b0135 article-title: Micro/nano-structure leads to super strength and excellent plasticity in nanostructured 304 stainless steel publication-title: J. Mater. Res. Techn. – volume: 861 year: 2022 ident: b0015 article-title: Strength–ductility synergy in 316L austenitic stainless steel with a heterogeneous structure publication-title: Mater. Sci. Eng. A – volume: 20 start-page: 323 year: 2017 end-page: 331 ident: b0040 article-title: Towards strength–ductility synergy through the design of heterogeneous nanostructures in metals publication-title: Mater. Today – volume: 47 start-page: 893 year: 2002 end-page: 899 ident: b0170 article-title: Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing publication-title: Scr. Mater. – volume: 52 start-page: 5511 year: 2004 end-page: 5518 ident: b0155 article-title: On coherent transformations in steel publication-title: Acta Mater. – volume: 877 year: 2023 ident: b0025 article-title: Effect of aging on secondary phases and properties of an S304H austenitic stainless steel publication-title: Mater. Sci. Eng. A – volume: 6 start-page: 1345 year: 1975 end-page: 1351 ident: b0205 article-title: Stacking fault energies of seven commercial austenitic stainless steels publication-title: Metall. Trans. A – volume: 667 start-page: 179 year: 2016 end-page: 188 ident: b0080 article-title: Gradient twinned 304 stainless steels for high strength and high ductility publication-title: Mater. Sci. Eng. A – volume: 208 year: 2021 ident: b0035 article-title: Enhanced mechanical properties and corrosion resistance of 316L stainless steel by pre-forming a gradient nanostructured surface layer and annealing publication-title: Acta Mater. – volume: 20 start-page: 1800402 year: 2018 ident: b0100 article-title: Microstructures and mechanical properties of a gradient nanostructured 316L stainless steel processed by rotationally accelerated shot peening publication-title: Adv. Eng. Mater. – volume: 100 start-page: 178 year: 2015 end-page: 190 ident: b0220 article-title: The influence of stacking fault energy on the microstructural and strain-hardening evolution of Fe–Mn–Al–Si steels during tensile deformation publication-title: Acta Mater. – volume: 16 start-page: 26 year: 2000 end-page: 40 ident: b0160 article-title: Electron backscattering diffraction study of acicular ferrite, bainite, and martensite steel microstructures publication-title: Mater. Sci. Tech. – volume: 48 start-page: 1093 year: 2003 end-page: 1104 ident: b0255 article-title: Passive films on stainless steels-chemistry, structure and growth publication-title: Electrochim. Acta – volume: 51 start-page: 427 year: 2006 end-page: 556 ident: b0190 article-title: Mechanical properties of nanocrystalline materials publication-title: Prog. Mater Sci. – volume: 449–451 start-page: 786 year: 2007 end-page: 789 ident: b0180 article-title: Effect of grain size on the uniform ductility of a bulk ultrafine-grained alloy publication-title: Mater. Sci. Eng. A – volume: 119 year: 2021 ident: b0115 article-title: The significance of phase reversion-induced nanograined/ultrafine-grained (NG/UFG) structure on the strain hardening behavior and deformation mechanism in copper-bearing antimicrobial austenitic stainless steel publication-title: J. Mech. Behav. Biomed. – volume: 59 start-page: 7060 year: 2011 end-page: 7069 ident: b0075 article-title: Enhanced fatigue properties of nanostructured austenitic SUS 316L stainless steel publication-title: Acta Mater. – volume: 192 year: 2022 ident: b0105 article-title: Ultra-flash annealing constructed heterogeneous austenitic stainless steel with excellent strength-ductility publication-title: Mater Charact – volume: 128 start-page: 120 year: 2017 end-page: 134 ident: b0200 article-title: Understanding martensite and twin formation in austenitic steels: a model describing TRIP and TWIP effects publication-title: Acta Mater. – volume: 59 start-page: 2565 year: 2011 end-page: 2574 ident: b0185 article-title: Deformation mechanisms of nanograined metallic polycrystals publication-title: Acta Mater. – volume: 528 start-page: 2209 year: 2011 end-page: 2216 ident: b0125 article-title: Formation of ultrafine grained microstructure in the austenitic stainless steel and its impact on tensile properties publication-title: Mater. Sci. Eng. A – volume: 441 start-page: 1 year: 2006 end-page: 17 ident: b0165 article-title: Overview of processing, microstructure and mechanical properties of ultrafine grained bcc steels publication-title: Mater. Sci. Eng. A – volume: 140 year: 2023 ident: b0060 article-title: Recent progress in gradient-structured metals and alloys publication-title: Prog. Mater Sci. – volume: 676 start-page: 216 year: 2016 end-page: 231 ident: b0225 article-title: Stacking fault energy and deformation mechanisms in fe-xMn-0.6C-yAl TWIP steel publication-title: Mater. Sci. Eng. A – volume: 136 start-page: 34 year: 2017 end-page: 44 ident: b0140 article-title: Mechanical properties and corrosion resistance of ultrafine grained austenitic stainless steel processed by hydrostatic extrusion publication-title: Mater. Des. – volume: 10 start-page: 354 issue: 1 year: 2020 ident: 10.1016/j.matdes.2024.112796_b0005 article-title: Excellent combination of tensile ductility and strength due to nanotwinning and a biamodal structure in cryorolled austenitic stainless steel publication-title: Sci. Rep. doi: 10.1038/s41598-019-57208-x – volume: 140 year: 2023 ident: 10.1016/j.matdes.2024.112796_b0060 article-title: Recent progress in gradient-structured metals and alloys publication-title: Prog. Mater Sci. doi: 10.1016/j.pmatsci.2023.101194 – volume: 20 start-page: 323 issue: 6 year: 2017 ident: 10.1016/j.matdes.2024.112796_b0040 article-title: Towards strength–ductility synergy through the design of heterogeneous nanostructures in metals publication-title: Mater. Today doi: 10.1016/j.mattod.2017.02.003 – volume: 194 year: 2022 ident: 10.1016/j.matdes.2024.112796_b0110 article-title: Effect of grain size on mechanical property and corrosion behavior of a metastable austenitic stainless steel publication-title: Mater Charact doi: 10.1016/j.matchar.2022.112360 – volume: 47 start-page: 893 issue: 12 year: 2002 ident: 10.1016/j.matdes.2024.112796_b0170 article-title: Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing publication-title: Scr. Mater. doi: 10.1016/S1359-6462(02)00282-8 – volume: 20 start-page: 1800402 issue: 10 year: 2018 ident: 10.1016/j.matdes.2024.112796_b0100 article-title: Microstructures and mechanical properties of a gradient nanostructured 316L stainless steel processed by rotationally accelerated shot peening publication-title: Adv. Eng. Mater. doi: 10.1002/adem.201800402 – volume: 53 start-page: 4019 issue: 15 year: 2005 ident: 10.1016/j.matdes.2024.112796_b0175 article-title: Transition of tensile deformation behaviors in ultrafine-grained aluminum publication-title: Acta Mater. doi: 10.1016/j.actamat.2005.05.005 – volume: 3 start-page: 351 issue: 6 year: 2004 ident: 10.1016/j.matdes.2024.112796_b0065 article-title: Retaining ductility publication-title: Nat. Mater. doi: 10.1038/nmat1141 – volume: 59 start-page: 7060 issue: 18 year: 2011 ident: 10.1016/j.matdes.2024.112796_b0075 article-title: Enhanced fatigue properties of nanostructured austenitic SUS 316L stainless steel publication-title: Acta Mater. doi: 10.1016/j.actamat.2011.07.061 – volume: 53 start-page: 10442 issue: 14 year: 2018 ident: 10.1016/j.matdes.2024.112796_b0120 article-title: Superior strength and ductility of 316L stainless steel with heterogeneous lamella structure publication-title: J. Mater. Sci. doi: 10.1007/s10853-018-2322-4 – volume: 31 start-page: 3395 year: 2010 ident: 10.1016/j.matdes.2024.112796_b0250 article-title: Tensile deformation behavior of high manganese austenitic steel: the role of grain size publication-title: Mater. Des. doi: 10.1016/j.matdes.2010.01.049 – volume: 207 start-page: 188 issue: 2 year: 1996 ident: 10.1016/j.matdes.2024.112796_b0095 article-title: Effects of metal composition and temperature on the yield strength of nitrogen strengthened stainless steels publication-title: Mater. Sci. Eng. A doi: 10.1016/0921-5093(95)10031-8 – volume: 35 year: 2023 ident: 10.1016/j.matdes.2024.112796_b0090 article-title: Effects of nitrogen on the microstructure and mechanical properties of an austenitic stainless steel with incomplete recrystallization annealing publication-title: Mater. Today Commun. – volume: 528 start-page: 2209 issue: 6 year: 2011 ident: 10.1016/j.matdes.2024.112796_b0125 article-title: Formation of ultrafine grained microstructure in the austenitic stainless steel and its impact on tensile properties publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2010.11.034 – volume: 112 start-page: 337 year: 2016 ident: 10.1016/j.matdes.2024.112796_b0195 article-title: Combining gradient structure and TRIP effect to produce austenite stainless steel with high strength and ductility publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.04.045 – volume: 35 start-page: 1039 issue: 13 year: 2004 ident: 10.1016/j.matdes.2024.112796_b0150 article-title: Mechanisms and modeling of cleavage fracture in simulated heat-affected zone microstructures of a high-strength low alloy steel publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-004-1007-6 – volume: 65 start-page: 39 issue: 4–6 year: 2009 ident: 10.1016/j.matdes.2024.112796_b0030 article-title: Recent developments in stainless steels publication-title: Mater. Sci. Eng. R doi: 10.1016/j.mser.2009.03.001 – volume: 604 start-page: 273 issue: 7905 year: 2022 ident: 10.1016/j.matdes.2024.112796_b0050 article-title: Uniting tensile ductility with ultrahigh strength via composition undulation publication-title: Nature doi: 10.1038/s41586-022-04459-w – volume: 667 start-page: 179 year: 2016 ident: 10.1016/j.matdes.2024.112796_b0080 article-title: Gradient twinned 304 stainless steels for high strength and high ductility publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2016.04.070 – volume: 136 start-page: 34 year: 2017 ident: 10.1016/j.matdes.2024.112796_b0140 article-title: Mechanical properties and corrosion resistance of ultrafine grained austenitic stainless steel processed by hydrostatic extrusion publication-title: Mater. Des. doi: 10.1016/j.matdes.2017.09.050 – volume: 46 start-page: 10604 year: 2021 ident: 10.1016/j.matdes.2024.112796_b0130 article-title: Effect of repeated warm rolling cold rolling and annealing on the microstructure and mechanical properties of AISI 301LN grade austenitic stainless steel publication-title: Mater. Today Proceedings doi: 10.1016/j.matpr.2021.01.341 – volume: 51 start-page: 427 issue: 4 year: 2006 ident: 10.1016/j.matdes.2024.112796_b0190 article-title: Mechanical properties of nanocrystalline materials publication-title: Prog. Mater Sci. doi: 10.1016/j.pmatsci.2005.08.003 – volume: 208 year: 2021 ident: 10.1016/j.matdes.2024.112796_b0035 article-title: Enhanced mechanical properties and corrosion resistance of 316L stainless steel by pre-forming a gradient nanostructured surface layer and annealing publication-title: Acta Mater. doi: 10.1016/j.actamat.2021.116773 – volume: 18 start-page: 2280 year: 2006 ident: 10.1016/j.matdes.2024.112796_b0045 article-title: Simultaneously increasing the ductility and strength of nanostructured alloys publication-title: Adv. Mater. doi: 10.1002/adma.200600310 – volume: 292 year: 2022 ident: 10.1016/j.matdes.2024.112796_b0085 article-title: Electrochemical corrosion and passive behavior of a new high-nitrogen austenitic stainless steel in chloride environment publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2022.126837 – volume: 676 start-page: 216 year: 2016 ident: 10.1016/j.matdes.2024.112796_b0225 article-title: Stacking fault energy and deformation mechanisms in fe-xMn-0.6C-yAl TWIP steel publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2016.08.106 – volume: 192 year: 2022 ident: 10.1016/j.matdes.2024.112796_b0105 article-title: Ultra-flash annealing constructed heterogeneous austenitic stainless steel with excellent strength-ductility publication-title: Mater Charact doi: 10.1016/j.matchar.2022.112182 – volume: 449–451 start-page: 786 year: 2007 ident: 10.1016/j.matdes.2024.112796_b0180 article-title: Effect of grain size on the uniform ductility of a bulk ultrafine-grained alloy publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2006.02.350 – volume: 30 start-page: 408 year: 2016 ident: 10.1016/j.matdes.2024.112796_b0145 article-title: An assessment of ultra fine grained 316L stainless steel for implant applications publication-title: Acta Biomater. doi: 10.1016/j.actbio.2015.10.043 – volume: 59 start-page: 2565 issue: 7 year: 2011 ident: 10.1016/j.matdes.2024.112796_b0185 article-title: Deformation mechanisms of nanograined metallic polycrystals publication-title: Acta Mater. doi: 10.1016/j.actamat.2010.12.035 – volume: 387–389 start-page: 158 year: 2004 ident: 10.1016/j.matdes.2024.112796_b0235 article-title: Correlations between the calculated stacking fault energy and the plasticity mechanisms in fe-mn-C alloys publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2004.01.059 – volume: 870 year: 2023 ident: 10.1016/j.matdes.2024.112796_b0020 article-title: The microstructure and mechanical properties of 316L austenitic stainless steel prepared by forge and laser melting deposition publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2023.144820 – volume: 861 year: 2022 ident: 10.1016/j.matdes.2024.112796_b0015 article-title: Strength–ductility synergy in 316L austenitic stainless steel with a heterogeneous structure publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2022.144385 – volume: 55 start-page: 6108 issue: 18 year: 2007 ident: 10.1016/j.matdes.2024.112796_b0210 article-title: Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steels publication-title: Acta Mater. doi: 10.1016/j.actamat.2007.07.015 – volume: 16 start-page: 26 issue: 1 year: 2000 ident: 10.1016/j.matdes.2024.112796_b0160 article-title: Electron backscattering diffraction study of acicular ferrite, bainite, and martensite steel microstructures publication-title: Mater. Sci. Tech. doi: 10.1179/026708300773002636 – volume: 48 start-page: 1093 year: 2003 ident: 10.1016/j.matdes.2024.112796_b0255 article-title: Passive films on stainless steels-chemistry, structure and growth publication-title: Electrochim. Acta doi: 10.1016/S0013-4686(02)00841-1 – volume: 441 start-page: 1 issue: 1–2 year: 2006 ident: 10.1016/j.matdes.2024.112796_b0165 article-title: Overview of processing, microstructure and mechanical properties of ultrafine grained bcc steels publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2006.08.095 – volume: 6 start-page: 1345 issue: 7 year: 1975 ident: 10.1016/j.matdes.2024.112796_b0205 article-title: Stacking fault energies of seven commercial austenitic stainless steels publication-title: Metall. Trans. A doi: 10.1007/BF02641927 – volume: 100 start-page: 178 year: 2015 ident: 10.1016/j.matdes.2024.112796_b0220 article-title: The influence of stacking fault energy on the microstructural and strain-hardening evolution of Fe–Mn–Al–Si steels during tensile deformation publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.08.030 – volume: 128 start-page: 120 year: 2017 ident: 10.1016/j.matdes.2024.112796_b0200 article-title: Understanding martensite and twin formation in austenitic steels: a model describing TRIP and TWIP effects publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.02.004 – volume: 725 start-page: 187 year: 2018 ident: 10.1016/j.matdes.2024.112796_b0070 article-title: Heterogeneous nano/ultrafine-grained medium mn austenitic stainless steel with high strength and ductility publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2018.04.022 – volume: 48 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.matdes.2024.112796_b0215 article-title: Deformation microstructure and deformation-induced martensite in austenitic fe-cr-ni alloys depending on stacking fault energy publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-016-3839-2 – volume: 52 start-page: 5511 issue: 19 year: 2004 ident: 10.1016/j.matdes.2024.112796_b0155 article-title: On coherent transformations in steel publication-title: Acta Mater. doi: 10.1016/j.actamat.2004.08.011 – volume: 68 start-page: 238 year: 2014 ident: 10.1016/j.matdes.2024.112796_b0240 article-title: The influence of manganese content on the stacking fault and austenite/ε-martensite interfacial energies in Fe–Mn–(Al–Si) steels investigated by experiment and theory publication-title: Acta Mater. doi: 10.1016/j.actamat.2014.01.001 – volume: 48 start-page: 1290 issue: 11 year: 2012 ident: 10.1016/j.matdes.2024.112796_b0245 article-title: Influence of austenitizing tempearature on the microstructure and impact toughness of a high strength low alloy HSLA100 steel publication-title: Acta Metal. Sin. doi: 10.3724/SP.J.1037.2012.00305 – volume: 145 start-page: 2186 issue: 6 year: 1998 ident: 10.1016/j.matdes.2024.112796_b0260 article-title: Pitting corrosion of metals a review of the critical factors publication-title: J. Electrochem. Soc. doi: 10.1149/1.1838615 – volume: 58 start-page: 5129 issue: 15 year: 2010 ident: 10.1016/j.matdes.2024.112796_b0230 article-title: Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate publication-title: Acta Mater. doi: 10.1016/j.actamat.2010.05.049 – volume: 119 year: 2021 ident: 10.1016/j.matdes.2024.112796_b0115 article-title: The significance of phase reversion-induced nanograined/ultrafine-grained (NG/UFG) structure on the strain hardening behavior and deformation mechanism in copper-bearing antimicrobial austenitic stainless steel publication-title: J. Mech. Behav. Biomed. doi: 10.1016/j.jmbbm.2021.104489 – volume: 877 year: 2023 ident: 10.1016/j.matdes.2024.112796_b0025 article-title: Effect of aging on secondary phases and properties of an S304H austenitic stainless steel publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2023.145187 – volume: 5 start-page: 3580 issue: 1 year: 2014 ident: 10.1016/j.matdes.2024.112796_b0055 article-title: Evading the strength–ductility trade-off dilemma in steel through gradient hierarchical nanotwins publication-title: Nat. Commun. doi: 10.1038/ncomms4580 – volume: 51 start-page: 322 issue: 2 year: 2009 ident: 10.1016/j.matdes.2024.112796_b0010 article-title: Corrosion assessment of nitric acid grade austenitic stainless steels publication-title: Corros. Sci. doi: 10.1016/j.corsci.2008.09.038 – volume: 17 start-page: 404 year: 2022 ident: 10.1016/j.matdes.2024.112796_b0135 article-title: Micro/nano-structure leads to super strength and excellent plasticity in nanostructured 304 stainless steel publication-title: J. Mater. Res. Techn. doi: 10.1016/j.jmrt.2021.12.117 |
SSID | ssj0022734 |
Score | 2.4307086 |
Snippet | [Display omitted]
•A new austenitic stainless steel with high strength and excellent ductility was designed and manufactured by simple method.•The elongation... In the pursuit of simultaneously improving the yield strength and plasticity of austenitic stainless steel, a new austenitic stainless steel was fabricated by... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 112796 |
SubjectTerms | Austenitic stainless steel Ductility and strength High-angle grain boundaries Multi-element synergistic strengthening Precipitates |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8sAaUeI4TkZArSokmKjUzfITWkVpBUGi_547O0GZ6MJmRX5E51PuO-e7z4Tc6DREoVGimIYERTCX6JFXiRWeew8QX3MscH5-yaez7GnO572rvpATFuWBo-Fui7x0KheuFMxnItXaa6WZ8pCJA1rwoXQPVuuSqTbVQtGWeLqCqnyCd0VzgdkFUNA6lOpOM6ygESjY3wtKQbu_F5t68WZyQPZboEjv4wsekh1XH5G9nnzgMVmOv8O5e91QVG1FluuGrjxVNUU1H4e8IENDgVQFHzRoOVdR1VBFUaWYYp1I_da80wqZQxRpldCwVG-gx-cCdYPpOhYSnJDZZPz6OE3auxMSk90VDaSF1gL440xBpolJBP4uLbU3kNF5LQC3WC1MIVSaK7CPh7DNeWrz1IJ9AUawUzKoV7U7I7QcKebzMuMwICu0LYwqrEMhtwzArimHhHXGk6YVFsf7LSrZMciWMppcosllNPmQJL-j1lFYY0v_B9yX374oix0egLPI1lnkNmcZEtHtqmwRRkQOMNXiz-XP_2P5C7KLU0YK2yUZNB9f7gowTaOvg_v-ANb98_w priority: 102 providerName: Directory of Open Access Journals |
Title | Excellent ductility of an austenitic stainless steel at a high strength level achieved by a simple process |
URI | https://dx.doi.org/10.1016/j.matdes.2024.112796 https://doaj.org/article/869ea67e973f472bbfbab3af093085f9 |
Volume | 239 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT4MwFG6W7aIH4884f6UHr2SMAoXjXLZMjbvokt1IS9vJsrBlYuL-e98rsOBFE2-FtFBem77vle99JeReetYLuY5gEgIUzrQjXSMcxU1gDEB8GWCC88s0nMz8p3kwb5FhnQuDtMpq7S_XdLtaV3d6lTV7myzrvUL04KM8ObIg-2EEcXvHA-_qtkln8Pg8me7jLlRwKbdaUKKPB3UGnaV5AS5UGnW7PR_TaTiq9zc8lBXybziqhvMZH5OjCjXSQdmxE9LS-Sk5bGgJnpHl6MtuwucFRQlXpLzu6NpQkVOU9tFIEkqpzZZaweoGJa1XVBRUUJQsppg0ki-Kd7pCGhFFjiUUFJU7qPGRoYgw3ZRZBedkNh69DSdOdZCCk_r9qIAYUSlAggETEHZiRIH_TmNpUgjvjOQAYpTkacSFFwqwjwEfHgSeCj1lpABMwS5IO1_n-pLQ2BXMhLEfQAM_kipKRaQ0qrr5gHzTuEtYbbwkrVTG8bCLVVLTyZZJafIETZ6UJu8SZ99qU6ps_FH_AcdlXxc1su2N9XaRVJMkicJYi5DrmDPjc09K-BjJhHFjBjjTQFd5ParJjykHj8p-ff3Vv1tekwO8KklsN6RdbD_1LaCaQt5Vs_bO7gp8A8179qo |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROLQ9IMpDpS3FBzhGG-IkTg49QAHtdmEvgMTNtWN7WbTKriAV7O_iDzKTOKvlQiUkbpbjRzJ-zIzzzWeAPR3VWigMFNfooAhuAx06FRjhEufQxNcJBTifD9LuVfznOrlegqc2FoZglX7vb_b0erf2OR0vzc50NOpcoPcQEz05oSAP0iz0yMq-nT2g33b_q3eMg7wfRacnl7-7gb9aICjig6xCr8kYtI0SrtARIxub_ibm2hXo8DiNrr0wWhSZUFGqsAuHWi1JIpNGxmmFWpZjux9ghdiwcFmtHPb63cHczyPGmOZohygBRdJG7NWwMrRDjSWe8Cim8B1BtwUsaMT64oAFxbig7E7XYNVbqeywEcQXWLLlOnxe4C7cgNuTx_rQv6wYUcYSxHbGJo6pkhGVkCVQUsHq6Kwx7qaYsnbMVMUUI4pkRkEq5bC6YWOCLTHCdGLCMD3DEvcjIi1m0yaKYROu3kW6W7BcTkr7FVgeKu7SPE6wQpxpkxUqM5ZY5GK0tIt8G3grPFl4VnO6XGMsW_jarWxELknkshH5NgTzWtOG1eM_5Y9oXOZliZO7zpjcDaWflDJLc6tSYXPBXSwirfFjNFcuzDnatQ5fVbSjKl9McWxq9Gr3395ccxc-di_Pz-RZb9D_Dp_oSQOg-wHL1d0_u4MWVaV_-hnM4O97L5pnVOYwrQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Excellent+ductility+of+an+austenitic+stainless+steel+at+a+high+strength+level+achieved+by+a+simple+process&rft.jtitle=Materials+%26+design&rft.au=Wang%2C+Yongqiang&rft.au=Hu%2C+Chaojun&rft.au=Tian%2C+Kai&rft.au=Li%2C+Na&rft.date=2024-03-01&rft.issn=0264-1275&rft.volume=239&rft.spage=112796&rft_id=info:doi/10.1016%2Fj.matdes.2024.112796&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matdes_2024_112796 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-1275&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-1275&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-1275&client=summon |