Excellent ductility of an austenitic stainless steel at a high strength level achieved by a simple process

[Display omitted] •A new austenitic stainless steel with high strength and excellent ductility was designed and manufactured by simple method.•The elongation of samples is up to 53.5–61 % under the yield and ultimate tensile strength level of 600–707 and 977–1020 MPa.•The product of strength and pla...

Full description

Saved in:
Bibliographic Details
Published inMaterials & design Vol. 239; p. 112796
Main Authors Wang, Yongqiang, Hu, Chaojun, Tian, Kai, Li, Na, Du, Juan, Shi, Xiaobin, Zheng, Chengsi
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2024
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •A new austenitic stainless steel with high strength and excellent ductility was designed and manufactured by simple method.•The elongation of samples is up to 53.5–61 % under the yield and ultimate tensile strength level of 600–707 and 977–1020 MPa.•The product of strength and plasticity of this steel is the highest value comparing with other austenitic stainless steels.•There is the highest yield strength in this steel comparing with other austenitic stainless steels at the same elongation.•The excellent mechanical property of this steel is ascribed to a new multi-element collaborative strengthening mechanism. In the pursuit of simultaneously improving the yield strength and plasticity of austenitic stainless steel, a new austenitic stainless steel was fabricated by induction smelting using a pure N2 atmosphere, hot forging, cryogenic rolling, and annealing. The material was characterized by microstructures with 3–4 μm uniform finer grains, fine precipitates, high thermal stability austenite, and extensive high-angle grain boundaries. The elongation after fracture, yield strength, and ultimate tensile strength of the samples reached 53.5 %, 707 MPa, and 1020 MPa, respectively, as well as 61 %, 600 MPa, and 977 MPa, respectively, at the same time. Moreover, a high strain hardening rate was achieved in the new stainless steel. The appropriate uniform finer grains not only played a role in grain-refined strengthening but also provided intragranular spaces and sufficient mean free available paths for dislocation accumulation and movement. Precipitates, which were coherent or semi-coherent with the matrix, provided interfaces for dislocation accumulation and obstructions for dislocation movement. Extensive high-angle grain boundaries with appropriate finer grains served as another important factor for excellent ductility due to the inhabitation and resulting deviation of crack propagation. In addition, strain-induced mechanical twinning in the current austenitic stainless steel contributed to excellent ductility and high strength.
AbstractList [Display omitted] •A new austenitic stainless steel with high strength and excellent ductility was designed and manufactured by simple method.•The elongation of samples is up to 53.5–61 % under the yield and ultimate tensile strength level of 600–707 and 977–1020 MPa.•The product of strength and plasticity of this steel is the highest value comparing with other austenitic stainless steels.•There is the highest yield strength in this steel comparing with other austenitic stainless steels at the same elongation.•The excellent mechanical property of this steel is ascribed to a new multi-element collaborative strengthening mechanism. In the pursuit of simultaneously improving the yield strength and plasticity of austenitic stainless steel, a new austenitic stainless steel was fabricated by induction smelting using a pure N2 atmosphere, hot forging, cryogenic rolling, and annealing. The material was characterized by microstructures with 3–4 μm uniform finer grains, fine precipitates, high thermal stability austenite, and extensive high-angle grain boundaries. The elongation after fracture, yield strength, and ultimate tensile strength of the samples reached 53.5 %, 707 MPa, and 1020 MPa, respectively, as well as 61 %, 600 MPa, and 977 MPa, respectively, at the same time. Moreover, a high strain hardening rate was achieved in the new stainless steel. The appropriate uniform finer grains not only played a role in grain-refined strengthening but also provided intragranular spaces and sufficient mean free available paths for dislocation accumulation and movement. Precipitates, which were coherent or semi-coherent with the matrix, provided interfaces for dislocation accumulation and obstructions for dislocation movement. Extensive high-angle grain boundaries with appropriate finer grains served as another important factor for excellent ductility due to the inhabitation and resulting deviation of crack propagation. In addition, strain-induced mechanical twinning in the current austenitic stainless steel contributed to excellent ductility and high strength.
In the pursuit of simultaneously improving the yield strength and plasticity of austenitic stainless steel, a new austenitic stainless steel was fabricated by induction smelting using a pure N2 atmosphere, hot forging, cryogenic rolling, and annealing. The material was characterized by microstructures with 3–4 μm uniform finer grains, fine precipitates, high thermal stability austenite, and extensive high-angle grain boundaries. The elongation after fracture, yield strength, and ultimate tensile strength of the samples reached 53.5 %, 707 MPa, and 1020 MPa, respectively, as well as 61 %, 600 MPa, and 977 MPa, respectively, at the same time. Moreover, a high strain hardening rate was achieved in the new stainless steel. The appropriate uniform finer grains not only played a role in grain-refined strengthening but also provided intragranular spaces and sufficient mean free available paths for dislocation accumulation and movement. Precipitates, which were coherent or semi-coherent with the matrix, provided interfaces for dislocation accumulation and obstructions for dislocation movement. Extensive high-angle grain boundaries with appropriate finer grains served as another important factor for excellent ductility due to the inhabitation and resulting deviation of crack propagation. In addition, strain-induced mechanical twinning in the current austenitic stainless steel contributed to excellent ductility and high strength.
ArticleNumber 112796
Author Tian, Kai
Shi, Xiaobin
Wang, Yongqiang
Li, Na
Du, Juan
Zheng, Chengsi
Hu, Chaojun
Author_xml – sequence: 1
  givenname: Yongqiang
  surname: Wang
  fullname: Wang, Yongqiang
  organization: Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, Anhui University of Technology, Maanshan 243002, China
– sequence: 2
  givenname: Chaojun
  surname: Hu
  fullname: Hu, Chaojun
  organization: Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, Anhui University of Technology, Maanshan 243002, China
– sequence: 3
  givenname: Kai
  surname: Tian
  fullname: Tian, Kai
  organization: Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, Anhui University of Technology, Maanshan 243002, China
– sequence: 4
  givenname: Na
  surname: Li
  fullname: Li, Na
  email: linaustb@163.com
  organization: School of Metallurgical Engineering, Anhui University of Technology, Maanshan 243002, China
– sequence: 5
  givenname: Juan
  surname: Du
  fullname: Du, Juan
  organization: Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, Anhui University of Technology, Maanshan 243002, China
– sequence: 6
  givenname: Xiaobin
  surname: Shi
  fullname: Shi, Xiaobin
  organization: Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, Anhui University of Technology, Maanshan 243002, China
– sequence: 7
  givenname: Chengsi
  surname: Zheng
  fullname: Zheng, Chengsi
  organization: Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, Anhui University of Technology, Maanshan 243002, China
BookMark eNqFkcFu3CAQhlGVSN2kfYMeeAFvAWNjcqhURWkbKVIu6RmNYdjFYu0VkKj79mXj5tJDe2KY4f80P_8VuZiXGQn5xNmWM95_nrYHKA7zVjAht5wLpft3ZMMH1TaSa3VBNkz0sqmD7j25ynliTAjVyg2Z7n5ZjBHnQt2zLSGGcqKLpzBTeM4F51CCpblAmCPmXCvESKFQoPuw29d7wnlX9jTiy3lg96EWjo6n-iKHwzEiPabFVu0HcukhZvz457wmP7_dPd3-aB4ev9_ffn1orORDaSRzjmndtdCJlvNBaMalHr3lg_Sj6rlyo7KDAtFD9eP50HWdcL1wfgSmuvaa3K9ct8BkjikcIJ3MAsG8Npa0M5Cqq4hm6DVCr1Cr1kslxrEixhY80y0bOq8r62Zl2bTknNAbGwqUsMwlQYiGM3NOwExmTcCcEzBrAlUs_xK_LfMf2ZdVhvWTXgImk23A2aILCW2pLsK_Ab8BGrqk9g
CitedBy_id crossref_primary_10_1080_21663831_2024_2438879
crossref_primary_10_1016_j_jmrt_2024_11_128
crossref_primary_10_1016_j_msea_2025_148036
crossref_primary_10_1016_j_mtcomm_2024_110329
Cites_doi 10.1038/s41598-019-57208-x
10.1016/j.pmatsci.2023.101194
10.1016/j.mattod.2017.02.003
10.1016/j.matchar.2022.112360
10.1016/S1359-6462(02)00282-8
10.1002/adem.201800402
10.1016/j.actamat.2005.05.005
10.1038/nmat1141
10.1016/j.actamat.2011.07.061
10.1007/s10853-018-2322-4
10.1016/j.matdes.2010.01.049
10.1016/0921-5093(95)10031-8
10.1016/j.msea.2010.11.034
10.1016/j.actamat.2016.04.045
10.1007/s11661-004-1007-6
10.1016/j.mser.2009.03.001
10.1038/s41586-022-04459-w
10.1016/j.msea.2016.04.070
10.1016/j.matdes.2017.09.050
10.1016/j.matpr.2021.01.341
10.1016/j.pmatsci.2005.08.003
10.1016/j.actamat.2021.116773
10.1002/adma.200600310
10.1016/j.matchemphys.2022.126837
10.1016/j.msea.2016.08.106
10.1016/j.matchar.2022.112182
10.1016/j.msea.2006.02.350
10.1016/j.actbio.2015.10.043
10.1016/j.actamat.2010.12.035
10.1016/j.msea.2004.01.059
10.1016/j.msea.2023.144820
10.1016/j.msea.2022.144385
10.1016/j.actamat.2007.07.015
10.1179/026708300773002636
10.1016/S0013-4686(02)00841-1
10.1016/j.msea.2006.08.095
10.1007/BF02641927
10.1016/j.actamat.2015.08.030
10.1016/j.actamat.2017.02.004
10.1016/j.msea.2018.04.022
10.1007/s11661-016-3839-2
10.1016/j.actamat.2004.08.011
10.1016/j.actamat.2014.01.001
10.3724/SP.J.1037.2012.00305
10.1149/1.1838615
10.1016/j.actamat.2010.05.049
10.1016/j.jmbbm.2021.104489
10.1016/j.msea.2023.145187
10.1038/ncomms4580
10.1016/j.corsci.2008.09.038
10.1016/j.jmrt.2021.12.117
ContentType Journal Article
Copyright 2024 The Authors
Copyright_xml – notice: 2024 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.matdes.2024.112796
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-4197
ExternalDocumentID oai_doaj_org_article_869ea67e973f472bbfbab3af093085f9
10_1016_j_matdes_2024_112796
S0264127524001680
GroupedDBID --K
--M
-~X
.~1
0R~
0SF
1B1
1~.
29M
4.4
457
4G.
5GY
5VS
6I.
7-5
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BCNDV
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MAGPM
MO0
NCXOZ
O9-
OAUVE
OK1
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SEW
SMS
SPC
SSM
SST
SSZ
T5K
WUQ
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
ID FETCH-LOGICAL-c418t-40dd09953a523118290149bfc184fb7617db7c87a26a275f185552d62dfba0753
IEDL.DBID AIKHN
ISSN 0264-1275
IngestDate Wed Aug 27 01:29:13 EDT 2025
Tue Jul 01 00:34:34 EDT 2025
Thu Apr 24 22:58:09 EDT 2025
Sat Mar 30 16:18:54 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Austenitic stainless steel
High-angle grain boundaries
Ductility and strength
Precipitates
Multi-element synergistic strengthening
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-40dd09953a523118290149bfc184fb7617db7c87a26a275f185552d62dfba0753
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0264127524001680
ParticipantIDs doaj_primary_oai_doaj_org_article_869ea67e973f472bbfbab3af093085f9
crossref_citationtrail_10_1016_j_matdes_2024_112796
crossref_primary_10_1016_j_matdes_2024_112796
elsevier_sciencedirect_doi_10_1016_j_matdes_2024_112796
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2024
2024-03-00
2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: March 2024
PublicationDecade 2020
PublicationTitle Materials & design
PublicationYear 2024
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Dini, Najafizadeh, Ueji, Monir-Vaghefi (b0250) 2010; 31
Sheng, Wei, Li, Man, Chen, Ma, Zheng, Zhan, La, Zhao, Husain (b0135) 2022; 17
Lei, Wang, Zhang, Luo, Lu, Lu (b0035) 2021; 208
Song, Ponge, Raabe, Speer, Matlock (b0165) 2006; 441
Tian, Gorbatov, Borgenstam, Ruban, Hedström (b0215) 2017; 48
You, Wang, Shang (b0245) 2012; 48
Zhao, Liao, Cheng, Ma, Zhu (b0045) 2006; 18
Wu, Yang, Yuan, Chen, Zhu (b0195) 2016; 112
Kim, De Cooman (b0225) 2016; 676
Allain, Chateau, Bouaziz, Migot, Guelton (b0235) 2004; 387–389
Kumar, Mangipudi, Sastry, Singh, Dhanasekaran, Sivaprasad (b0005) 2020; 10
Li, Ma, Qin, Chen, Zhao, Liu, Gao (b0020) 2023; 870
Pierce, Jiménez, Bentley, Raabe, Oskay, Wittig (b0240) 2014; 68
Lambert-Perlade, Gourgues, Besson, Sturel, Pineau (b0150) 2004; 35
Tsuji, Ito, Saito, Minamino (b0170) 2002; 47
Ji, Zhou, Vivegananthan, See Wu, Gao, Zhou (b0060) 2023; 140
Tikhonova, Belyakov, Kaibyshev (b0025) 2023; 877
Liu, Zhou, Zhang (b0105) 2022; 192
Li, Cao, Gao, Li, Zhu (b0120) 2018; 53
Ma, Zhu (b0040) 2017; 20
Lo, Shek, Lai (b0030) 2009; 65
Yu, Kao, Chang (b0175) 2005; 53
Curtze, Kuokkala (b0230) 2010; 58
Li, Zong, Li, Jin, Chen, Cabral, Chen, Huang, Chen, Ren, Yu, Han, Ding, Sha, Lian, Liao, Ma, Sun (b0050) 2022; 604
Cheng, Luo, Wang, Pan, Jiang, Li (b0085) 2022; 292
Pierce, Jiménez, Bentley, Raabe, Wittig (b0220) 2015; 100
Jin, Jung, Lee (b0180) 2007; 449–451
Zhao, Wu, Lu, Sun, Du (b0110) 2022; 194
Chatterjee (b0130) 2021; 46
Muley, Vidvans, Chaudhari, Udainiya (b0145) 2016; 30
Meyers, Mishra, Benson (b0190) 2006; 51
Liang, Zhang, Zhang, Wang, Reddy, Wang (b0090) 2023; 35
Li, Gao, Cao, Huang, Gao, Mao, Li (b0100) 2018; 20
Rawers, Grujicic (b0095) 1996; 207
Ueno, Kakihata, Kaneko, Hashimoto, Vinogradov (b0075) 2011; 59
Wei, Li, Zhu, Liu, Lei, Wang, Wu, Mi, Liu, Wang, Gao (b0055) 2014; 5
Guo, Lee, Morris (b0155) 2004; 52
Saada, Kruml (b0185) 2011; 59
Dong, Li, Somani, Misra (b0115) 2021; 119
Gourgues, Flower, Lindley (b0160) 2000; 16
Olsson, Landolt (b0255) 2003; 48
Krawczynska, Chrominski, Ura-Binczyk, Kulczyk, Lewandowska (b0140) 2017; 136
Ravi Kumar, Sharma, Mahato (b0125) 2011; 528
Galindo-Nava, Rivera-Díaz-del-Castillo (b0200) 2017; 128
Ningshen, Mudali, Amarendra, Rai (b0010) 2009; 51
Talonen, Hänninen (b0210) 2007; 55
Schramm, Reed (b0205) 1975; 6
Frankel (b0260) 1998; 145
Zhu, Liao (b0065) 2004; 3
Chen, Liu, Wang, Lu, Wang (b0080) 2016; 667
Niu, Wu, Zhang, Gong, Tang (b0070) 2018; 725
Li, Jiang, La, Kang, Wei (b0015) 2022; 861
Dini (10.1016/j.matdes.2024.112796_b0250) 2010; 31
Liu (10.1016/j.matdes.2024.112796_b0105) 2022; 192
Tsuji (10.1016/j.matdes.2024.112796_b0170) 2002; 47
Lo (10.1016/j.matdes.2024.112796_b0030) 2009; 65
Kim (10.1016/j.matdes.2024.112796_b0225) 2016; 676
Wu (10.1016/j.matdes.2024.112796_b0195) 2016; 112
Chatterjee (10.1016/j.matdes.2024.112796_b0130) 2021; 46
Jin (10.1016/j.matdes.2024.112796_b0180) 2007; 449–451
You (10.1016/j.matdes.2024.112796_b0245) 2012; 48
Allain (10.1016/j.matdes.2024.112796_b0235) 2004; 387–389
Zhao (10.1016/j.matdes.2024.112796_b0045) 2006; 18
Chen (10.1016/j.matdes.2024.112796_b0080) 2016; 667
Pierce (10.1016/j.matdes.2024.112796_b0240) 2014; 68
Ueno (10.1016/j.matdes.2024.112796_b0075) 2011; 59
Zhu (10.1016/j.matdes.2024.112796_b0065) 2004; 3
Galindo-Nava (10.1016/j.matdes.2024.112796_b0200) 2017; 128
Frankel (10.1016/j.matdes.2024.112796_b0260) 1998; 145
Ji (10.1016/j.matdes.2024.112796_b0060) 2023; 140
Gourgues (10.1016/j.matdes.2024.112796_b0160) 2000; 16
Guo (10.1016/j.matdes.2024.112796_b0155) 2004; 52
Muley (10.1016/j.matdes.2024.112796_b0145) 2016; 30
Meyers (10.1016/j.matdes.2024.112796_b0190) 2006; 51
Zhao (10.1016/j.matdes.2024.112796_b0110) 2022; 194
Schramm (10.1016/j.matdes.2024.112796_b0205) 1975; 6
Tian (10.1016/j.matdes.2024.112796_b0215) 2017; 48
Wei (10.1016/j.matdes.2024.112796_b0055) 2014; 5
Liang (10.1016/j.matdes.2024.112796_b0090) 2023; 35
Sheng (10.1016/j.matdes.2024.112796_b0135) 2022; 17
Ningshen (10.1016/j.matdes.2024.112796_b0010) 2009; 51
Yu (10.1016/j.matdes.2024.112796_b0175) 2005; 53
Li (10.1016/j.matdes.2024.112796_b0100) 2018; 20
Olsson (10.1016/j.matdes.2024.112796_b0255) 2003; 48
Curtze (10.1016/j.matdes.2024.112796_b0230) 2010; 58
Song (10.1016/j.matdes.2024.112796_b0165) 2006; 441
Talonen (10.1016/j.matdes.2024.112796_b0210) 2007; 55
Li (10.1016/j.matdes.2024.112796_b0015) 2022; 861
Ravi Kumar (10.1016/j.matdes.2024.112796_b0125) 2011; 528
Li (10.1016/j.matdes.2024.112796_b0050) 2022; 604
Lambert-Perlade (10.1016/j.matdes.2024.112796_b0150) 2004; 35
Ma (10.1016/j.matdes.2024.112796_b0040) 2017; 20
Tikhonova (10.1016/j.matdes.2024.112796_b0025) 2023; 877
Kumar (10.1016/j.matdes.2024.112796_b0005) 2020; 10
Rawers (10.1016/j.matdes.2024.112796_b0095) 1996; 207
Cheng (10.1016/j.matdes.2024.112796_b0085) 2022; 292
Lei (10.1016/j.matdes.2024.112796_b0035) 2021; 208
Krawczynska (10.1016/j.matdes.2024.112796_b0140) 2017; 136
Dong (10.1016/j.matdes.2024.112796_b0115) 2021; 119
Li (10.1016/j.matdes.2024.112796_b0120) 2018; 53
Niu (10.1016/j.matdes.2024.112796_b0070) 2018; 725
Pierce (10.1016/j.matdes.2024.112796_b0220) 2015; 100
Li (10.1016/j.matdes.2024.112796_b0020) 2023; 870
Saada (10.1016/j.matdes.2024.112796_b0185) 2011; 59
References_xml – volume: 51
  start-page: 322
  year: 2009
  end-page: 329
  ident: b0010
  article-title: Corrosion assessment of nitric acid grade austenitic stainless steels
  publication-title: Corros. Sci.
– volume: 48
  start-page: 1290
  year: 2012
  end-page: 1298
  ident: b0245
  article-title: Influence of austenitizing tempearature on the microstructure and impact toughness of a high strength low alloy HSLA100 steel
  publication-title: Acta Metal. Sin.
– volume: 65
  start-page: 39
  year: 2009
  end-page: 104
  ident: b0030
  article-title: Recent developments in stainless steels
  publication-title: Mater. Sci. Eng. R
– volume: 30
  start-page: 408
  year: 2016
  end-page: 419
  ident: b0145
  article-title: An assessment of ultra fine grained 316L stainless steel for implant applications
  publication-title: Acta Biomater.
– volume: 31
  start-page: 3395
  year: 2010
  end-page: 3402
  ident: b0250
  article-title: Tensile deformation behavior of high manganese austenitic steel: the role of grain size
  publication-title: Mater. Des.
– volume: 10
  start-page: 354
  year: 2020
  ident: b0005
  article-title: Excellent combination of tensile ductility and strength due to nanotwinning and a biamodal structure in cryorolled austenitic stainless steel
  publication-title: Sci. Rep.
– volume: 207
  start-page: 188
  year: 1996
  end-page: 194
  ident: b0095
  article-title: Effects of metal composition and temperature on the yield strength of nitrogen strengthened stainless steels
  publication-title: Mater. Sci. Eng. A
– volume: 870
  year: 2023
  ident: b0020
  article-title: The microstructure and mechanical properties of 316L austenitic stainless steel prepared by forge and laser melting deposition
  publication-title: Mater. Sci. Eng. A
– volume: 55
  start-page: 6108
  year: 2007
  end-page: 6118
  ident: b0210
  article-title: Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steels
  publication-title: Acta Mater.
– volume: 194
  year: 2022
  ident: b0110
  article-title: Effect of grain size on mechanical property and corrosion behavior of a metastable austenitic stainless steel
  publication-title: Mater Charact
– volume: 112
  start-page: 337
  year: 2016
  end-page: 346
  ident: b0195
  article-title: Combining gradient structure and TRIP effect to produce austenite stainless steel with high strength and ductility
  publication-title: Acta Mater.
– volume: 48
  start-page: 1
  year: 2017
  end-page: 7
  ident: b0215
  article-title: Deformation microstructure and deformation-induced martensite in austenitic fe-cr-ni alloys depending on stacking fault energy
  publication-title: Metall. Mater. Trans. A
– volume: 46
  start-page: 10604
  year: 2021
  end-page: 10611
  ident: b0130
  article-title: Effect of repeated warm rolling cold rolling and annealing on the microstructure and mechanical properties of AISI 301LN grade austenitic stainless steel
  publication-title: Mater. Today Proceedings
– volume: 725
  start-page: 187
  year: 2018
  end-page: 195
  ident: b0070
  article-title: Heterogeneous nano/ultrafine-grained medium mn austenitic stainless steel with high strength and ductility
  publication-title: Mater. Sci. Eng. A
– volume: 58
  start-page: 5129
  year: 2010
  end-page: 5141
  ident: b0230
  article-title: Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate
  publication-title: Acta Mater.
– volume: 18
  start-page: 2280
  year: 2006
  end-page: 2283
  ident: b0045
  article-title: Simultaneously increasing the ductility and strength of nanostructured alloys
  publication-title: Adv. Mater.
– volume: 604
  start-page: 273
  year: 2022
  end-page: 279
  ident: b0050
  article-title: Uniting tensile ductility with ultrahigh strength via composition undulation
  publication-title: Nature
– volume: 292
  year: 2022
  ident: b0085
  article-title: Electrochemical corrosion and passive behavior of a new high-nitrogen austenitic stainless steel in chloride environment
  publication-title: Mater. Chem. Phys.
– volume: 35
  start-page: 1039
  year: 2004
  end-page: 1053
  ident: b0150
  article-title: Mechanisms and modeling of cleavage fracture in simulated heat-affected zone microstructures of a high-strength low alloy steel
  publication-title: Metall. Mater. Trans. A
– volume: 68
  start-page: 238
  year: 2014
  end-page: 253
  ident: b0240
  article-title: The influence of manganese content on the stacking fault and austenite/ε-martensite interfacial energies in Fe–Mn–(Al–Si) steels investigated by experiment and theory
  publication-title: Acta Mater.
– volume: 145
  start-page: 2186
  year: 1998
  end-page: 2198
  ident: b0260
  article-title: Pitting corrosion of metals a review of the critical factors
  publication-title: J. Electrochem. Soc.
– volume: 5
  start-page: 3580
  year: 2014
  ident: b0055
  article-title: Evading the strength–ductility trade-off dilemma in steel through gradient hierarchical nanotwins
  publication-title: Nat. Commun.
– volume: 3
  start-page: 351
  year: 2004
  end-page: 352
  ident: b0065
  article-title: Retaining ductility
  publication-title: Nat. Mater.
– volume: 35
  year: 2023
  ident: b0090
  article-title: Effects of nitrogen on the microstructure and mechanical properties of an austenitic stainless steel with incomplete recrystallization annealing
  publication-title: Mater. Today Commun.
– volume: 387–389
  start-page: 158
  year: 2004
  end-page: 162
  ident: b0235
  article-title: Correlations between the calculated stacking fault energy and the plasticity mechanisms in fe-mn-C alloys
  publication-title: Mater. Sci. Eng. A
– volume: 53
  start-page: 4019
  year: 2005
  end-page: 4028
  ident: b0175
  article-title: Transition of tensile deformation behaviors in ultrafine-grained aluminum
  publication-title: Acta Mater.
– volume: 53
  start-page: 10442
  year: 2018
  end-page: 10456
  ident: b0120
  article-title: Superior strength and ductility of 316L stainless steel with heterogeneous lamella structure
  publication-title: J. Mater. Sci.
– volume: 17
  start-page: 404
  year: 2022
  end-page: 411
  ident: b0135
  article-title: Micro/nano-structure leads to super strength and excellent plasticity in nanostructured 304 stainless steel
  publication-title: J. Mater. Res. Techn.
– volume: 861
  year: 2022
  ident: b0015
  article-title: Strength–ductility synergy in 316L austenitic stainless steel with a heterogeneous structure
  publication-title: Mater. Sci. Eng. A
– volume: 20
  start-page: 323
  year: 2017
  end-page: 331
  ident: b0040
  article-title: Towards strength–ductility synergy through the design of heterogeneous nanostructures in metals
  publication-title: Mater. Today
– volume: 47
  start-page: 893
  year: 2002
  end-page: 899
  ident: b0170
  article-title: Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing
  publication-title: Scr. Mater.
– volume: 52
  start-page: 5511
  year: 2004
  end-page: 5518
  ident: b0155
  article-title: On coherent transformations in steel
  publication-title: Acta Mater.
– volume: 877
  year: 2023
  ident: b0025
  article-title: Effect of aging on secondary phases and properties of an S304H austenitic stainless steel
  publication-title: Mater. Sci. Eng. A
– volume: 6
  start-page: 1345
  year: 1975
  end-page: 1351
  ident: b0205
  article-title: Stacking fault energies of seven commercial austenitic stainless steels
  publication-title: Metall. Trans. A
– volume: 667
  start-page: 179
  year: 2016
  end-page: 188
  ident: b0080
  article-title: Gradient twinned 304 stainless steels for high strength and high ductility
  publication-title: Mater. Sci. Eng. A
– volume: 208
  year: 2021
  ident: b0035
  article-title: Enhanced mechanical properties and corrosion resistance of 316L stainless steel by pre-forming a gradient nanostructured surface layer and annealing
  publication-title: Acta Mater.
– volume: 20
  start-page: 1800402
  year: 2018
  ident: b0100
  article-title: Microstructures and mechanical properties of a gradient nanostructured 316L stainless steel processed by rotationally accelerated shot peening
  publication-title: Adv. Eng. Mater.
– volume: 100
  start-page: 178
  year: 2015
  end-page: 190
  ident: b0220
  article-title: The influence of stacking fault energy on the microstructural and strain-hardening evolution of Fe–Mn–Al–Si steels during tensile deformation
  publication-title: Acta Mater.
– volume: 16
  start-page: 26
  year: 2000
  end-page: 40
  ident: b0160
  article-title: Electron backscattering diffraction study of acicular ferrite, bainite, and martensite steel microstructures
  publication-title: Mater. Sci. Tech.
– volume: 48
  start-page: 1093
  year: 2003
  end-page: 1104
  ident: b0255
  article-title: Passive films on stainless steels-chemistry, structure and growth
  publication-title: Electrochim. Acta
– volume: 51
  start-page: 427
  year: 2006
  end-page: 556
  ident: b0190
  article-title: Mechanical properties of nanocrystalline materials
  publication-title: Prog. Mater Sci.
– volume: 449–451
  start-page: 786
  year: 2007
  end-page: 789
  ident: b0180
  article-title: Effect of grain size on the uniform ductility of a bulk ultrafine-grained alloy
  publication-title: Mater. Sci. Eng. A
– volume: 119
  year: 2021
  ident: b0115
  article-title: The significance of phase reversion-induced nanograined/ultrafine-grained (NG/UFG) structure on the strain hardening behavior and deformation mechanism in copper-bearing antimicrobial austenitic stainless steel
  publication-title: J. Mech. Behav. Biomed.
– volume: 59
  start-page: 7060
  year: 2011
  end-page: 7069
  ident: b0075
  article-title: Enhanced fatigue properties of nanostructured austenitic SUS 316L stainless steel
  publication-title: Acta Mater.
– volume: 192
  year: 2022
  ident: b0105
  article-title: Ultra-flash annealing constructed heterogeneous austenitic stainless steel with excellent strength-ductility
  publication-title: Mater Charact
– volume: 128
  start-page: 120
  year: 2017
  end-page: 134
  ident: b0200
  article-title: Understanding martensite and twin formation in austenitic steels: a model describing TRIP and TWIP effects
  publication-title: Acta Mater.
– volume: 59
  start-page: 2565
  year: 2011
  end-page: 2574
  ident: b0185
  article-title: Deformation mechanisms of nanograined metallic polycrystals
  publication-title: Acta Mater.
– volume: 528
  start-page: 2209
  year: 2011
  end-page: 2216
  ident: b0125
  article-title: Formation of ultrafine grained microstructure in the austenitic stainless steel and its impact on tensile properties
  publication-title: Mater. Sci. Eng. A
– volume: 441
  start-page: 1
  year: 2006
  end-page: 17
  ident: b0165
  article-title: Overview of processing, microstructure and mechanical properties of ultrafine grained bcc steels
  publication-title: Mater. Sci. Eng. A
– volume: 140
  year: 2023
  ident: b0060
  article-title: Recent progress in gradient-structured metals and alloys
  publication-title: Prog. Mater Sci.
– volume: 676
  start-page: 216
  year: 2016
  end-page: 231
  ident: b0225
  article-title: Stacking fault energy and deformation mechanisms in fe-xMn-0.6C-yAl TWIP steel
  publication-title: Mater. Sci. Eng. A
– volume: 136
  start-page: 34
  year: 2017
  end-page: 44
  ident: b0140
  article-title: Mechanical properties and corrosion resistance of ultrafine grained austenitic stainless steel processed by hydrostatic extrusion
  publication-title: Mater. Des.
– volume: 10
  start-page: 354
  issue: 1
  year: 2020
  ident: 10.1016/j.matdes.2024.112796_b0005
  article-title: Excellent combination of tensile ductility and strength due to nanotwinning and a biamodal structure in cryorolled austenitic stainless steel
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-57208-x
– volume: 140
  year: 2023
  ident: 10.1016/j.matdes.2024.112796_b0060
  article-title: Recent progress in gradient-structured metals and alloys
  publication-title: Prog. Mater Sci.
  doi: 10.1016/j.pmatsci.2023.101194
– volume: 20
  start-page: 323
  issue: 6
  year: 2017
  ident: 10.1016/j.matdes.2024.112796_b0040
  article-title: Towards strength–ductility synergy through the design of heterogeneous nanostructures in metals
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2017.02.003
– volume: 194
  year: 2022
  ident: 10.1016/j.matdes.2024.112796_b0110
  article-title: Effect of grain size on mechanical property and corrosion behavior of a metastable austenitic stainless steel
  publication-title: Mater Charact
  doi: 10.1016/j.matchar.2022.112360
– volume: 47
  start-page: 893
  issue: 12
  year: 2002
  ident: 10.1016/j.matdes.2024.112796_b0170
  article-title: Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing
  publication-title: Scr. Mater.
  doi: 10.1016/S1359-6462(02)00282-8
– volume: 20
  start-page: 1800402
  issue: 10
  year: 2018
  ident: 10.1016/j.matdes.2024.112796_b0100
  article-title: Microstructures and mechanical properties of a gradient nanostructured 316L stainless steel processed by rotationally accelerated shot peening
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.201800402
– volume: 53
  start-page: 4019
  issue: 15
  year: 2005
  ident: 10.1016/j.matdes.2024.112796_b0175
  article-title: Transition of tensile deformation behaviors in ultrafine-grained aluminum
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2005.05.005
– volume: 3
  start-page: 351
  issue: 6
  year: 2004
  ident: 10.1016/j.matdes.2024.112796_b0065
  article-title: Retaining ductility
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1141
– volume: 59
  start-page: 7060
  issue: 18
  year: 2011
  ident: 10.1016/j.matdes.2024.112796_b0075
  article-title: Enhanced fatigue properties of nanostructured austenitic SUS 316L stainless steel
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2011.07.061
– volume: 53
  start-page: 10442
  issue: 14
  year: 2018
  ident: 10.1016/j.matdes.2024.112796_b0120
  article-title: Superior strength and ductility of 316L stainless steel with heterogeneous lamella structure
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-018-2322-4
– volume: 31
  start-page: 3395
  year: 2010
  ident: 10.1016/j.matdes.2024.112796_b0250
  article-title: Tensile deformation behavior of high manganese austenitic steel: the role of grain size
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2010.01.049
– volume: 207
  start-page: 188
  issue: 2
  year: 1996
  ident: 10.1016/j.matdes.2024.112796_b0095
  article-title: Effects of metal composition and temperature on the yield strength of nitrogen strengthened stainless steels
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/0921-5093(95)10031-8
– volume: 35
  year: 2023
  ident: 10.1016/j.matdes.2024.112796_b0090
  article-title: Effects of nitrogen on the microstructure and mechanical properties of an austenitic stainless steel with incomplete recrystallization annealing
  publication-title: Mater. Today Commun.
– volume: 528
  start-page: 2209
  issue: 6
  year: 2011
  ident: 10.1016/j.matdes.2024.112796_b0125
  article-title: Formation of ultrafine grained microstructure in the austenitic stainless steel and its impact on tensile properties
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2010.11.034
– volume: 112
  start-page: 337
  year: 2016
  ident: 10.1016/j.matdes.2024.112796_b0195
  article-title: Combining gradient structure and TRIP effect to produce austenite stainless steel with high strength and ductility
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.04.045
– volume: 35
  start-page: 1039
  issue: 13
  year: 2004
  ident: 10.1016/j.matdes.2024.112796_b0150
  article-title: Mechanisms and modeling of cleavage fracture in simulated heat-affected zone microstructures of a high-strength low alloy steel
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-004-1007-6
– volume: 65
  start-page: 39
  issue: 4–6
  year: 2009
  ident: 10.1016/j.matdes.2024.112796_b0030
  article-title: Recent developments in stainless steels
  publication-title: Mater. Sci. Eng. R
  doi: 10.1016/j.mser.2009.03.001
– volume: 604
  start-page: 273
  issue: 7905
  year: 2022
  ident: 10.1016/j.matdes.2024.112796_b0050
  article-title: Uniting tensile ductility with ultrahigh strength via composition undulation
  publication-title: Nature
  doi: 10.1038/s41586-022-04459-w
– volume: 667
  start-page: 179
  year: 2016
  ident: 10.1016/j.matdes.2024.112796_b0080
  article-title: Gradient twinned 304 stainless steels for high strength and high ductility
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2016.04.070
– volume: 136
  start-page: 34
  year: 2017
  ident: 10.1016/j.matdes.2024.112796_b0140
  article-title: Mechanical properties and corrosion resistance of ultrafine grained austenitic stainless steel processed by hydrostatic extrusion
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2017.09.050
– volume: 46
  start-page: 10604
  year: 2021
  ident: 10.1016/j.matdes.2024.112796_b0130
  article-title: Effect of repeated warm rolling cold rolling and annealing on the microstructure and mechanical properties of AISI 301LN grade austenitic stainless steel
  publication-title: Mater. Today Proceedings
  doi: 10.1016/j.matpr.2021.01.341
– volume: 51
  start-page: 427
  issue: 4
  year: 2006
  ident: 10.1016/j.matdes.2024.112796_b0190
  article-title: Mechanical properties of nanocrystalline materials
  publication-title: Prog. Mater Sci.
  doi: 10.1016/j.pmatsci.2005.08.003
– volume: 208
  year: 2021
  ident: 10.1016/j.matdes.2024.112796_b0035
  article-title: Enhanced mechanical properties and corrosion resistance of 316L stainless steel by pre-forming a gradient nanostructured surface layer and annealing
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2021.116773
– volume: 18
  start-page: 2280
  year: 2006
  ident: 10.1016/j.matdes.2024.112796_b0045
  article-title: Simultaneously increasing the ductility and strength of nanostructured alloys
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200600310
– volume: 292
  year: 2022
  ident: 10.1016/j.matdes.2024.112796_b0085
  article-title: Electrochemical corrosion and passive behavior of a new high-nitrogen austenitic stainless steel in chloride environment
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2022.126837
– volume: 676
  start-page: 216
  year: 2016
  ident: 10.1016/j.matdes.2024.112796_b0225
  article-title: Stacking fault energy and deformation mechanisms in fe-xMn-0.6C-yAl TWIP steel
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2016.08.106
– volume: 192
  year: 2022
  ident: 10.1016/j.matdes.2024.112796_b0105
  article-title: Ultra-flash annealing constructed heterogeneous austenitic stainless steel with excellent strength-ductility
  publication-title: Mater Charact
  doi: 10.1016/j.matchar.2022.112182
– volume: 449–451
  start-page: 786
  year: 2007
  ident: 10.1016/j.matdes.2024.112796_b0180
  article-title: Effect of grain size on the uniform ductility of a bulk ultrafine-grained alloy
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2006.02.350
– volume: 30
  start-page: 408
  year: 2016
  ident: 10.1016/j.matdes.2024.112796_b0145
  article-title: An assessment of ultra fine grained 316L stainless steel for implant applications
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2015.10.043
– volume: 59
  start-page: 2565
  issue: 7
  year: 2011
  ident: 10.1016/j.matdes.2024.112796_b0185
  article-title: Deformation mechanisms of nanograined metallic polycrystals
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2010.12.035
– volume: 387–389
  start-page: 158
  year: 2004
  ident: 10.1016/j.matdes.2024.112796_b0235
  article-title: Correlations between the calculated stacking fault energy and the plasticity mechanisms in fe-mn-C alloys
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2004.01.059
– volume: 870
  year: 2023
  ident: 10.1016/j.matdes.2024.112796_b0020
  article-title: The microstructure and mechanical properties of 316L austenitic stainless steel prepared by forge and laser melting deposition
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2023.144820
– volume: 861
  year: 2022
  ident: 10.1016/j.matdes.2024.112796_b0015
  article-title: Strength–ductility synergy in 316L austenitic stainless steel with a heterogeneous structure
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2022.144385
– volume: 55
  start-page: 6108
  issue: 18
  year: 2007
  ident: 10.1016/j.matdes.2024.112796_b0210
  article-title: Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steels
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2007.07.015
– volume: 16
  start-page: 26
  issue: 1
  year: 2000
  ident: 10.1016/j.matdes.2024.112796_b0160
  article-title: Electron backscattering diffraction study of acicular ferrite, bainite, and martensite steel microstructures
  publication-title: Mater. Sci. Tech.
  doi: 10.1179/026708300773002636
– volume: 48
  start-page: 1093
  year: 2003
  ident: 10.1016/j.matdes.2024.112796_b0255
  article-title: Passive films on stainless steels-chemistry, structure and growth
  publication-title: Electrochim. Acta
  doi: 10.1016/S0013-4686(02)00841-1
– volume: 441
  start-page: 1
  issue: 1–2
  year: 2006
  ident: 10.1016/j.matdes.2024.112796_b0165
  article-title: Overview of processing, microstructure and mechanical properties of ultrafine grained bcc steels
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2006.08.095
– volume: 6
  start-page: 1345
  issue: 7
  year: 1975
  ident: 10.1016/j.matdes.2024.112796_b0205
  article-title: Stacking fault energies of seven commercial austenitic stainless steels
  publication-title: Metall. Trans. A
  doi: 10.1007/BF02641927
– volume: 100
  start-page: 178
  year: 2015
  ident: 10.1016/j.matdes.2024.112796_b0220
  article-title: The influence of stacking fault energy on the microstructural and strain-hardening evolution of Fe–Mn–Al–Si steels during tensile deformation
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2015.08.030
– volume: 128
  start-page: 120
  year: 2017
  ident: 10.1016/j.matdes.2024.112796_b0200
  article-title: Understanding martensite and twin formation in austenitic steels: a model describing TRIP and TWIP effects
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.02.004
– volume: 725
  start-page: 187
  year: 2018
  ident: 10.1016/j.matdes.2024.112796_b0070
  article-title: Heterogeneous nano/ultrafine-grained medium mn austenitic stainless steel with high strength and ductility
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2018.04.022
– volume: 48
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.matdes.2024.112796_b0215
  article-title: Deformation microstructure and deformation-induced martensite in austenitic fe-cr-ni alloys depending on stacking fault energy
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-016-3839-2
– volume: 52
  start-page: 5511
  issue: 19
  year: 2004
  ident: 10.1016/j.matdes.2024.112796_b0155
  article-title: On coherent transformations in steel
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2004.08.011
– volume: 68
  start-page: 238
  year: 2014
  ident: 10.1016/j.matdes.2024.112796_b0240
  article-title: The influence of manganese content on the stacking fault and austenite/ε-martensite interfacial energies in Fe–Mn–(Al–Si) steels investigated by experiment and theory
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2014.01.001
– volume: 48
  start-page: 1290
  issue: 11
  year: 2012
  ident: 10.1016/j.matdes.2024.112796_b0245
  article-title: Influence of austenitizing tempearature on the microstructure and impact toughness of a high strength low alloy HSLA100 steel
  publication-title: Acta Metal. Sin.
  doi: 10.3724/SP.J.1037.2012.00305
– volume: 145
  start-page: 2186
  issue: 6
  year: 1998
  ident: 10.1016/j.matdes.2024.112796_b0260
  article-title: Pitting corrosion of metals a review of the critical factors
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1838615
– volume: 58
  start-page: 5129
  issue: 15
  year: 2010
  ident: 10.1016/j.matdes.2024.112796_b0230
  article-title: Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2010.05.049
– volume: 119
  year: 2021
  ident: 10.1016/j.matdes.2024.112796_b0115
  article-title: The significance of phase reversion-induced nanograined/ultrafine-grained (NG/UFG) structure on the strain hardening behavior and deformation mechanism in copper-bearing antimicrobial austenitic stainless steel
  publication-title: J. Mech. Behav. Biomed.
  doi: 10.1016/j.jmbbm.2021.104489
– volume: 877
  year: 2023
  ident: 10.1016/j.matdes.2024.112796_b0025
  article-title: Effect of aging on secondary phases and properties of an S304H austenitic stainless steel
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2023.145187
– volume: 5
  start-page: 3580
  issue: 1
  year: 2014
  ident: 10.1016/j.matdes.2024.112796_b0055
  article-title: Evading the strength–ductility trade-off dilemma in steel through gradient hierarchical nanotwins
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4580
– volume: 51
  start-page: 322
  issue: 2
  year: 2009
  ident: 10.1016/j.matdes.2024.112796_b0010
  article-title: Corrosion assessment of nitric acid grade austenitic stainless steels
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2008.09.038
– volume: 17
  start-page: 404
  year: 2022
  ident: 10.1016/j.matdes.2024.112796_b0135
  article-title: Micro/nano-structure leads to super strength and excellent plasticity in nanostructured 304 stainless steel
  publication-title: J. Mater. Res. Techn.
  doi: 10.1016/j.jmrt.2021.12.117
SSID ssj0022734
Score 2.4307086
Snippet [Display omitted] •A new austenitic stainless steel with high strength and excellent ductility was designed and manufactured by simple method.•The elongation...
In the pursuit of simultaneously improving the yield strength and plasticity of austenitic stainless steel, a new austenitic stainless steel was fabricated by...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 112796
SubjectTerms Austenitic stainless steel
Ductility and strength
High-angle grain boundaries
Multi-element synergistic strengthening
Precipitates
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8sAaUeI4TkZArSokmKjUzfITWkVpBUGi_547O0GZ6MJmRX5E51PuO-e7z4Tc6DREoVGimIYERTCX6JFXiRWeew8QX3MscH5-yaez7GnO572rvpATFuWBo-Fui7x0KheuFMxnItXaa6WZ8pCJA1rwoXQPVuuSqTbVQtGWeLqCqnyCd0VzgdkFUNA6lOpOM6ygESjY3wtKQbu_F5t68WZyQPZboEjv4wsekh1XH5G9nnzgMVmOv8O5e91QVG1FluuGrjxVNUU1H4e8IENDgVQFHzRoOVdR1VBFUaWYYp1I_da80wqZQxRpldCwVG-gx-cCdYPpOhYSnJDZZPz6OE3auxMSk90VDaSF1gL440xBpolJBP4uLbU3kNF5LQC3WC1MIVSaK7CPh7DNeWrz1IJ9AUawUzKoV7U7I7QcKebzMuMwICu0LYwqrEMhtwzArimHhHXGk6YVFsf7LSrZMciWMppcosllNPmQJL-j1lFYY0v_B9yX374oix0egLPI1lnkNmcZEtHtqmwRRkQOMNXiz-XP_2P5C7KLU0YK2yUZNB9f7gowTaOvg_v-ANb98_w
  priority: 102
  providerName: Directory of Open Access Journals
Title Excellent ductility of an austenitic stainless steel at a high strength level achieved by a simple process
URI https://dx.doi.org/10.1016/j.matdes.2024.112796
https://doaj.org/article/869ea67e973f472bbfbab3af093085f9
Volume 239
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT4MwFG6W7aIH4884f6UHr2SMAoXjXLZMjbvokt1IS9vJsrBlYuL-e98rsOBFE2-FtFBem77vle99JeReetYLuY5gEgIUzrQjXSMcxU1gDEB8GWCC88s0nMz8p3kwb5FhnQuDtMpq7S_XdLtaV3d6lTV7myzrvUL04KM8ObIg-2EEcXvHA-_qtkln8Pg8me7jLlRwKbdaUKKPB3UGnaV5AS5UGnW7PR_TaTiq9zc8lBXybziqhvMZH5OjCjXSQdmxE9LS-Sk5bGgJnpHl6MtuwucFRQlXpLzu6NpQkVOU9tFIEkqpzZZaweoGJa1XVBRUUJQsppg0ki-Kd7pCGhFFjiUUFJU7qPGRoYgw3ZRZBedkNh69DSdOdZCCk_r9qIAYUSlAggETEHZiRIH_TmNpUgjvjOQAYpTkacSFFwqwjwEfHgSeCj1lpABMwS5IO1_n-pLQ2BXMhLEfQAM_kipKRaQ0qrr5gHzTuEtYbbwkrVTG8bCLVVLTyZZJafIETZ6UJu8SZ99qU6ps_FH_AcdlXxc1su2N9XaRVJMkicJYi5DrmDPjc09K-BjJhHFjBjjTQFd5ParJjykHj8p-ff3Vv1tekwO8KklsN6RdbD_1LaCaQt5Vs_bO7gp8A8179qo
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROLQ9IMpDpS3FBzhGG-IkTg49QAHtdmEvgMTNtWN7WbTKriAV7O_iDzKTOKvlQiUkbpbjRzJ-zIzzzWeAPR3VWigMFNfooAhuAx06FRjhEufQxNcJBTifD9LuVfznOrlegqc2FoZglX7vb_b0erf2OR0vzc50NOpcoPcQEz05oSAP0iz0yMq-nT2g33b_q3eMg7wfRacnl7-7gb9aICjig6xCr8kYtI0SrtARIxub_ibm2hXo8DiNrr0wWhSZUFGqsAuHWi1JIpNGxmmFWpZjux9ghdiwcFmtHPb63cHczyPGmOZohygBRdJG7NWwMrRDjSWe8Cim8B1BtwUsaMT64oAFxbig7E7XYNVbqeywEcQXWLLlOnxe4C7cgNuTx_rQv6wYUcYSxHbGJo6pkhGVkCVQUsHq6Kwx7qaYsnbMVMUUI4pkRkEq5bC6YWOCLTHCdGLCMD3DEvcjIi1m0yaKYROu3kW6W7BcTkr7FVgeKu7SPE6wQpxpkxUqM5ZY5GK0tIt8G3grPFl4VnO6XGMsW_jarWxELknkshH5NgTzWtOG1eM_5Y9oXOZliZO7zpjcDaWflDJLc6tSYXPBXSwirfFjNFcuzDnatQ5fVbSjKl9McWxq9Gr3395ccxc-di_Pz-RZb9D_Dp_oSQOg-wHL1d0_u4MWVaV_-hnM4O97L5pnVOYwrQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Excellent+ductility+of+an+austenitic+stainless+steel+at+a+high+strength+level+achieved+by+a+simple+process&rft.jtitle=Materials+%26+design&rft.au=Wang%2C+Yongqiang&rft.au=Hu%2C+Chaojun&rft.au=Tian%2C+Kai&rft.au=Li%2C+Na&rft.date=2024-03-01&rft.issn=0264-1275&rft.volume=239&rft.spage=112796&rft_id=info:doi/10.1016%2Fj.matdes.2024.112796&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matdes_2024_112796
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-1275&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-1275&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-1275&client=summon