Small Dopants Make Big Differences: Enhanced Electrocatalytic Performance of MoS2 Monolayer for Oxygen Reduction Reaction (ORR) by N– and P–Doping
[Display omitted] The design and development of low-cost and highly efficient electrocatalysts for oxygen reduction reaction (ORR) is crucial to the large-scale commerical application of fuel cells. Herein, by means of comprehensive densty functional theory (DFT) computations, we explored the potent...
Saved in:
Published in | Electrochimica acta Vol. 225; pp. 543 - 550 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
20.01.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
The design and development of low-cost and highly efficient electrocatalysts for oxygen reduction reaction (ORR) is crucial to the large-scale commerical application of fuel cells. Herein, by means of comprehensive densty functional theory (DFT) computations, we explored the potential of the heteroatom doping (N and P) to activate the basal plane of molybdenum disulfide (MoS2) monolayer for ORR in acidic medium. Our computations revealed that substituting S in MoS2 monolayer with N or P atom can introduce high spin density into MoS2 basal plane, leading to its improved chemical reactivity for the O2 activation, and the subsequent ORR steps prefer to proceed though a more efficient 4e pathway. Especially, N-doped MoS2 monolayer exhibits outstanding ORR catalytic performance in terms of its small overpotential (0.67V) and low energy barrier (0.25eV), which is comparable (even lower) to those of Pt–based electrocatalysts. In contrast, the catalytic activity of P–doped MoS2 monolayer is considerably poor due to its very strong interaction with O* and OOH* species in the subsequent reactions. Therefore, we expect that N-doped MoS2 monolayer is a quite promising single-atom-catalyst with high efficiency for ORR in fuel cells. |
---|---|
AbstractList | [Display omitted]
The design and development of low-cost and highly efficient electrocatalysts for oxygen reduction reaction (ORR) is crucial to the large-scale commerical application of fuel cells. Herein, by means of comprehensive densty functional theory (DFT) computations, we explored the potential of the heteroatom doping (N and P) to activate the basal plane of molybdenum disulfide (MoS2) monolayer for ORR in acidic medium. Our computations revealed that substituting S in MoS2 monolayer with N or P atom can introduce high spin density into MoS2 basal plane, leading to its improved chemical reactivity for the O2 activation, and the subsequent ORR steps prefer to proceed though a more efficient 4e pathway. Especially, N-doped MoS2 monolayer exhibits outstanding ORR catalytic performance in terms of its small overpotential (0.67V) and low energy barrier (0.25eV), which is comparable (even lower) to those of Pt–based electrocatalysts. In contrast, the catalytic activity of P–doped MoS2 monolayer is considerably poor due to its very strong interaction with O* and OOH* species in the subsequent reactions. Therefore, we expect that N-doped MoS2 monolayer is a quite promising single-atom-catalyst with high efficiency for ORR in fuel cells. |
Author | Zhang, Huiying Cai, Qinghai Tian, Yu Chen, Zhongfang Zhao, Jingxiang |
Author_xml | – sequence: 1 givenname: Huiying surname: Zhang fullname: Zhang, Huiying organization: Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China – sequence: 2 givenname: Yu surname: Tian fullname: Tian, Yu organization: Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China – sequence: 3 givenname: Jingxiang surname: Zhao fullname: Zhao, Jingxiang email: xjz_hmily@163.com organization: Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China – sequence: 4 givenname: Qinghai surname: Cai fullname: Cai, Qinghai organization: Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China – sequence: 5 givenname: Zhongfang surname: Chen fullname: Chen, Zhongfang organization: Department of Chemistry, Institute of Functional Nanomaterials, University of Puerto Rico, Rio Piedras Campus, San Juan, PR 00931, USA |
BookMark | eNqNkN9O2zAUxi3USSuwZ5gvt4sEO0mdBGkXXVsYElBUtmvrxDnu3KV25QRE7ngHJB6QJ5mjol1wwyTL_nSOv_Pnd0hG1lkk5DNnMWdcnGxibFB1EE6chEDMk5hn2QEZ8yJPo7SYlCMyZoynUSYK8ZEctu2GMZaLnI3J8-0WmobO3Q5s19Ir-IP0u1nTudEaPVqF7Sld2N8QVE0XQyfvFHTQ9J1R9Aa9dn47ZKnT9MrdJuGyroEePQ0punzo12jpCus71Rk3KNiLL8vV6iutenr98vhEwdb0JogwibHrY_JBQ9Pip9f3iPw6W_yc_Ygul-cXs-llpDJedFHGVJULrnStJ9VEVIJhLUALpiGvRSmEAIFagUj4RCWVLqtClwzTSpVZxXSSHpF8X1d517Yetdx5swXfS87kgFdu5D-8csAreSID3uD89sapTAfDYp0H0_yHf7r3Y1jv3qCXrTID79r48F_Wzrxb4y_gHaKs |
CitedBy_id | crossref_primary_10_1002_adma_201705110 crossref_primary_10_1016_j_snb_2023_134190 crossref_primary_10_1016_j_susmat_2020_e00161 crossref_primary_10_1016_j_jechem_2020_06_010 crossref_primary_10_1002_adma_202307790 crossref_primary_10_1021_acsomega_0c04176 crossref_primary_10_3390_bios12060386 crossref_primary_10_1016_j_apsusc_2020_146751 crossref_primary_10_1002_er_6703 crossref_primary_10_1016_j_snb_2018_04_016 crossref_primary_10_1002_celc_201801003 crossref_primary_10_1016_j_apsusc_2022_154881 crossref_primary_10_1016_j_apsusc_2019_03_188 crossref_primary_10_1016_j_mtsust_2023_100659 crossref_primary_10_1021_acs_jpcc_1c07044 crossref_primary_10_1039_C9CP03287H crossref_primary_10_1557_s43578_023_00902_4 crossref_primary_10_1016_j_electacta_2017_09_131 crossref_primary_10_1021_acsanm_1c04359 crossref_primary_10_1016_j_electacta_2020_135865 crossref_primary_10_1039_C7TA00577F crossref_primary_10_1016_j_susc_2020_121700 crossref_primary_10_1016_j_cplett_2021_138321 crossref_primary_10_1039_D4TA03069A crossref_primary_10_1039_C9NR10598K crossref_primary_10_3390_nano12173012 crossref_primary_10_1007_s00339_018_1629_y crossref_primary_10_1016_j_commatsci_2023_112418 crossref_primary_10_1039_D3CY01352A crossref_primary_10_1021_acs_energyfuels_9b04036 crossref_primary_10_1039_D2CP01711C crossref_primary_10_3390_mi12030240 crossref_primary_10_1002_adfm_202408870 crossref_primary_10_1016_j_apsusc_2019_143844 crossref_primary_10_1002_celc_202000768 crossref_primary_10_1016_j_fuel_2023_130017 crossref_primary_10_1007_s10800_023_02053_0 crossref_primary_10_29026_oea_2022_210105 crossref_primary_10_1039_D1EE00248A crossref_primary_10_1002_pssb_201900110 crossref_primary_10_1002_adfm_201702300 crossref_primary_10_1002_chem_201904233 crossref_primary_10_1039_D1EE02750F crossref_primary_10_1007_s41918_019_00045_3 crossref_primary_10_1038_s41598_017_17423_w crossref_primary_10_1007_s12678_020_00598_8 crossref_primary_10_1016_j_ijhydene_2017_12_009 crossref_primary_10_1039_C8CP01653D crossref_primary_10_1002_slct_202301649 crossref_primary_10_1021_acs_jpcc_0c08513 crossref_primary_10_1039_C8RA07638C crossref_primary_10_1002_fuce_202100004 crossref_primary_10_1002_smll_202202033 crossref_primary_10_1016_j_ccr_2020_213280 crossref_primary_10_1016_j_diamond_2023_110386 crossref_primary_10_1016_j_mtadv_2024_100488 crossref_primary_10_1039_D2CS00931E crossref_primary_10_1021_acsomega_1c06768 crossref_primary_10_1016_j_apsusc_2019_07_201 crossref_primary_10_1039_C9NJ04808A crossref_primary_10_1039_D3RE00281K crossref_primary_10_1021_acsami_9b14502 crossref_primary_10_1039_D0TA06335E crossref_primary_10_1016_j_apsusc_2023_158303 crossref_primary_10_1016_j_electacta_2017_08_025 crossref_primary_10_1021_acsami_0c06062 crossref_primary_10_1103_PhysRevApplied_18_034061 crossref_primary_10_1039_C7TA07001B crossref_primary_10_1080_01614940_2021_2003085 crossref_primary_10_1016_j_ces_2021_117398 crossref_primary_10_1002_adsu_202100515 crossref_primary_10_1002_adma_202008376 crossref_primary_10_1002_open_202100196 crossref_primary_10_1016_j_apsusc_2018_06_118 crossref_primary_10_1016_j_pnsc_2020_09_011 crossref_primary_10_1039_C8NJ03571G crossref_primary_10_1016_j_apsadv_2023_100402 crossref_primary_10_1039_D0NJ05606E crossref_primary_10_1016_j_apsusc_2025_162538 crossref_primary_10_1021_acsanm_9b00867 crossref_primary_10_1007_s40242_020_9068_7 crossref_primary_10_1007_s42823_020_00178_2 crossref_primary_10_1021_acs_jpcc_0c00446 crossref_primary_10_1016_S1872_2067_21_64007_X crossref_primary_10_1039_C8CP01294F crossref_primary_10_1016_j_electacta_2018_06_152 crossref_primary_10_1038_s41598_018_31354_0 crossref_primary_10_1021_acs_jpcc_9b09912 crossref_primary_10_1007_s11467_018_0812_0 crossref_primary_10_1016_j_jpowsour_2022_232613 crossref_primary_10_1002_cphc_201900507 crossref_primary_10_1021_acs_energyfuels_2c03942 crossref_primary_10_1016_j_mtener_2018_10_014 crossref_primary_10_1007_s12274_019_2326_7 crossref_primary_10_1039_D2SC03686J crossref_primary_10_1039_C7CP05634F crossref_primary_10_1021_acs_chemrev_3c00937 crossref_primary_10_1039_C9NJ00466A crossref_primary_10_1007_s11581_018_2691_3 crossref_primary_10_15541_jim20220128 crossref_primary_10_1002_ente_201700681 crossref_primary_10_1380_ejssnt_2021_119 crossref_primary_10_1007_s12034_025_03398_2 crossref_primary_10_1021_acs_energyfuels_0c00297 crossref_primary_10_1016_j_apsusc_2020_148741 crossref_primary_10_1039_C8NJ05365K crossref_primary_10_1007_s41918_020_00085_0 crossref_primary_10_1007_s42247_021_00241_2 |
Cites_doi | 10.1021/acs.nanolett.6b01853 10.1039/C5NR00302D 10.1038/nature11115 10.1038/35104620 10.1039/C4CS00484A 10.1021/acs.chemmater.5b00621 10.1039/P29930000799 10.1038/nmat3439 10.1021/acsami.5b08420 10.1021/jp210796e 10.1021/ja105617z 10.1039/C5TA03410H 10.1039/c0ee00071j 10.1002/anie.201306588 10.1038/451652a 10.1021/acs.jpcc.6b04639 10.1103/PhysRevB.89.205417 10.1039/C5EE02474A 10.1002/jcc.20495 10.1039/C4CS00470A 10.1039/C5TA01600B 10.1166/sam.2015.2261 10.1149/2.0841605jes 10.1039/C6TA01657J 10.1021/nl2043612 10.1021/ja5033474 10.1021/acsami.5b09169 10.1021/ar300122m 10.1016/j.apsusc.2016.02.230 10.1021/cr5003563 10.1166/jnn.2015.11441 10.1021/acscatal.6b01274 10.1016/j.chemphys.2005.05.038 10.1021/ja0540019 10.1103/PhysRevB.88.075420 10.1063/1.458452 10.1039/C5NR07370G 10.1007/s12274-014-0677-7 10.1063/1.1316015 10.1021/acscatal.5b01563 10.1021/jp201991j 10.1016/j.electacta.2016.05.148 10.1039/C5TA08620E 10.1039/C4CY01162G 10.1002/smll.201101594 10.1007/s12274-016-1115-9 10.1007/BF00549096 10.1021/jp3044708 10.1103/PhysRevLett.77.3865 10.1039/C5TA10224C 10.1021/ar4002312 10.1039/C5DT02562A 10.1021/jp047349j 10.1088/0957-4484/27/17/175402 10.1039/C5EE00751H 10.1039/C5CC01841B 10.1021/acscatal.6b01593 10.1016/j.gee.2016.04.004 10.1016/j.commatsci.2015.05.021 10.1039/C5CC06847A 10.1016/S0927-0256(03)00111-3 10.1039/C5CS90037A 10.1039/C6RA02610A 10.1039/C5CS00414D 10.1021/acscatal.5b00991 10.1016/j.jcat.2011.06.015 10.1021/acs.chemrev.5b00462 10.1039/C6CS00136J 10.1039/C4CS00182F 10.1039/c1cs15228a 10.1002/anie.201509933 10.1002/chem.201301406 10.1039/C6NR04073J 10.1002/adfm.201401268 10.1039/C6QI00198J 10.1039/c2cs35387c |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ltd |
Copyright_xml | – notice: 2016 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.electacta.2016.12.144 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-3859 |
EndPage | 550 |
ExternalDocumentID | 10_1016_j_electacta_2016_12_144 S0013468616326998 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNUV ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSK SSZ T5K TWZ UPT WH7 XPP YK3 ZMT ~02 ~G- 29G 41~ 53G AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIDUJ AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB HMU HVGLF HZ~ H~9 LPU R2- SC5 SCB SCH SEW SSH T9H VH1 WUQ XOL ZY4 |
ID | FETCH-LOGICAL-c418t-40cb761cfdf5b56b60ed6af60fa7d69666a6efca6215c2bf9b8f90e3bc94b0f23 |
IEDL.DBID | .~1 |
ISSN | 0013-4686 |
IngestDate | Tue Jul 01 01:53:33 EDT 2025 Thu Apr 24 23:16:11 EDT 2025 Fri Feb 23 02:28:54 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | doping MoS2 monolayer oxygen reduction reaction density functional theory |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c418t-40cb761cfdf5b56b60ed6af60fa7d69666a6efca6215c2bf9b8f90e3bc94b0f23 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1016_j_electacta_2016_12_144 crossref_citationtrail_10_1016_j_electacta_2016_12_144 elsevier_sciencedirect_doi_10_1016_j_electacta_2016_12_144 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-01-20 |
PublicationDateYYYYMMDD | 2017-01-20 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-20 day: 20 |
PublicationDecade | 2010 |
PublicationTitle | Electrochimica acta |
PublicationYear | 2017 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Guo, Zhu, Sun, Tang, Zhang (bib0190) 2016; 211 Govind, Petersen, Fitzgerald, King-Smith, Andzelm (bib0310) 2003; 28 Dai, Du, Li, Liu, Ma, Sun, Zhang, Yang (bib0185) 2015; 7 Bai, Xiong (bib0155) 2015; 7 Wang, Tsai, Kong, Chan, Abild-Pedersen, Norskov, Cui (bib0230) 2015; 8 Liu, Zhang, Lee, Lin, Chang, Su, Chang, Li, Shi, Zhang, Lai, Li (bib0145) 2012; 12 Zhang, Li, Guo, Ma, Zhao (bib0070) 2016; 4 Wang, Zhang, Shen, Wu (bib0215) 2016; 6 Hu, Wang, Xiao, Xiao, Rong (bib0365) 2015; 107 Delley (bib0280) 2000; 113 Qiuhong, Xia, Zhenjun, Jia, Dongdong, Qiang, Shuangyin (bib0370) 2016; 27 Huang, Feng, Du, Song (bib0265) 2015; 51 Kattel, Atanassov, Kiefer (bib0335) 2012; 116 Grimme (bib0295) 2006; 27 Noh, Kim, Kim (bib0355) 2014; 89 Debe (bib0030) 2012; 486 Rossmeisl, Logadottir, Nørskov (bib0320) 2005; 319 Wan, Leonard (bib0205) 2015; 27 Zhang, Wang, Xie, Zhen (bib0020) 2016; 1 Yu, Zhang, Dai (bib0385) 2010; 132 Katsounaros, Cherevko, Zeradjanin, Mayrhofer (bib0010) 2014; 53 Huang, Zeng, Zhang (bib0120) 2013; 42 Huang, Feng, Du, Wu, Song (bib0260) 2015; 3 Klamt, Schuurmann (bib0300) 1993; 2 Perdew, Burke, Ernzerhof (bib0285) 1996; 77 Ren, Ma, Fan, Pang, Zhang, Yao, Ren, Liu (bib0225) 2015; 51 Dolui, Rungger, Das Pemmaraju, Sanvito (bib0350) 2013; 88 Ma, Ju, Li, Yang, He, Ma, Tang, Lu, Yang (bib0360) 2016; 371 Kibsgaard, Chen, Reinecke, Jaramillo (bib0160) 2012; 11 Choi, Lim, Chung, Park, Shin, Kim, Woo (bib0375) 2014; 136 Zhang, Xia (bib0105) 2011; 115 Zhang, Dai (bib0080) 2015; 5 Ma, Li, An, Feng, Chi, Liu, Zhang, Sun (bib0240) 2016; 9 Deng, Li, Xiao, Tu, Deng, Yang, Tian, Li, Ren, Bao (bib0235) 2015; 8 Peterson, Abild-Pedersen, Studt, Rossmeisl, Nørskov (bib0325) 2010; 3 Chhowalla, Liu, Zhang (bib0125) 2015; 44 Higgins, Zamani, Yu, Chen (bib0090) 2016; 9 Lim, Hwang, Kim, Shim, Baeck (bib0200) 2015; 15 Dai, Xue, Qu, Choi, Baek (bib0060) 2015; 115 Lim, Wilcox (bib0330) 2012; 116 Tsai, Chan, Norskov, Abild-Pedersen (bib0220) 2015; 5 Steele, Heinzel (bib0025) 2001; 414 Li, Wu, Yin, Zhang (bib0140) 2014; 47 Shao, Chang, Dodelet, Chenitz (bib0035) 2016; 116 Zhou, Wang, Guo (bib0075) 2016; 45 Zhang, Lai, Tan, Zhang (bib0135) 2016; 55 Ambrosi, Chua, Latiff, Loo, Wong, Eng, Bonanni, Pumera (bib0095) 2016; 45 Wang, Gao, Zhuo, Zhu, Papakonstantinou, Li, Li (bib0255) 2013; 19 Wang, Yuan, Li, Chen (bib0340) 2015; 7 Li, Shu, Hu, Shi, Liu, Liang, Chen (bib0380) 2015; 7 Chua, Luxa, Eng, Tan, Sofer, Pumera (bib0210) 2016; 6 Hirshfeld (bib0305) 1977; 44 Nørskov, Rossmeisl, Logadottir, Lindqvist, Kitchin, Bligaard, Jónsson (bib0315) 2004; 108 Rowley-Neale, Fearn, Brownson, Smith, Ji, Banks (bib0270) 2016; 8 Delley (bib0275) 1990; 92 Cheng, Chen (bib0015) 2012; 41 He, Liang, Mao, Zhang, Yang, Cui, Zhu, Li, Li (bib0165) 2016; 163 Chhetri, Gupta, Yadgarov, Rosentsveig, Tenne, Rao (bib0175) 2015; 44 Zhang, Dai (bib0065) 2015; 5 Deng, Xie, Zou, Ji (bib0100) 2016; 4 Armand, Tarascon (bib0005) 2008; 451 Zhang, Li, Xu, Wang, Huo, Wan, Sun (bib0170) 2015; 3 Qin, Lei, Liu, Chen (bib0250) 2016; 4 Tan, Zhang (bib0130) 2015; 44 Hao, Wen, Xiang, Wang, Hou, Su, Hu, Liu (bib0150) 2014; 24 Dai, Chang, Baek, Lu (bib0050) 2012; 8 Azcatl, Qin, Prakash, Zhang, Cheng, Wang, Lu, Kim, Kim, Cho, Addou, Hinkle, Appenzeller, Wallace (bib0345) 2016; 16 Yu, Pan, Cao, Hu, Bao (bib0110) 2011; 282 Li, Wang, Tian, Ma, Dai, Yang, Zhou (bib0180) 2016; 8 Liu, Rodriguez (bib0290) 2005; 127 Nie, Li, Wei (bib0040) 2015; 44 Dai (bib0055) 2013; 46 Duan, Chen, Jaroniec, Qiao (bib0085) 2015; 5 Escalera-Lopez, Niu, Yin, Cooke, Rees, Palmer (bib0195) 2016; 6 Xie, Xin, Cui, Zhang, Zhou, Wang, Liu, Wang, Ning, Xia, Zhao, Tang (bib0245) 2016; 3 Jiao, Zheng, Jaroniec, Qiao (bib0045) 2015; 44 Wang, Dong, Guo, Zhang, Hou, Li (bib0115) 2016; 120 Huang (10.1016/j.electacta.2016.12.144_bib0265) 2015; 51 Ma (10.1016/j.electacta.2016.12.144_bib0240) 2016; 9 Delley (10.1016/j.electacta.2016.12.144_bib0280) 2000; 113 Peterson (10.1016/j.electacta.2016.12.144_bib0325) 2010; 3 Qin (10.1016/j.electacta.2016.12.144_bib0250) 2016; 4 Hirshfeld (10.1016/j.electacta.2016.12.144_bib0305) 1977; 44 Nie (10.1016/j.electacta.2016.12.144_bib0040) 2015; 44 Li (10.1016/j.electacta.2016.12.144_bib0180) 2016; 8 Ambrosi (10.1016/j.electacta.2016.12.144_bib0095) 2016; 45 Steele (10.1016/j.electacta.2016.12.144_bib0025) 2001; 414 Zhang (10.1016/j.electacta.2016.12.144_bib0070) 2016; 4 Li (10.1016/j.electacta.2016.12.144_bib0380) 2015; 7 Wang (10.1016/j.electacta.2016.12.144_bib0115) 2016; 120 Zhang (10.1016/j.electacta.2016.12.144_bib0065) 2015; 5 Zhang (10.1016/j.electacta.2016.12.144_bib0080) 2015; 5 Kattel (10.1016/j.electacta.2016.12.144_bib0335) 2012; 116 Tan (10.1016/j.electacta.2016.12.144_bib0130) 2015; 44 Jiao (10.1016/j.electacta.2016.12.144_bib0045) 2015; 44 Chhetri (10.1016/j.electacta.2016.12.144_bib0175) 2015; 44 Dai (10.1016/j.electacta.2016.12.144_bib0050) 2012; 8 Chhowalla (10.1016/j.electacta.2016.12.144_bib0125) 2015; 44 Dai (10.1016/j.electacta.2016.12.144_bib0055) 2013; 46 Cheng (10.1016/j.electacta.2016.12.144_bib0015) 2012; 41 Wan (10.1016/j.electacta.2016.12.144_bib0205) 2015; 27 Deng (10.1016/j.electacta.2016.12.144_bib0235) 2015; 8 Huang (10.1016/j.electacta.2016.12.144_bib0120) 2013; 42 Tsai (10.1016/j.electacta.2016.12.144_bib0220) 2015; 5 Rossmeisl (10.1016/j.electacta.2016.12.144_bib0320) 2005; 319 Dolui (10.1016/j.electacta.2016.12.144_bib0350) 2013; 88 Wang (10.1016/j.electacta.2016.12.144_bib0215) 2016; 6 Lim (10.1016/j.electacta.2016.12.144_bib0330) 2012; 116 Zhang (10.1016/j.electacta.2016.12.144_bib0020) 2016; 1 Huang (10.1016/j.electacta.2016.12.144_bib0260) 2015; 3 Wang (10.1016/j.electacta.2016.12.144_bib0340) 2015; 7 Nørskov (10.1016/j.electacta.2016.12.144_bib0315) 2004; 108 Hu (10.1016/j.electacta.2016.12.144_bib0365) 2015; 107 Zhang (10.1016/j.electacta.2016.12.144_bib0135) 2016; 55 Yu (10.1016/j.electacta.2016.12.144_bib0385) 2010; 132 Bai (10.1016/j.electacta.2016.12.144_bib0155) 2015; 7 Choi (10.1016/j.electacta.2016.12.144_bib0375) 2014; 136 Duan (10.1016/j.electacta.2016.12.144_bib0085) 2015; 5 Wang (10.1016/j.electacta.2016.12.144_bib0230) 2015; 8 Guo (10.1016/j.electacta.2016.12.144_bib0190) 2016; 211 Noh (10.1016/j.electacta.2016.12.144_bib0355) 2014; 89 Delley (10.1016/j.electacta.2016.12.144_bib0275) 1990; 92 Liu (10.1016/j.electacta.2016.12.144_bib0290) 2005; 127 Armand (10.1016/j.electacta.2016.12.144_bib0005) 2008; 451 Rowley-Neale (10.1016/j.electacta.2016.12.144_bib0270) 2016; 8 Qiuhong (10.1016/j.electacta.2016.12.144_bib0370) 2016; 27 Wang (10.1016/j.electacta.2016.12.144_bib0255) 2013; 19 Debe (10.1016/j.electacta.2016.12.144_bib0030) 2012; 486 Zhou (10.1016/j.electacta.2016.12.144_bib0075) 2016; 45 Higgins (10.1016/j.electacta.2016.12.144_bib0090) 2016; 9 Xie (10.1016/j.electacta.2016.12.144_bib0245) 2016; 3 Deng (10.1016/j.electacta.2016.12.144_bib0100) 2016; 4 Azcatl (10.1016/j.electacta.2016.12.144_bib0345) 2016; 16 Katsounaros (10.1016/j.electacta.2016.12.144_bib0010) 2014; 53 Zhang (10.1016/j.electacta.2016.12.144_bib0170) 2015; 3 Escalera-Lopez (10.1016/j.electacta.2016.12.144_bib0195) 2016; 6 Zhang (10.1016/j.electacta.2016.12.144_bib0105) 2011; 115 Dai (10.1016/j.electacta.2016.12.144_bib0060) 2015; 115 Klamt (10.1016/j.electacta.2016.12.144_bib0300) 1993; 2 Yu (10.1016/j.electacta.2016.12.144_bib0110) 2011; 282 Li (10.1016/j.electacta.2016.12.144_bib0140) 2014; 47 Ren (10.1016/j.electacta.2016.12.144_bib0225) 2015; 51 He (10.1016/j.electacta.2016.12.144_bib0165) 2016; 163 Dai (10.1016/j.electacta.2016.12.144_bib0185) 2015; 7 Perdew (10.1016/j.electacta.2016.12.144_bib0285) 1996; 77 Kibsgaard (10.1016/j.electacta.2016.12.144_bib0160) 2012; 11 Liu (10.1016/j.electacta.2016.12.144_bib0145) 2012; 12 Hao (10.1016/j.electacta.2016.12.144_bib0150) 2014; 24 Govind (10.1016/j.electacta.2016.12.144_bib0310) 2003; 28 Ma (10.1016/j.electacta.2016.12.144_bib0360) 2016; 371 Chua (10.1016/j.electacta.2016.12.144_bib0210) 2016; 6 Lim (10.1016/j.electacta.2016.12.144_bib0200) 2015; 15 Shao (10.1016/j.electacta.2016.12.144_bib0035) 2016; 116 Grimme (10.1016/j.electacta.2016.12.144_bib0295) 2006; 27 |
References_xml | – volume: 44 start-page: 2584 year: 2015 end-page: 2586 ident: bib0125 article-title: Two-dimensional transition metal dichalcogenide (TMD) nanosheets publication-title: Chem. Soc. Rev. – volume: 16 start-page: 5437 year: 2016 end-page: 5443 ident: bib0345 article-title: Covalent nitrogen doping and compressive strain in MoS publication-title: Nano Lett. – volume: 163 start-page: H299 year: 2016 end-page: H304 ident: bib0165 article-title: 3D Tungsten-doped MoS publication-title: J. Electrochem. Soc. – volume: 371 start-page: 180 year: 2016 end-page: 188 ident: bib0360 article-title: Formaldehyde molecule adsorption on the doped monolayer MoS publication-title: Appl. Surf. Sci. – volume: 3 start-page: 16050 year: 2015 end-page: 16056 ident: bib0260 article-title: Incorporated oxygen in MoS publication-title: J. Mater. Chem. A – volume: 5 start-page: 7244 year: 2015 end-page: 7253 ident: bib0080 article-title: Heteroatom-doped graphitic carbon catalysts for efficient electrocatalysis of oxygen reduction reaction publication-title: ACS Catal. – volume: 12 start-page: 1538 year: 2012 end-page: 1544 ident: bib0145 article-title: Growth of large-area and highly crystalline MoS publication-title: Nano Lett. – volume: 7 start-page: 2168 year: 2015 end-page: 2181 ident: bib0155 article-title: Recent advances in two-dimensional nanostructures for catalysis applications publication-title: Sci. Adv. Mater. – volume: 9 start-page: 357 year: 2016 end-page: 390 ident: bib0090 article-title: The application of graphene and its composites in oxygen reduction electrocatalysis: a perspective and review of recent progress publication-title: Energy & Environ. Sci. – volume: 1 start-page: 4 year: 2016 end-page: 17 ident: bib0020 article-title: Recent progress in rechargeable alkali metal–air batteries publication-title: Green Energy & Environment – volume: 44 start-page: 2713 year: 2015 end-page: 2731 ident: bib0130 article-title: Two-dimensional transition metal dichalcogenide nanosheet-based composites publication-title: Chem. Soc. Rev. – volume: 89 start-page: 205417 year: 2014 ident: bib0355 article-title: Stability and electronic structures of native defects in single-layer mathrm MoS publication-title: Phys. Rev. B – volume: 282 start-page: 183 year: 2011 end-page: 190 ident: bib0110 article-title: Oxygen reduction reaction mechanism on nitrogen-doped graphene: A density functional theory study publication-title: J. Catal. – volume: 19 start-page: 11939 year: 2013 end-page: 11948 ident: bib0255 article-title: Size-dependent enhancement of electrocatalytic oxygen-reduction and hydrogen-evolution performance of MoS publication-title: Chem.–A Eur. J. – volume: 7 start-page: 27242 year: 2015 end-page: 27253 ident: bib0185 article-title: Co-doped MoS publication-title: ACS Appl. Mater. & Inter. – volume: 8 start-page: 566 year: 2015 end-page: 575 ident: bib0230 article-title: Transition-metal doped edge sites in vertically aligned MoS publication-title: Nano Res. – volume: 132 start-page: 15127 year: 2010 end-page: 15129 ident: bib0385 article-title: Highly efficient metal-free growth of nitrogen-doped single-walled carbon nanotubes on plasma-etched substrates for oxygen reduction publication-title: J. Am. Chem. Soc. – volume: 53 start-page: 102 year: 2014 end-page: 121 ident: bib0010 article-title: Oxygen electrochemistry as a cornerstone for sustainable energy conversion publication-title: Angew. Chem. Intern. Ed. – volume: 414 start-page: 345 year: 2001 end-page: 352 ident: bib0025 article-title: Materials for fuel-cell technologies publication-title: Nature – volume: 44 start-page: 16399 year: 2015 end-page: 16404 ident: bib0175 article-title: Beneficial effect of Re doping on the electrochemical HER activity of MoS publication-title: Dalton Trans. – volume: 41 start-page: 2172 year: 2012 end-page: 2192 ident: bib0015 article-title: Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts publication-title: Chem. Soc. Rev – volume: 5 start-page: 7244 year: 2015 end-page: 7253 ident: bib0065 article-title: Heteroatom-doped graphitic carbon catalysts for efficient electrocatalysis of oxygen reduction reaction publication-title: ACS Catal. – volume: 6 start-page: 16656 year: 2016 end-page: 16661 ident: bib0215 article-title: Ni-doped MoS publication-title: Rsc Adv. – volume: 46 start-page: 31 year: 2013 end-page: 42 ident: bib0055 article-title: Functionalization of graphene for efficient energy conversion and storage publication-title: Acc. Chem. Res. – volume: 3 start-page: 1160 year: 2016 end-page: 1166 ident: bib0245 article-title: Vertically aligned oxygen-doped molybdenum disulfide nanosheets grown on carbon cloth realizing robust hydrogen evolution reaction publication-title: Inorg. Chem. Fron. – volume: 108 start-page: 17886 year: 2004 end-page: 17892 ident: bib0315 article-title: Origin of the overpotential for oxygen reduction at a fuel-cell cathode publication-title: J. Phys. Chem. B – volume: 44 start-page: 2168 year: 2015 end-page: 2201 ident: bib0040 article-title: Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction publication-title: Chem. Soc. Rev. – volume: 44 start-page: 129 year: 1977 end-page: 138 ident: bib0305 article-title: Bonded-atom fragments for describing molecular charge densities publication-title: Theor. Chim. Acta – volume: 45 start-page: 2458 year: 2016 end-page: 2493 ident: bib0095 article-title: Graphene and its electrochemistry – an update publication-title: Chem. Soc. Rev. – volume: 115 start-page: 4823 year: 2015 end-page: 4892 ident: bib0060 article-title: Metal-free catalysts for oxygen reduction reaction publication-title: Chem. Rev. – volume: 4 start-page: 1144 year: 2016 end-page: 1173 ident: bib0100 article-title: Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors publication-title: J. Mater. Chem. A – volume: 116 start-page: 3594 year: 2016 end-page: 3657 ident: bib0035 article-title: Recent advances in electrocatalysts for oxygen reduction reaction publication-title: Chem. Rev. – volume: 116 start-page: 17378 year: 2012 end-page: 17383 ident: bib0335 article-title: Density Functional Theory Study of Ni–N publication-title: J. Phys. Chem. C – volume: 127 start-page: 14871 year: 2005 end-page: 14878 ident: bib0290 article-title: Catalysts for hydrogen evolution from the [NiFe] hydrogenase to the Ni publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 27405 year: 2015 end-page: 27413 ident: bib0380 article-title: Atomic mechanism of electrocatalytically active Co?N complexes in graphene basal plane for oxygen reduction reaction publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 1676 year: 2016 end-page: 1683 ident: bib0180 article-title: Carbon doped molybdenum disulfide nanosheets stabilized on graphene for the hydrogen evolution reaction with high electrocatalytic ability publication-title: Nanoscale – volume: 319 start-page: 178 year: 2005 end-page: 184 ident: bib0320 article-title: Electrolysis of water on oxidized metal surfaces publication-title: Chem. Phys. – volume: 486 start-page: 43 year: 2012 end-page: 51 ident: bib0030 article-title: Electrocatalyst approaches and challenges for automotive fuel cells publication-title: Nature – volume: 8 start-page: 1594 year: 2015 end-page: 1601 ident: bib0235 article-title: Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS publication-title: Energy & Environ. Sci. – volume: 211 start-page: 603 year: 2016 end-page: 610 ident: bib0190 article-title: Doping MoS publication-title: Electrochim. Acta – volume: 451 start-page: 652 year: 2008 end-page: 657 ident: bib0005 article-title: Building better batteries publication-title: Nature – volume: 4 start-page: 1440 year: 2016 end-page: 1445 ident: bib0250 article-title: Advanced N-doped mesoporous molybdenum disulfide nanosheets and the enhanced lithium-ion storage performance publication-title: J. Mater. Chem. A – volume: 51 start-page: 7903 year: 2015 end-page: 7906 ident: bib0265 article-title: High-quality phosphorus-doped MoS publication-title: Chem. Commun. – volume: 28 start-page: 250 year: 2003 end-page: 258 ident: bib0310 article-title: A generalized synchronous transit method for transition state location publication-title: Comput. Mater. Sci. – volume: 120 start-page: 17427 year: 2016 end-page: 17434 ident: bib0115 article-title: Potential application of novel boron-doped graphene nanoribbon as oxygen reduction reaction catalyst publication-title: J. Phys. Chem. C – volume: 7 start-page: 11633 year: 2015 end-page: 11641 ident: bib0340 article-title: Two-dimensional iron-Phthalocyanine (Fe-Pc) monolayer as a promising single-atom-catalyst for oxygen reduction reaction: a computational study publication-title: Nanoscale – volume: 88 start-page: 075420 year: 2013 ident: bib0350 article-title: Possible doping strategies for MoS publication-title: Phys. Rev. B – volume: 9 start-page: 2284 year: 2016 end-page: 2293 ident: bib0240 article-title: Ultrathin Co(Ni)-doped MoS publication-title: Nano Res. – volume: 8 start-page: 1130 year: 2012 end-page: 1166 ident: bib0050 article-title: Carbon nanomaterials for advanced energy conversion and storage publication-title: Small – volume: 2 start-page: 799 year: 1993 end-page: 805 ident: bib0300 article-title: COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient publication-title: J. Chem. Soc., Perkin Transactions – volume: 27 start-page: 175402 year: 2016 ident: bib0370 article-title: The origin of the enhanced performance of nitrogen-doped MoS publication-title: Nanotech – volume: 44 start-page: 2060 year: 2015 end-page: 2086 ident: bib0045 article-title: Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions publication-title: Chem. Soc. Rev. – volume: 115 start-page: 11170 year: 2011 end-page: 11176 ident: bib0105 article-title: Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells publication-title: J. Phys. Chem. C – volume: 42 start-page: 1934 year: 2013 end-page: 1946 ident: bib0120 article-title: Metal dichalcogenide nanosheets: preparation, properties and applications publication-title: Chem. Soc. Rev. – volume: 92 start-page: 508 year: 1990 end-page: 517 ident: bib0275 article-title: An all-electron numerical method for solving the local density functional for polyatomic molecules publication-title: J. Chem. Phys. – volume: 6 start-page: 5724 year: 2016 end-page: 5734 ident: bib0210 article-title: Negative electrocatalytic effects of p-doping niobium and tantalum on MoS publication-title: ACS Catal. – volume: 116 start-page: 3653 year: 2012 end-page: 3660 ident: bib0330 article-title: Mechanisms of the oxygen reduction reaction on defective graphene-supported Pt nanoparticles from first-principles publication-title: J. Phys. Chem. C – volume: 45 start-page: 1273 year: 2016 end-page: 1307 ident: bib0075 article-title: Towards high-efficiency nanoelectrocatalysts for oxygen reduction through engineering advanced carbon nanomaterials publication-title: Chem. Soc. Rev. – volume: 51 start-page: 15997 year: 2015 end-page: 16000 ident: bib0225 article-title: A Se-doped MoS publication-title: Chem. Commun. – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: bib0285 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. – volume: 47 start-page: 1067 year: 2014 end-page: 1075 ident: bib0140 article-title: Preparation and applications of mechanically exfoliated single-layer and multilayer MoS publication-title: Acc. Chem. Res. – volume: 136 start-page: 9070 year: 2014 end-page: 9077 ident: bib0375 article-title: Long-range electron transfer over graphene-based catalyst for high-performing oxygen reduction reactions: importance of size, N-doping, and metallic impurities publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 14767 year: 2016 end-page: 14777 ident: bib0270 article-title: 2D molybdenum disulphide (2D-MoS publication-title: Nanoscale – volume: 113 start-page: 7756 year: 2000 end-page: 7764 ident: bib0280 article-title: From molecules to solids with the DMol publication-title: J. Chem. Phys. – volume: 5 start-page: 246 year: 2015 end-page: 253 ident: bib0220 article-title: Rational design of MoS publication-title: Catal. Sci. & Techn. – volume: 55 start-page: 8816 year: 2016 end-page: 8838 ident: bib0135 article-title: Solution-processed two-dimensional MoS publication-title: Angew. Chem. Inter. Ed. – volume: 3 start-page: 15020 year: 2015 end-page: 15023 ident: bib0170 article-title: Amorphous Co-doped MoS publication-title: J. Mater. Chem. A – volume: 107 start-page: 72 year: 2015 end-page: 78 ident: bib0365 article-title: Electronic structures and magnetic properties in nonmetallic element substituted MoS publication-title: Comput. Mater. Sci. – volume: 27 start-page: 1787 year: 2006 end-page: 1799 ident: bib0295 article-title: Semiempirical GGA-type density functional constructed with a long-range dispersion correction publication-title: J. Comput. Chem. – volume: 5 start-page: 5207 year: 2015 end-page: 5234 ident: bib0085 article-title: Heteroatom-doped graphene-based materials for energy-relevant electrocatalytic processes publication-title: ACS Catal. – volume: 27 start-page: 4281 year: 2015 end-page: 4288 ident: bib0205 article-title: Iron-doped molybdenum carbide catalyst with high activity and stability for the hydrogen evolution reaction publication-title: Chem. Mater. – volume: 3 start-page: 1311 year: 2010 end-page: 1315 ident: bib0325 article-title: How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels publication-title: Energy & Environ. Sci. – volume: 6 start-page: 6008 year: 2016 end-page: 6017 ident: bib0195 article-title: enhancement of the hydrogen evolution reaction from Ni-MoS publication-title: ACS Catal. – volume: 24 start-page: 6700 year: 2014 end-page: 6707 ident: bib0150 article-title: Controlled incorporation of Ni(OH) publication-title: Adv. Funct. Mater. – volume: 15 start-page: 8257 year: 2015 end-page: 8262 ident: bib0200 article-title: Fabrication and characterization of amorphous cobalt-doped molybdenum sulfide for hydrogen Evolution Reaction publication-title: J. Nanosci. Nanotech. – volume: 4 start-page: 8497 year: 2016 end-page: 8511 ident: bib0070 article-title: Rational design of graphitic carbon based nanostructures for advanced electrocatalysis publication-title: J. Mater. Chem. A – volume: 11 start-page: 963 year: 2012 end-page: 969 ident: bib0160 article-title: Engineering the surface structure of MoS publication-title: Nat Mater – volume: 16 start-page: 5437 year: 2016 ident: 10.1016/j.electacta.2016.12.144_bib0345 article-title: Covalent nitrogen doping and compressive strain in MoS2 by remote N2 plasma exposure publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b01853 – volume: 7 start-page: 11633 year: 2015 ident: 10.1016/j.electacta.2016.12.144_bib0340 article-title: Two-dimensional iron-Phthalocyanine (Fe-Pc) monolayer as a promising single-atom-catalyst for oxygen reduction reaction: a computational study publication-title: Nanoscale doi: 10.1039/C5NR00302D – volume: 486 start-page: 43 year: 2012 ident: 10.1016/j.electacta.2016.12.144_bib0030 article-title: Electrocatalyst approaches and challenges for automotive fuel cells publication-title: Nature doi: 10.1038/nature11115 – volume: 414 start-page: 345 year: 2001 ident: 10.1016/j.electacta.2016.12.144_bib0025 article-title: Materials for fuel-cell technologies publication-title: Nature doi: 10.1038/35104620 – volume: 44 start-page: 2168 year: 2015 ident: 10.1016/j.electacta.2016.12.144_bib0040 article-title: Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00484A – volume: 27 start-page: 4281 year: 2015 ident: 10.1016/j.electacta.2016.12.144_bib0205 article-title: Iron-doped molybdenum carbide catalyst with high activity and stability for the hydrogen evolution reaction publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b00621 – volume: 2 start-page: 799 year: 1993 ident: 10.1016/j.electacta.2016.12.144_bib0300 article-title: COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient publication-title: J. Chem. Soc., Perkin Transactions doi: 10.1039/P29930000799 – volume: 11 start-page: 963 year: 2012 ident: 10.1016/j.electacta.2016.12.144_bib0160 article-title: Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis publication-title: Nat Mater doi: 10.1038/nmat3439 – volume: 7 start-page: 27242 year: 2015 ident: 10.1016/j.electacta.2016.12.144_bib0185 article-title: Co-doped MoS2 nanosheets with the dominant comos phase coated on carbon as an excellent electrocatalyst for hydrogen evolution publication-title: ACS Appl. Mater. & Inter. doi: 10.1021/acsami.5b08420 – volume: 116 start-page: 3653 year: 2012 ident: 10.1016/j.electacta.2016.12.144_bib0330 article-title: Mechanisms of the oxygen reduction reaction on defective graphene-supported Pt nanoparticles from first-principles publication-title: J. Phys. Chem. C doi: 10.1021/jp210796e – volume: 132 start-page: 15127 year: 2010 ident: 10.1016/j.electacta.2016.12.144_bib0385 article-title: Highly efficient metal-free growth of nitrogen-doped single-walled carbon nanotubes on plasma-etched substrates for oxygen reduction publication-title: J. Am. Chem. Soc. doi: 10.1021/ja105617z – volume: 3 start-page: 15020 year: 2015 ident: 10.1016/j.electacta.2016.12.144_bib0170 article-title: Amorphous Co-doped MoS2 nanosheet coated metallic CoS2 nanocubes as an excellent electrocatalyst for hydrogen evolution publication-title: J. Mater. Chem. A doi: 10.1039/C5TA03410H – volume: 3 start-page: 1311 year: 2010 ident: 10.1016/j.electacta.2016.12.144_bib0325 article-title: How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels publication-title: Energy & Environ. Sci. doi: 10.1039/c0ee00071j – volume: 53 start-page: 102 year: 2014 ident: 10.1016/j.electacta.2016.12.144_bib0010 article-title: Oxygen electrochemistry as a cornerstone for sustainable energy conversion publication-title: Angew. Chem. Intern. Ed. doi: 10.1002/anie.201306588 – volume: 451 start-page: 652 year: 2008 ident: 10.1016/j.electacta.2016.12.144_bib0005 article-title: Building better batteries publication-title: Nature doi: 10.1038/451652a – volume: 120 start-page: 17427 year: 2016 ident: 10.1016/j.electacta.2016.12.144_bib0115 article-title: Potential application of novel boron-doped graphene nanoribbon as oxygen reduction reaction catalyst publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b04639 – volume: 89 start-page: 205417 year: 2014 ident: 10.1016/j.electacta.2016.12.144_bib0355 article-title: Stability and electronic structures of native defects in single-layer mathrm MoS2 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.89.205417 – volume: 9 start-page: 357 year: 2016 ident: 10.1016/j.electacta.2016.12.144_bib0090 article-title: The application of graphene and its composites in oxygen reduction electrocatalysis: a perspective and review of recent progress publication-title: Energy & Environ. Sci. doi: 10.1039/C5EE02474A – volume: 27 start-page: 1787 year: 2006 ident: 10.1016/j.electacta.2016.12.144_bib0295 article-title: Semiempirical GGA-type density functional constructed with a long-range dispersion correction publication-title: J. Comput. Chem. doi: 10.1002/jcc.20495 – volume: 44 start-page: 2060 year: 2015 ident: 10.1016/j.electacta.2016.12.144_bib0045 article-title: Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00470A – volume: 3 start-page: 16050 year: 2015 ident: 10.1016/j.electacta.2016.12.144_bib0260 article-title: Incorporated oxygen in MoS2 ultrathin nanosheets for efficient ORR catalysis publication-title: J. Mater. Chem. A doi: 10.1039/C5TA01600B – volume: 7 start-page: 2168 year: 2015 ident: 10.1016/j.electacta.2016.12.144_bib0155 article-title: Recent advances in two-dimensional nanostructures for catalysis applications publication-title: Sci. Adv. Mater. doi: 10.1166/sam.2015.2261 – volume: 163 start-page: H299 year: 2016 ident: 10.1016/j.electacta.2016.12.144_bib0165 article-title: 3D Tungsten-doped MoS2 nanostructure: a low-cost facile prepared catalyst for hydrogen evolution reaction publication-title: J. Electrochem. Soc. doi: 10.1149/2.0841605jes – volume: 4 start-page: 8497 year: 2016 ident: 10.1016/j.electacta.2016.12.144_bib0070 article-title: Rational design of graphitic carbon based nanostructures for advanced electrocatalysis publication-title: J. Mater. Chem. A doi: 10.1039/C6TA01657J – volume: 12 start-page: 1538 year: 2012 ident: 10.1016/j.electacta.2016.12.144_bib0145 article-title: Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates publication-title: Nano Lett. doi: 10.1021/nl2043612 – volume: 136 start-page: 9070 year: 2014 ident: 10.1016/j.electacta.2016.12.144_bib0375 article-title: Long-range electron transfer over graphene-based catalyst for high-performing oxygen reduction reactions: importance of size, N-doping, and metallic impurities publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5033474 – volume: 7 start-page: 27405 year: 2015 ident: 10.1016/j.electacta.2016.12.144_bib0380 article-title: Atomic mechanism of electrocatalytically active Co?N complexes in graphene basal plane for oxygen reduction reaction publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b09169 – volume: 46 start-page: 31 year: 2013 ident: 10.1016/j.electacta.2016.12.144_bib0055 article-title: Functionalization of graphene for efficient energy conversion and storage publication-title: Acc. Chem. Res. doi: 10.1021/ar300122m – volume: 371 start-page: 180 year: 2016 ident: 10.1016/j.electacta.2016.12.144_bib0360 article-title: Formaldehyde molecule adsorption on the doped monolayer MoS2: A first-principles study publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.02.230 – volume: 115 start-page: 4823 year: 2015 ident: 10.1016/j.electacta.2016.12.144_bib0060 article-title: Metal-free catalysts for oxygen reduction reaction publication-title: Chem. Rev. doi: 10.1021/cr5003563 – volume: 15 start-page: 8257 year: 2015 ident: 10.1016/j.electacta.2016.12.144_bib0200 article-title: Fabrication and characterization of amorphous cobalt-doped molybdenum sulfide for hydrogen Evolution Reaction publication-title: J. Nanosci. Nanotech. doi: 10.1166/jnn.2015.11441 – volume: 6 start-page: 6008 year: 2016 ident: 10.1016/j.electacta.2016.12.144_bib0195 article-title: enhancement of the hydrogen evolution reaction from Ni-MoS2 hybrid nanoclusters publication-title: ACS Catal. doi: 10.1021/acscatal.6b01274 – volume: 319 start-page: 178 year: 2005 ident: 10.1016/j.electacta.2016.12.144_bib0320 article-title: Electrolysis of water on oxidized metal surfaces publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2005.05.038 – volume: 127 start-page: 14871 year: 2005 ident: 10.1016/j.electacta.2016.12.144_bib0290 article-title: Catalysts for hydrogen evolution from the [NiFe] hydrogenase to the Ni2P(001) surface: the importance of ensemble effect publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0540019 – volume: 88 start-page: 075420 year: 2013 ident: 10.1016/j.electacta.2016.12.144_bib0350 article-title: Possible doping strategies for MoS2 monolayers: an ab initio study publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.075420 – volume: 92 start-page: 508 year: 1990 ident: 10.1016/j.electacta.2016.12.144_bib0275 article-title: An all-electron numerical method for solving the local density functional for polyatomic molecules publication-title: J. Chem. Phys. doi: 10.1063/1.458452 – volume: 8 start-page: 1676 year: 2016 ident: 10.1016/j.electacta.2016.12.144_bib0180 article-title: Carbon doped molybdenum disulfide nanosheets stabilized on graphene for the hydrogen evolution reaction with high electrocatalytic ability publication-title: Nanoscale doi: 10.1039/C5NR07370G – volume: 8 start-page: 566 year: 2015 ident: 10.1016/j.electacta.2016.12.144_bib0230 article-title: Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution publication-title: Nano Res. doi: 10.1007/s12274-014-0677-7 – volume: 113 start-page: 7756 year: 2000 ident: 10.1016/j.electacta.2016.12.144_bib0280 article-title: From molecules to solids with the DMol3 approach publication-title: J. Chem. Phys. doi: 10.1063/1.1316015 – volume: 5 start-page: 7244 year: 2015 ident: 10.1016/j.electacta.2016.12.144_bib0065 article-title: Heteroatom-doped graphitic carbon catalysts for efficient electrocatalysis of oxygen reduction reaction publication-title: ACS Catal. doi: 10.1021/acscatal.5b01563 – volume: 115 start-page: 11170 year: 2011 ident: 10.1016/j.electacta.2016.12.144_bib0105 article-title: Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells publication-title: J. Phys. Chem. C doi: 10.1021/jp201991j – volume: 211 start-page: 603 year: 2016 ident: 10.1016/j.electacta.2016.12.144_bib0190 article-title: Doping MoS2 with graphene quantum dots: structural and electrical engineering towards enhanced electrochemical hydrogen evolution publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.05.148 – volume: 4 start-page: 1144 year: 2016 ident: 10.1016/j.electacta.2016.12.144_bib0100 article-title: Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors publication-title: J. Mater. Chem. A doi: 10.1039/C5TA08620E – volume: 5 start-page: 246 year: 2015 ident: 10.1016/j.electacta.2016.12.144_bib0220 article-title: Rational design of MoS2 catalysts: tuning the structure and activity via transition metal doping publication-title: Catal. Sci. & Techn. doi: 10.1039/C4CY01162G – volume: 8 start-page: 1130 year: 2012 ident: 10.1016/j.electacta.2016.12.144_bib0050 article-title: Carbon nanomaterials for advanced energy conversion and storage publication-title: Small doi: 10.1002/smll.201101594 – volume: 9 start-page: 2284 year: 2016 ident: 10.1016/j.electacta.2016.12.144_bib0240 article-title: Ultrathin Co(Ni)-doped MoS2 nanosheets as catalytic promoters enabling efficient solar hydrogen production publication-title: Nano Res. doi: 10.1007/s12274-016-1115-9 – volume: 44 start-page: 129 year: 1977 ident: 10.1016/j.electacta.2016.12.144_bib0305 article-title: Bonded-atom fragments for describing molecular charge densities publication-title: Theor. Chim. Acta doi: 10.1007/BF00549096 – volume: 116 start-page: 17378 year: 2012 ident: 10.1016/j.electacta.2016.12.144_bib0335 article-title: Density Functional Theory Study of Ni–Nx/C Electrocatalyst for Oxygen Reduction in Alkaline and Acidic Media publication-title: J. Phys. Chem. C doi: 10.1021/jp3044708 – volume: 77 start-page: 3865 year: 1996 ident: 10.1016/j.electacta.2016.12.144_bib0285 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 4 start-page: 1440 year: 2016 ident: 10.1016/j.electacta.2016.12.144_bib0250 article-title: Advanced N-doped mesoporous molybdenum disulfide nanosheets and the enhanced lithium-ion storage performance publication-title: J. Mater. Chem. A doi: 10.1039/C5TA10224C – volume: 47 start-page: 1067 year: 2014 ident: 10.1016/j.electacta.2016.12.144_bib0140 article-title: Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets publication-title: Acc. Chem. Res. doi: 10.1021/ar4002312 – volume: 44 start-page: 16399 year: 2015 ident: 10.1016/j.electacta.2016.12.144_bib0175 article-title: Beneficial effect of Re doping on the electrochemical HER activity of MoS2 fullerenes publication-title: Dalton Trans. doi: 10.1039/C5DT02562A – volume: 108 start-page: 17886 year: 2004 ident: 10.1016/j.electacta.2016.12.144_bib0315 article-title: Origin of the overpotential for oxygen reduction at a fuel-cell cathode publication-title: J. Phys. Chem. B doi: 10.1021/jp047349j – volume: 27 start-page: 175402 year: 2016 ident: 10.1016/j.electacta.2016.12.144_bib0370 article-title: The origin of the enhanced performance of nitrogen-doped MoS2 in lithium ion batteries publication-title: Nanotech doi: 10.1088/0957-4484/27/17/175402 – volume: 8 start-page: 1594 year: 2015 ident: 10.1016/j.electacta.2016.12.144_bib0235 article-title: Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping publication-title: Energy & Environ. Sci. doi: 10.1039/C5EE00751H – volume: 51 start-page: 7903 year: 2015 ident: 10.1016/j.electacta.2016.12.144_bib0265 article-title: High-quality phosphorus-doped MoS2 ultrathin nanosheets with amenable ORR catalytic activity publication-title: Chem. Commun. doi: 10.1039/C5CC01841B – volume: 6 start-page: 5724 year: 2016 ident: 10.1016/j.electacta.2016.12.144_bib0210 article-title: Negative electrocatalytic effects of p-doping niobium and tantalum on MoS2 and WS2 for the hydrogen evolution reaction and oxygen reduction reaction publication-title: ACS Catal. doi: 10.1021/acscatal.6b01593 – volume: 1 start-page: 4 year: 2016 ident: 10.1016/j.electacta.2016.12.144_bib0020 article-title: Recent progress in rechargeable alkali metal–air batteries publication-title: Green Energy & Environment doi: 10.1016/j.gee.2016.04.004 – volume: 107 start-page: 72 year: 2015 ident: 10.1016/j.electacta.2016.12.144_bib0365 article-title: Electronic structures and magnetic properties in nonmetallic element substituted MoS2 monolayer publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2015.05.021 – volume: 51 start-page: 15997 year: 2015 ident: 10.1016/j.electacta.2016.12.144_bib0225 article-title: A Se-doped MoS2 nanosheet for improved hydrogen evolution reaction publication-title: Chem. Commun. doi: 10.1039/C5CC06847A – volume: 28 start-page: 250 year: 2003 ident: 10.1016/j.electacta.2016.12.144_bib0310 article-title: A generalized synchronous transit method for transition state location publication-title: Comput. Mater. Sci. doi: 10.1016/S0927-0256(03)00111-3 – volume: 44 start-page: 2584 year: 2015 ident: 10.1016/j.electacta.2016.12.144_bib0125 article-title: Two-dimensional transition metal dichalcogenide (TMD) nanosheets publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS90037A – volume: 6 start-page: 16656 year: 2016 ident: 10.1016/j.electacta.2016.12.144_bib0215 article-title: Ni-doped MoS2 nanoparticles as highly active hydrogen evolution electrocatalysts publication-title: Rsc Adv. doi: 10.1039/C6RA02610A – volume: 45 start-page: 1273 year: 2016 ident: 10.1016/j.electacta.2016.12.144_bib0075 article-title: Towards high-efficiency nanoelectrocatalysts for oxygen reduction through engineering advanced carbon nanomaterials publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00414D – volume: 5 start-page: 5207 year: 2015 ident: 10.1016/j.electacta.2016.12.144_bib0085 article-title: Heteroatom-doped graphene-based materials for energy-relevant electrocatalytic processes publication-title: ACS Catal. doi: 10.1021/acscatal.5b00991 – volume: 282 start-page: 183 year: 2011 ident: 10.1016/j.electacta.2016.12.144_bib0110 article-title: Oxygen reduction reaction mechanism on nitrogen-doped graphene: A density functional theory study publication-title: J. Catal. doi: 10.1016/j.jcat.2011.06.015 – volume: 5 start-page: 7244 year: 2015 ident: 10.1016/j.electacta.2016.12.144_bib0080 article-title: Heteroatom-doped graphitic carbon catalysts for efficient electrocatalysis of oxygen reduction reaction publication-title: ACS Catal. doi: 10.1021/acscatal.5b01563 – volume: 116 start-page: 3594 year: 2016 ident: 10.1016/j.electacta.2016.12.144_bib0035 article-title: Recent advances in electrocatalysts for oxygen reduction reaction publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00462 – volume: 45 start-page: 2458 year: 2016 ident: 10.1016/j.electacta.2016.12.144_bib0095 article-title: Graphene and its electrochemistry – an update publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00136J – volume: 44 start-page: 2713 year: 2015 ident: 10.1016/j.electacta.2016.12.144_bib0130 article-title: Two-dimensional transition metal dichalcogenide nanosheet-based composites publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00182F – volume: 41 start-page: 2172 year: 2012 ident: 10.1016/j.electacta.2016.12.144_bib0015 article-title: Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts publication-title: Chem. Soc. Rev doi: 10.1039/c1cs15228a – volume: 55 start-page: 8816 year: 2016 ident: 10.1016/j.electacta.2016.12.144_bib0135 article-title: Solution-processed two-dimensional MoS2 nanosheets: preparation, hybridization, and applications publication-title: Angew. Chem. Inter. Ed. doi: 10.1002/anie.201509933 – volume: 19 start-page: 11939 year: 2013 ident: 10.1016/j.electacta.2016.12.144_bib0255 article-title: Size-dependent enhancement of electrocatalytic oxygen-reduction and hydrogen-evolution performance of MoS2 particles publication-title: Chem.–A Eur. J. doi: 10.1002/chem.201301406 – volume: 8 start-page: 14767 year: 2016 ident: 10.1016/j.electacta.2016.12.144_bib0270 article-title: 2D molybdenum disulphide (2D-MoS2) modified electrodes explored towards the oxygen reduction reaction publication-title: Nanoscale doi: 10.1039/C6NR04073J – volume: 24 start-page: 6700 year: 2014 ident: 10.1016/j.electacta.2016.12.144_bib0150 article-title: Controlled incorporation of Ni(OH)2 nanoplates into flowerlike mos2 nanosheets for flexible all-solid-state supercapacitors publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201401268 – volume: 3 start-page: 1160 year: 2016 ident: 10.1016/j.electacta.2016.12.144_bib0245 article-title: Vertically aligned oxygen-doped molybdenum disulfide nanosheets grown on carbon cloth realizing robust hydrogen evolution reaction publication-title: Inorg. Chem. Fron. doi: 10.1039/C6QI00198J – volume: 42 start-page: 1934 year: 2013 ident: 10.1016/j.electacta.2016.12.144_bib0120 article-title: Metal dichalcogenide nanosheets: preparation, properties and applications publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs35387c |
SSID | ssj0007670 |
Score | 2.5307996 |
Snippet | [Display omitted]
The design and development of low-cost and highly efficient electrocatalysts for oxygen reduction reaction (ORR) is crucial to the... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 543 |
SubjectTerms | density functional theory doping MoS2 monolayer oxygen reduction reaction |
Title | Small Dopants Make Big Differences: Enhanced Electrocatalytic Performance of MoS2 Monolayer for Oxygen Reduction Reaction (ORR) by N– and P–Doping |
URI | https://dx.doi.org/10.1016/j.electacta.2016.12.144 |
Volume | 225 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5V5QAcKiggyqOaAwc4mK7t9azdW0lSBVDSKqVSb9Y-SyB1KppK5FL1PyDxA_klzPrRh4TUA5JlrWyPbO2MZudbz8zH2JvcCaPR-iiJPY-E0Bgpk2RR7jG1IjfWZqF2eDTG4aH4dJQdrbBeVwsT0ipb39_49Npbt1e22tncOp1OQ41vnArMkSKKBAk1hAp2IYOVv7-4TvOQKHnHYhCevpXjVVPNKDpCjheGfUHCF_9eoW6sOruP2FobLsJO80WP2Yqr1tn9XsfSts4e3mgo-IT9PjhRsxn0CQlXizMYqe8OPkyPod_SoJBT2IZB9bX-7Q-DhgKn3sFZ0gtg_7qKAOYeRvODhE4VoV8KzIFuwd7PJVkcTELD16BSGjWVEfB2bzJ5B3oJ4z-Xv0BVFvZp0K_rsZ6yw93Bl94wapkXIiPifEGg0miJsfHWZzpDjdxZVB65V9IiISRU6LxRSAGDSbQvdO4L7lJtCqG5T9JnbLWaV-45A2l5kcao40Jnwua2UFIX3hJ4dZJzIzcYdrNdmrYteWDHmJVd_tm38kpNZVBTGScEWMQG41eCp01njrtFtjt1lreMrKT14y7hF_8j_JI9SEI8wGNyS6_Y6uLHuXtN0cxCb9bmusnu7Xz8PBz_BatO-S8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEF5ReqA9VBRaQZ9z4AAHl7W9Htvc2iQobUlAASRu1j7blOCgNpWaS9X_UIkfyC9h1g8eUiUOlSxrZXu01s56dr71zHyMbWRWaIXGBVHoeCCEwkDqKAkyh7ERmTYm8bnDgyH2j8Wnk-RkgXXaXBgfVtnY_tqmV9a6ubLdjOb2-Xjsc3zDWGCG5FFESKjhAXso6PP1NAbvft_EeaSY8pbGwD9-J8ir4pqRdPggL_QbgwQw_r1E3Vp2dpfZk8ZfhPf1Kz1lC7ZcYUudlqZthT2-VVFwlV0cnsnJBLoEhcvZDxjIUwsfxl-g2_CgkFXYgV75tfrvD72aA6fawplTB3Bwk0YAUweD6WFEp5LgL3nmQLdg_9ecphyMfMVXr1Nq1akRsLk_Gm2BmsPw8s9fkKWBA2p0q4SsZ-x4t3fU6QcN9UKgRZjNCFVqlWKonXGJSlAhtwalQ-5kapAgEkq0Tkskj0FHyuUqczm3sdK5UNxF8XO2WE5Lu8YgNTyPQ1RhrhJhMpPLVOXOEHq1Kec6XWfYjnahm7rknh5jUrQBaN-KazUVXk1FGBFiEeuMXwue16U57hfZadVZ3JllBS0g9wm_-B_ht2ypfzTYK_Y-Dj-_ZI8i7xzwkGzUK7Y4-_7TvibXZqbeVFP3ClRW-r0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Small+Dopants+Make+Big+Differences%3A+Enhanced+Electrocatalytic+Performance+of+MoS2+Monolayer+for+Oxygen+Reduction+Reaction+%28ORR%29+by+N%E2%80%93+and+P%E2%80%93Doping&rft.jtitle=Electrochimica+acta&rft.au=Zhang%2C+Huiying&rft.au=Tian%2C+Yu&rft.au=Zhao%2C+Jingxiang&rft.au=Cai%2C+Qinghai&rft.date=2017-01-20&rft.issn=0013-4686&rft.volume=225&rft.spage=543&rft.epage=550&rft_id=info:doi/10.1016%2Fj.electacta.2016.12.144&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_electacta_2016_12_144 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4686&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4686&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4686&client=summon |