Small Dopants Make Big Differences: Enhanced Electrocatalytic Performance of MoS2 Monolayer for Oxygen Reduction Reaction (ORR) by N– and P–Doping

[Display omitted] The design and development of low-cost and highly efficient electrocatalysts for oxygen reduction reaction (ORR) is crucial to the large-scale commerical application of fuel cells. Herein, by means of comprehensive densty functional theory (DFT) computations, we explored the potent...

Full description

Saved in:
Bibliographic Details
Published inElectrochimica acta Vol. 225; pp. 543 - 550
Main Authors Zhang, Huiying, Tian, Yu, Zhao, Jingxiang, Cai, Qinghai, Chen, Zhongfang
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 20.01.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] The design and development of low-cost and highly efficient electrocatalysts for oxygen reduction reaction (ORR) is crucial to the large-scale commerical application of fuel cells. Herein, by means of comprehensive densty functional theory (DFT) computations, we explored the potential of the heteroatom doping (N and P) to activate the basal plane of molybdenum disulfide (MoS2) monolayer for ORR in acidic medium. Our computations revealed that substituting S in MoS2 monolayer with N or P atom can introduce high spin density into MoS2 basal plane, leading to its improved chemical reactivity for the O2 activation, and the subsequent ORR steps prefer to proceed though a more efficient 4e pathway. Especially, N-doped MoS2 monolayer exhibits outstanding ORR catalytic performance in terms of its small overpotential (0.67V) and low energy barrier (0.25eV), which is comparable (even lower) to those of Pt–based electrocatalysts. In contrast, the catalytic activity of P–doped MoS2 monolayer is considerably poor due to its very strong interaction with O* and OOH* species in the subsequent reactions. Therefore, we expect that N-doped MoS2 monolayer is a quite promising single-atom-catalyst with high efficiency for ORR in fuel cells.
AbstractList [Display omitted] The design and development of low-cost and highly efficient electrocatalysts for oxygen reduction reaction (ORR) is crucial to the large-scale commerical application of fuel cells. Herein, by means of comprehensive densty functional theory (DFT) computations, we explored the potential of the heteroatom doping (N and P) to activate the basal plane of molybdenum disulfide (MoS2) monolayer for ORR in acidic medium. Our computations revealed that substituting S in MoS2 monolayer with N or P atom can introduce high spin density into MoS2 basal plane, leading to its improved chemical reactivity for the O2 activation, and the subsequent ORR steps prefer to proceed though a more efficient 4e pathway. Especially, N-doped MoS2 monolayer exhibits outstanding ORR catalytic performance in terms of its small overpotential (0.67V) and low energy barrier (0.25eV), which is comparable (even lower) to those of Pt–based electrocatalysts. In contrast, the catalytic activity of P–doped MoS2 monolayer is considerably poor due to its very strong interaction with O* and OOH* species in the subsequent reactions. Therefore, we expect that N-doped MoS2 monolayer is a quite promising single-atom-catalyst with high efficiency for ORR in fuel cells.
Author Zhang, Huiying
Cai, Qinghai
Tian, Yu
Chen, Zhongfang
Zhao, Jingxiang
Author_xml – sequence: 1
  givenname: Huiying
  surname: Zhang
  fullname: Zhang, Huiying
  organization: Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China
– sequence: 2
  givenname: Yu
  surname: Tian
  fullname: Tian, Yu
  organization: Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China
– sequence: 3
  givenname: Jingxiang
  surname: Zhao
  fullname: Zhao, Jingxiang
  email: xjz_hmily@163.com
  organization: Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China
– sequence: 4
  givenname: Qinghai
  surname: Cai
  fullname: Cai, Qinghai
  organization: Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China
– sequence: 5
  givenname: Zhongfang
  surname: Chen
  fullname: Chen, Zhongfang
  organization: Department of Chemistry, Institute of Functional Nanomaterials, University of Puerto Rico, Rio Piedras Campus, San Juan, PR 00931, USA
BookMark eNqNkN9O2zAUxi3USSuwZ5gvt4sEO0mdBGkXXVsYElBUtmvrxDnu3KV25QRE7ngHJB6QJ5mjol1wwyTL_nSOv_Pnd0hG1lkk5DNnMWdcnGxibFB1EE6chEDMk5hn2QEZ8yJPo7SYlCMyZoynUSYK8ZEctu2GMZaLnI3J8-0WmobO3Q5s19Ir-IP0u1nTudEaPVqF7Sld2N8QVE0XQyfvFHTQ9J1R9Aa9dn47ZKnT9MrdJuGyroEePQ0punzo12jpCus71Rk3KNiLL8vV6iutenr98vhEwdb0JogwibHrY_JBQ9Pip9f3iPw6W_yc_Ygul-cXs-llpDJedFHGVJULrnStJ9VEVIJhLUALpiGvRSmEAIFagUj4RCWVLqtClwzTSpVZxXSSHpF8X1d517Yetdx5swXfS87kgFdu5D-8csAreSID3uD89sapTAfDYp0H0_yHf7r3Y1jv3qCXrTID79r48F_Wzrxb4y_gHaKs
CitedBy_id crossref_primary_10_1002_adma_201705110
crossref_primary_10_1016_j_snb_2023_134190
crossref_primary_10_1016_j_susmat_2020_e00161
crossref_primary_10_1016_j_jechem_2020_06_010
crossref_primary_10_1002_adma_202307790
crossref_primary_10_1021_acsomega_0c04176
crossref_primary_10_3390_bios12060386
crossref_primary_10_1016_j_apsusc_2020_146751
crossref_primary_10_1002_er_6703
crossref_primary_10_1016_j_snb_2018_04_016
crossref_primary_10_1002_celc_201801003
crossref_primary_10_1016_j_apsusc_2022_154881
crossref_primary_10_1016_j_apsusc_2019_03_188
crossref_primary_10_1016_j_mtsust_2023_100659
crossref_primary_10_1021_acs_jpcc_1c07044
crossref_primary_10_1039_C9CP03287H
crossref_primary_10_1557_s43578_023_00902_4
crossref_primary_10_1016_j_electacta_2017_09_131
crossref_primary_10_1021_acsanm_1c04359
crossref_primary_10_1016_j_electacta_2020_135865
crossref_primary_10_1039_C7TA00577F
crossref_primary_10_1016_j_susc_2020_121700
crossref_primary_10_1016_j_cplett_2021_138321
crossref_primary_10_1039_D4TA03069A
crossref_primary_10_1039_C9NR10598K
crossref_primary_10_3390_nano12173012
crossref_primary_10_1007_s00339_018_1629_y
crossref_primary_10_1016_j_commatsci_2023_112418
crossref_primary_10_1039_D3CY01352A
crossref_primary_10_1021_acs_energyfuels_9b04036
crossref_primary_10_1039_D2CP01711C
crossref_primary_10_3390_mi12030240
crossref_primary_10_1002_adfm_202408870
crossref_primary_10_1016_j_apsusc_2019_143844
crossref_primary_10_1002_celc_202000768
crossref_primary_10_1016_j_fuel_2023_130017
crossref_primary_10_1007_s10800_023_02053_0
crossref_primary_10_29026_oea_2022_210105
crossref_primary_10_1039_D1EE00248A
crossref_primary_10_1002_pssb_201900110
crossref_primary_10_1002_adfm_201702300
crossref_primary_10_1002_chem_201904233
crossref_primary_10_1039_D1EE02750F
crossref_primary_10_1007_s41918_019_00045_3
crossref_primary_10_1038_s41598_017_17423_w
crossref_primary_10_1007_s12678_020_00598_8
crossref_primary_10_1016_j_ijhydene_2017_12_009
crossref_primary_10_1039_C8CP01653D
crossref_primary_10_1002_slct_202301649
crossref_primary_10_1021_acs_jpcc_0c08513
crossref_primary_10_1039_C8RA07638C
crossref_primary_10_1002_fuce_202100004
crossref_primary_10_1002_smll_202202033
crossref_primary_10_1016_j_ccr_2020_213280
crossref_primary_10_1016_j_diamond_2023_110386
crossref_primary_10_1016_j_mtadv_2024_100488
crossref_primary_10_1039_D2CS00931E
crossref_primary_10_1021_acsomega_1c06768
crossref_primary_10_1016_j_apsusc_2019_07_201
crossref_primary_10_1039_C9NJ04808A
crossref_primary_10_1039_D3RE00281K
crossref_primary_10_1021_acsami_9b14502
crossref_primary_10_1039_D0TA06335E
crossref_primary_10_1016_j_apsusc_2023_158303
crossref_primary_10_1016_j_electacta_2017_08_025
crossref_primary_10_1021_acsami_0c06062
crossref_primary_10_1103_PhysRevApplied_18_034061
crossref_primary_10_1039_C7TA07001B
crossref_primary_10_1080_01614940_2021_2003085
crossref_primary_10_1016_j_ces_2021_117398
crossref_primary_10_1002_adsu_202100515
crossref_primary_10_1002_adma_202008376
crossref_primary_10_1002_open_202100196
crossref_primary_10_1016_j_apsusc_2018_06_118
crossref_primary_10_1016_j_pnsc_2020_09_011
crossref_primary_10_1039_C8NJ03571G
crossref_primary_10_1016_j_apsadv_2023_100402
crossref_primary_10_1039_D0NJ05606E
crossref_primary_10_1016_j_apsusc_2025_162538
crossref_primary_10_1021_acsanm_9b00867
crossref_primary_10_1007_s40242_020_9068_7
crossref_primary_10_1007_s42823_020_00178_2
crossref_primary_10_1021_acs_jpcc_0c00446
crossref_primary_10_1016_S1872_2067_21_64007_X
crossref_primary_10_1039_C8CP01294F
crossref_primary_10_1016_j_electacta_2018_06_152
crossref_primary_10_1038_s41598_018_31354_0
crossref_primary_10_1021_acs_jpcc_9b09912
crossref_primary_10_1007_s11467_018_0812_0
crossref_primary_10_1016_j_jpowsour_2022_232613
crossref_primary_10_1002_cphc_201900507
crossref_primary_10_1021_acs_energyfuels_2c03942
crossref_primary_10_1016_j_mtener_2018_10_014
crossref_primary_10_1007_s12274_019_2326_7
crossref_primary_10_1039_D2SC03686J
crossref_primary_10_1039_C7CP05634F
crossref_primary_10_1021_acs_chemrev_3c00937
crossref_primary_10_1039_C9NJ00466A
crossref_primary_10_1007_s11581_018_2691_3
crossref_primary_10_15541_jim20220128
crossref_primary_10_1002_ente_201700681
crossref_primary_10_1380_ejssnt_2021_119
crossref_primary_10_1007_s12034_025_03398_2
crossref_primary_10_1021_acs_energyfuels_0c00297
crossref_primary_10_1016_j_apsusc_2020_148741
crossref_primary_10_1039_C8NJ05365K
crossref_primary_10_1007_s41918_020_00085_0
crossref_primary_10_1007_s42247_021_00241_2
Cites_doi 10.1021/acs.nanolett.6b01853
10.1039/C5NR00302D
10.1038/nature11115
10.1038/35104620
10.1039/C4CS00484A
10.1021/acs.chemmater.5b00621
10.1039/P29930000799
10.1038/nmat3439
10.1021/acsami.5b08420
10.1021/jp210796e
10.1021/ja105617z
10.1039/C5TA03410H
10.1039/c0ee00071j
10.1002/anie.201306588
10.1038/451652a
10.1021/acs.jpcc.6b04639
10.1103/PhysRevB.89.205417
10.1039/C5EE02474A
10.1002/jcc.20495
10.1039/C4CS00470A
10.1039/C5TA01600B
10.1166/sam.2015.2261
10.1149/2.0841605jes
10.1039/C6TA01657J
10.1021/nl2043612
10.1021/ja5033474
10.1021/acsami.5b09169
10.1021/ar300122m
10.1016/j.apsusc.2016.02.230
10.1021/cr5003563
10.1166/jnn.2015.11441
10.1021/acscatal.6b01274
10.1016/j.chemphys.2005.05.038
10.1021/ja0540019
10.1103/PhysRevB.88.075420
10.1063/1.458452
10.1039/C5NR07370G
10.1007/s12274-014-0677-7
10.1063/1.1316015
10.1021/acscatal.5b01563
10.1021/jp201991j
10.1016/j.electacta.2016.05.148
10.1039/C5TA08620E
10.1039/C4CY01162G
10.1002/smll.201101594
10.1007/s12274-016-1115-9
10.1007/BF00549096
10.1021/jp3044708
10.1103/PhysRevLett.77.3865
10.1039/C5TA10224C
10.1021/ar4002312
10.1039/C5DT02562A
10.1021/jp047349j
10.1088/0957-4484/27/17/175402
10.1039/C5EE00751H
10.1039/C5CC01841B
10.1021/acscatal.6b01593
10.1016/j.gee.2016.04.004
10.1016/j.commatsci.2015.05.021
10.1039/C5CC06847A
10.1016/S0927-0256(03)00111-3
10.1039/C5CS90037A
10.1039/C6RA02610A
10.1039/C5CS00414D
10.1021/acscatal.5b00991
10.1016/j.jcat.2011.06.015
10.1021/acs.chemrev.5b00462
10.1039/C6CS00136J
10.1039/C4CS00182F
10.1039/c1cs15228a
10.1002/anie.201509933
10.1002/chem.201301406
10.1039/C6NR04073J
10.1002/adfm.201401268
10.1039/C6QI00198J
10.1039/c2cs35387c
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.electacta.2016.12.144
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-3859
EndPage 550
ExternalDocumentID 10_1016_j_electacta_2016_12_144
S0013468616326998
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSK
SSZ
T5K
TWZ
UPT
WH7
XPP
YK3
ZMT
~02
~G-
29G
41~
53G
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIDUJ
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
HMU
HVGLF
HZ~
H~9
LPU
R2-
SC5
SCB
SCH
SEW
SSH
T9H
VH1
WUQ
XOL
ZY4
ID FETCH-LOGICAL-c418t-40cb761cfdf5b56b60ed6af60fa7d69666a6efca6215c2bf9b8f90e3bc94b0f23
IEDL.DBID .~1
ISSN 0013-4686
IngestDate Tue Jul 01 01:53:33 EDT 2025
Thu Apr 24 23:16:11 EDT 2025
Fri Feb 23 02:28:54 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords doping
MoS2 monolayer
oxygen reduction reaction
density functional theory
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-40cb761cfdf5b56b60ed6af60fa7d69666a6efca6215c2bf9b8f90e3bc94b0f23
PageCount 8
ParticipantIDs crossref_primary_10_1016_j_electacta_2016_12_144
crossref_citationtrail_10_1016_j_electacta_2016_12_144
elsevier_sciencedirect_doi_10_1016_j_electacta_2016_12_144
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-01-20
PublicationDateYYYYMMDD 2017-01-20
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-20
  day: 20
PublicationDecade 2010
PublicationTitle Electrochimica acta
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Guo, Zhu, Sun, Tang, Zhang (bib0190) 2016; 211
Govind, Petersen, Fitzgerald, King-Smith, Andzelm (bib0310) 2003; 28
Dai, Du, Li, Liu, Ma, Sun, Zhang, Yang (bib0185) 2015; 7
Bai, Xiong (bib0155) 2015; 7
Wang, Tsai, Kong, Chan, Abild-Pedersen, Norskov, Cui (bib0230) 2015; 8
Liu, Zhang, Lee, Lin, Chang, Su, Chang, Li, Shi, Zhang, Lai, Li (bib0145) 2012; 12
Zhang, Li, Guo, Ma, Zhao (bib0070) 2016; 4
Wang, Zhang, Shen, Wu (bib0215) 2016; 6
Hu, Wang, Xiao, Xiao, Rong (bib0365) 2015; 107
Delley (bib0280) 2000; 113
Qiuhong, Xia, Zhenjun, Jia, Dongdong, Qiang, Shuangyin (bib0370) 2016; 27
Huang, Feng, Du, Song (bib0265) 2015; 51
Kattel, Atanassov, Kiefer (bib0335) 2012; 116
Grimme (bib0295) 2006; 27
Noh, Kim, Kim (bib0355) 2014; 89
Debe (bib0030) 2012; 486
Rossmeisl, Logadottir, Nørskov (bib0320) 2005; 319
Wan, Leonard (bib0205) 2015; 27
Zhang, Wang, Xie, Zhen (bib0020) 2016; 1
Yu, Zhang, Dai (bib0385) 2010; 132
Katsounaros, Cherevko, Zeradjanin, Mayrhofer (bib0010) 2014; 53
Huang, Zeng, Zhang (bib0120) 2013; 42
Huang, Feng, Du, Wu, Song (bib0260) 2015; 3
Klamt, Schuurmann (bib0300) 1993; 2
Perdew, Burke, Ernzerhof (bib0285) 1996; 77
Ren, Ma, Fan, Pang, Zhang, Yao, Ren, Liu (bib0225) 2015; 51
Dolui, Rungger, Das Pemmaraju, Sanvito (bib0350) 2013; 88
Ma, Ju, Li, Yang, He, Ma, Tang, Lu, Yang (bib0360) 2016; 371
Kibsgaard, Chen, Reinecke, Jaramillo (bib0160) 2012; 11
Choi, Lim, Chung, Park, Shin, Kim, Woo (bib0375) 2014; 136
Zhang, Xia (bib0105) 2011; 115
Zhang, Dai (bib0080) 2015; 5
Ma, Li, An, Feng, Chi, Liu, Zhang, Sun (bib0240) 2016; 9
Deng, Li, Xiao, Tu, Deng, Yang, Tian, Li, Ren, Bao (bib0235) 2015; 8
Peterson, Abild-Pedersen, Studt, Rossmeisl, Nørskov (bib0325) 2010; 3
Chhowalla, Liu, Zhang (bib0125) 2015; 44
Higgins, Zamani, Yu, Chen (bib0090) 2016; 9
Lim, Hwang, Kim, Shim, Baeck (bib0200) 2015; 15
Dai, Xue, Qu, Choi, Baek (bib0060) 2015; 115
Lim, Wilcox (bib0330) 2012; 116
Tsai, Chan, Norskov, Abild-Pedersen (bib0220) 2015; 5
Steele, Heinzel (bib0025) 2001; 414
Li, Wu, Yin, Zhang (bib0140) 2014; 47
Shao, Chang, Dodelet, Chenitz (bib0035) 2016; 116
Zhou, Wang, Guo (bib0075) 2016; 45
Zhang, Lai, Tan, Zhang (bib0135) 2016; 55
Ambrosi, Chua, Latiff, Loo, Wong, Eng, Bonanni, Pumera (bib0095) 2016; 45
Wang, Gao, Zhuo, Zhu, Papakonstantinou, Li, Li (bib0255) 2013; 19
Wang, Yuan, Li, Chen (bib0340) 2015; 7
Li, Shu, Hu, Shi, Liu, Liang, Chen (bib0380) 2015; 7
Chua, Luxa, Eng, Tan, Sofer, Pumera (bib0210) 2016; 6
Hirshfeld (bib0305) 1977; 44
Nørskov, Rossmeisl, Logadottir, Lindqvist, Kitchin, Bligaard, Jónsson (bib0315) 2004; 108
Rowley-Neale, Fearn, Brownson, Smith, Ji, Banks (bib0270) 2016; 8
Delley (bib0275) 1990; 92
Cheng, Chen (bib0015) 2012; 41
He, Liang, Mao, Zhang, Yang, Cui, Zhu, Li, Li (bib0165) 2016; 163
Chhetri, Gupta, Yadgarov, Rosentsveig, Tenne, Rao (bib0175) 2015; 44
Zhang, Dai (bib0065) 2015; 5
Deng, Xie, Zou, Ji (bib0100) 2016; 4
Armand, Tarascon (bib0005) 2008; 451
Zhang, Li, Xu, Wang, Huo, Wan, Sun (bib0170) 2015; 3
Qin, Lei, Liu, Chen (bib0250) 2016; 4
Tan, Zhang (bib0130) 2015; 44
Hao, Wen, Xiang, Wang, Hou, Su, Hu, Liu (bib0150) 2014; 24
Dai, Chang, Baek, Lu (bib0050) 2012; 8
Azcatl, Qin, Prakash, Zhang, Cheng, Wang, Lu, Kim, Kim, Cho, Addou, Hinkle, Appenzeller, Wallace (bib0345) 2016; 16
Yu, Pan, Cao, Hu, Bao (bib0110) 2011; 282
Li, Wang, Tian, Ma, Dai, Yang, Zhou (bib0180) 2016; 8
Liu, Rodriguez (bib0290) 2005; 127
Nie, Li, Wei (bib0040) 2015; 44
Dai (bib0055) 2013; 46
Duan, Chen, Jaroniec, Qiao (bib0085) 2015; 5
Escalera-Lopez, Niu, Yin, Cooke, Rees, Palmer (bib0195) 2016; 6
Xie, Xin, Cui, Zhang, Zhou, Wang, Liu, Wang, Ning, Xia, Zhao, Tang (bib0245) 2016; 3
Jiao, Zheng, Jaroniec, Qiao (bib0045) 2015; 44
Wang, Dong, Guo, Zhang, Hou, Li (bib0115) 2016; 120
Huang (10.1016/j.electacta.2016.12.144_bib0265) 2015; 51
Ma (10.1016/j.electacta.2016.12.144_bib0240) 2016; 9
Delley (10.1016/j.electacta.2016.12.144_bib0280) 2000; 113
Peterson (10.1016/j.electacta.2016.12.144_bib0325) 2010; 3
Qin (10.1016/j.electacta.2016.12.144_bib0250) 2016; 4
Hirshfeld (10.1016/j.electacta.2016.12.144_bib0305) 1977; 44
Nie (10.1016/j.electacta.2016.12.144_bib0040) 2015; 44
Li (10.1016/j.electacta.2016.12.144_bib0180) 2016; 8
Ambrosi (10.1016/j.electacta.2016.12.144_bib0095) 2016; 45
Steele (10.1016/j.electacta.2016.12.144_bib0025) 2001; 414
Zhang (10.1016/j.electacta.2016.12.144_bib0070) 2016; 4
Li (10.1016/j.electacta.2016.12.144_bib0380) 2015; 7
Wang (10.1016/j.electacta.2016.12.144_bib0115) 2016; 120
Zhang (10.1016/j.electacta.2016.12.144_bib0065) 2015; 5
Zhang (10.1016/j.electacta.2016.12.144_bib0080) 2015; 5
Kattel (10.1016/j.electacta.2016.12.144_bib0335) 2012; 116
Tan (10.1016/j.electacta.2016.12.144_bib0130) 2015; 44
Jiao (10.1016/j.electacta.2016.12.144_bib0045) 2015; 44
Chhetri (10.1016/j.electacta.2016.12.144_bib0175) 2015; 44
Dai (10.1016/j.electacta.2016.12.144_bib0050) 2012; 8
Chhowalla (10.1016/j.electacta.2016.12.144_bib0125) 2015; 44
Dai (10.1016/j.electacta.2016.12.144_bib0055) 2013; 46
Cheng (10.1016/j.electacta.2016.12.144_bib0015) 2012; 41
Wan (10.1016/j.electacta.2016.12.144_bib0205) 2015; 27
Deng (10.1016/j.electacta.2016.12.144_bib0235) 2015; 8
Huang (10.1016/j.electacta.2016.12.144_bib0120) 2013; 42
Tsai (10.1016/j.electacta.2016.12.144_bib0220) 2015; 5
Rossmeisl (10.1016/j.electacta.2016.12.144_bib0320) 2005; 319
Dolui (10.1016/j.electacta.2016.12.144_bib0350) 2013; 88
Wang (10.1016/j.electacta.2016.12.144_bib0215) 2016; 6
Lim (10.1016/j.electacta.2016.12.144_bib0330) 2012; 116
Zhang (10.1016/j.electacta.2016.12.144_bib0020) 2016; 1
Huang (10.1016/j.electacta.2016.12.144_bib0260) 2015; 3
Wang (10.1016/j.electacta.2016.12.144_bib0340) 2015; 7
Nørskov (10.1016/j.electacta.2016.12.144_bib0315) 2004; 108
Hu (10.1016/j.electacta.2016.12.144_bib0365) 2015; 107
Zhang (10.1016/j.electacta.2016.12.144_bib0135) 2016; 55
Yu (10.1016/j.electacta.2016.12.144_bib0385) 2010; 132
Bai (10.1016/j.electacta.2016.12.144_bib0155) 2015; 7
Choi (10.1016/j.electacta.2016.12.144_bib0375) 2014; 136
Duan (10.1016/j.electacta.2016.12.144_bib0085) 2015; 5
Wang (10.1016/j.electacta.2016.12.144_bib0230) 2015; 8
Guo (10.1016/j.electacta.2016.12.144_bib0190) 2016; 211
Noh (10.1016/j.electacta.2016.12.144_bib0355) 2014; 89
Delley (10.1016/j.electacta.2016.12.144_bib0275) 1990; 92
Liu (10.1016/j.electacta.2016.12.144_bib0290) 2005; 127
Armand (10.1016/j.electacta.2016.12.144_bib0005) 2008; 451
Rowley-Neale (10.1016/j.electacta.2016.12.144_bib0270) 2016; 8
Qiuhong (10.1016/j.electacta.2016.12.144_bib0370) 2016; 27
Wang (10.1016/j.electacta.2016.12.144_bib0255) 2013; 19
Debe (10.1016/j.electacta.2016.12.144_bib0030) 2012; 486
Zhou (10.1016/j.electacta.2016.12.144_bib0075) 2016; 45
Higgins (10.1016/j.electacta.2016.12.144_bib0090) 2016; 9
Xie (10.1016/j.electacta.2016.12.144_bib0245) 2016; 3
Deng (10.1016/j.electacta.2016.12.144_bib0100) 2016; 4
Azcatl (10.1016/j.electacta.2016.12.144_bib0345) 2016; 16
Katsounaros (10.1016/j.electacta.2016.12.144_bib0010) 2014; 53
Zhang (10.1016/j.electacta.2016.12.144_bib0170) 2015; 3
Escalera-Lopez (10.1016/j.electacta.2016.12.144_bib0195) 2016; 6
Zhang (10.1016/j.electacta.2016.12.144_bib0105) 2011; 115
Dai (10.1016/j.electacta.2016.12.144_bib0060) 2015; 115
Klamt (10.1016/j.electacta.2016.12.144_bib0300) 1993; 2
Yu (10.1016/j.electacta.2016.12.144_bib0110) 2011; 282
Li (10.1016/j.electacta.2016.12.144_bib0140) 2014; 47
Ren (10.1016/j.electacta.2016.12.144_bib0225) 2015; 51
He (10.1016/j.electacta.2016.12.144_bib0165) 2016; 163
Dai (10.1016/j.electacta.2016.12.144_bib0185) 2015; 7
Perdew (10.1016/j.electacta.2016.12.144_bib0285) 1996; 77
Kibsgaard (10.1016/j.electacta.2016.12.144_bib0160) 2012; 11
Liu (10.1016/j.electacta.2016.12.144_bib0145) 2012; 12
Hao (10.1016/j.electacta.2016.12.144_bib0150) 2014; 24
Govind (10.1016/j.electacta.2016.12.144_bib0310) 2003; 28
Ma (10.1016/j.electacta.2016.12.144_bib0360) 2016; 371
Chua (10.1016/j.electacta.2016.12.144_bib0210) 2016; 6
Lim (10.1016/j.electacta.2016.12.144_bib0200) 2015; 15
Shao (10.1016/j.electacta.2016.12.144_bib0035) 2016; 116
Grimme (10.1016/j.electacta.2016.12.144_bib0295) 2006; 27
References_xml – volume: 44
  start-page: 2584
  year: 2015
  end-page: 2586
  ident: bib0125
  article-title: Two-dimensional transition metal dichalcogenide (TMD) nanosheets
  publication-title: Chem. Soc. Rev.
– volume: 16
  start-page: 5437
  year: 2016
  end-page: 5443
  ident: bib0345
  article-title: Covalent nitrogen doping and compressive strain in MoS
  publication-title: Nano Lett.
– volume: 163
  start-page: H299
  year: 2016
  end-page: H304
  ident: bib0165
  article-title: 3D Tungsten-doped MoS
  publication-title: J. Electrochem. Soc.
– volume: 371
  start-page: 180
  year: 2016
  end-page: 188
  ident: bib0360
  article-title: Formaldehyde molecule adsorption on the doped monolayer MoS
  publication-title: Appl. Surf. Sci.
– volume: 3
  start-page: 16050
  year: 2015
  end-page: 16056
  ident: bib0260
  article-title: Incorporated oxygen in MoS
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 7244
  year: 2015
  end-page: 7253
  ident: bib0080
  article-title: Heteroatom-doped graphitic carbon catalysts for efficient electrocatalysis of oxygen reduction reaction
  publication-title: ACS Catal.
– volume: 12
  start-page: 1538
  year: 2012
  end-page: 1544
  ident: bib0145
  article-title: Growth of large-area and highly crystalline MoS
  publication-title: Nano Lett.
– volume: 7
  start-page: 2168
  year: 2015
  end-page: 2181
  ident: bib0155
  article-title: Recent advances in two-dimensional nanostructures for catalysis applications
  publication-title: Sci. Adv. Mater.
– volume: 9
  start-page: 357
  year: 2016
  end-page: 390
  ident: bib0090
  article-title: The application of graphene and its composites in oxygen reduction electrocatalysis: a perspective and review of recent progress
  publication-title: Energy & Environ. Sci.
– volume: 1
  start-page: 4
  year: 2016
  end-page: 17
  ident: bib0020
  article-title: Recent progress in rechargeable alkali metal–air batteries
  publication-title: Green Energy & Environment
– volume: 44
  start-page: 2713
  year: 2015
  end-page: 2731
  ident: bib0130
  article-title: Two-dimensional transition metal dichalcogenide nanosheet-based composites
  publication-title: Chem. Soc. Rev.
– volume: 89
  start-page: 205417
  year: 2014
  ident: bib0355
  article-title: Stability and electronic structures of native defects in single-layer mathrm MoS
  publication-title: Phys. Rev. B
– volume: 282
  start-page: 183
  year: 2011
  end-page: 190
  ident: bib0110
  article-title: Oxygen reduction reaction mechanism on nitrogen-doped graphene: A density functional theory study
  publication-title: J. Catal.
– volume: 19
  start-page: 11939
  year: 2013
  end-page: 11948
  ident: bib0255
  article-title: Size-dependent enhancement of electrocatalytic oxygen-reduction and hydrogen-evolution performance of MoS
  publication-title: Chem.–A Eur. J.
– volume: 7
  start-page: 27242
  year: 2015
  end-page: 27253
  ident: bib0185
  article-title: Co-doped MoS
  publication-title: ACS Appl. Mater. & Inter.
– volume: 8
  start-page: 566
  year: 2015
  end-page: 575
  ident: bib0230
  article-title: Transition-metal doped edge sites in vertically aligned MoS
  publication-title: Nano Res.
– volume: 132
  start-page: 15127
  year: 2010
  end-page: 15129
  ident: bib0385
  article-title: Highly efficient metal-free growth of nitrogen-doped single-walled carbon nanotubes on plasma-etched substrates for oxygen reduction
  publication-title: J. Am. Chem. Soc.
– volume: 53
  start-page: 102
  year: 2014
  end-page: 121
  ident: bib0010
  article-title: Oxygen electrochemistry as a cornerstone for sustainable energy conversion
  publication-title: Angew. Chem. Intern. Ed.
– volume: 414
  start-page: 345
  year: 2001
  end-page: 352
  ident: bib0025
  article-title: Materials for fuel-cell technologies
  publication-title: Nature
– volume: 44
  start-page: 16399
  year: 2015
  end-page: 16404
  ident: bib0175
  article-title: Beneficial effect of Re doping on the electrochemical HER activity of MoS
  publication-title: Dalton Trans.
– volume: 41
  start-page: 2172
  year: 2012
  end-page: 2192
  ident: bib0015
  article-title: Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts
  publication-title: Chem. Soc. Rev
– volume: 5
  start-page: 7244
  year: 2015
  end-page: 7253
  ident: bib0065
  article-title: Heteroatom-doped graphitic carbon catalysts for efficient electrocatalysis of oxygen reduction reaction
  publication-title: ACS Catal.
– volume: 6
  start-page: 16656
  year: 2016
  end-page: 16661
  ident: bib0215
  article-title: Ni-doped MoS
  publication-title: Rsc Adv.
– volume: 46
  start-page: 31
  year: 2013
  end-page: 42
  ident: bib0055
  article-title: Functionalization of graphene for efficient energy conversion and storage
  publication-title: Acc. Chem. Res.
– volume: 3
  start-page: 1160
  year: 2016
  end-page: 1166
  ident: bib0245
  article-title: Vertically aligned oxygen-doped molybdenum disulfide nanosheets grown on carbon cloth realizing robust hydrogen evolution reaction
  publication-title: Inorg. Chem. Fron.
– volume: 108
  start-page: 17886
  year: 2004
  end-page: 17892
  ident: bib0315
  article-title: Origin of the overpotential for oxygen reduction at a fuel-cell cathode
  publication-title: J. Phys. Chem. B
– volume: 44
  start-page: 2168
  year: 2015
  end-page: 2201
  ident: bib0040
  article-title: Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction
  publication-title: Chem. Soc. Rev.
– volume: 44
  start-page: 129
  year: 1977
  end-page: 138
  ident: bib0305
  article-title: Bonded-atom fragments for describing molecular charge densities
  publication-title: Theor. Chim. Acta
– volume: 45
  start-page: 2458
  year: 2016
  end-page: 2493
  ident: bib0095
  article-title: Graphene and its electrochemistry – an update
  publication-title: Chem. Soc. Rev.
– volume: 115
  start-page: 4823
  year: 2015
  end-page: 4892
  ident: bib0060
  article-title: Metal-free catalysts for oxygen reduction reaction
  publication-title: Chem. Rev.
– volume: 4
  start-page: 1144
  year: 2016
  end-page: 1173
  ident: bib0100
  article-title: Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors
  publication-title: J. Mater. Chem. A
– volume: 116
  start-page: 3594
  year: 2016
  end-page: 3657
  ident: bib0035
  article-title: Recent advances in electrocatalysts for oxygen reduction reaction
  publication-title: Chem. Rev.
– volume: 116
  start-page: 17378
  year: 2012
  end-page: 17383
  ident: bib0335
  article-title: Density Functional Theory Study of Ni–N
  publication-title: J. Phys. Chem. C
– volume: 127
  start-page: 14871
  year: 2005
  end-page: 14878
  ident: bib0290
  article-title: Catalysts for hydrogen evolution from the [NiFe] hydrogenase to the Ni
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 27405
  year: 2015
  end-page: 27413
  ident: bib0380
  article-title: Atomic mechanism of electrocatalytically active Co?N complexes in graphene basal plane for oxygen reduction reaction
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 1676
  year: 2016
  end-page: 1683
  ident: bib0180
  article-title: Carbon doped molybdenum disulfide nanosheets stabilized on graphene for the hydrogen evolution reaction with high electrocatalytic ability
  publication-title: Nanoscale
– volume: 319
  start-page: 178
  year: 2005
  end-page: 184
  ident: bib0320
  article-title: Electrolysis of water on oxidized metal surfaces
  publication-title: Chem. Phys.
– volume: 486
  start-page: 43
  year: 2012
  end-page: 51
  ident: bib0030
  article-title: Electrocatalyst approaches and challenges for automotive fuel cells
  publication-title: Nature
– volume: 8
  start-page: 1594
  year: 2015
  end-page: 1601
  ident: bib0235
  article-title: Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS
  publication-title: Energy & Environ. Sci.
– volume: 211
  start-page: 603
  year: 2016
  end-page: 610
  ident: bib0190
  article-title: Doping MoS
  publication-title: Electrochim. Acta
– volume: 451
  start-page: 652
  year: 2008
  end-page: 657
  ident: bib0005
  article-title: Building better batteries
  publication-title: Nature
– volume: 4
  start-page: 1440
  year: 2016
  end-page: 1445
  ident: bib0250
  article-title: Advanced N-doped mesoporous molybdenum disulfide nanosheets and the enhanced lithium-ion storage performance
  publication-title: J. Mater. Chem. A
– volume: 51
  start-page: 7903
  year: 2015
  end-page: 7906
  ident: bib0265
  article-title: High-quality phosphorus-doped MoS
  publication-title: Chem. Commun.
– volume: 28
  start-page: 250
  year: 2003
  end-page: 258
  ident: bib0310
  article-title: A generalized synchronous transit method for transition state location
  publication-title: Comput. Mater. Sci.
– volume: 120
  start-page: 17427
  year: 2016
  end-page: 17434
  ident: bib0115
  article-title: Potential application of novel boron-doped graphene nanoribbon as oxygen reduction reaction catalyst
  publication-title: J. Phys. Chem. C
– volume: 7
  start-page: 11633
  year: 2015
  end-page: 11641
  ident: bib0340
  article-title: Two-dimensional iron-Phthalocyanine (Fe-Pc) monolayer as a promising single-atom-catalyst for oxygen reduction reaction: a computational study
  publication-title: Nanoscale
– volume: 88
  start-page: 075420
  year: 2013
  ident: bib0350
  article-title: Possible doping strategies for MoS
  publication-title: Phys. Rev. B
– volume: 9
  start-page: 2284
  year: 2016
  end-page: 2293
  ident: bib0240
  article-title: Ultrathin Co(Ni)-doped MoS
  publication-title: Nano Res.
– volume: 8
  start-page: 1130
  year: 2012
  end-page: 1166
  ident: bib0050
  article-title: Carbon nanomaterials for advanced energy conversion and storage
  publication-title: Small
– volume: 2
  start-page: 799
  year: 1993
  end-page: 805
  ident: bib0300
  article-title: COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient
  publication-title: J. Chem. Soc., Perkin Transactions
– volume: 27
  start-page: 175402
  year: 2016
  ident: bib0370
  article-title: The origin of the enhanced performance of nitrogen-doped MoS
  publication-title: Nanotech
– volume: 44
  start-page: 2060
  year: 2015
  end-page: 2086
  ident: bib0045
  article-title: Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions
  publication-title: Chem. Soc. Rev.
– volume: 115
  start-page: 11170
  year: 2011
  end-page: 11176
  ident: bib0105
  article-title: Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells
  publication-title: J. Phys. Chem. C
– volume: 42
  start-page: 1934
  year: 2013
  end-page: 1946
  ident: bib0120
  article-title: Metal dichalcogenide nanosheets: preparation, properties and applications
  publication-title: Chem. Soc. Rev.
– volume: 92
  start-page: 508
  year: 1990
  end-page: 517
  ident: bib0275
  article-title: An all-electron numerical method for solving the local density functional for polyatomic molecules
  publication-title: J. Chem. Phys.
– volume: 6
  start-page: 5724
  year: 2016
  end-page: 5734
  ident: bib0210
  article-title: Negative electrocatalytic effects of p-doping niobium and tantalum on MoS
  publication-title: ACS Catal.
– volume: 116
  start-page: 3653
  year: 2012
  end-page: 3660
  ident: bib0330
  article-title: Mechanisms of the oxygen reduction reaction on defective graphene-supported Pt nanoparticles from first-principles
  publication-title: J. Phys. Chem. C
– volume: 45
  start-page: 1273
  year: 2016
  end-page: 1307
  ident: bib0075
  article-title: Towards high-efficiency nanoelectrocatalysts for oxygen reduction through engineering advanced carbon nanomaterials
  publication-title: Chem. Soc. Rev.
– volume: 51
  start-page: 15997
  year: 2015
  end-page: 16000
  ident: bib0225
  article-title: A Se-doped MoS
  publication-title: Chem. Commun.
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  ident: bib0285
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
– volume: 47
  start-page: 1067
  year: 2014
  end-page: 1075
  ident: bib0140
  article-title: Preparation and applications of mechanically exfoliated single-layer and multilayer MoS
  publication-title: Acc. Chem. Res.
– volume: 136
  start-page: 9070
  year: 2014
  end-page: 9077
  ident: bib0375
  article-title: Long-range electron transfer over graphene-based catalyst for high-performing oxygen reduction reactions: importance of size, N-doping, and metallic impurities
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 14767
  year: 2016
  end-page: 14777
  ident: bib0270
  article-title: 2D molybdenum disulphide (2D-MoS
  publication-title: Nanoscale
– volume: 113
  start-page: 7756
  year: 2000
  end-page: 7764
  ident: bib0280
  article-title: From molecules to solids with the DMol
  publication-title: J. Chem. Phys.
– volume: 5
  start-page: 246
  year: 2015
  end-page: 253
  ident: bib0220
  article-title: Rational design of MoS
  publication-title: Catal. Sci. & Techn.
– volume: 55
  start-page: 8816
  year: 2016
  end-page: 8838
  ident: bib0135
  article-title: Solution-processed two-dimensional MoS
  publication-title: Angew. Chem. Inter. Ed.
– volume: 3
  start-page: 15020
  year: 2015
  end-page: 15023
  ident: bib0170
  article-title: Amorphous Co-doped MoS
  publication-title: J. Mater. Chem. A
– volume: 107
  start-page: 72
  year: 2015
  end-page: 78
  ident: bib0365
  article-title: Electronic structures and magnetic properties in nonmetallic element substituted MoS
  publication-title: Comput. Mater. Sci.
– volume: 27
  start-page: 1787
  year: 2006
  end-page: 1799
  ident: bib0295
  article-title: Semiempirical GGA-type density functional constructed with a long-range dispersion correction
  publication-title: J. Comput. Chem.
– volume: 5
  start-page: 5207
  year: 2015
  end-page: 5234
  ident: bib0085
  article-title: Heteroatom-doped graphene-based materials for energy-relevant electrocatalytic processes
  publication-title: ACS Catal.
– volume: 27
  start-page: 4281
  year: 2015
  end-page: 4288
  ident: bib0205
  article-title: Iron-doped molybdenum carbide catalyst with high activity and stability for the hydrogen evolution reaction
  publication-title: Chem. Mater.
– volume: 3
  start-page: 1311
  year: 2010
  end-page: 1315
  ident: bib0325
  article-title: How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels
  publication-title: Energy & Environ. Sci.
– volume: 6
  start-page: 6008
  year: 2016
  end-page: 6017
  ident: bib0195
  article-title: enhancement of the hydrogen evolution reaction from Ni-MoS
  publication-title: ACS Catal.
– volume: 24
  start-page: 6700
  year: 2014
  end-page: 6707
  ident: bib0150
  article-title: Controlled incorporation of Ni(OH)
  publication-title: Adv. Funct. Mater.
– volume: 15
  start-page: 8257
  year: 2015
  end-page: 8262
  ident: bib0200
  article-title: Fabrication and characterization of amorphous cobalt-doped molybdenum sulfide for hydrogen Evolution Reaction
  publication-title: J. Nanosci. Nanotech.
– volume: 4
  start-page: 8497
  year: 2016
  end-page: 8511
  ident: bib0070
  article-title: Rational design of graphitic carbon based nanostructures for advanced electrocatalysis
  publication-title: J. Mater. Chem. A
– volume: 11
  start-page: 963
  year: 2012
  end-page: 969
  ident: bib0160
  article-title: Engineering the surface structure of MoS
  publication-title: Nat Mater
– volume: 16
  start-page: 5437
  year: 2016
  ident: 10.1016/j.electacta.2016.12.144_bib0345
  article-title: Covalent nitrogen doping and compressive strain in MoS2 by remote N2 plasma exposure
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b01853
– volume: 7
  start-page: 11633
  year: 2015
  ident: 10.1016/j.electacta.2016.12.144_bib0340
  article-title: Two-dimensional iron-Phthalocyanine (Fe-Pc) monolayer as a promising single-atom-catalyst for oxygen reduction reaction: a computational study
  publication-title: Nanoscale
  doi: 10.1039/C5NR00302D
– volume: 486
  start-page: 43
  year: 2012
  ident: 10.1016/j.electacta.2016.12.144_bib0030
  article-title: Electrocatalyst approaches and challenges for automotive fuel cells
  publication-title: Nature
  doi: 10.1038/nature11115
– volume: 414
  start-page: 345
  year: 2001
  ident: 10.1016/j.electacta.2016.12.144_bib0025
  article-title: Materials for fuel-cell technologies
  publication-title: Nature
  doi: 10.1038/35104620
– volume: 44
  start-page: 2168
  year: 2015
  ident: 10.1016/j.electacta.2016.12.144_bib0040
  article-title: Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00484A
– volume: 27
  start-page: 4281
  year: 2015
  ident: 10.1016/j.electacta.2016.12.144_bib0205
  article-title: Iron-doped molybdenum carbide catalyst with high activity and stability for the hydrogen evolution reaction
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b00621
– volume: 2
  start-page: 799
  year: 1993
  ident: 10.1016/j.electacta.2016.12.144_bib0300
  article-title: COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient
  publication-title: J. Chem. Soc., Perkin Transactions
  doi: 10.1039/P29930000799
– volume: 11
  start-page: 963
  year: 2012
  ident: 10.1016/j.electacta.2016.12.144_bib0160
  article-title: Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis
  publication-title: Nat Mater
  doi: 10.1038/nmat3439
– volume: 7
  start-page: 27242
  year: 2015
  ident: 10.1016/j.electacta.2016.12.144_bib0185
  article-title: Co-doped MoS2 nanosheets with the dominant comos phase coated on carbon as an excellent electrocatalyst for hydrogen evolution
  publication-title: ACS Appl. Mater. & Inter.
  doi: 10.1021/acsami.5b08420
– volume: 116
  start-page: 3653
  year: 2012
  ident: 10.1016/j.electacta.2016.12.144_bib0330
  article-title: Mechanisms of the oxygen reduction reaction on defective graphene-supported Pt nanoparticles from first-principles
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp210796e
– volume: 132
  start-page: 15127
  year: 2010
  ident: 10.1016/j.electacta.2016.12.144_bib0385
  article-title: Highly efficient metal-free growth of nitrogen-doped single-walled carbon nanotubes on plasma-etched substrates for oxygen reduction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja105617z
– volume: 3
  start-page: 15020
  year: 2015
  ident: 10.1016/j.electacta.2016.12.144_bib0170
  article-title: Amorphous Co-doped MoS2 nanosheet coated metallic CoS2 nanocubes as an excellent electrocatalyst for hydrogen evolution
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA03410H
– volume: 3
  start-page: 1311
  year: 2010
  ident: 10.1016/j.electacta.2016.12.144_bib0325
  article-title: How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels
  publication-title: Energy & Environ. Sci.
  doi: 10.1039/c0ee00071j
– volume: 53
  start-page: 102
  year: 2014
  ident: 10.1016/j.electacta.2016.12.144_bib0010
  article-title: Oxygen electrochemistry as a cornerstone for sustainable energy conversion
  publication-title: Angew. Chem. Intern. Ed.
  doi: 10.1002/anie.201306588
– volume: 451
  start-page: 652
  year: 2008
  ident: 10.1016/j.electacta.2016.12.144_bib0005
  article-title: Building better batteries
  publication-title: Nature
  doi: 10.1038/451652a
– volume: 120
  start-page: 17427
  year: 2016
  ident: 10.1016/j.electacta.2016.12.144_bib0115
  article-title: Potential application of novel boron-doped graphene nanoribbon as oxygen reduction reaction catalyst
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b04639
– volume: 89
  start-page: 205417
  year: 2014
  ident: 10.1016/j.electacta.2016.12.144_bib0355
  article-title: Stability and electronic structures of native defects in single-layer mathrm MoS2
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.89.205417
– volume: 9
  start-page: 357
  year: 2016
  ident: 10.1016/j.electacta.2016.12.144_bib0090
  article-title: The application of graphene and its composites in oxygen reduction electrocatalysis: a perspective and review of recent progress
  publication-title: Energy & Environ. Sci.
  doi: 10.1039/C5EE02474A
– volume: 27
  start-page: 1787
  year: 2006
  ident: 10.1016/j.electacta.2016.12.144_bib0295
  article-title: Semiempirical GGA-type density functional constructed with a long-range dispersion correction
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20495
– volume: 44
  start-page: 2060
  year: 2015
  ident: 10.1016/j.electacta.2016.12.144_bib0045
  article-title: Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00470A
– volume: 3
  start-page: 16050
  year: 2015
  ident: 10.1016/j.electacta.2016.12.144_bib0260
  article-title: Incorporated oxygen in MoS2 ultrathin nanosheets for efficient ORR catalysis
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA01600B
– volume: 7
  start-page: 2168
  year: 2015
  ident: 10.1016/j.electacta.2016.12.144_bib0155
  article-title: Recent advances in two-dimensional nanostructures for catalysis applications
  publication-title: Sci. Adv. Mater.
  doi: 10.1166/sam.2015.2261
– volume: 163
  start-page: H299
  year: 2016
  ident: 10.1016/j.electacta.2016.12.144_bib0165
  article-title: 3D Tungsten-doped MoS2 nanostructure: a low-cost facile prepared catalyst for hydrogen evolution reaction
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0841605jes
– volume: 4
  start-page: 8497
  year: 2016
  ident: 10.1016/j.electacta.2016.12.144_bib0070
  article-title: Rational design of graphitic carbon based nanostructures for advanced electrocatalysis
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA01657J
– volume: 12
  start-page: 1538
  year: 2012
  ident: 10.1016/j.electacta.2016.12.144_bib0145
  article-title: Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates
  publication-title: Nano Lett.
  doi: 10.1021/nl2043612
– volume: 136
  start-page: 9070
  year: 2014
  ident: 10.1016/j.electacta.2016.12.144_bib0375
  article-title: Long-range electron transfer over graphene-based catalyst for high-performing oxygen reduction reactions: importance of size, N-doping, and metallic impurities
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5033474
– volume: 7
  start-page: 27405
  year: 2015
  ident: 10.1016/j.electacta.2016.12.144_bib0380
  article-title: Atomic mechanism of electrocatalytically active Co?N complexes in graphene basal plane for oxygen reduction reaction
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b09169
– volume: 46
  start-page: 31
  year: 2013
  ident: 10.1016/j.electacta.2016.12.144_bib0055
  article-title: Functionalization of graphene for efficient energy conversion and storage
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar300122m
– volume: 371
  start-page: 180
  year: 2016
  ident: 10.1016/j.electacta.2016.12.144_bib0360
  article-title: Formaldehyde molecule adsorption on the doped monolayer MoS2: A first-principles study
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.02.230
– volume: 115
  start-page: 4823
  year: 2015
  ident: 10.1016/j.electacta.2016.12.144_bib0060
  article-title: Metal-free catalysts for oxygen reduction reaction
  publication-title: Chem. Rev.
  doi: 10.1021/cr5003563
– volume: 15
  start-page: 8257
  year: 2015
  ident: 10.1016/j.electacta.2016.12.144_bib0200
  article-title: Fabrication and characterization of amorphous cobalt-doped molybdenum sulfide for hydrogen Evolution Reaction
  publication-title: J. Nanosci. Nanotech.
  doi: 10.1166/jnn.2015.11441
– volume: 6
  start-page: 6008
  year: 2016
  ident: 10.1016/j.electacta.2016.12.144_bib0195
  article-title: enhancement of the hydrogen evolution reaction from Ni-MoS2 hybrid nanoclusters
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b01274
– volume: 319
  start-page: 178
  year: 2005
  ident: 10.1016/j.electacta.2016.12.144_bib0320
  article-title: Electrolysis of water on oxidized metal surfaces
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2005.05.038
– volume: 127
  start-page: 14871
  year: 2005
  ident: 10.1016/j.electacta.2016.12.144_bib0290
  article-title: Catalysts for hydrogen evolution from the [NiFe] hydrogenase to the Ni2P(001) surface: the importance of ensemble effect
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0540019
– volume: 88
  start-page: 075420
  year: 2013
  ident: 10.1016/j.electacta.2016.12.144_bib0350
  article-title: Possible doping strategies for MoS2 monolayers: an ab initio study
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.075420
– volume: 92
  start-page: 508
  year: 1990
  ident: 10.1016/j.electacta.2016.12.144_bib0275
  article-title: An all-electron numerical method for solving the local density functional for polyatomic molecules
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.458452
– volume: 8
  start-page: 1676
  year: 2016
  ident: 10.1016/j.electacta.2016.12.144_bib0180
  article-title: Carbon doped molybdenum disulfide nanosheets stabilized on graphene for the hydrogen evolution reaction with high electrocatalytic ability
  publication-title: Nanoscale
  doi: 10.1039/C5NR07370G
– volume: 8
  start-page: 566
  year: 2015
  ident: 10.1016/j.electacta.2016.12.144_bib0230
  article-title: Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution
  publication-title: Nano Res.
  doi: 10.1007/s12274-014-0677-7
– volume: 113
  start-page: 7756
  year: 2000
  ident: 10.1016/j.electacta.2016.12.144_bib0280
  article-title: From molecules to solids with the DMol3 approach
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1316015
– volume: 5
  start-page: 7244
  year: 2015
  ident: 10.1016/j.electacta.2016.12.144_bib0065
  article-title: Heteroatom-doped graphitic carbon catalysts for efficient electrocatalysis of oxygen reduction reaction
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b01563
– volume: 115
  start-page: 11170
  year: 2011
  ident: 10.1016/j.electacta.2016.12.144_bib0105
  article-title: Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp201991j
– volume: 211
  start-page: 603
  year: 2016
  ident: 10.1016/j.electacta.2016.12.144_bib0190
  article-title: Doping MoS2 with graphene quantum dots: structural and electrical engineering towards enhanced electrochemical hydrogen evolution
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.05.148
– volume: 4
  start-page: 1144
  year: 2016
  ident: 10.1016/j.electacta.2016.12.144_bib0100
  article-title: Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA08620E
– volume: 5
  start-page: 246
  year: 2015
  ident: 10.1016/j.electacta.2016.12.144_bib0220
  article-title: Rational design of MoS2 catalysts: tuning the structure and activity via transition metal doping
  publication-title: Catal. Sci. & Techn.
  doi: 10.1039/C4CY01162G
– volume: 8
  start-page: 1130
  year: 2012
  ident: 10.1016/j.electacta.2016.12.144_bib0050
  article-title: Carbon nanomaterials for advanced energy conversion and storage
  publication-title: Small
  doi: 10.1002/smll.201101594
– volume: 9
  start-page: 2284
  year: 2016
  ident: 10.1016/j.electacta.2016.12.144_bib0240
  article-title: Ultrathin Co(Ni)-doped MoS2 nanosheets as catalytic promoters enabling efficient solar hydrogen production
  publication-title: Nano Res.
  doi: 10.1007/s12274-016-1115-9
– volume: 44
  start-page: 129
  year: 1977
  ident: 10.1016/j.electacta.2016.12.144_bib0305
  article-title: Bonded-atom fragments for describing molecular charge densities
  publication-title: Theor. Chim. Acta
  doi: 10.1007/BF00549096
– volume: 116
  start-page: 17378
  year: 2012
  ident: 10.1016/j.electacta.2016.12.144_bib0335
  article-title: Density Functional Theory Study of Ni–Nx/C Electrocatalyst for Oxygen Reduction in Alkaline and Acidic Media
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp3044708
– volume: 77
  start-page: 3865
  year: 1996
  ident: 10.1016/j.electacta.2016.12.144_bib0285
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 4
  start-page: 1440
  year: 2016
  ident: 10.1016/j.electacta.2016.12.144_bib0250
  article-title: Advanced N-doped mesoporous molybdenum disulfide nanosheets and the enhanced lithium-ion storage performance
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA10224C
– volume: 47
  start-page: 1067
  year: 2014
  ident: 10.1016/j.electacta.2016.12.144_bib0140
  article-title: Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar4002312
– volume: 44
  start-page: 16399
  year: 2015
  ident: 10.1016/j.electacta.2016.12.144_bib0175
  article-title: Beneficial effect of Re doping on the electrochemical HER activity of MoS2 fullerenes
  publication-title: Dalton Trans.
  doi: 10.1039/C5DT02562A
– volume: 108
  start-page: 17886
  year: 2004
  ident: 10.1016/j.electacta.2016.12.144_bib0315
  article-title: Origin of the overpotential for oxygen reduction at a fuel-cell cathode
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp047349j
– volume: 27
  start-page: 175402
  year: 2016
  ident: 10.1016/j.electacta.2016.12.144_bib0370
  article-title: The origin of the enhanced performance of nitrogen-doped MoS2 in lithium ion batteries
  publication-title: Nanotech
  doi: 10.1088/0957-4484/27/17/175402
– volume: 8
  start-page: 1594
  year: 2015
  ident: 10.1016/j.electacta.2016.12.144_bib0235
  article-title: Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping
  publication-title: Energy & Environ. Sci.
  doi: 10.1039/C5EE00751H
– volume: 51
  start-page: 7903
  year: 2015
  ident: 10.1016/j.electacta.2016.12.144_bib0265
  article-title: High-quality phosphorus-doped MoS2 ultrathin nanosheets with amenable ORR catalytic activity
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC01841B
– volume: 6
  start-page: 5724
  year: 2016
  ident: 10.1016/j.electacta.2016.12.144_bib0210
  article-title: Negative electrocatalytic effects of p-doping niobium and tantalum on MoS2 and WS2 for the hydrogen evolution reaction and oxygen reduction reaction
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b01593
– volume: 1
  start-page: 4
  year: 2016
  ident: 10.1016/j.electacta.2016.12.144_bib0020
  article-title: Recent progress in rechargeable alkali metal–air batteries
  publication-title: Green Energy & Environment
  doi: 10.1016/j.gee.2016.04.004
– volume: 107
  start-page: 72
  year: 2015
  ident: 10.1016/j.electacta.2016.12.144_bib0365
  article-title: Electronic structures and magnetic properties in nonmetallic element substituted MoS2 monolayer
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2015.05.021
– volume: 51
  start-page: 15997
  year: 2015
  ident: 10.1016/j.electacta.2016.12.144_bib0225
  article-title: A Se-doped MoS2 nanosheet for improved hydrogen evolution reaction
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC06847A
– volume: 28
  start-page: 250
  year: 2003
  ident: 10.1016/j.electacta.2016.12.144_bib0310
  article-title: A generalized synchronous transit method for transition state location
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/S0927-0256(03)00111-3
– volume: 44
  start-page: 2584
  year: 2015
  ident: 10.1016/j.electacta.2016.12.144_bib0125
  article-title: Two-dimensional transition metal dichalcogenide (TMD) nanosheets
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS90037A
– volume: 6
  start-page: 16656
  year: 2016
  ident: 10.1016/j.electacta.2016.12.144_bib0215
  article-title: Ni-doped MoS2 nanoparticles as highly active hydrogen evolution electrocatalysts
  publication-title: Rsc Adv.
  doi: 10.1039/C6RA02610A
– volume: 45
  start-page: 1273
  year: 2016
  ident: 10.1016/j.electacta.2016.12.144_bib0075
  article-title: Towards high-efficiency nanoelectrocatalysts for oxygen reduction through engineering advanced carbon nanomaterials
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00414D
– volume: 5
  start-page: 5207
  year: 2015
  ident: 10.1016/j.electacta.2016.12.144_bib0085
  article-title: Heteroatom-doped graphene-based materials for energy-relevant electrocatalytic processes
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b00991
– volume: 282
  start-page: 183
  year: 2011
  ident: 10.1016/j.electacta.2016.12.144_bib0110
  article-title: Oxygen reduction reaction mechanism on nitrogen-doped graphene: A density functional theory study
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2011.06.015
– volume: 5
  start-page: 7244
  year: 2015
  ident: 10.1016/j.electacta.2016.12.144_bib0080
  article-title: Heteroatom-doped graphitic carbon catalysts for efficient electrocatalysis of oxygen reduction reaction
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b01563
– volume: 116
  start-page: 3594
  year: 2016
  ident: 10.1016/j.electacta.2016.12.144_bib0035
  article-title: Recent advances in electrocatalysts for oxygen reduction reaction
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00462
– volume: 45
  start-page: 2458
  year: 2016
  ident: 10.1016/j.electacta.2016.12.144_bib0095
  article-title: Graphene and its electrochemistry – an update
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00136J
– volume: 44
  start-page: 2713
  year: 2015
  ident: 10.1016/j.electacta.2016.12.144_bib0130
  article-title: Two-dimensional transition metal dichalcogenide nanosheet-based composites
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00182F
– volume: 41
  start-page: 2172
  year: 2012
  ident: 10.1016/j.electacta.2016.12.144_bib0015
  article-title: Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts
  publication-title: Chem. Soc. Rev
  doi: 10.1039/c1cs15228a
– volume: 55
  start-page: 8816
  year: 2016
  ident: 10.1016/j.electacta.2016.12.144_bib0135
  article-title: Solution-processed two-dimensional MoS2 nanosheets: preparation, hybridization, and applications
  publication-title: Angew. Chem. Inter. Ed.
  doi: 10.1002/anie.201509933
– volume: 19
  start-page: 11939
  year: 2013
  ident: 10.1016/j.electacta.2016.12.144_bib0255
  article-title: Size-dependent enhancement of electrocatalytic oxygen-reduction and hydrogen-evolution performance of MoS2 particles
  publication-title: Chem.–A Eur. J.
  doi: 10.1002/chem.201301406
– volume: 8
  start-page: 14767
  year: 2016
  ident: 10.1016/j.electacta.2016.12.144_bib0270
  article-title: 2D molybdenum disulphide (2D-MoS2) modified electrodes explored towards the oxygen reduction reaction
  publication-title: Nanoscale
  doi: 10.1039/C6NR04073J
– volume: 24
  start-page: 6700
  year: 2014
  ident: 10.1016/j.electacta.2016.12.144_bib0150
  article-title: Controlled incorporation of Ni(OH)2 nanoplates into flowerlike mos2 nanosheets for flexible all-solid-state supercapacitors
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201401268
– volume: 3
  start-page: 1160
  year: 2016
  ident: 10.1016/j.electacta.2016.12.144_bib0245
  article-title: Vertically aligned oxygen-doped molybdenum disulfide nanosheets grown on carbon cloth realizing robust hydrogen evolution reaction
  publication-title: Inorg. Chem. Fron.
  doi: 10.1039/C6QI00198J
– volume: 42
  start-page: 1934
  year: 2013
  ident: 10.1016/j.electacta.2016.12.144_bib0120
  article-title: Metal dichalcogenide nanosheets: preparation, properties and applications
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c2cs35387c
SSID ssj0007670
Score 2.5307996
Snippet [Display omitted] The design and development of low-cost and highly efficient electrocatalysts for oxygen reduction reaction (ORR) is crucial to the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 543
SubjectTerms density functional theory
doping
MoS2 monolayer
oxygen reduction reaction
Title Small Dopants Make Big Differences: Enhanced Electrocatalytic Performance of MoS2 Monolayer for Oxygen Reduction Reaction (ORR) by N– and P–Doping
URI https://dx.doi.org/10.1016/j.electacta.2016.12.144
Volume 225
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5V5QAcKiggyqOaAwc4mK7t9azdW0lSBVDSKqVSb9Y-SyB1KppK5FL1PyDxA_klzPrRh4TUA5JlrWyPbO2MZudbz8zH2JvcCaPR-iiJPY-E0Bgpk2RR7jG1IjfWZqF2eDTG4aH4dJQdrbBeVwsT0ipb39_49Npbt1e22tncOp1OQ41vnArMkSKKBAk1hAp2IYOVv7-4TvOQKHnHYhCevpXjVVPNKDpCjheGfUHCF_9eoW6sOruP2FobLsJO80WP2Yqr1tn9XsfSts4e3mgo-IT9PjhRsxn0CQlXizMYqe8OPkyPod_SoJBT2IZB9bX-7Q-DhgKn3sFZ0gtg_7qKAOYeRvODhE4VoV8KzIFuwd7PJVkcTELD16BSGjWVEfB2bzJ5B3oJ4z-Xv0BVFvZp0K_rsZ6yw93Bl94wapkXIiPifEGg0miJsfHWZzpDjdxZVB65V9IiISRU6LxRSAGDSbQvdO4L7lJtCqG5T9JnbLWaV-45A2l5kcao40Jnwua2UFIX3hJ4dZJzIzcYdrNdmrYteWDHmJVd_tm38kpNZVBTGScEWMQG41eCp01njrtFtjt1lreMrKT14y7hF_8j_JI9SEI8wGNyS6_Y6uLHuXtN0cxCb9bmusnu7Xz8PBz_BatO-S8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEF5ReqA9VBRaQZ9z4AAHl7W9Htvc2iQobUlAASRu1j7blOCgNpWaS9X_UIkfyC9h1g8eUiUOlSxrZXu01s56dr71zHyMbWRWaIXGBVHoeCCEwkDqKAkyh7ERmTYm8bnDgyH2j8Wnk-RkgXXaXBgfVtnY_tqmV9a6ubLdjOb2-Xjsc3zDWGCG5FFESKjhAXso6PP1NAbvft_EeaSY8pbGwD9-J8ir4pqRdPggL_QbgwQw_r1E3Vp2dpfZk8ZfhPf1Kz1lC7ZcYUudlqZthT2-VVFwlV0cnsnJBLoEhcvZDxjIUwsfxl-g2_CgkFXYgV75tfrvD72aA6fawplTB3Bwk0YAUweD6WFEp5LgL3nmQLdg_9ecphyMfMVXr1Nq1akRsLk_Gm2BmsPw8s9fkKWBA2p0q4SsZ-x4t3fU6QcN9UKgRZjNCFVqlWKonXGJSlAhtwalQ-5kapAgEkq0Tkskj0FHyuUqczm3sdK5UNxF8XO2WE5Lu8YgNTyPQ1RhrhJhMpPLVOXOEHq1Kec6XWfYjnahm7rknh5jUrQBaN-KazUVXk1FGBFiEeuMXwue16U57hfZadVZ3JllBS0g9wm_-B_ht2ypfzTYK_Y-Dj-_ZI8i7xzwkGzUK7Y4-_7TvibXZqbeVFP3ClRW-r0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Small+Dopants+Make+Big+Differences%3A+Enhanced+Electrocatalytic+Performance+of+MoS2+Monolayer+for+Oxygen+Reduction+Reaction+%28ORR%29+by+N%E2%80%93+and+P%E2%80%93Doping&rft.jtitle=Electrochimica+acta&rft.au=Zhang%2C+Huiying&rft.au=Tian%2C+Yu&rft.au=Zhao%2C+Jingxiang&rft.au=Cai%2C+Qinghai&rft.date=2017-01-20&rft.issn=0013-4686&rft.volume=225&rft.spage=543&rft.epage=550&rft_id=info:doi/10.1016%2Fj.electacta.2016.12.144&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_electacta_2016_12_144
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4686&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4686&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4686&client=summon