Cross-Linked Poly(cyclotriphosphazene-co-phloretin) Microspheres and Their Application for Controlled Drug Delivery
In this work, cross-linked poly(cyclotriphosphazene- co -phloretin) (PCTPPT) microspheres were synthesized and characterized by Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscope (SEM). In FT-IR spectra, the new appeared bands at 1009 cm −1 and 1132 cm −1 confirmed the...
Saved in:
Published in | Macromolecular research Vol. 30; no. 9; pp. 623 - 630 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Seoul
The Polymer Society of Korea
01.09.2022
Springer Springer Nature B.V 한국고분자학회 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this work, cross-linked poly(cyclotriphosphazene-
co
-phloretin) (PCTPPT) microspheres were synthesized and characterized by Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscope (SEM). In FT-IR spectra, the new appeared bands at 1009 cm
−1
and 1132 cm
−1
confirmed the successful polymerization between hexachlorocyclotriphosphazene (HCCP) and phloretin (Pht). While the SEM results showed that the size of the microspheres was strongly dependent on the HCCP:Pht mole ratio. The crystalline nature of the PCTPPT microspheres was checked by X-ray diffraction (XRD) and provided evidence for the successful preparation of the microspheres. The thermal stability of the PCTPPT microspheres was investigated by thermogravimetric analysis (TGA). The obtained TGA results showed that the increase in thermal stability was attributed to the highly cross-linked covalently bonded structure of PCTPPT microspheres. The particle size distribution was determined by dynamic light scattering (DLS) and the results showed that the decreased HCCP:Pht mole ratio increases the size of the microspheres. The PCTPPT-3 microspheres were used as drug carriers for a model drug camptothecin (CPT). The experimental findings showed a cumulative release of 41.0% in pH 4.0 and 32.6% in pH 7.4 after 350 h and the PCTPPT-3/CPT microspheres have good drug loading capability and controlled release property for CPT. |
---|---|
AbstractList | In this work, cross-linked poly(cyclotriphosphazene-co-phloretin) (PCTPPT) microspheres were synthesized and characterized by Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscope (SEM). In FT-IR spectra, the new appeared bands at 1009 cm-1 and 1132 cm-1 confirmed the successful polymerization between hexachlorocyclotriphosphazene (HCCP) and phloretin (Pht). While the SEM results showed that the size of the microspheres was strongly dependent on the HCCP:Pht mole ratio. The crystalline nature of the PCTPPT microspheres was checked by X-ray diffraction (XRD) and provided evidence for the successful preparation of the microspheres. The thermal stability of the PCTPPT microspheres was investigated by thermogravimetric analysis (TGA). The obtained TGA results showed that the increase in thermal stability was attributed to the highly cross-linked covalently bonded structure of PCTPPT microspheres. The particle size distribution was determined by dynamic light scattering (DLS) and the results showed that the decreased HCCP:Pht mole ratio increases the size of the microspheres. The PCTPPT-3 microspheres were used as drug carriers for a model drug camptothecin (CPT). The experimental findings showed a cumulative release of 41.0% in pH 4.0 and 32.6% in pH 7.4 after 350 h and the PCTPPT-3/CPT microspheres have good drug loading capability and controlled release property for CPT. KCI Citation Count: 0 In this work, cross-linked poly(cyclotriphosphazene- co -phloretin) (PCTPPT) microspheres were synthesized and characterized by Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscope (SEM). In FT-IR spectra, the new appeared bands at 1009 cm −1 and 1132 cm −1 confirmed the successful polymerization between hexachlorocyclotriphosphazene (HCCP) and phloretin (Pht). While the SEM results showed that the size of the microspheres was strongly dependent on the HCCP:Pht mole ratio. The crystalline nature of the PCTPPT microspheres was checked by X-ray diffraction (XRD) and provided evidence for the successful preparation of the microspheres. The thermal stability of the PCTPPT microspheres was investigated by thermogravimetric analysis (TGA). The obtained TGA results showed that the increase in thermal stability was attributed to the highly cross-linked covalently bonded structure of PCTPPT microspheres. The particle size distribution was determined by dynamic light scattering (DLS) and the results showed that the decreased HCCP:Pht mole ratio increases the size of the microspheres. The PCTPPT-3 microspheres were used as drug carriers for a model drug camptothecin (CPT). The experimental findings showed a cumulative release of 41.0% in pH 4.0 and 32.6% in pH 7.4 after 350 h and the PCTPPT-3/CPT microspheres have good drug loading capability and controlled release property for CPT. In this work, cross-linked poly(cyclotriphosphazene-co-phloretin) (PCTPPT) microspheres were synthesized and characterized by Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscope (SEM). In FT-IR spectra, the new appeared bands at 1009 [cm.sup.-1] and 1132 [cm.sup.-1] confirmed the successful polymerization between hexachlorocyclotriphosphazene (HCCP) and phloretin (Pht). While the SEM results showed that the size of the microspheres was strongly dependent on the HCCP:Pht mole ratio. The crystalline nature of the PCTPPT microspheres was checked by X-ray diffraction (XRD) and provided evidence for the successful preparation of the microspheres. The thermal stability of the PCTPPT microspheres was investigated by thermogravimetric analysis (TGA). The obtained TGA results showed that the increase in thermal stability was attributed to the highly cross-linked covalently bonded structure of PCTPPT microspheres. The particle size distribution was determined by dynamic light scattering (DLS) and the results showed that the decreased HCCP:Pht mole ratio increases the size of the microspheres. The PCTPPT-3 microspheres were used as drug carriers for a model drug camptothecin (CPT). The experimental findings showed a cumulative release of 41.0% in pH 4.0 and 32.6% in pH 7.4 after 350 h and the PCTPPT-3/CPT microspheres have good drug loading capability and controlled release property for CPT. In this work, cross-linked poly(cyclotriphosphazene-co-phloretin) (PCTPPT) microspheres were synthesized and characterized by Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscope (SEM). In FT-IR spectra, the new appeared bands at 1009 cm−1 and 1132 cm−1 confirmed the successful polymerization between hexachlorocyclotriphosphazene (HCCP) and phloretin (Pht). While the SEM results showed that the size of the microspheres was strongly dependent on the HCCP:Pht mole ratio. The crystalline nature of the PCTPPT microspheres was checked by X-ray diffraction (XRD) and provided evidence for the successful preparation of the microspheres. The thermal stability of the PCTPPT microspheres was investigated by thermogravimetric analysis (TGA). The obtained TGA results showed that the increase in thermal stability was attributed to the highly cross-linked covalently bonded structure of PCTPPT microspheres. The particle size distribution was determined by dynamic light scattering (DLS) and the results showed that the decreased HCCP:Pht mole ratio increases the size of the microspheres. The PCTPPT-3 microspheres were used as drug carriers for a model drug camptothecin (CPT). The experimental findings showed a cumulative release of 41.0% in pH 4.0 and 32.6% in pH 7.4 after 350 h and the PCTPPT-3/CPT microspheres have good drug loading capability and controlled release property for CPT. In this work, cross-linked poly(cyclotriphosphazene-co-phloretin) (PCTPPT) microspheres were synthesized and characterized by Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscope (SEM). In FT-IR spectra, the new appeared bands at 1009 [cm.sup.-1] and 1132 [cm.sup.-1] confirmed the successful polymerization between hexachlorocyclotriphosphazene (HCCP) and phloretin (Pht). While the SEM results showed that the size of the microspheres was strongly dependent on the HCCP:Pht mole ratio. The crystalline nature of the PCTPPT microspheres was checked by X-ray diffraction (XRD) and provided evidence for the successful preparation of the microspheres. The thermal stability of the PCTPPT microspheres was investigated by thermogravimetric analysis (TGA). The obtained TGA results showed that the increase in thermal stability was attributed to the highly cross-linked covalently bonded structure of PCTPPT microspheres. The particle size distribution was determined by dynamic light scattering (DLS) and the results showed that the decreased HCCP:Pht mole ratio increases the size of the microspheres. The PCTPPT-3 microspheres were used as drug carriers for a model drug camptothecin (CPT). The experimental findings showed a cumulative release of 41.0% in pH 4.0 and 32.6% in pH 7.4 after 350 h and the PCTPPT-3/CPT microspheres have good drug loading capability and controlled release property for CPT. Keywords: hexachlorocyclotriphosphazene (HCCP), phloretin, microspheres, cross-linked, drug release. |
Audience | Academic |
Author | Mehmood, Sahid Yu, Haojie Wang, Li Amin, Bilal Ul Haroon, Muhammad Uddin, Md Alim Fahad, Shah Haq, Fazal |
Author_xml | – sequence: 1 givenname: Sahid surname: Mehmood fullname: Mehmood, Sahid organization: State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University – sequence: 2 givenname: Haojie surname: Yu fullname: Yu, Haojie email: hjyu@zju.edu.cn organization: State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University – sequence: 3 givenname: Li surname: Wang fullname: Wang, Li organization: State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University – sequence: 4 givenname: Md Alim surname: Uddin fullname: Uddin, Md Alim organization: State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University – sequence: 5 givenname: Bilal Ul surname: Amin fullname: Amin, Bilal Ul organization: State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University – sequence: 6 givenname: Fazal surname: Haq fullname: Haq, Fazal organization: State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University – sequence: 7 givenname: Shah surname: Fahad fullname: Fahad, Shah organization: State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University – sequence: 8 givenname: Muhammad surname: Haroon fullname: Haroon, Muhammad organization: State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002877709$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9UV2LEzEUDbKC3dUf4NuALypkzcdk0nksXT8WKorU55DJ3LTZpsmYTIX6683sCIuich8u3Jxz78k5l-gixAAIPafkmhIi32TKGeeYMIYJaRpMHqEFIy3DspH8Ai2oaJdYEM6eoMuc7wqGckoXKK9TzBlvXDhAX32O_vzSnI2PY3LDPuZhr39AAGwiHvY-JhhdeFV9dCZNb5AgVzr01XYPLlWrYfDO6NHFUNmYqnUMY4rel8U36bSrbsC775DOT9Fjq32GZ7_6Ffr67u12_QFvPr2_Xa822NR0OWLe1H3XSiBMMzBCNp2w7dJoy1vKCZetlEAbwRmxXQ3Q877utKg7YMJ0YCm_Qq_nvSFZdTBORe3u-y6qQ1KrL9tbVcyrOWlJAb-YwUOK306QR3UXTykUfYpJxnhDl6R9QO20B-WCLUZpc3TZqJVkXNSirWVBXf8FVaqHozMlOOvK_DcCnQmTrzmBVUNyR53ORd8kUao5X1XyVVO-ahIs_-AYN96bX445_18mm5m5XAk7SA9f_TfpJy6_utA |
CitedBy_id | crossref_primary_10_1016_j_molliq_2023_123348 crossref_primary_10_1016_j_jiec_2023_05_020 crossref_primary_10_1016_j_porgcoat_2024_108880 crossref_primary_10_1016_j_jece_2024_112066 crossref_primary_10_1007_s11814_023_1401_7 crossref_primary_10_1016_j_pmatsci_2024_101232 crossref_primary_10_3390_molecules27238117 crossref_primary_10_1080_00914037_2023_2175825 crossref_primary_10_3390_ijms232415993 crossref_primary_10_3390_molecules27248819 crossref_primary_10_1016_j_colsurfa_2025_136455 crossref_primary_10_1016_j_chemosphere_2023_139637 crossref_primary_10_1002_adhm_202302868 crossref_primary_10_1007_s11814_024_00284_1 crossref_primary_10_1007_s10924_023_02890_2 crossref_primary_10_1007_s13233_023_00146_5 |
Cites_doi | 10.1021/acsami.1c21760 10.1007/s10853-011-5994-6 10.1021/acsami.8b06114 10.1016/j.molliq.2017.03.098 10.1007/s13233-018-6092-2 10.1016/j.jcis.2020.11.042 10.1021/ma010084b 10.1002/pol.20200039 10.1002/app.34690 10.1016/j.apsusc.2017.04.236 10.1039/C5PY00196J 10.1186/s12645-014-0001-y 10.1039/C8AY02783H 10.1039/C8PY00444G 10.1070/RCR4757 10.1080/00914037.2015.1103241 10.1016/j.matlet.2014.11.044 10.1039/C6RA13486F 10.1177/0954008311436221 10.1016/j.mtcomm.2021.103107 10.1039/C6CS00340K 10.1021/acsami.5b00175 10.1021/ma702103z 10.1002/pola.20188 10.1016/j.polymer.2019.122011 10.1002/smll.200400024 10.1186/s12645-014-0003-9 10.1039/C9NJ06228A 10.1002/smll.200800127 10.1021/ma900836q 10.1039/b516053g 10.1039/c2ra20263h 10.1007/s10853-016-9731-z 10.1080/10601325.2019.1615838 10.1039/c3fd00099k 10.1016/j.colsurfa.2014.03.022 10.1007/s00289-021-03654-5 10.1039/C6NJ01578F 10.1016/j.colsurfa.2021.126807 |
ContentType | Journal Article |
Copyright | The Polymer Society of Korea and Springer 2022 COPYRIGHT 2022 Springer The Polymer Society of Korea and Springer 2022. |
Copyright_xml | – notice: The Polymer Society of Korea and Springer 2022 – notice: COPYRIGHT 2022 Springer – notice: The Polymer Society of Korea and Springer 2022. |
DBID | AAYXX CITATION ACYCR |
DOI | 10.1007/s13233-022-0066-0 |
DatabaseName | CrossRef Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 2092-7673 |
EndPage | 630 |
ExternalDocumentID | oai_kci_go_kr_ARTI_10043090 A723545947 10_1007_s13233_022_0066_0 |
GroupedDBID | -EM .UV 06D 0R~ 0VY 1N0 203 2JY 2KG 2VQ 3-Y 30V 4.4 406 408 40D 53G 5GY 67Z 8N- 8UJ 96X 9ZL AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ASPBG AVWKF AXYYD AYJHY AZFZN BGNMA CAG COF CSCUP DBRKI DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 GW5 H13 HF~ HMJXF HRMNR HZ~ I0C IAO IHR IKXTQ IWAJR IXD J-C J0Z JBSCW JZLTJ KOV LLZTM M4Y MZR NPVJJ NQJWS NU0 O9- O9J P9N PT4 R9I RIG RLLFE ROL RSV S1Z S27 S3B SCM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TDB TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 Z7U Z7V Z7X Z7Y ZMTXR ZZE ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR CITATION AEIIB 85H AAFGU AAPBV AAYFA ABFGW ABKAS ACBMV ACBRV ACBYP ACIGE ACIPQ ACTTH ACVWB ACWMK ACYCR ADMDM ADOXG AEFTE AESTI AEVTX AFNRJ AGGBP AIMYW AJDOV AKQUC SQXTU Z5O Z7R Z7S |
ID | FETCH-LOGICAL-c418t-364db97e02a2ec576b5f98caf3913037977e165320fb4eed3d4ba54be25cbef13 |
IEDL.DBID | U2A |
ISSN | 1598-5032 |
IngestDate | Tue Nov 21 21:28:39 EST 2023 Fri Jul 25 11:14:37 EDT 2025 Tue Jun 17 21:34:08 EDT 2025 Tue Jun 10 21:26:59 EDT 2025 Tue Jul 29 01:58:51 EDT 2025 Thu Apr 24 22:49:26 EDT 2025 Fri Feb 21 02:45:43 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | phloretin cross-linked hexachlorocyclotriphosphazene (HCCP) drug release microspheres |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c418t-364db97e02a2ec576b5f98caf3913037977e165320fb4eed3d4ba54be25cbef13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2722361809 |
PQPubID | 2044280 |
PageCount | 8 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10043090 proquest_journals_2722361809 gale_infotracmisc_A723545947 gale_infotracacademiconefile_A723545947 crossref_primary_10_1007_s13233_022_0066_0 crossref_citationtrail_10_1007_s13233_022_0066_0 springer_journals_10_1007_s13233_022_0066_0 |
PublicationCentury | 2000 |
PublicationDate | 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Seoul |
PublicationPlace_xml | – name: Seoul – name: Heidelberg |
PublicationTitle | Macromolecular research |
PublicationTitleAbbrev | Macromol. Res |
PublicationYear | 2022 |
Publisher | The Polymer Society of Korea Springer Springer Nature B.V 한국고분자학회 |
Publisher_xml | – name: The Polymer Society of Korea – name: Springer – name: Springer Nature B.V – name: 한국고분자학회 |
References | HouSChenSDongYGaoSZhuBLuQACS Appl. Mater. Interfaces201810259831:CAS:528:DC%2BC1cXhtlaktbfJ10.1021/acsami.8b06114 ThukralD KDumogaSAroraSChuttaniKMishraA KCancer Nanotechnol.20145310.1186/s12645-014-0003-9 SunLLiuTLiHYangLMengLLuQLongJACS Appl. Mater. Interfaces2015749901:CAS:528:DC%2BC2MXit12rs7o%3D10.1021/acsami.5b00175 KimD HKaranPGöringPLeclaireJCaminadeA-MMajoralJ-PGöseleUSteinhartMKnollWSmall20051991:CAS:528:DC%2BD2cXhtVKhtrvJ10.1002/smll.200400024 MarkovicEClarkeSMatisonsJSimonG PMacromolecules20084116851:CAS:528:DC%2BD1cXhs1emsLg%3D10.1021/ma702103z KhaninD AKononevichY NTemnikovM NMorgalyukV PVasil’evV GPopovA YBrelV KPapkovV SMuzafarovA MPolymer20201861220111:CAS:528:DC%2BC1MXit1Cmur3P10.1016/j.polymer.2019.122011 DiptiT KShwetaDShellyAKrishnaCAnilK MCancer Nanotechnol.20145110.1186/s12645-014-0001-y WangYMuJLiLShiLZhangWJiangZHigh Perform. Polym.2012242291:CAS:528:DC%2BC38XnsVKgur0%3D10.1177/0954008311436221 GuJZhangC FBaiY XZhangLSunY PChenH LJ. Appl. Polym. Sci.201212319681:CAS:528:DC%2BC3MXhtVOms7%2FL10.1002/app.34690 JunkM J NJonasUHinderbergerDSmall2008414851:CAS:528:DC%2BD1cXhtF2gsb7O10.1002/smll.200800127 DarS UAliSHameedM UZuhraZWuZNew J. Chem.20164084181:CAS:528:DC%2BC28Xht12ksrjM10.1039/C6NJ01578F HuangZZhengFChenSLuXCatharina Elizabeth van SittertC GLuQRSC Adv.20166755521:CAS:528:DC%2BC28Xht1CksbbI10.1039/C6RA13486F WeiYZhangJMemonA HLiangHJ. Mol. Liq.2017236681:CAS:528:DC%2BC2sXmtlyjsbw%3D10.1016/j.molliq.2017.03.098 UddinM AYuHWangLNaveedK-U-RHaqFAminB UMehmoodSNazirAXingYShenDJ. Polym. Sci.20205819241:CAS:528:DC%2BB3cXhtFOitrrL10.1002/pol.20200039 ChenXDingXZhengZPengYNew J. Chem.2006305771:CAS:528:DC%2BD28XjtFSrt7o%3D10.1039/b516053g MaaskantEGojzewskiHHempeniusM AVancsoG JBenesN EPolym. Chem.2018931691:CAS:528:DC%2BC1cXpslSgurc%3D10.1039/C8PY00444G UddinM AYuHWangLShengYMehmoodSAminB ULiangRMater. Today Commun.20213010310710.1016/j.mtcomm.2021.103107 MengLXuCLiuTLiHLuQLongJPolym. Chem.2015631551:CAS:528:DC%2BC2MXkt1yjs7w%3D10.1039/C5PY00196J AllcockH RKellamE CHofmannM AMacromolecules20013451401:CAS:528:DC%2BD3MXksFSit7c%3D10.1021/ma010084b ÖrümS MDemircioğluY SMacromol. Res.20182667110.1007/s13233-018-6092-2 LockL LLaCombMSchwarzKCheethamA GLinYZhangPCuiHFaraday Discuss.20131662851:CAS:528:DC%2BC2cXisF2rsg%3D%3D10.1039/c3fd00099k MondalDGriffithMVenkatramanS SInt. J. Polym. Mater. Polym. Biomater.2016652551:CAS:528:DC%2BC28XnsF2itQ%3D%3D10.1080/00914037.2015.1103241 Metinoğlu ÖrümSSüzen DemircioğluYJ. Macromol. Sci. Part A20195685410.1080/10601325.2019.1615838 KaruppuswamyPReddy VenugopalJNavaneethanBLuwang LaivaARamakrishnaSMater. Lett.20151411801:CAS:528:DC%2BC2cXitVSgu7vK10.1016/j.matlet.2014.11.044 WeiXZhangGZhouLLiJAppl. Surf. Sci.20174197441:CAS:528:DC%2BC2sXot1antLo%3D10.1016/j.apsusc.2017.04.236 ÖrümS MPolym. Bull.202279285110.1007/s00289-021-03654-5 Eun ShimSYangSChoeSJ. Polym. Sci. Part A. Polym. Chem.200442396710.1002/pola.20188 OzayHOzayOColloids Surf. A-Physicochem. Eng. Asp.2014450991:CAS:528:DC%2BC2cXmtVOksrg%3D10.1016/j.colsurfa.2014.03.022 FuJWangMZhangCXuQHuangXTangXJ. Mater. Sci.20124719851:CAS:528:DC%2BC3MXht1GmsL3O10.1007/s10853-011-5994-6 KhanRWangLYuHAbdinZAkramMWuJHaroonMUllahR SChenQDengZRuss. Chem. Rev.2018871091:CAS:528:DC%2BC1cXhvFyls7%2FP10.1070/RCR4757 UddinM AYuHWangLAminB UMehmoodSLiangRHaqFHuJXuJACS Appl. Mater. Interfaces2021316169310.1021/acsami.1c21760 LiZWangGRenWZhangAAnLTianYJ. Mater. Sci.20165140961:CAS:528:DC%2BC28XlvVynsA%3D%3D10.1007/s10853-016-9731-z UddinM AYuHWangLLiuJMehmoodSAminB UHaqFLiangRShenDNiZColloids Surf. A-Physicochem. Eng. Asp.20216251268071:CAS:528:DC%2BB3MXhtFOitrrM10.1016/j.colsurfa.2021.126807 NapoliMDanielCImmediataILongoPGuerraGMacromolecules20094255661:CAS:528:DC%2BD1MXntFygsb4%3D10.1021/ma900836q HuXZhouZHanLLiSZhouWNew J. Chem.20204452181:CAS:528:DC%2BB3cXjvFKhsb0%3D10.1039/C9NJ06228A UddinM AYuHWangLNaveedK-U-RAminB UMehmoodSHaqFNazirALinTChenXNiZJ. Colloid Interface Sci.20215852371:CAS:528:DC%2BB3cXisVyitbnI10.1016/j.jcis.2020.11.042 RothemundSTeasdaleII. Chem. Soc. Rev.20164552001:CAS:528:DC%2BC28XhtVSgsL7M10.1039/C6CS00340K ConstantinM MCorbuC GTanaseCCodriciEMihaiSPopescuI DEnciuA MMocanuSMateiIIonitaGAnal. Methods2019119651:CAS:528:DC%2BC1MXlvVOjsQ%3D%3D10.1039/C8AY02783H WeiWHuangXChenKTaoYTangXRSC Adv.2012237651:CAS:528:DC%2BC38XlsFOksL0%3D10.1039/c2ra20263h M A Uddin (66_CR35) 2021; 30 M A Uddin (66_CR32) 2020; 58 S Eun Shim (66_CR26) 2004; 42 X Wei (66_CR28) 2017; 419 S Rothemund (66_CR11) 2016; 45 S M Örüm (66_CR19) 2022; 79 E Markovic (66_CR8) 2008; 41 M A Uddin (66_CR34) 2021; 625 T K Dipti (66_CR1) 2014; 5 S Metinoğlu Örüm (66_CR18) 2019; 56 M A Uddin (66_CR33) 2021; 585 L Meng (66_CR36) 2015; 6 M A Uddin (66_CR31) 2021; 31 J Fu (66_CR38) 2012; 47 R Khan (66_CR14) 2018; 87 P Karuppuswamy (66_CR25) 2015; 141 D K Thukral (66_CR9) 2014; 5 S M Örüm (66_CR17) 2018; 26 X Hu (66_CR37) 2020; 44 E Maaskant (66_CR3) 2018; 9 M M Constantin (66_CR23) 2019; 11 M Napoli (66_CR5) 2009; 42 J Gu (66_CR6) 2012; 123 L L Lock (66_CR39) 2013; 166 S U Dar (66_CR20) 2016; 40 D A Khanin (66_CR10) 2020; 186 M J N Junk (66_CR22) 2008; 4 Z Huang (66_CR21) 2016; 6 D Mondal (66_CR7) 2016; 65 Z Li (66_CR4) 2016; 51 L Sun (66_CR15) 2015; 7 W Wei (66_CR30) 2012; 2 S Hou (66_CR16) 2018; 10 Y Wei (66_CR29) 2017; 236 H R Allcock (66_CR13) 2001; 34 X Chen (66_CR2) 2006; 30 D H Kim (66_CR12) 2005; 1 Y Wang (66_CR27) 2012; 24 H Ozay (66_CR24) 2014; 450 |
References_xml | – reference: JunkM J NJonasUHinderbergerDSmall2008414851:CAS:528:DC%2BD1cXhtF2gsb7O10.1002/smll.200800127 – reference: UddinM AYuHWangLLiuJMehmoodSAminB UHaqFLiangRShenDNiZColloids Surf. A-Physicochem. Eng. Asp.20216251268071:CAS:528:DC%2BB3MXhtFOitrrM10.1016/j.colsurfa.2021.126807 – reference: FuJWangMZhangCXuQHuangXTangXJ. Mater. Sci.20124719851:CAS:528:DC%2BC3MXht1GmsL3O10.1007/s10853-011-5994-6 – reference: WangYMuJLiLShiLZhangWJiangZHigh Perform. Polym.2012242291:CAS:528:DC%2BC38XnsVKgur0%3D10.1177/0954008311436221 – reference: HouSChenSDongYGaoSZhuBLuQACS Appl. Mater. Interfaces201810259831:CAS:528:DC%2BC1cXhtlaktbfJ10.1021/acsami.8b06114 – reference: GuJZhangC FBaiY XZhangLSunY PChenH LJ. Appl. Polym. Sci.201212319681:CAS:528:DC%2BC3MXhtVOms7%2FL10.1002/app.34690 – reference: WeiWHuangXChenKTaoYTangXRSC Adv.2012237651:CAS:528:DC%2BC38XlsFOksL0%3D10.1039/c2ra20263h – reference: Eun ShimSYangSChoeSJ. Polym. Sci. Part A. Polym. Chem.200442396710.1002/pola.20188 – reference: ThukralD KDumogaSAroraSChuttaniKMishraA KCancer Nanotechnol.20145310.1186/s12645-014-0003-9 – reference: WeiYZhangJMemonA HLiangHJ. Mol. Liq.2017236681:CAS:528:DC%2BC2sXmtlyjsbw%3D10.1016/j.molliq.2017.03.098 – reference: AllcockH RKellamE CHofmannM AMacromolecules20013451401:CAS:528:DC%2BD3MXksFSit7c%3D10.1021/ma010084b – reference: KaruppuswamyPReddy VenugopalJNavaneethanBLuwang LaivaARamakrishnaSMater. Lett.20151411801:CAS:528:DC%2BC2cXitVSgu7vK10.1016/j.matlet.2014.11.044 – reference: MengLXuCLiuTLiHLuQLongJPolym. Chem.2015631551:CAS:528:DC%2BC2MXkt1yjs7w%3D10.1039/C5PY00196J – reference: ÖrümS MPolym. Bull.202279285110.1007/s00289-021-03654-5 – reference: HuangZZhengFChenSLuXCatharina Elizabeth van SittertC GLuQRSC Adv.20166755521:CAS:528:DC%2BC28Xht1CksbbI10.1039/C6RA13486F – reference: UddinM AYuHWangLNaveedK-U-RHaqFAminB UMehmoodSNazirAXingYShenDJ. Polym. Sci.20205819241:CAS:528:DC%2BB3cXhtFOitrrL10.1002/pol.20200039 – reference: ÖrümS MDemircioğluY SMacromol. Res.20182667110.1007/s13233-018-6092-2 – reference: MondalDGriffithMVenkatramanS SInt. J. Polym. Mater. Polym. Biomater.2016652551:CAS:528:DC%2BC28XnsF2itQ%3D%3D10.1080/00914037.2015.1103241 – reference: MarkovicEClarkeSMatisonsJSimonG PMacromolecules20084116851:CAS:528:DC%2BD1cXhs1emsLg%3D10.1021/ma702103z – reference: Metinoğlu ÖrümSSüzen DemircioğluYJ. Macromol. Sci. Part A20195685410.1080/10601325.2019.1615838 – reference: WeiXZhangGZhouLLiJAppl. Surf. Sci.20174197441:CAS:528:DC%2BC2sXot1antLo%3D10.1016/j.apsusc.2017.04.236 – reference: DarS UAliSHameedM UZuhraZWuZNew J. Chem.20164084181:CAS:528:DC%2BC28Xht12ksrjM10.1039/C6NJ01578F – reference: DiptiT KShwetaDShellyAKrishnaCAnilK MCancer Nanotechnol.20145110.1186/s12645-014-0001-y – reference: NapoliMDanielCImmediataILongoPGuerraGMacromolecules20094255661:CAS:528:DC%2BD1MXntFygsb4%3D10.1021/ma900836q – reference: SunLLiuTLiHYangLMengLLuQLongJACS Appl. Mater. Interfaces2015749901:CAS:528:DC%2BC2MXit12rs7o%3D10.1021/acsami.5b00175 – reference: OzayHOzayOColloids Surf. A-Physicochem. Eng. Asp.2014450991:CAS:528:DC%2BC2cXmtVOksrg%3D10.1016/j.colsurfa.2014.03.022 – reference: LockL LLaCombMSchwarzKCheethamA GLinYZhangPCuiHFaraday Discuss.20131662851:CAS:528:DC%2BC2cXisF2rsg%3D%3D10.1039/c3fd00099k – reference: ConstantinM MCorbuC GTanaseCCodriciEMihaiSPopescuI DEnciuA MMocanuSMateiIIonitaGAnal. Methods2019119651:CAS:528:DC%2BC1MXlvVOjsQ%3D%3D10.1039/C8AY02783H – reference: UddinM AYuHWangLShengYMehmoodSAminB ULiangRMater. Today Commun.20213010310710.1016/j.mtcomm.2021.103107 – reference: LiZWangGRenWZhangAAnLTianYJ. Mater. Sci.20165140961:CAS:528:DC%2BC28XlvVynsA%3D%3D10.1007/s10853-016-9731-z – reference: KhanRWangLYuHAbdinZAkramMWuJHaroonMUllahR SChenQDengZRuss. Chem. Rev.2018871091:CAS:528:DC%2BC1cXhvFyls7%2FP10.1070/RCR4757 – reference: KhaninD AKononevichY NTemnikovM NMorgalyukV PVasil’evV GPopovA YBrelV KPapkovV SMuzafarovA MPolymer20201861220111:CAS:528:DC%2BC1MXit1Cmur3P10.1016/j.polymer.2019.122011 – reference: KimD HKaranPGöringPLeclaireJCaminadeA-MMajoralJ-PGöseleUSteinhartMKnollWSmall20051991:CAS:528:DC%2BD2cXhtVKhtrvJ10.1002/smll.200400024 – reference: ChenXDingXZhengZPengYNew J. Chem.2006305771:CAS:528:DC%2BD28XjtFSrt7o%3D10.1039/b516053g – reference: UddinM AYuHWangLNaveedK-U-RAminB UMehmoodSHaqFNazirALinTChenXNiZJ. Colloid Interface Sci.20215852371:CAS:528:DC%2BB3cXisVyitbnI10.1016/j.jcis.2020.11.042 – reference: MaaskantEGojzewskiHHempeniusM AVancsoG JBenesN EPolym. Chem.2018931691:CAS:528:DC%2BC1cXpslSgurc%3D10.1039/C8PY00444G – reference: HuXZhouZHanLLiSZhouWNew J. Chem.20204452181:CAS:528:DC%2BB3cXjvFKhsb0%3D10.1039/C9NJ06228A – reference: UddinM AYuHWangLAminB UMehmoodSLiangRHaqFHuJXuJACS Appl. Mater. Interfaces2021316169310.1021/acsami.1c21760 – reference: RothemundSTeasdaleII. Chem. Soc. Rev.20164552001:CAS:528:DC%2BC28XhtVSgsL7M10.1039/C6CS00340K – volume: 31 start-page: 61693 year: 2021 ident: 66_CR31 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c21760 – volume: 47 start-page: 1985 year: 2012 ident: 66_CR38 publication-title: J. Mater. Sci. doi: 10.1007/s10853-011-5994-6 – volume: 10 start-page: 25983 year: 2018 ident: 66_CR16 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b06114 – volume: 236 start-page: 68 year: 2017 ident: 66_CR29 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2017.03.098 – volume: 26 start-page: 671 year: 2018 ident: 66_CR17 publication-title: Macromol. Res. doi: 10.1007/s13233-018-6092-2 – volume: 585 start-page: 237 year: 2021 ident: 66_CR33 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.11.042 – volume: 34 start-page: 5140 year: 2001 ident: 66_CR13 publication-title: Macromolecules doi: 10.1021/ma010084b – volume: 58 start-page: 1924 year: 2020 ident: 66_CR32 publication-title: J. Polym. Sci. doi: 10.1002/pol.20200039 – volume: 123 start-page: 1968 year: 2012 ident: 66_CR6 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.34690 – volume: 419 start-page: 744 year: 2017 ident: 66_CR28 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.04.236 – volume: 6 start-page: 3155 year: 2015 ident: 66_CR36 publication-title: Polym. Chem. doi: 10.1039/C5PY00196J – volume: 5 start-page: 1 year: 2014 ident: 66_CR1 publication-title: Cancer Nanotechnol. doi: 10.1186/s12645-014-0001-y – volume: 11 start-page: 965 year: 2019 ident: 66_CR23 publication-title: Anal. Methods doi: 10.1039/C8AY02783H – volume: 9 start-page: 3169 year: 2018 ident: 66_CR3 publication-title: Polym. Chem. doi: 10.1039/C8PY00444G – volume: 87 start-page: 109 year: 2018 ident: 66_CR14 publication-title: Russ. Chem. Rev. doi: 10.1070/RCR4757 – volume: 65 start-page: 255 year: 2016 ident: 66_CR7 publication-title: Int. J. Polym. Mater. Polym. Biomater. doi: 10.1080/00914037.2015.1103241 – volume: 141 start-page: 180 year: 2015 ident: 66_CR25 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2014.11.044 – volume: 6 start-page: 75552 year: 2016 ident: 66_CR21 publication-title: RSC Adv. doi: 10.1039/C6RA13486F – volume: 24 start-page: 229 year: 2012 ident: 66_CR27 publication-title: High Perform. Polym. doi: 10.1177/0954008311436221 – volume: 30 start-page: 103107 year: 2021 ident: 66_CR35 publication-title: Mater. Today Commun. doi: 10.1016/j.mtcomm.2021.103107 – volume: 45 start-page: 5200 year: 2016 ident: 66_CR11 publication-title: I. Chem. Soc. Rev. doi: 10.1039/C6CS00340K – volume: 7 start-page: 4990 year: 2015 ident: 66_CR15 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b00175 – volume: 41 start-page: 1685 year: 2008 ident: 66_CR8 publication-title: Macromolecules doi: 10.1021/ma702103z – volume: 42 start-page: 3967 year: 2004 ident: 66_CR26 publication-title: J. Polym. Sci. Part A. Polym. Chem. doi: 10.1002/pola.20188 – volume: 186 start-page: 122011 year: 2020 ident: 66_CR10 publication-title: Polymer doi: 10.1016/j.polymer.2019.122011 – volume: 1 start-page: 99 year: 2005 ident: 66_CR12 publication-title: Small doi: 10.1002/smll.200400024 – volume: 5 start-page: 3 year: 2014 ident: 66_CR9 publication-title: Cancer Nanotechnol. doi: 10.1186/s12645-014-0003-9 – volume: 44 start-page: 5218 year: 2020 ident: 66_CR37 publication-title: New J. Chem. doi: 10.1039/C9NJ06228A – volume: 4 start-page: 1485 year: 2008 ident: 66_CR22 publication-title: Small doi: 10.1002/smll.200800127 – volume: 42 start-page: 5566 year: 2009 ident: 66_CR5 publication-title: Macromolecules doi: 10.1021/ma900836q – volume: 30 start-page: 577 year: 2006 ident: 66_CR2 publication-title: New J. Chem. doi: 10.1039/b516053g – volume: 2 start-page: 3765 year: 2012 ident: 66_CR30 publication-title: RSC Adv. doi: 10.1039/c2ra20263h – volume: 51 start-page: 4096 year: 2016 ident: 66_CR4 publication-title: J. Mater. Sci. doi: 10.1007/s10853-016-9731-z – volume: 56 start-page: 854 year: 2019 ident: 66_CR18 publication-title: J. Macromol. Sci. Part A doi: 10.1080/10601325.2019.1615838 – volume: 166 start-page: 285 year: 2013 ident: 66_CR39 publication-title: Faraday Discuss. doi: 10.1039/c3fd00099k – volume: 450 start-page: 99 year: 2014 ident: 66_CR24 publication-title: Colloids Surf. A-Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2014.03.022 – volume: 79 start-page: 2851 year: 2022 ident: 66_CR19 publication-title: Polym. Bull. doi: 10.1007/s00289-021-03654-5 – volume: 40 start-page: 8418 year: 2016 ident: 66_CR20 publication-title: New J. Chem. doi: 10.1039/C6NJ01578F – volume: 625 start-page: 126807 year: 2021 ident: 66_CR34 publication-title: Colloids Surf. A-Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2021.126807 |
SSID | ssj0061311 |
Score | 2.3874245 |
Snippet | In this work, cross-linked poly(cyclotriphosphazene-
co
-phloretin) (PCTPPT) microspheres were synthesized and characterized by Fourier transform infrared... In this work, cross-linked poly(cyclotriphosphazene-co-phloretin) (PCTPPT) microspheres were synthesized and characterized by Fourier transform infrared... |
SourceID | nrf proquest gale crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 623 |
SubjectTerms | Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Complex Fluids and Microfluidics Controlled release Crosslinking Diffraction Drug carriers Drug delivery systems Drugs Fourier transforms Infrared spectroscopy Microspheres Nanochemistry Nanotechnology Particle size distribution Photon correlation spectroscopy Physical Chemistry Polymer Sciences Polymerization Scanning electron microscopy Soft and Granular Matter Spectrum analysis Stability analysis Thermal stability Thermogravimetric analysis Vehicles X-rays 고분자공학 |
Title | Cross-Linked Poly(cyclotriphosphazene-co-phloretin) Microspheres and Their Application for Controlled Drug Delivery |
URI | https://link.springer.com/article/10.1007/s13233-022-0066-0 https://www.proquest.com/docview/2722361809 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002877709 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Macromolecular Research, 2022, 30(9), , pp.623-630 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFLdgO8AOaGygFbrJEkgMkKXUdj58jLqNsWmIwyqNk2U79jotSqqmO5S_nvfShFIESJwSKY4d5We_D733fo-Qt2ChuhD7gqU8CQw7GjMLmokF7gzcpH5ksDj56ktyPpEXN_FNV8fd9NnufUiyldTrYjfBBcYcOUM9ycBP347Bdcc8rgnPe_GbIH9MS5KqMhZHgvehzD9NsaGMOpH8uJqHDXPztwhpq3jOdsmzzmKk-Qri5-SRr_bIk3HfqG2P7PzCKbhPmjEuxdDH9AX9WpfLY7d0Zb0A6TCtm9nUfAfxxlzNZtOyrWGs3tMrTMtrkGHAN9RUBb3G-AHN19FtCsYtHa_y2kuY-GT-cEtPfIlpHcsXZHJ2ej0-Z11nBebkKFswkcjCqtRH3HDvwOWwcVCZM0Eo1GmpQpAS7BkRrAQtKgppTSyt57GzPozES7JV1ZU_IFRYrkZZFIRJwbQSiYlDVGTShMyANLFhQKL-F2vX0Y5j94tSrwmTERUNqGhERUcD8uHnK7MV58a_Br9D3DSeR5jXma6sAL4Oma10nnIBVqKS6YAMN0YCSm7j8RtAXt-7O42U23i9rfX9XINj8RkXlyJSsNyw3xm6O-2N5ilHDpssUgPysd8t68d__fZX_zX6NXnK262LCW5DsrWYP_hDsIgW9ohs55--XZ4etSfhB1dBAf8 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwEB7tLoeFA4IFRKGAJUC8ZCm18zxwqFpWLbtdcWilvRnHsbdoo6RqukLl7_BHmUkTShEgcdhTIsWxLY8981kz8w3AC0SoxgU245EIHaeKxjxFy8SdMBpfItvTlJw8OQtHM__jeXC-B9_bXJg62r11SdaaepvsJoUkn6PgZCe510RSntj1V7ynVe_HQxTqSyGOP0wHI96UEuDG78UrLkM_S5PIekILaxBjp4FLYqOdTEiJRwnNKqQiCS710WzIzE914KdWBCa1riex3324gdgjpqMzE_1W3YfEV1OTsiYxDzwpWtfpn6a8Y_waE7BfLN0OvP3NI1sbuuM7cLtBqKy_2VJ3Yc8WR3A4aAvDHcGtXzgM70E1oKE43Wltxj6V-fq1WZu8XKE2mpfVYq6_oTrlpuSLeV7nTBZv2ITCACtiNLAV00XGpuSvYP2tN50hmGaDTRx9jh0Pl1cXbGhzCiNZ34fZtSz_AzgoysI-BCZTkfRiz0kdIZSToQ6cl8W-drFG7ZW6DnjtEivT0JxTtY1cbQmaSSoKpaJIKsrrwNufvyw2HB__avyK5Kbo_GO_RjdpDDg7YtJS_UhIRKWJH3Wgu9MSpWR2Pj9HyatL80URxTc9L0p1uVR4kRnT4L70Ehyu2-4M1WiXSolIEGdO7CUdeNfulu3nv8790X-1fgaHo-nkVJ2Oz04ew01Rb2MKruvCwWp5ZZ8gGlulT-vTwODzdR-_H9YMPfo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe2IfHxgGCA6ChgCRBfspbaztcDD1VLtTI27WGV9mZsx16nRUnVdELln-Jf5C5NKEWAxMOeEimOffKd7866u98R8hI8VOtDl7GYR55hR2NmwDIxz62Gl9j1NBYnHx1HBxP56Sw82yLf21qYOtu9DUmuahoQpalY7M8yv78ufBNcYPyRM7SZLGiyKg_d8ivc2aoP4yEw-BXno4-ngwPWtBVgVvaSBRORzEwau4Br7iz42yb0aWK1Fykq9DhFCiNsmOCNBBMiMml0KI3joTXO9wTMu01uSCw-hgM04f1W9UeIXVMDtKYJCwPB2zDqn0jeMISNOdgu5n7D1f0tOlsbvdE9crfxVml_JV73yZYrdsmtQdskbpfc-QXP8AGpBrgUw_uty-hJmS_f2KXNywVopmlZzab6G6hWZks2m-Z1_WTxlh5hSmCF6AauorrI6CnGLmh_HVmn4FjTwSqnPoeJh_Orczp0OaaULB-SybVs_yOyU5SFe0yoMDztJYEXOga3TkQ69EGWSO0TDZrM-A4J2i1WtoE8x84buVqDNSNXFHBFIVdU0CHvfv4yW-F9_Gvwa-SbQl0A81rdlDQAdYiqpfoxF-ChpjLukO7GSOCS3fj8AjivLu2FQrhvfJ6X6nKu4FIzxsWlCFJYrttKhmo0TaV4zBE_JwnSDnnfSsv6819p3_uv0c_JzZPhSH0eHx8-Ibd5LcWYZ9clO4v5lXsKjtnCPKsPAyVfrvv0_QAkEUIt |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-Linked+Poly%28cyclotriphosphazene-co-phloretin%29+Microspheres+and+Their+Application+for+Controlled+Drug+Delivery&rft.jtitle=Macromolecular+research&rft.au=Sahid+Mehmood&rft.au=Haojie+Yu&rft.au=Li+Wang&rft.au=Md+Alim+Uddin&rft.date=2022-09-01&rft.pub=%ED%95%9C%EA%B5%AD%EA%B3%A0%EB%B6%84%EC%9E%90%ED%95%99%ED%9A%8C&rft.issn=1598-5032&rft.eissn=2092-7673&rft.spage=623&rft.epage=630&rft_id=info:doi/10.1007%2Fs13233-022-0066-0&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10043090 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-5032&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-5032&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-5032&client=summon |