Molecular dynamics simulation of the tool geometry effect on nanowire formation behavior during nanoskiving
[Display omitted] •Polycrystalline Au nanowire formation mechanism under tool geometry is studied.•Large rake angles and small tool radii mean smaller nanowire thickness deviations.•Nanowires formation mechanism changes with varying tool morphology.•Microstructure evolution is sensitive to changing...
Saved in:
Published in | Materials & design Vol. 225; p. 111498 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2023
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Polycrystalline Au nanowire formation mechanism under tool geometry is studied.•Large rake angles and small tool radii mean smaller nanowire thickness deviations.•Nanowires formation mechanism changes with varying tool morphology.•Microstructure evolution is sensitive to changing of tool geometry.
Au nanowires have been promoted in flexible electronics, micro-nano bioelectrodes, and micro-electrochemical detection benefit from their inherent size effect, unique chemical stability, and biocompatibility. Nanoskiving methodology has been confirmed as a feasible approach to preparing multidimensional nanostructures simply and efficiently utilizing ultramicrotome. However, the morphology, dimension, and microstructure of the nanowires will be altered by the tool geometry under extrusion and shearing during the nanoskiving process. Herein, a molecular dynamics simulation and experiments of cutting polycrystalline Au utilizing nanoskiving were performed, and the nanowire formation behavior caused by the variation of the tool geometry was analyzed. Smaller rake angle and larger tool cutting edge radius favor thicker chip thickness, larger high-stress areas, increased machining forces, as well as a shift in cutting formation mechanism from shear to extrusion shear. The reduction in the clearance angle only increases the high-stress areas and machining forces. The stress state and dislocation density within the chip and plastic deformation zone were closely related to the tool topography. The conclusions provide a thorough technical analysis of the mechanism of polycrystalline Au nanowire formation as well as theoretical guidance for the design and selection of tools for nanoskiving processes. |
---|---|
AbstractList | [Display omitted]
•Polycrystalline Au nanowire formation mechanism under tool geometry is studied.•Large rake angles and small tool radii mean smaller nanowire thickness deviations.•Nanowires formation mechanism changes with varying tool morphology.•Microstructure evolution is sensitive to changing of tool geometry.
Au nanowires have been promoted in flexible electronics, micro-nano bioelectrodes, and micro-electrochemical detection benefit from their inherent size effect, unique chemical stability, and biocompatibility. Nanoskiving methodology has been confirmed as a feasible approach to preparing multidimensional nanostructures simply and efficiently utilizing ultramicrotome. However, the morphology, dimension, and microstructure of the nanowires will be altered by the tool geometry under extrusion and shearing during the nanoskiving process. Herein, a molecular dynamics simulation and experiments of cutting polycrystalline Au utilizing nanoskiving were performed, and the nanowire formation behavior caused by the variation of the tool geometry was analyzed. Smaller rake angle and larger tool cutting edge radius favor thicker chip thickness, larger high-stress areas, increased machining forces, as well as a shift in cutting formation mechanism from shear to extrusion shear. The reduction in the clearance angle only increases the high-stress areas and machining forces. The stress state and dislocation density within the chip and plastic deformation zone were closely related to the tool topography. The conclusions provide a thorough technical analysis of the mechanism of polycrystalline Au nanowire formation as well as theoretical guidance for the design and selection of tools for nanoskiving processes. Au nanowires have been promoted in flexible electronics, micro-nano bioelectrodes, and micro-electrochemical detection benefit from their inherent size effect, unique chemical stability, and biocompatibility. Nanoskiving methodology has been confirmed as a feasible approach to preparing multidimensional nanostructures simply and efficiently utilizing ultramicrotome. However, the morphology, dimension, and microstructure of the nanowires will be altered by the tool geometry under extrusion and shearing during the nanoskiving process. Herein, a molecular dynamics simulation and experiments of cutting polycrystalline Au utilizing nanoskiving were performed, and the nanowire formation behavior caused by the variation of the tool geometry was analyzed. Smaller rake angle and larger tool cutting edge radius favor thicker chip thickness, larger high-stress areas, increased machining forces, as well as a shift in cutting formation mechanism from shear to extrusion shear. The reduction in the clearance angle only increases the high-stress areas and machining forces. The stress state and dislocation density within the chip and plastic deformation zone were closely related to the tool topography. The conclusions provide a thorough technical analysis of the mechanism of polycrystalline Au nanowire formation as well as theoretical guidance for the design and selection of tools for nanoskiving processes. |
ArticleNumber | 111498 |
Author | Fang, Zhuo Yan, Yongda Li, Zihan Zhang, Aoxiang Geng, Yanquan |
Author_xml | – sequence: 1 givenname: Zhuo surname: Fang fullname: Fang, Zhuo – sequence: 2 givenname: Yongda surname: Yan fullname: Yan, Yongda – sequence: 3 givenname: Zihan surname: Li fullname: Li, Zihan – sequence: 4 givenname: Aoxiang surname: Zhang fullname: Zhang, Aoxiang – sequence: 5 givenname: Yanquan surname: Geng fullname: Geng, Yanquan email: gengyanquan@hit.edu.cn |
BookMark | eNqFkMtuFDEQRS0UJCaBP2DhH-jBz7HNAglFPCIlYgNry22XJ550t5HtDJq_x5lGLLKAVZWq6h6pziW6WPICCL2lZEsJ3b07bGfXAtQtI4xtKaXC6BdoQ7Xig6BGXaANYTsxUKbkK3RZ64H0Q8XFBj3c5Qn84-QKDqfFzclXXNPcBy3lBeeI2z3glvOE95BnaOWEIUbwDff14pb8KxXAMZd5TYxw744pd9xjScv-fFIf0rH3r9HL6KYKb_7UK_Tj86fv11-H229fbq4_3g5eUN0GLpmTxkipKYtaUs3GkXPwxjmxi94YrwjXxBtvoDcyBONkcNoFGTXhgl-hm5UbsjvYnyXNrpxsdsmeB7nsrSst-QlsUGOkiilggQsllQ5aCaac0gpGGllniZXlS661QPzLo8Q-ybcHu8q3T_LtKr_H3j-L-dTOglpxafpf-MMahi7pmKDY6hMsHkJX7Vv_Iv0b8Buc-qZz |
CitedBy_id | crossref_primary_10_1088_2631_7990_acbb42 crossref_primary_10_1002_adom_202400700 crossref_primary_10_1016_j_diamond_2023_110354 crossref_primary_10_1016_j_matchar_2023_113168 crossref_primary_10_1186_s10033_025_01177_y crossref_primary_10_1016_j_compstruct_2024_118780 crossref_primary_10_1016_j_mssp_2024_108868 crossref_primary_10_1021_acsanm_3c00190 crossref_primary_10_1021_acsanm_4c07353 crossref_primary_10_1021_acs_nanolett_3c01809 crossref_primary_10_1007_s00170_023_10958_5 crossref_primary_10_1016_j_vacuum_2023_112595 crossref_primary_10_1016_j_mtcomm_2024_109827 crossref_primary_10_1007_s00170_023_11730_5 crossref_primary_10_3390_mi15050655 crossref_primary_10_1016_j_ultramic_2023_113832 crossref_primary_10_1016_j_vacuum_2023_112226 crossref_primary_10_1021_acsami_4c03196 crossref_primary_10_1016_j_ijmecsci_2023_108725 crossref_primary_10_1016_j_cirpj_2024_04_008 crossref_primary_10_1016_j_triboint_2023_108839 crossref_primary_10_1016_j_matdes_2023_112241 crossref_primary_10_1016_j_cirp_2023_04_043 crossref_primary_10_1016_j_ijmachtools_2023_104018 |
Cites_doi | 10.1021/acsami.5b08305 10.1007/s11837-019-03671-w 10.1038/s41467-020-20876-9 10.1038/ncomms4132 10.1021/nl4003393 10.1021/acs.nanolett.5b01015 10.1016/j.ijmecsci.2022.107545 10.1016/j.jmapro.2020.04.068 10.1002/adma.201405121 10.1039/C9TA03664D 10.1002/anie.201101024 10.1103/PhysRevB.33.7983 10.1016/0889-1605(86)90042-X 10.1007/s00170-018-1599-4 10.1016/j.ijmecsci.2022.107384 10.1007/s12206-021-0633-x 10.1016/j.matdes.2022.111438 10.1016/j.jmapro.2017.11.023 10.1021/am900357x 10.1021/acsami.8b14769 10.1016/j.ijrmhm.2018.06.003 10.1016/j.actamat.2018.08.047 10.1016/j.ijmachtools.2022.103905 10.1016/j.apsusc.2020.145492 10.1016/j.ijmachtools.2016.01.001 10.1039/C6RA16231B 10.1002/9781118536605 10.1016/j.jmatprotec.2021.117106 10.1016/j.apsusc.2020.147034 10.1126/science.aax8814 10.1021/ar700194y 10.1016/j.jmapro.2021.04.075 10.1007/s00170-018-3001-y 10.1021/acsnano.5b07996 10.1063/1.4926648 10.1016/j.apsusc.2020.148291 10.1002/admt.202100477 10.1111/j.1365-2818.2008.01972.x 10.1038/s41586-020-2285-x 10.1021/acs.analchem.5b04055 10.1021/nl504121w 10.1016/j.jmapro.2022.06.071 10.1016/j.mssp.2019.104868 10.1016/j.ceramint.2017.06.047 10.1016/j.jmatprotec.2020.116768 10.1016/j.cirpj.2016.10.004 10.1016/j.jallcom.2016.01.224 10.1126/science.1092905 10.1039/D0NR01049A 10.1021/acs.nanolett.6b00275 10.1016/j.apsusc.2014.10.052 10.1016/j.apsusc.2018.05.091 10.1016/j.ijmachtools.2017.08.001 10.1021/acs.nanolett.6b03028 10.1016/j.ijmachtools.2012.08.005 10.1016/j.bios.2019.02.023 10.1002/smll.201801187 10.1016/j.msea.2019.03.011 10.1016/j.ijmecsci.2021.106407 10.1016/j.jmst.2021.05.063 10.1186/s11671-017-1990-3 10.1016/j.apsusc.2019.143715 10.1016/j.ijmachtools.2016.11.003 10.1038/s41565-022-01130-3 |
ContentType | Journal Article |
Copyright | 2022 The Author(s) |
Copyright_xml | – notice: 2022 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.matdes.2022.111498 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-4197 |
ExternalDocumentID | oai_doaj_org_article_d7bf1727e2d347578d87427a787eb1f2 10_1016_j_matdes_2022_111498 S0264127522011212 |
GroupedDBID | --K --M -~X .~1 0R~ 0SF 1B1 1~. 29M 4.4 457 4G. 5GY 5VS 6I. 7-5 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAFTH AAIAV AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BCNDV BJAXD BKOJK BLXMC EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HVGLF HZ~ IHE J1W JJJVA KOM M41 MAGPM MO0 NCXOZ O9- OAUVE OK1 P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SEW SMS SPC SSM SST SSZ T5K WUQ ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS |
ID | FETCH-LOGICAL-c418t-352a59955812f85182bb33ec9aa46fc99c70380c9c9e0385dd9a5da8ad5f80343 |
IEDL.DBID | DOA |
ISSN | 0264-1275 |
IngestDate | Wed Aug 27 01:29:40 EDT 2025 Tue Jul 01 02:24:12 EDT 2025 Thu Apr 24 23:07:30 EDT 2025 Fri Feb 23 02:38:50 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Rake angle Nanowire Molecular dynamics Relative tool sharpness Nano-cutting Nanoskiving |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c418t-352a59955812f85182bb33ec9aa46fc99c70380c9c9e0385dd9a5da8ad5f80343 |
OpenAccessLink | https://doaj.org/article/d7bf1727e2d347578d87427a787eb1f2 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d7bf1727e2d347578d87427a787eb1f2 crossref_primary_10_1016_j_matdes_2022_111498 crossref_citationtrail_10_1016_j_matdes_2022_111498 elsevier_sciencedirect_doi_10_1016_j_matdes_2022_111498 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2023 2023-01-00 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: January 2023 |
PublicationDecade | 2020 |
PublicationTitle | Materials & design |
PublicationYear | 2023 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Zhu, Pan, Zhao, Cao, Luo, Ni, Wei, Zhang, Sansoz, Wang (b0160) 2021; 12 Zhou, Saha, Adamcik, Hu, Kong, Li, Mezzenga (b0280) 2015; 27 Jiang, Jianguo, Yanan, Renke, Yoshiharu, Paul, Xiaobin, Baorui, Dongming (b0215) 2020; 2 Zhao, Wu, Chen, Liu, Li, Tan (b0240) 2021; 67 Abdulkadir, Abou-El-Hossein (b0255) 2019; 101 Dong, Yan, Peng, Li, Geng (b0110) 2023; 225 Wang, Yan, Li, Geng (b0130) 2022 Inoue, Takahashi, Katagiri, Abe, Umeda (b0030) 2016; 670 Yu, Zhou, He, Liu, Wang, Yan (b0350) 2021; 35 Kalkman, Zhang, Monachino, Mathwig, Kamminga, Pourhossein, Oomen, Stratmann, Zhao, van Oijen, Verpoorte, Chiechi (b0105) 2016; 10 Xu, Fang, Zhu, Zhang (b0325) 2017; 12 Xie, Fang (b0260) 2020; 56 de la Rosa-Abad, Soldano, Mejia-Rosales, Mariscal (b0320) 2016; 6 Liu, Xu, Chen, Li, Gao, Liang (b0265) 2020; 528 Umbrello, Bordin, Imbrogno, Bruschi (b0200) 2017; 18 Luo, Tong, Liang (b0185) 2014; 321 Gu, Poddar, Lin, Long, Zhang, Zhang, Shu, Qiu, Kam, Javey, Fan (b0005) 2020; 581 Liu, Guo, Du (b0235) 2022; 31 Rahman, Rahman, Woon, Mia (b0125) 2021; 199 Huang, Liao (b0155) 2015; 107 Wang, Tang, Guo (b0115) 2020; 510 Zhang, To, Zhu, Zhang (b0190) 2016; 103 Gong, Schwalb, Wang, Chen, Tang, Si, Shirinzadeh, Cheng (b0040) 2014; 5 Ahmed, Deng, Narain (b0035) 2009; 1 Tiefenauer, Dalgaty, Keplinger, Tian, Shih, Voros, Aramesh (b0045) 2018; 14 Jésior (b0225) 1986; 95 Fang, Yan, Geng (b0250) 2022; 230 Kim, Kim, Seo, Whang, Ahn, Lee (b0140) 2018; 160 Zaretski, Marin, Moetazedi, Dill, Jibril, Kong, Tao, Lipomi (b0090) 2015; 15 Kosloff, Heifler, Granot, Patolsky (b0095) 2016; 16 Dai, Su, Hu, Yu, Zhou, Ding, Ji, Zheng (b0210) 2017; 43 Liao, Sanchez, Xu, Axinte, Augustinavicius, Wretland (b0195) 2020; 285 Electron Microscopy Sciences, Introduction, Manufacturing and Characteristics Diatome Diamond Knives, 2021. <https://www.emsdiasum.com/microscopy/products/diamond/intro.aspx> (accessed September 6, 2022). Wang, Ren, Ma, Qu, Gourgues, Xu, Baghdasaryan, Li, Zadeh, Los, Fognini, Qin-Dregely, Dai (b0015) 2022; 17 Xu, Zhang, Liu, He, Zhao (b0120) 2019; 752 Narayanan, Cheng, Zeng, Zhu, Zhu (b0145) 2015; 15 K. Chen, D. Huo, Micro Cutting: Fundamentals and Applications, first ed., John Wiley & Sons, Ltd, Chichester, 2013. 10.1002/9781118536605. Rahman, Amrun, Rahman, Kumar (b0270) 2017; 115 Ameli Kalkhoran, Vahdati, Yan (b0305) 2020; 108 Zhao, Dong, Wang, Gong, An, Yap, Cheng (b0065) 2018; 10 Yoo, Kang, Kang, Kim, Lee, Kim (b0055) 2013; 13 Zhang, Lu, Shi, Xie, Geng, Wang (b0025) 2022 Foiles, Baskes, Daw (b0315) 1986; 33 Fang, Lai, Wang, Luo, Yan, Yan (b0220) 2022; 178 Ameli Kalkhoran, Vahdati, Yan (b0275) 2019; 71 Lu, Shen, Chen, Qian, Lu (b0335) 2004; 304 Han, Zuber, Dubochet (b0230) 2008; 230 Fang, Feng, Yan, Geng (b0245) 2022; 81 Lipomi, Martinez, Whitesides (b0075) 2011; 50 Azizur Rahman, Rahman, Senthil Kumar (b0345) 2018; 96 He, Lai, Fang (b0355) 2019; 496 Micro Star Technologies, Diamond Knives – Micro Star Technologies, 2021. <https://www.microstartech.com/diamond-knives/> (Accessed September 6, 2022). Qiu, Xu, Li, Liu, Zhang (b0060) 2016; 88 Xu, Rioux, Dickey, Whitesides (b0100) 2008; 41 Fang, Yan, Geng (b0080) 2021; 6 Kumar, Patel (b0205) 2018; 76 An, Jeon, Seo, Ahn, Kraft, Choi, Kim (b0135) 2016; 16 An, Zhu, Ling, Gong, Cheng (b0070) 2019; 7 Jiang, Song, Zhang, Wang, Li, Xia, Zhu, Xu (b0020) 2015; 7 Wang, Zhang, Fang, Chen (b0310) 2018; 455 Tang, Zhu, Wang, Li (b0050) 2019; 131 Fang, Geng, Wang, Yan, Zhang (b0085) 2020; 12 Niu, Jiao, Cheng (b0175) 2018; 31 DiATOME, Diatome Diamond Knives, 2021. <https://diatome.ch/Introduction.asp> (Accessed September 6, 2022). Fu, Kong, Yang, Teng, Lu, Guo, Yang, Yan, Liu, Chen, Zhang, Wang, Han (b0150) 2022; 101 Arif, Xinquan, Rahman, Kumar (b0180) 2013; 64 Wang, Dong, Yuan, Guo, Kang, Bao (b0300) 2022; 225 Liu, Guo, Li, Wang (b0165) 2021; 294 Rahman, Rahman, Kumar (b0340) 2017; 123 Yang, Albrow-Owen, Cui, Alexander-Webber, Gu, Wang, Wu, Zhuge, Williams, Wang, Zayats, Cai, Dais, Hofmann, Overend, Tong, Yang, Sun, Hasan (b0010) 2019; 365 Papanikolaou, Salonitis (b0330) 2021; 540 Rahman (10.1016/j.matdes.2022.111498_b0340) 2017; 123 Yoo (10.1016/j.matdes.2022.111498_b0055) 2013; 13 Qiu (10.1016/j.matdes.2022.111498_b0060) 2016; 88 Kumar (10.1016/j.matdes.2022.111498_b0205) 2018; 76 Gu (10.1016/j.matdes.2022.111498_b0005) 2020; 581 de la Rosa-Abad (10.1016/j.matdes.2022.111498_b0320) 2016; 6 Dai (10.1016/j.matdes.2022.111498_b0210) 2017; 43 Tang (10.1016/j.matdes.2022.111498_b0050) 2019; 131 Wang (10.1016/j.matdes.2022.111498_b0310) 2018; 455 Lu (10.1016/j.matdes.2022.111498_b0335) 2004; 304 Zhao (10.1016/j.matdes.2022.111498_b0065) 2018; 10 Umbrello (10.1016/j.matdes.2022.111498_b0200) 2017; 18 Wang (10.1016/j.matdes.2022.111498_b0300) 2022; 225 Luo (10.1016/j.matdes.2022.111498_b0185) 2014; 321 Liu (10.1016/j.matdes.2022.111498_b0265) 2020; 528 An (10.1016/j.matdes.2022.111498_b0135) 2016; 16 Yang (10.1016/j.matdes.2022.111498_b0010) 2019; 365 Zhang (10.1016/j.matdes.2022.111498_b0025) 2022 Kim (10.1016/j.matdes.2022.111498_b0140) 2018; 160 Ahmed (10.1016/j.matdes.2022.111498_b0035) 2009; 1 Rahman (10.1016/j.matdes.2022.111498_b0125) 2021; 199 Papanikolaou (10.1016/j.matdes.2022.111498_b0330) 2021; 540 Inoue (10.1016/j.matdes.2022.111498_b0030) 2016; 670 Gong (10.1016/j.matdes.2022.111498_b0040) 2014; 5 Niu (10.1016/j.matdes.2022.111498_b0175) 2018; 31 Rahman (10.1016/j.matdes.2022.111498_b0270) 2017; 115 Zhang (10.1016/j.matdes.2022.111498_b0190) 2016; 103 Huang (10.1016/j.matdes.2022.111498_b0155) 2015; 107 Zaretski (10.1016/j.matdes.2022.111498_b0090) 2015; 15 Fu (10.1016/j.matdes.2022.111498_b0150) 2022; 101 Abdulkadir (10.1016/j.matdes.2022.111498_b0255) 2019; 101 Liao (10.1016/j.matdes.2022.111498_b0195) 2020; 285 Han (10.1016/j.matdes.2022.111498_b0230) 2008; 230 Fang (10.1016/j.matdes.2022.111498_b0220) 2022; 178 Jiang (10.1016/j.matdes.2022.111498_b0215) 2020; 2 Arif (10.1016/j.matdes.2022.111498_b0180) 2013; 64 Fang (10.1016/j.matdes.2022.111498_b0085) 2020; 12 Wang (10.1016/j.matdes.2022.111498_b0015) 2022; 17 Xu (10.1016/j.matdes.2022.111498_b0325) 2017; 12 Ameli Kalkhoran (10.1016/j.matdes.2022.111498_b0275) 2019; 71 Jésior (10.1016/j.matdes.2022.111498_b0225) 1986; 95 Zhao (10.1016/j.matdes.2022.111498_b0240) 2021; 67 Xu (10.1016/j.matdes.2022.111498_b0100) 2008; 41 Wang (10.1016/j.matdes.2022.111498_b0115) 2020; 510 Fang (10.1016/j.matdes.2022.111498_b0080) 2021; 6 Xie (10.1016/j.matdes.2022.111498_b0260) 2020; 56 10.1016/j.matdes.2022.111498_b0285 Azizur Rahman (10.1016/j.matdes.2022.111498_b0345) 2018; 96 Kalkman (10.1016/j.matdes.2022.111498_b0105) 2016; 10 Yu (10.1016/j.matdes.2022.111498_b0350) 2021; 35 Lipomi (10.1016/j.matdes.2022.111498_b0075) 2011; 50 Xu (10.1016/j.matdes.2022.111498_b0120) 2019; 752 An (10.1016/j.matdes.2022.111498_b0070) 2019; 7 Fang (10.1016/j.matdes.2022.111498_b0245) 2022; 81 Dong (10.1016/j.matdes.2022.111498_b0110) 2023; 225 Foiles (10.1016/j.matdes.2022.111498_b0315) 1986; 33 He (10.1016/j.matdes.2022.111498_b0355) 2019; 496 Wang (10.1016/j.matdes.2022.111498_b0130) 2022 Liu (10.1016/j.matdes.2022.111498_b0165) 2021; 294 Tiefenauer (10.1016/j.matdes.2022.111498_b0045) 2018; 14 Jiang (10.1016/j.matdes.2022.111498_b0020) 2015; 7 Ameli Kalkhoran (10.1016/j.matdes.2022.111498_b0305) 2020; 108 Kosloff (10.1016/j.matdes.2022.111498_b0095) 2016; 16 Zhu (10.1016/j.matdes.2022.111498_b0160) 2021; 12 Liu (10.1016/j.matdes.2022.111498_b0235) 2022; 31 Narayanan (10.1016/j.matdes.2022.111498_b0145) 2015; 15 Fang (10.1016/j.matdes.2022.111498_b0250) 2022; 230 10.1016/j.matdes.2022.111498_b0290 10.1016/j.matdes.2022.111498_b0170 10.1016/j.matdes.2022.111498_b0295 Zhou (10.1016/j.matdes.2022.111498_b0280) 2015; 27 |
References_xml | – volume: 31 start-page: 382 year: 2018 end-page: 394 ident: b0175 article-title: An innovative investigation on chip formation mechanisms in micro-milling using natural diamond and tungsten carbide tools publication-title: J. Manuf. Process. – volume: 285 year: 2020 ident: b0195 article-title: Dual-processing by abrasive waterjet machining-A method for machining and surface modification of nickel-based superalloy publication-title: J. Mater. Process. Technol. – volume: 10 start-page: 42612 year: 2018 end-page: 42620 ident: b0065 article-title: Highly stretchable fiber-shaped supercapacitors based on ultrathin gold nanowires with double-helix winding design publication-title: ACS Appl. Mater. Interfaces. – volume: 752 start-page: 167 year: 2019 end-page: 179 ident: b0120 article-title: Grain refinement mechanism under high strain-rate deformation in machined surface during high speed machining Ti6Al4V publication-title: Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. – volume: 81 start-page: 224 year: 2022 end-page: 235 ident: b0245 article-title: Molecular dynamics simulation study on the effect of crystal orientation on bi-crystal gold nanocrystals in nanoskiving process publication-title: J. Manuf. Process. – volume: 225 year: 2023 ident: b0110 article-title: Effects of sandwiched film thickness and cutting tool water contact angle on the processing outcomes in nanoskiving of nanowires publication-title: Mater. Des. – volume: 101 start-page: 1741 year: 2019 end-page: 1757 ident: b0255 article-title: Observed edge radius behavior during MD nanomachining of silicon at a high uncut chip thickness publication-title: Int. J. Adv. Manuf. Technol. – volume: 15 start-page: 4037 year: 2015 end-page: 4044 ident: b0145 article-title: Strain hardening and size effect in five-fold twinned Ag nanowires publication-title: Nano Lett. – volume: 510 year: 2020 ident: b0115 article-title: Molecular dynamics study on deformation behaviour of monocrystalline GaN during nano abrasive machining publication-title: Appl. Surf. Sci. – reference: K. Chen, D. Huo, Micro Cutting: Fundamentals and Applications, first ed., John Wiley & Sons, Ltd, Chichester, 2013. 10.1002/9781118536605. – volume: 304 start-page: 422 year: 2004 end-page: 426 ident: b0335 article-title: Ultrahigh strength and high electrical conductivity in copper publication-title: Science. – volume: 1 start-page: 1980 year: 2009 end-page: 1987 ident: b0035 article-title: Study of transfection efficiencies of cationic glyconanoparticles of different sizes in human cell line publication-title: ACS Appl. Mater. Interfaces. – volume: 108 year: 2020 ident: b0305 article-title: Effect of relative tool sharpness on subsurface damage and material recovery in nanometric cutting of mono-crystalline silicon: a molecular dynamics approach publication-title: Mater. Sci. Semicond. Process. – volume: 101 start-page: 95 year: 2022 end-page: 106 ident: b0150 article-title: Ultra-high strength yet superplasticity in a hetero-grain-sized nanocrystalline Au nanowire publication-title: J. Mater. Sci. Technol. – volume: 17 start-page: 653 year: 2022 end-page: 660 ident: b0015 article-title: In vivo non-invasive confocal fluorescence imaging beyond 1,700 nm using superconducting nanowire single-photon detectors publication-title: Nat. Nanotechnol. – volume: 7 start-page: 21985 year: 2015 end-page: 21994 ident: b0020 article-title: Au-Ag@Au hollow nanostructure with enhanced chemical stability and improved photothermal transduction efficiency for cancer treatment publication-title: ACS Appl. Mater. Interfaces. – volume: 95 start-page: 210 year: 1986 end-page: 217 ident: b0225 article-title: How to avoid compression II. The influence of sectioning conditions publication-title: J. Ultrastruct. Mol. Struct. Res. – volume: 64 start-page: 114 year: 2013 end-page: 122 ident: b0180 article-title: A predictive model of the critical undeformed chip thickness for ductile-brittle transition in nano-machining of brittle materials publication-title: Int. J. Mach. Tools Manuf. – volume: 12 start-page: 289 year: 2017 ident: b0325 article-title: Study on crystallographic orientation effect on surface generation of aluminum in nano-cutting publication-title: Nanoscale Res. Lett. – volume: 115 start-page: 15 year: 2017 end-page: 28 ident: b0270 article-title: Variation of surface generation mechanisms in ultra-precision machining due to relative tool sharpness (RTS) and material properties publication-title: Int. J. Mach. Tools Manuf. – volume: 31 year: 2022 ident: b0235 article-title: The removal mechanism transformation from crystalline to amorphous in nano-machining Cu-Al alloy publication-title: Mater. Today Commun. – volume: 35 start-page: 3113 year: 2021 end-page: 3121 ident: b0350 article-title: Effects of relative tool sharpness on surface generation mechanism of precision turning of electroless nickel-phosphorus coating publication-title: J. Mech. Sci. Technol. – volume: 43 start-page: 11973 year: 2017 end-page: 11980 ident: b0210 article-title: The influence of grain geometry and wear conditions on the material removal mechanism in silicon carbide grinding with single grain publication-title: Ceram. Int. – volume: 16 start-page: 6960 year: 2016 end-page: 6966 ident: b0095 article-title: Nanodicing single crystalline silicon nanowire arrays publication-title: Nano Lett. – volume: 199 year: 2021 ident: b0125 article-title: Episodes of chip formation in micro-to-nanoscale cutting of Inconel 625 publication-title: Int. J. Mech. Sci. – year: 2022 ident: b0130 article-title: Material removal mechanism and subsurface characteristics of silicon 3D nanomilling publication-title: Int. J. Mech. Sci. – volume: 540 year: 2021 ident: b0330 article-title: Grain size effects on nanocutting behaviour modelling based on molecular dynamics simulations publication-title: Appl. Surf. Sci. – volume: 103 start-page: 13 year: 2016 end-page: 27 ident: b0190 article-title: A review of fly cutting applied to surface generation in ultra-precision machining publication-title: Int. J. Mach. Tools Manuf. – volume: 230 year: 2022 ident: b0250 article-title: Uncovering the machining mechanism of polycrystalline gold nanowires by nanoskiving publication-title: Int. J. Mech. Sci. – reference: DiATOME, Diatome Diamond Knives, 2021. <https://diatome.ch/Introduction.asp> (Accessed September 6, 2022). – volume: 7 start-page: 14233 year: 2019 end-page: 14238 ident: b0070 article-title: A Janus gold nanowire electrode for stretchable micro-supercapacitors with distinct capacitances publication-title: J. Mater. Chem. A. – volume: 88 start-page: 1117 year: 2016 end-page: 1122 ident: b0060 article-title: Renewable and ultralong nanoelectrochemical sensor: nanoskiving fabrication and application for monitoring cell release publication-title: Anal. Chem. – volume: 321 start-page: 495 year: 2014 end-page: 502 ident: b0185 article-title: Investigation of the shape transferability of nanoscale multi-tip diamond tools in the diamond turning of nanostructures publication-title: Appl. Surf. Sci. – volume: 18 start-page: 92 year: 2017 end-page: 100 ident: b0200 article-title: 3D finite element modelling of surface modification in dry and cryogenic machining of EBM Ti6Al4V alloy publication-title: CIRP J. Manuf. Sci. Technol. – reference: Electron Microscopy Sciences, Introduction, Manufacturing and Characteristics Diatome Diamond Knives, 2021. <https://www.emsdiasum.com/microscopy/products/diamond/intro.aspx> (accessed September 6, 2022). – volume: 6 start-page: 2100477 year: 2021 ident: b0080 article-title: Recent progress in the nanoskiving approach: a review of methodology, devices, and applications publication-title: Adv. Mater. Technol. – volume: 50 start-page: 8566 year: 2011 end-page: 8583 ident: b0075 article-title: Use of thin sectioning (nanoskiving) to fabricate nanostructures for electronic and optical applications publication-title: Angew. Chem. Int. Ed. – volume: 107 year: 2015 ident: b0155 article-title: Chemical reactivity of twin-modified copper nanowire surfaces publication-title: Appl. Phys. Lett. – volume: 131 start-page: 88 year: 2019 end-page: 94 ident: b0050 article-title: Dual-signal amplification strategy for miRNA sensing with high sensitivity and selectivity by use of single Au nanowire electrodes publication-title: Biosens. Bioelectron. – volume: 16 start-page: 3500 year: 2016 end-page: 3506 ident: b0135 article-title: Ultrahigh tensile strength nanowires with a Ni/Ni-Au multilayer nanocrystalline structure publication-title: Nano Lett. – year: 2022 ident: b0025 article-title: A study on a hybrid SERS substrates based on arrayed gold nanoparticle/graphene/copper cone cavities fabricated by a conical tip indentation publication-title: J. Mater. Res. Technol. – volume: 5 start-page: 3132 year: 2014 ident: b0040 article-title: A wearable and highly sensitive pressure sensor with ultrathin gold nanowires publication-title: Nat. Commun. – volume: 12 start-page: 8194 year: 2020 end-page: 8199 ident: b0085 article-title: Mechanical properties of gold nanowires prepared by nanoskiving approach publication-title: Nanoscale. – volume: 67 start-page: 418 year: 2021 end-page: 426 ident: b0240 article-title: Molecular dynamics simulation study of interaction mechanism between grain boundaries and subgrain boundaries in nano-cutting publication-title: J. Manuf. Process. – volume: 581 start-page: 278 year: 2020 end-page: 282 ident: b0005 article-title: A biomimetic eye with a hemispherical perovskite nanowire array retina publication-title: Nature – volume: 2 year: 2020 ident: b0215 article-title: A critical review on the chemical wear and wear suppression of diamond tools in diamond cutting of ferrous metals publication-title: Int. J. Extreme Manuf. – volume: 178 year: 2022 ident: b0220 article-title: Nanometric cutting: mechanisms, practices and future perspectives publication-title: Int. J. Mach. Tools Manuf. – volume: 294 year: 2021 ident: b0165 article-title: Material removal mechanism of FCC single-crystalline materials at nano-scales: Chip removal & ploughing publication-title: J. Mater. Process. Technol. – volume: 160 start-page: 14 year: 2018 end-page: 21 ident: b0140 article-title: Deformation twinning of ultrahigh strength aluminum nanowire publication-title: Acta Mater. – volume: 6 start-page: 77195 year: 2016 end-page: 77200 ident: b0320 article-title: Immobilization of Au nanoparticles on graphite tunnels through nanocapillarity publication-title: RSC Adv. – volume: 670 start-page: 170 year: 2016 end-page: 174 ident: b0030 article-title: Addition of electrical conductivity to metal oxide particles using the polygonal barrel-sputtering method publication-title: J. Alloy. Compd. – volume: 96 start-page: 3545 year: 2018 end-page: 3563 ident: b0345 article-title: Influence of relative tool sharpness (RTS) on different ultra-precision machining regimes of Mg alloy publication-title: Int. J. Adv. Manuf. Technol. – volume: 71 start-page: 4296 year: 2019 end-page: 4304 ident: b0275 article-title: Molecular dynamics investigation of nanometric cutting of single-crystal silicon using a blunt tool publication-title: JOM. – volume: 56 start-page: 280 year: 2020 end-page: 294 ident: b0260 article-title: Rake angle effect in cutting-based single atomic layer removal publication-title: J. Manuf. Process. – volume: 123 start-page: 57 year: 2017 end-page: 75 ident: b0340 article-title: Modelling of flow stress by correlating the material grain size and chip thickness in ultra-precision machining publication-title: Int. J. Mach. Tools Manuf. – volume: 27 start-page: 1945 year: 2015 end-page: 1950 ident: b0280 article-title: Macroscopic single-crystal gold microflakes and their devices publication-title: Adv. Mater. – volume: 225 year: 2022 ident: b0300 article-title: Effects of tool geometry on tungsten removal behavior during nano-cutting publication-title: Int. J. Mech. Sci. – volume: 13 start-page: 2431 year: 2013 end-page: 2435 ident: b0055 article-title: Electrotriggered, spatioselective, quantitative gene delivery into a single cell nucleus by Au nanowire nanoinjector publication-title: Nano Lett. – volume: 365 start-page: 1017 year: 2019 end-page: 1020 ident: b0010 article-title: Single-nanowire spectrometers publication-title: Science. – volume: 76 start-page: 112 year: 2018 end-page: 127 ident: b0205 article-title: Application of surface modification techniques during hard turning: present work and future prospects publication-title: Int. J. Refract. Met. Hard Mat. – volume: 14 start-page: 1801187 year: 2018 ident: b0045 article-title: Monolayer graphene coupled to a flexible plasmonic nanograting for ultrasensitive strain monitoring publication-title: Small. – volume: 496 year: 2019 ident: b0355 article-title: A numerical study on nanometric cutting mechanism of lutetium oxide single crystal publication-title: Appl. Surf. Sci. – volume: 10 start-page: 2852 year: 2016 end-page: 2859 ident: b0105 article-title: Bisecting microfluidic channels with metallic nanowires fabricated by nanoskiving publication-title: ACS Nano. – volume: 12 start-page: 558 year: 2021 ident: b0160 article-title: Defect-driven selective metal oxidation at atomic scale publication-title: Nat Commun. – reference: Micro Star Technologies, Diamond Knives – Micro Star Technologies, 2021. <https://www.microstartech.com/diamond-knives/> (Accessed September 6, 2022). – volume: 230 start-page: 167 year: 2008 end-page: 171 ident: b0230 article-title: Compression and crevasses in vitreous sections under different cutting conditions publication-title: J. Microsc. – volume: 33 start-page: 7983 year: 1986 end-page: 7991 ident: b0315 article-title: Embedded-atom-method functions for the Fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys publication-title: Phys. Rev. B. – volume: 15 start-page: 635 year: 2015 end-page: 640 ident: b0090 article-title: Using the thickness of graphene to template lateral subnanometer gaps between gold nanostructures publication-title: Nano Lett. – volume: 41 start-page: 1566 year: 2008 end-page: 1577 ident: b0100 article-title: Nanoskiving: a new method to produce arrays of nanostructures publication-title: Acc. Chem. Res. – volume: 528 year: 2020 ident: b0265 article-title: Numerical and experimental investigation on ductile deformation and subsurface defects of monocrystalline silicon during nano-scratching publication-title: Appl. Surf. Sci. – volume: 455 start-page: 608 year: 2018 end-page: 615 ident: b0310 article-title: A numerical study on the material removal and phase transformation in the nanometric cutting of silicon publication-title: Appl. Surf. Sci. – volume: 7 start-page: 21985 year: 2015 ident: 10.1016/j.matdes.2022.111498_b0020 article-title: Au-Ag@Au hollow nanostructure with enhanced chemical stability and improved photothermal transduction efficiency for cancer treatment publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/acsami.5b08305 – volume: 71 start-page: 4296 year: 2019 ident: 10.1016/j.matdes.2022.111498_b0275 article-title: Molecular dynamics investigation of nanometric cutting of single-crystal silicon using a blunt tool publication-title: JOM. doi: 10.1007/s11837-019-03671-w – volume: 12 start-page: 558 year: 2021 ident: 10.1016/j.matdes.2022.111498_b0160 article-title: Defect-driven selective metal oxidation at atomic scale publication-title: Nat Commun. doi: 10.1038/s41467-020-20876-9 – volume: 5 start-page: 3132 year: 2014 ident: 10.1016/j.matdes.2022.111498_b0040 article-title: A wearable and highly sensitive pressure sensor with ultrathin gold nanowires publication-title: Nat. Commun. doi: 10.1038/ncomms4132 – volume: 13 start-page: 2431 year: 2013 ident: 10.1016/j.matdes.2022.111498_b0055 article-title: Electrotriggered, spatioselective, quantitative gene delivery into a single cell nucleus by Au nanowire nanoinjector publication-title: Nano Lett. doi: 10.1021/nl4003393 – volume: 15 start-page: 4037 year: 2015 ident: 10.1016/j.matdes.2022.111498_b0145 article-title: Strain hardening and size effect in five-fold twinned Ag nanowires publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b01015 – volume: 230 year: 2022 ident: 10.1016/j.matdes.2022.111498_b0250 article-title: Uncovering the machining mechanism of polycrystalline gold nanowires by nanoskiving publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2022.107545 – volume: 56 start-page: 280 year: 2020 ident: 10.1016/j.matdes.2022.111498_b0260 article-title: Rake angle effect in cutting-based single atomic layer removal publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2020.04.068 – ident: 10.1016/j.matdes.2022.111498_b0295 – volume: 27 start-page: 1945 year: 2015 ident: 10.1016/j.matdes.2022.111498_b0280 article-title: Macroscopic single-crystal gold microflakes and their devices publication-title: Adv. Mater. doi: 10.1002/adma.201405121 – volume: 7 start-page: 14233 year: 2019 ident: 10.1016/j.matdes.2022.111498_b0070 article-title: A Janus gold nanowire electrode for stretchable micro-supercapacitors with distinct capacitances publication-title: J. Mater. Chem. A. doi: 10.1039/C9TA03664D – volume: 50 start-page: 8566 year: 2011 ident: 10.1016/j.matdes.2022.111498_b0075 article-title: Use of thin sectioning (nanoskiving) to fabricate nanostructures for electronic and optical applications publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201101024 – volume: 31 year: 2022 ident: 10.1016/j.matdes.2022.111498_b0235 article-title: The removal mechanism transformation from crystalline to amorphous in nano-machining Cu-Al alloy publication-title: Mater. Today Commun. – volume: 33 start-page: 7983 year: 1986 ident: 10.1016/j.matdes.2022.111498_b0315 article-title: Embedded-atom-method functions for the Fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.33.7983 – volume: 95 start-page: 210 year: 1986 ident: 10.1016/j.matdes.2022.111498_b0225 article-title: How to avoid compression II. The influence of sectioning conditions publication-title: J. Ultrastruct. Mol. Struct. Res. doi: 10.1016/0889-1605(86)90042-X – volume: 96 start-page: 3545 year: 2018 ident: 10.1016/j.matdes.2022.111498_b0345 article-title: Influence of relative tool sharpness (RTS) on different ultra-precision machining regimes of Mg alloy publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-018-1599-4 – volume: 225 year: 2022 ident: 10.1016/j.matdes.2022.111498_b0300 article-title: Effects of tool geometry on tungsten removal behavior during nano-cutting publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2022.107384 – volume: 35 start-page: 3113 year: 2021 ident: 10.1016/j.matdes.2022.111498_b0350 article-title: Effects of relative tool sharpness on surface generation mechanism of precision turning of electroless nickel-phosphorus coating publication-title: J. Mech. Sci. Technol. doi: 10.1007/s12206-021-0633-x – volume: 2 year: 2020 ident: 10.1016/j.matdes.2022.111498_b0215 article-title: A critical review on the chemical wear and wear suppression of diamond tools in diamond cutting of ferrous metals publication-title: Int. J. Extreme Manuf. – volume: 225 year: 2023 ident: 10.1016/j.matdes.2022.111498_b0110 article-title: Effects of sandwiched film thickness and cutting tool water contact angle on the processing outcomes in nanoskiving of nanowires publication-title: Mater. Des. doi: 10.1016/j.matdes.2022.111438 – volume: 31 start-page: 382 year: 2018 ident: 10.1016/j.matdes.2022.111498_b0175 article-title: An innovative investigation on chip formation mechanisms in micro-milling using natural diamond and tungsten carbide tools publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2017.11.023 – volume: 1 start-page: 1980 year: 2009 ident: 10.1016/j.matdes.2022.111498_b0035 article-title: Study of transfection efficiencies of cationic glyconanoparticles of different sizes in human cell line publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/am900357x – volume: 10 start-page: 42612 year: 2018 ident: 10.1016/j.matdes.2022.111498_b0065 article-title: Highly stretchable fiber-shaped supercapacitors based on ultrathin gold nanowires with double-helix winding design publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/acsami.8b14769 – volume: 76 start-page: 112 year: 2018 ident: 10.1016/j.matdes.2022.111498_b0205 article-title: Application of surface modification techniques during hard turning: present work and future prospects publication-title: Int. J. Refract. Met. Hard Mat. doi: 10.1016/j.ijrmhm.2018.06.003 – volume: 160 start-page: 14 year: 2018 ident: 10.1016/j.matdes.2022.111498_b0140 article-title: Deformation twinning of ultrahigh strength aluminum nanowire publication-title: Acta Mater. doi: 10.1016/j.actamat.2018.08.047 – volume: 178 year: 2022 ident: 10.1016/j.matdes.2022.111498_b0220 article-title: Nanometric cutting: mechanisms, practices and future perspectives publication-title: Int. J. Mach. Tools Manuf. doi: 10.1016/j.ijmachtools.2022.103905 – volume: 510 year: 2020 ident: 10.1016/j.matdes.2022.111498_b0115 article-title: Molecular dynamics study on deformation behaviour of monocrystalline GaN during nano abrasive machining publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.145492 – volume: 103 start-page: 13 year: 2016 ident: 10.1016/j.matdes.2022.111498_b0190 article-title: A review of fly cutting applied to surface generation in ultra-precision machining publication-title: Int. J. Mach. Tools Manuf. doi: 10.1016/j.ijmachtools.2016.01.001 – volume: 6 start-page: 77195 year: 2016 ident: 10.1016/j.matdes.2022.111498_b0320 article-title: Immobilization of Au nanoparticles on graphite tunnels through nanocapillarity publication-title: RSC Adv. doi: 10.1039/C6RA16231B – ident: 10.1016/j.matdes.2022.111498_b0170 doi: 10.1002/9781118536605 – year: 2022 ident: 10.1016/j.matdes.2022.111498_b0130 article-title: Material removal mechanism and subsurface characteristics of silicon 3D nanomilling publication-title: Int. J. Mech. Sci. – volume: 294 year: 2021 ident: 10.1016/j.matdes.2022.111498_b0165 article-title: Material removal mechanism of FCC single-crystalline materials at nano-scales: Chip removal & ploughing publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2021.117106 – ident: 10.1016/j.matdes.2022.111498_b0290 – volume: 528 year: 2020 ident: 10.1016/j.matdes.2022.111498_b0265 article-title: Numerical and experimental investigation on ductile deformation and subsurface defects of monocrystalline silicon during nano-scratching publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.147034 – volume: 365 start-page: 1017 year: 2019 ident: 10.1016/j.matdes.2022.111498_b0010 article-title: Single-nanowire spectrometers publication-title: Science. doi: 10.1126/science.aax8814 – volume: 41 start-page: 1566 year: 2008 ident: 10.1016/j.matdes.2022.111498_b0100 article-title: Nanoskiving: a new method to produce arrays of nanostructures publication-title: Acc. Chem. Res. doi: 10.1021/ar700194y – volume: 67 start-page: 418 year: 2021 ident: 10.1016/j.matdes.2022.111498_b0240 article-title: Molecular dynamics simulation study of interaction mechanism between grain boundaries and subgrain boundaries in nano-cutting publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2021.04.075 – volume: 101 start-page: 1741 year: 2019 ident: 10.1016/j.matdes.2022.111498_b0255 article-title: Observed edge radius behavior during MD nanomachining of silicon at a high uncut chip thickness publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-018-3001-y – volume: 10 start-page: 2852 year: 2016 ident: 10.1016/j.matdes.2022.111498_b0105 article-title: Bisecting microfluidic channels with metallic nanowires fabricated by nanoskiving publication-title: ACS Nano. doi: 10.1021/acsnano.5b07996 – volume: 107 year: 2015 ident: 10.1016/j.matdes.2022.111498_b0155 article-title: Chemical reactivity of twin-modified copper nanowire surfaces publication-title: Appl. Phys. Lett. doi: 10.1063/1.4926648 – volume: 540 year: 2021 ident: 10.1016/j.matdes.2022.111498_b0330 article-title: Grain size effects on nanocutting behaviour modelling based on molecular dynamics simulations publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.148291 – volume: 6 start-page: 2100477 year: 2021 ident: 10.1016/j.matdes.2022.111498_b0080 article-title: Recent progress in the nanoskiving approach: a review of methodology, devices, and applications publication-title: Adv. Mater. Technol. doi: 10.1002/admt.202100477 – volume: 230 start-page: 167 year: 2008 ident: 10.1016/j.matdes.2022.111498_b0230 article-title: Compression and crevasses in vitreous sections under different cutting conditions publication-title: J. Microsc. doi: 10.1111/j.1365-2818.2008.01972.x – volume: 581 start-page: 278 year: 2020 ident: 10.1016/j.matdes.2022.111498_b0005 article-title: A biomimetic eye with a hemispherical perovskite nanowire array retina publication-title: Nature doi: 10.1038/s41586-020-2285-x – volume: 88 start-page: 1117 year: 2016 ident: 10.1016/j.matdes.2022.111498_b0060 article-title: Renewable and ultralong nanoelectrochemical sensor: nanoskiving fabrication and application for monitoring cell release publication-title: Anal. Chem. doi: 10.1021/acs.analchem.5b04055 – volume: 15 start-page: 635 year: 2015 ident: 10.1016/j.matdes.2022.111498_b0090 article-title: Using the thickness of graphene to template lateral subnanometer gaps between gold nanostructures publication-title: Nano Lett. doi: 10.1021/nl504121w – volume: 81 start-page: 224 year: 2022 ident: 10.1016/j.matdes.2022.111498_b0245 article-title: Molecular dynamics simulation study on the effect of crystal orientation on bi-crystal gold nanocrystals in nanoskiving process publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2022.06.071 – volume: 108 year: 2020 ident: 10.1016/j.matdes.2022.111498_b0305 article-title: Effect of relative tool sharpness on subsurface damage and material recovery in nanometric cutting of mono-crystalline silicon: a molecular dynamics approach publication-title: Mater. Sci. Semicond. Process. doi: 10.1016/j.mssp.2019.104868 – volume: 43 start-page: 11973 year: 2017 ident: 10.1016/j.matdes.2022.111498_b0210 article-title: The influence of grain geometry and wear conditions on the material removal mechanism in silicon carbide grinding with single grain publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2017.06.047 – volume: 285 year: 2020 ident: 10.1016/j.matdes.2022.111498_b0195 article-title: Dual-processing by abrasive waterjet machining-A method for machining and surface modification of nickel-based superalloy publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2020.116768 – volume: 18 start-page: 92 year: 2017 ident: 10.1016/j.matdes.2022.111498_b0200 article-title: 3D finite element modelling of surface modification in dry and cryogenic machining of EBM Ti6Al4V alloy publication-title: CIRP J. Manuf. Sci. Technol. doi: 10.1016/j.cirpj.2016.10.004 – volume: 670 start-page: 170 year: 2016 ident: 10.1016/j.matdes.2022.111498_b0030 article-title: Addition of electrical conductivity to metal oxide particles using the polygonal barrel-sputtering method publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2016.01.224 – volume: 304 start-page: 422 year: 2004 ident: 10.1016/j.matdes.2022.111498_b0335 article-title: Ultrahigh strength and high electrical conductivity in copper publication-title: Science. doi: 10.1126/science.1092905 – volume: 12 start-page: 8194 year: 2020 ident: 10.1016/j.matdes.2022.111498_b0085 article-title: Mechanical properties of gold nanowires prepared by nanoskiving approach publication-title: Nanoscale. doi: 10.1039/D0NR01049A – volume: 16 start-page: 3500 year: 2016 ident: 10.1016/j.matdes.2022.111498_b0135 article-title: Ultrahigh tensile strength nanowires with a Ni/Ni-Au multilayer nanocrystalline structure publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b00275 – volume: 321 start-page: 495 year: 2014 ident: 10.1016/j.matdes.2022.111498_b0185 article-title: Investigation of the shape transferability of nanoscale multi-tip diamond tools in the diamond turning of nanostructures publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2014.10.052 – volume: 455 start-page: 608 year: 2018 ident: 10.1016/j.matdes.2022.111498_b0310 article-title: A numerical study on the material removal and phase transformation in the nanometric cutting of silicon publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.05.091 – volume: 123 start-page: 57 year: 2017 ident: 10.1016/j.matdes.2022.111498_b0340 article-title: Modelling of flow stress by correlating the material grain size and chip thickness in ultra-precision machining publication-title: Int. J. Mach. Tools Manuf. doi: 10.1016/j.ijmachtools.2017.08.001 – volume: 16 start-page: 6960 year: 2016 ident: 10.1016/j.matdes.2022.111498_b0095 article-title: Nanodicing single crystalline silicon nanowire arrays publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b03028 – volume: 64 start-page: 114 year: 2013 ident: 10.1016/j.matdes.2022.111498_b0180 article-title: A predictive model of the critical undeformed chip thickness for ductile-brittle transition in nano-machining of brittle materials publication-title: Int. J. Mach. Tools Manuf. doi: 10.1016/j.ijmachtools.2012.08.005 – volume: 131 start-page: 88 year: 2019 ident: 10.1016/j.matdes.2022.111498_b0050 article-title: Dual-signal amplification strategy for miRNA sensing with high sensitivity and selectivity by use of single Au nanowire electrodes publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2019.02.023 – year: 2022 ident: 10.1016/j.matdes.2022.111498_b0025 article-title: A study on a hybrid SERS substrates based on arrayed gold nanoparticle/graphene/copper cone cavities fabricated by a conical tip indentation publication-title: J. Mater. Res. Technol. – volume: 14 start-page: 1801187 year: 2018 ident: 10.1016/j.matdes.2022.111498_b0045 article-title: Monolayer graphene coupled to a flexible plasmonic nanograting for ultrasensitive strain monitoring publication-title: Small. doi: 10.1002/smll.201801187 – volume: 752 start-page: 167 year: 2019 ident: 10.1016/j.matdes.2022.111498_b0120 article-title: Grain refinement mechanism under high strain-rate deformation in machined surface during high speed machining Ti6Al4V publication-title: Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. doi: 10.1016/j.msea.2019.03.011 – ident: 10.1016/j.matdes.2022.111498_b0285 – volume: 199 year: 2021 ident: 10.1016/j.matdes.2022.111498_b0125 article-title: Episodes of chip formation in micro-to-nanoscale cutting of Inconel 625 publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2021.106407 – volume: 101 start-page: 95 year: 2022 ident: 10.1016/j.matdes.2022.111498_b0150 article-title: Ultra-high strength yet superplasticity in a hetero-grain-sized nanocrystalline Au nanowire publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2021.05.063 – volume: 12 start-page: 289 year: 2017 ident: 10.1016/j.matdes.2022.111498_b0325 article-title: Study on crystallographic orientation effect on surface generation of aluminum in nano-cutting publication-title: Nanoscale Res. Lett. doi: 10.1186/s11671-017-1990-3 – volume: 496 year: 2019 ident: 10.1016/j.matdes.2022.111498_b0355 article-title: A numerical study on nanometric cutting mechanism of lutetium oxide single crystal publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.143715 – volume: 115 start-page: 15 year: 2017 ident: 10.1016/j.matdes.2022.111498_b0270 article-title: Variation of surface generation mechanisms in ultra-precision machining due to relative tool sharpness (RTS) and material properties publication-title: Int. J. Mach. Tools Manuf. doi: 10.1016/j.ijmachtools.2016.11.003 – volume: 17 start-page: 653 year: 2022 ident: 10.1016/j.matdes.2022.111498_b0015 article-title: In vivo non-invasive confocal fluorescence imaging beyond 1,700 nm using superconducting nanowire single-photon detectors publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-022-01130-3 |
SSID | ssj0022734 |
Score | 2.5074556 |
Snippet | [Display omitted]
•Polycrystalline Au nanowire formation mechanism under tool geometry is studied.•Large rake angles and small tool radii mean smaller nanowire... Au nanowires have been promoted in flexible electronics, micro-nano bioelectrodes, and micro-electrochemical detection benefit from their inherent size effect,... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 111498 |
SubjectTerms | Molecular dynamics Nano-cutting Nanoskiving Nanowire Rake angle Relative tool sharpness |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] dbid: AIKHN link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQu8CAeIrykgfWqKntNPEIiKqAYAEktsivoPBIqjYM_HvuYqcqC0isjp1EZ-e-z87dd4ScKcDERCoXjbTUkRiPXKRkOoqygmug28ZwjgnOd_fj6ZO4eU6e18hllwuDYZXB93uf3nrr0DIM1hzOynL4ALsHgfLkDDGMYaXhPgN0jXukf359O71f7rtQwcUftaBEX5p0GXRtmBfwQutQt5sxdB9CZj8QqhXyXwGqFfCZbJHNwBrpuX-xbbLmqh2ysaIluEve7rpCt9T6KvMLuig_QnUuWhcUqB5t6vqdvrj6wzXzL-qDOShcrlRVo2oxXSYz0i6Bn_pMxrbL4q3EA4g98jS5erycRqGSQmTEKGsiYFkKlcUSgPMCOFbGtObcGamUGBdGSgMffhYbaaTDX4XWSpVYlSmbFFnMBd8nvaqu3AGh4JS0iDVPuImF4kzpRDAHE-AEMB02HhDeWS83QWYcq12851082WvubZ6jzXNv8wGJlqNmXmbjj_4XODHLviiS3TbU85c8rJLcprpAfuaY5QJ1-22WCpYq8FGAUAUbkLSb1vzHmoNblb8-_vDfI4_IOhas94c4x6TXzD_dCdCaRp-GZfsNDXn2Gg priority: 102 providerName: Elsevier |
Title | Molecular dynamics simulation of the tool geometry effect on nanowire formation behavior during nanoskiving |
URI | https://dx.doi.org/10.1016/j.matdes.2022.111498 https://doaj.org/article/d7bf1727e2d347578d87427a787eb1f2 |
Volume | 225 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQWWBAPEV5VB5YI5LYaeKxIKoCaicqdYv8CiptE9SGgX_PXZxUYaELa-I8dL7c99m5-46QOwmYGAlpvUAJ5fF-YD0p4sBLMqaAbmvNGBY4jyf90ZS_zKJZq9UX5oQ5eWBnuHsTqwxB1oaGcRRfNwms5mIJjgZhJquiL2Bes5iql1oo2uJ2V1CVL46aorkqswuooLEo1R2GGDG4SH6BUqXd38KmFt4Mj8lRTRTpwL3gCdmz-Sk5bMkHnpHFuOltS41rLL-hm_mqbshFi4wCu6NlUSzpuy1Wtlx_U5e_QeF0LvMChYrptn6RNjX71BUvVkM2iznuOZyT6fDp7XHk1c0TPM2DpPSAWEkUE4sAwTOgVUmoFGNWCyl5P9NCaPjWE18LLSz-HTRGyMjIRJooS3zG2QXp5EVuLwmFOKS4r1jEtM8lC6WKeGiBqFkO5CbsdwlrrJfqWlkcG1ws0yaF7CN1Nk_R5qmzeZd426s-nbLGjvEPODHbsaiLXR0Ab0lrb0l3eUuXxM20pjXFcNQBbjX_8_FX__H4a3KA7erdFs4N6ZTrL3sLpKZUPbI_eH4dTXqVH_8A6-T04Q |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLYQHAaHaQwmChvzYdeore008RHQUDtoLwOpN8u_gjLapGqzA_8978VOVS5M2tWxk-j55b3PL-99j5AfGnxiKrVPhkaaRIyGPtEyGyZ5wQ3AbWs5xwLn6Ww0fhS_5ul8j9x0tTCYVhltf7DprbWOI_0ozf6qLPu_4fQgkJ6coQ9j2Gn4ANmpQM0PriZ349n23IUMLiHUghR9WdpV0LVpXoALnUfebsbQfAiZv_FQLZH_jqPacT63n8jHiBrpVXixY7Lnq8_kaIdL8IQ8T7tGt9SFLvMbuimXsTsXrQsKUI82db2gT75e-mb9QkMyB4XLla5qZC2m22JG2hXw01DJ2E7ZPJcYgDglj7c_H27GSeykkFgxzJsEUJZGZrEU3HkBGCtnxnDurdRajAorpYUPPx9YaaXHX4XOSZ06nWuXFvmAC_6F7Fd15c8IBaNkxMDwlNuB0JxpkwrmYQO8AKTDRj3CO-kpG2nGsdvFQnX5ZH9UkLlCmasg8x5JtqtWgWbjH_OvcWO2c5Ekux2o108qaolymSkQn3nmuEDefpdngmUabBR4qIL1SNZtq3qjc3Cr8t3Hn__3yu_kw_hheq_uJ7O7C3KIzetDQOcr2W_Wf_03gDiNuYwq_ArFhPkJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+dynamics+simulation+of+the+tool+geometry+effect+on+nanowire+formation+behavior+during+nanoskiving&rft.jtitle=Materials+%26+design&rft.au=Fang%2C+Zhuo&rft.au=Yan%2C+Yongda&rft.au=Li%2C+Zihan&rft.au=Zhang%2C+Aoxiang&rft.date=2023-01-01&rft.issn=0264-1275&rft.volume=225&rft.spage=111498&rft_id=info:doi/10.1016%2Fj.matdes.2022.111498&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matdes_2022_111498 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-1275&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-1275&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-1275&client=summon |