Teamwork Optimization Algorithm: A New Optimization Approach for Function Minimization/Maximization
Population-based optimization algorithms are one of the most widely used and popular methods in solving optimization problems. In this paper, a new population-based optimization algorithm called the Teamwork Optimization Algorithm (TOA) is presented to solve various optimization problems. The main i...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 21; no. 13; p. 4567 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
MDPI
03.07.2021
MDPI AG |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Population-based optimization algorithms are one of the most widely used and popular methods in solving optimization problems. In this paper, a new population-based optimization algorithm called the Teamwork Optimization Algorithm (TOA) is presented to solve various optimization problems. The main idea in designing the TOA is to simulate the teamwork behaviors of the members of a team in order to achieve their desired goal. The TOA is mathematically modeled for usability in solving optimization problems. The capability of the TOA in solving optimization problems is evaluated on a set of twenty-three standard objective functions. Additionally, the performance of the proposed TOA is compared with eight well-known optimization algorithms in providing a suitable quasi-optimal solution. The results of optimization of objective functions indicate the ability of the TOA to solve various optimization problems. Analysis and comparison of the simulation results of the optimization algorithms show that the proposed TOA is superior and far more competitive than the eight compared algorithms. |
---|---|
AbstractList | Population-based optimization algorithms are one of the most widely used and popular methods in solving optimization problems. In this paper, a new population-based optimization algorithm called the Teamwork Optimization Algorithm (TOA) is presented to solve various optimization problems. The main idea in designing the TOA is to simulate the teamwork behaviors of the members of a team in order to achieve their desired goal. The TOA is mathematically modeled for usability in solving optimization problems. The capability of the TOA in solving optimization problems is evaluated on a set of twenty-three standard objective functions. Additionally, the performance of the proposed TOA is compared with eight well-known optimization algorithms in providing a suitable quasi-optimal solution. The results of optimization of objective functions indicate the ability of the TOA to solve various optimization problems. Analysis and comparison of the simulation results of the optimization algorithms show that the proposed TOA is superior and far more competitive than the eight compared algorithms. Population-based optimization algorithms are one of the most widely used and popular methods in solving optimization problems. In this paper, a new population-based optimization algorithm called the Teamwork Optimization Algorithm (TOA) is presented to solve various optimization problems. The main idea in designing the TOA is to simulate the teamwork behaviors of the members of a team in order to achieve their desired goal. The TOA is mathematically modeled for usability in solving optimization problems. The capability of the TOA in solving optimization problems is evaluated on a set of twenty-three standard objective functions. Additionally, the performance of the proposed TOA is compared with eight well-known optimization algorithms in providing a suitable quasi-optimal solution. The results of optimization of objective functions indicate the ability of the TOA to solve various optimization problems. Analysis and comparison of the simulation results of the optimization algorithms show that the proposed TOA is superior and far more competitive than the eight compared algorithms.Population-based optimization algorithms are one of the most widely used and popular methods in solving optimization problems. In this paper, a new population-based optimization algorithm called the Teamwork Optimization Algorithm (TOA) is presented to solve various optimization problems. The main idea in designing the TOA is to simulate the teamwork behaviors of the members of a team in order to achieve their desired goal. The TOA is mathematically modeled for usability in solving optimization problems. The capability of the TOA in solving optimization problems is evaluated on a set of twenty-three standard objective functions. Additionally, the performance of the proposed TOA is compared with eight well-known optimization algorithms in providing a suitable quasi-optimal solution. The results of optimization of objective functions indicate the ability of the TOA to solve various optimization problems. Analysis and comparison of the simulation results of the optimization algorithms show that the proposed TOA is superior and far more competitive than the eight compared algorithms. |
Author | Trojovský, Pavel Dehghani, Mohammad |
AuthorAffiliation | 1 Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz 71557-13876, Iran; m.dehghani@sutech.ac.ir 2 Department of Mathematics, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic |
AuthorAffiliation_xml | – name: 1 Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz 71557-13876, Iran; m.dehghani@sutech.ac.ir – name: 2 Department of Mathematics, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic |
Author_xml | – sequence: 1 givenname: Mohammad surname: Dehghani fullname: Dehghani, Mohammad – sequence: 2 givenname: Pavel orcidid: 0000-0001-8992-125X surname: Trojovský fullname: Trojovský, Pavel |
BookMark | eNplkclO5DAQhi0EYj_wBjnCoae9Js4ckFqITWK5wNkqO3a3mSQOdprt6cl0Q4vlVFV__fWpVLWD1tvQWoQOCP7DWInHiRLCuMiLNbRNOOUjSSle_5JvoZ2UHjCmjDG5ibYYp5IRQraRubPQPIf4L7vtet_4N-h9aLNJPQ3R97PmbzbJbuzzj27XxQBmlrkQs7N5axbqtW9XlvE1vKyKPbThoE52_yPuovuz07uTi9HV7fnlyeRqZDiR_Yg6x43FwhgpGS7yqhRUW6zBlcRxLWiuhyiqvJDEGahA61xoa_JcAmjr2C66XHKrAA-qi76B-KoCeLUQQpwqiL03tVWW8kJjzYx2FdcDoSqLHJfGuRJjXMDAOl6yurlubGVs20eov0G_d1o_U9PwpCQtCBdkABx-AGJ4nNvUq8YnY-saWhvmSVEhmKCi4HywjpdWE0NK0TplfL-43ED2tSJY_X-zWr15mDj6MfG52G_vO-FDq3E |
CitedBy_id | crossref_primary_10_1038_s41598_022_19313_2 crossref_primary_10_1007_s11571_021_09771_1 crossref_primary_10_1007_s00521_024_09648_4 crossref_primary_10_1080_23307706_2022_2146012 crossref_primary_10_3390_pr11051502 crossref_primary_10_3390_biomimetics8020149 crossref_primary_10_1007_s11831_022_09800_0 crossref_primary_10_1007_s10586_024_04618_w crossref_primary_10_32604_cmc_2023_036453 crossref_primary_10_1038_s41598_023_35863_5 crossref_primary_10_1109_ACCESS_2023_3283422 crossref_primary_10_32604_cmc_2022_024736 crossref_primary_10_3390_biomimetics9010008 crossref_primary_10_32604_cmc_2023_030379 crossref_primary_10_32604_cmc_2023_034695 crossref_primary_10_1109_ACCESS_2023_3327732 crossref_primary_10_1111_jph_13426 crossref_primary_10_1007_s00477_025_02955_9 crossref_primary_10_1016_j_jhydrol_2024_131347 crossref_primary_10_1109_ACCESS_2024_3486811 crossref_primary_10_1515_joc_2022_0322 crossref_primary_10_1080_01969722_2022_2157610 crossref_primary_10_7717_peerj_cs_910 crossref_primary_10_3390_s23115358 crossref_primary_10_1140_epjp_s13360_024_05916_3 crossref_primary_10_1016_j_egyr_2022_08_177 crossref_primary_10_3390_biomimetics8060470 crossref_primary_10_1007_s13198_024_02663_7 crossref_primary_10_1038_s41598_024_77523_2 crossref_primary_10_1038_s41598_024_84458_1 crossref_primary_10_1109_ACCESS_2022_3229964 crossref_primary_10_3390_biomimetics7040204 crossref_primary_10_1080_01430750_2022_2091036 crossref_primary_10_3390_biomimetics8010121 crossref_primary_10_32604_cmes_2023_029404 crossref_primary_10_3390_biomimetics8060468 crossref_primary_10_3389_fmech_2022_1126450 crossref_primary_10_3390_biomimetics8060508 crossref_primary_10_3390_biomimetics8060507 crossref_primary_10_1016_j_prime_2023_100304 crossref_primary_10_3390_biomimetics8050386 crossref_primary_10_3390_biomimetics9020065 crossref_primary_10_1016_j_jtice_2024_105796 crossref_primary_10_1016_j_matcom_2023_04_027 crossref_primary_10_1007_s10462_024_11023_7 crossref_primary_10_1038_s41598_024_79185_6 crossref_primary_10_1016_j_geits_2025_100254 crossref_primary_10_1142_S0219519424500325 crossref_primary_10_1038_s41598_022_22458_9 crossref_primary_10_1016_j_engappai_2022_104677 crossref_primary_10_1038_s41598_025_91784_5 crossref_primary_10_1007_s10462_024_11096_4 crossref_primary_10_3390_s21155214 crossref_primary_10_3390_biomimetics8020239 crossref_primary_10_1080_01430750_2022_2164353 crossref_primary_10_1016_j_engappai_2023_106959 crossref_primary_10_1177_18724981251318190 crossref_primary_10_3390_electronics11193034 crossref_primary_10_1007_s11831_023_10030_1 crossref_primary_10_1007_s13042_022_01703_7 crossref_primary_10_1038_s41598_023_48462_1 crossref_primary_10_32604_cmes_2023_025908 crossref_primary_10_7717_peerj_cs_976 crossref_primary_10_1016_j_eij_2024_100603 crossref_primary_10_1016_j_eswa_2024_124190 crossref_primary_10_37391_ijeer_100332 crossref_primary_10_1007_s00500_023_08274_x crossref_primary_10_1038_s41598_024_80132_8 crossref_primary_10_3390_s22051795 crossref_primary_10_1016_j_knosys_2025_113020 crossref_primary_10_1109_ACCESS_2022_3208700 |
Cites_doi | 10.3390/app11031286 10.1007/978-981-13-2414-7_5 10.1016/j.engappai.2020.103541 10.1016/j.advengsoft.2013.12.007 10.1007/BF00140399 10.1007/s00366-019-00826-w 10.1016/j.advengsoft.2016.01.008 10.1016/j.knosys.2021.106926 10.1016/j.ins.2009.03.004 10.1016/j.eswa.2020.113377 10.3390/e23040491 10.3390/app10217683 10.1109/4235.771163 10.1016/j.cad.2010.12.015 10.1162/106365600568257 10.1109/3477.484436 10.3390/app11104382 |
ContentType | Journal Article |
Copyright | 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION 7X8 5PM DOA |
DOI | 10.3390/s21134567 |
DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_e247b0b3cbfd4b668d97609cff90007a PMC8271451 10_3390_s21134567 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 7X8 PPXIY 5PM PJZUB PUEGO |
ID | FETCH-LOGICAL-c418t-2ff4ce05cc883076d952be0baf91f4b526b1f45d6781fcadabb65bec668aabef3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:18:44 EDT 2025 Thu Aug 21 13:44:20 EDT 2025 Fri Jul 11 05:49:05 EDT 2025 Tue Jul 01 03:56:15 EDT 2025 Thu Apr 24 22:55:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c418t-2ff4ce05cc883076d952be0baf91f4b526b1f45d6781fcadabb65bec668aabef3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-8992-125X |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s21134567 |
PMID | 34283111 |
PQID | 2553525744 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e247b0b3cbfd4b668d97609cff90007a pubmedcentral_primary_oai_pubmedcentral_nih_gov_8271451 proquest_miscellaneous_2553525744 crossref_citationtrail_10_3390_s21134567 crossref_primary_10_3390_s21134567 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210703 |
PublicationDateYYYYMMDD | 2021-07-03 |
PublicationDate_xml | – month: 7 year: 2021 text: 20210703 day: 3 |
PublicationDecade | 2020 |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationYear | 2021 |
Publisher | MDPI MDPI AG |
Publisher_xml | – name: MDPI – name: MDPI AG |
References | Dorigo (ref_8) 1996; 26 Mirjalili (ref_17) 2016; 95 Dehghani (ref_6) 2020; 13 Rashedi (ref_14) 2009; 179 Rao (ref_15) 2011; 43 Kaur (ref_19) 2020; 90 Dhiman (ref_2) 2021; 222 Doumari (ref_1) 2021; 14 Hofmeyr (ref_10) 2000; 8 ref_13 ref_12 ref_3 ref_9 Dhiman (ref_4) 2019; 37 Yao (ref_20) 1999; 3 Faramarzi (ref_18) 2020; 152 ref_5 Craig (ref_11) 1988; 2 Mirjalili (ref_16) 2014; 69 ref_7 |
References_xml | – volume: 13 start-page: 364 year: 2020 ident: ref_6 article-title: MLO: Multi leader optimizer publication-title: Int. J. Intell. Eng. Syst – volume: 14 start-page: 545 year: 2021 ident: ref_1 article-title: Ring Toss Game-Based Optimization Algorithm for Solving Various Optimization Problems publication-title: Int. J. Intell. Eng. Syst. – ident: ref_9 doi: 10.3390/app11031286 – ident: ref_12 doi: 10.1007/978-981-13-2414-7_5 – volume: 90 start-page: 103541 year: 2020 ident: ref_19 article-title: Tunicate swarm algorithm: A new bio-inspired based metaheuristic paradigm for global optimization publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.103541 – volume: 69 start-page: 46 year: 2014 ident: ref_16 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 2 start-page: 103 year: 1988 ident: ref_11 article-title: Blackboard systems publication-title: Artif. Intell. Rev. doi: 10.1007/BF00140399 – volume: 37 start-page: 323 year: 2019 ident: ref_4 article-title: ESA: A hybrid bio-inspired metaheuristic optimization approach for engineering problems publication-title: Eng. Comput. doi: 10.1007/s00366-019-00826-w – volume: 95 start-page: 51 year: 2016 ident: ref_17 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 222 start-page: 106926 year: 2021 ident: ref_2 article-title: SSC: A hybrid nature-inspired meta-heuristic optimization algorithm for engineering applications publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2021.106926 – volume: 179 start-page: 2232 year: 2009 ident: ref_14 article-title: GSA: A gravitational search algorithm publication-title: Inf. Sci. doi: 10.1016/j.ins.2009.03.004 – volume: 152 start-page: 113377 year: 2020 ident: ref_18 article-title: Marine Predators Algorithm: A nature-inspired metaheuristic publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113377 – ident: ref_13 – ident: ref_5 doi: 10.3390/e23040491 – ident: ref_3 doi: 10.3390/app10217683 – volume: 3 start-page: 82 year: 1999 ident: ref_20 article-title: Evolutionary programming made faster publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.771163 – volume: 43 start-page: 303 year: 2011 ident: ref_15 article-title: Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems publication-title: Comput. Aided Des. doi: 10.1016/j.cad.2010.12.015 – volume: 8 start-page: 443 year: 2000 ident: ref_10 article-title: Architecture for an artificial immune system publication-title: Evol. Comput. doi: 10.1162/106365600568257 – volume: 26 start-page: 29 year: 1996 ident: ref_8 article-title: Ant system: Optimization by a colony of cooperating agents publication-title: IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) doi: 10.1109/3477.484436 – ident: ref_7 doi: 10.3390/app11104382 |
SSID | ssj0023338 |
Score | 2.6088135 |
Snippet | Population-based optimization algorithms are one of the most widely used and popular methods in solving optimization problems. In this paper, a new... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 4567 |
SubjectTerms | optimization optimization algorithm optimization problem population-based teamwork |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJz2IT6wvVvHgJTSP3c3GWxVLEaqXFnoL-7SFNhXbgj_f2U0aGhG8eArZHUiYmd2ZbzP5BqE7k1LLKbWBkRkNIP8XAeeagUFsQhVkJNqf6Q5eWX9EXsZ0vNXqy9WElfTApeI6JiapDGWipNVEMsY1BNAwU9a6dpepT40g5m3AVAW1EkBeJY9QAqC-swSYk0CqkDaijyfpb2SWzbrIrUDTO0D7VYaIu-WbHaIdUxyhvS3ewGOkhkbMXUUVfoMVP69-pcTd2fsCsP5k_oC7GHavH7MVeziGNBX3IJz50cG0qEU6A_FV35ygUe95-NQPqm4JgSIRXwWxtUSZkCrFOSxcpjMaSxNKYbPIEkljJuFKNUSnyCqhhZSMggVBpUJIY5NT1CoWhTlDmKmIMyU4YCVNVJo4hhejHWMobIY2FG10v9FirioqcdfRYpYDpHAKz2uFt9FtLfpR8mf8JvToTFELOMprPwCOkFeOkP_lCG10szFkDkvEffcQhVmslzmgJk_6SkgbpQ0LN57YnCmmE0-2zePUNTM-_49XvEC7sSuJcafDySVqrT7X5gpympW89u77DWUf-lc priority: 102 providerName: Directory of Open Access Journals |
Title | Teamwork Optimization Algorithm: A New Optimization Approach for Function Minimization/Maximization |
URI | https://www.proquest.com/docview/2553525744 https://pubmed.ncbi.nlm.nih.gov/PMC8271451 https://doaj.org/article/e247b0b3cbfd4b668d97609cff90007a |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEB5BuJRDBaUVKTRyKw69uDj2voJUoQSRRpVCESJSbtY-k0iJA0mQ4N8z6zhWjDj2Ysu7I3k149mZb3f9DcCZ5dQJSl1oVYuGmP_LUAjD0CAuoRozEpOv6fZvWG9A_g7pcAc2NTYLBS7fhXa-ntRgMf31_PhyiQ7_2yNOhOznSwQxCSYCfBf2MCBxX8igT8rNhDhBGLYmFaqKV0JRzthfSTOrhyS3ok73AD4W6WLQXtv3EHZs9gn2t0gEj0DfWznzx6uCf-j-s-K_yqA9Hc0R-I9nF0E7wKnsTW9BJR5gzhp0Mbblrf1JVoqc9-Vz-fAZBt3r-6teWJROCDVpilUYO0e0jajWQqAXM9OisbKRkq7VdETRmCm8U4Ohqum0NFIpRtGcjAkplXXJF6hl88weQ8B0UzAtBQInQzRPPN2LNZ4-FGdGF8k6_NxoMdUFr7gvbzFNEV94haelwuvwoxR9WJNpvCfU8aYoBTz_dd4wX4zSwp1SGxOuIpVo5QxROGqDaVXU0s75IqgcB_V9Y8gU_cVvgsjMzp-WKUKonAGWkDrwioUrb6z2ZJNxzrwtYu4rG3_9H0M8gQ-xPx_jl4qTU6itFk_2GyY4K9WAXT7keBXdPw3Y61zf3N418sWCRv5hvwLitARv |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Teamwork+Optimization+Algorithm%3A+A+New+Optimization+Approach+for+Function+Minimization%2FMaximization&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Mohammad+Dehghani&rft.au=Pavel+Trojovsk%C3%BD&rft.date=2021-07-03&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=21&rft.issue=13&rft.spage=4567&rft_id=info:doi/10.3390%2Fs21134567&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e247b0b3cbfd4b668d97609cff90007a |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |