Teamwork Optimization Algorithm: A New Optimization Approach for Function Minimization/Maximization

Population-based optimization algorithms are one of the most widely used and popular methods in solving optimization problems. In this paper, a new population-based optimization algorithm called the Teamwork Optimization Algorithm (TOA) is presented to solve various optimization problems. The main i...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 21; no. 13; p. 4567
Main Authors Dehghani, Mohammad, Trojovský, Pavel
Format Journal Article
LanguageEnglish
Published MDPI 03.07.2021
MDPI AG
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Population-based optimization algorithms are one of the most widely used and popular methods in solving optimization problems. In this paper, a new population-based optimization algorithm called the Teamwork Optimization Algorithm (TOA) is presented to solve various optimization problems. The main idea in designing the TOA is to simulate the teamwork behaviors of the members of a team in order to achieve their desired goal. The TOA is mathematically modeled for usability in solving optimization problems. The capability of the TOA in solving optimization problems is evaluated on a set of twenty-three standard objective functions. Additionally, the performance of the proposed TOA is compared with eight well-known optimization algorithms in providing a suitable quasi-optimal solution. The results of optimization of objective functions indicate the ability of the TOA to solve various optimization problems. Analysis and comparison of the simulation results of the optimization algorithms show that the proposed TOA is superior and far more competitive than the eight compared algorithms.
AbstractList Population-based optimization algorithms are one of the most widely used and popular methods in solving optimization problems. In this paper, a new population-based optimization algorithm called the Teamwork Optimization Algorithm (TOA) is presented to solve various optimization problems. The main idea in designing the TOA is to simulate the teamwork behaviors of the members of a team in order to achieve their desired goal. The TOA is mathematically modeled for usability in solving optimization problems. The capability of the TOA in solving optimization problems is evaluated on a set of twenty-three standard objective functions. Additionally, the performance of the proposed TOA is compared with eight well-known optimization algorithms in providing a suitable quasi-optimal solution. The results of optimization of objective functions indicate the ability of the TOA to solve various optimization problems. Analysis and comparison of the simulation results of the optimization algorithms show that the proposed TOA is superior and far more competitive than the eight compared algorithms.
Population-based optimization algorithms are one of the most widely used and popular methods in solving optimization problems. In this paper, a new population-based optimization algorithm called the Teamwork Optimization Algorithm (TOA) is presented to solve various optimization problems. The main idea in designing the TOA is to simulate the teamwork behaviors of the members of a team in order to achieve their desired goal. The TOA is mathematically modeled for usability in solving optimization problems. The capability of the TOA in solving optimization problems is evaluated on a set of twenty-three standard objective functions. Additionally, the performance of the proposed TOA is compared with eight well-known optimization algorithms in providing a suitable quasi-optimal solution. The results of optimization of objective functions indicate the ability of the TOA to solve various optimization problems. Analysis and comparison of the simulation results of the optimization algorithms show that the proposed TOA is superior and far more competitive than the eight compared algorithms.Population-based optimization algorithms are one of the most widely used and popular methods in solving optimization problems. In this paper, a new population-based optimization algorithm called the Teamwork Optimization Algorithm (TOA) is presented to solve various optimization problems. The main idea in designing the TOA is to simulate the teamwork behaviors of the members of a team in order to achieve their desired goal. The TOA is mathematically modeled for usability in solving optimization problems. The capability of the TOA in solving optimization problems is evaluated on a set of twenty-three standard objective functions. Additionally, the performance of the proposed TOA is compared with eight well-known optimization algorithms in providing a suitable quasi-optimal solution. The results of optimization of objective functions indicate the ability of the TOA to solve various optimization problems. Analysis and comparison of the simulation results of the optimization algorithms show that the proposed TOA is superior and far more competitive than the eight compared algorithms.
Author Trojovský, Pavel
Dehghani, Mohammad
AuthorAffiliation 1 Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz 71557-13876, Iran; m.dehghani@sutech.ac.ir
2 Department of Mathematics, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic
AuthorAffiliation_xml – name: 1 Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz 71557-13876, Iran; m.dehghani@sutech.ac.ir
– name: 2 Department of Mathematics, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic
Author_xml – sequence: 1
  givenname: Mohammad
  surname: Dehghani
  fullname: Dehghani, Mohammad
– sequence: 2
  givenname: Pavel
  orcidid: 0000-0001-8992-125X
  surname: Trojovský
  fullname: Trojovský, Pavel
BookMark eNplkclO5DAQhi0EYj_wBjnCoae9Js4ckFqITWK5wNkqO3a3mSQOdprt6cl0Q4vlVFV__fWpVLWD1tvQWoQOCP7DWInHiRLCuMiLNbRNOOUjSSle_5JvoZ2UHjCmjDG5ibYYp5IRQraRubPQPIf4L7vtet_4N-h9aLNJPQ3R97PmbzbJbuzzj27XxQBmlrkQs7N5axbqtW9XlvE1vKyKPbThoE52_yPuovuz07uTi9HV7fnlyeRqZDiR_Yg6x43FwhgpGS7yqhRUW6zBlcRxLWiuhyiqvJDEGahA61xoa_JcAmjr2C66XHKrAA-qi76B-KoCeLUQQpwqiL03tVWW8kJjzYx2FdcDoSqLHJfGuRJjXMDAOl6yurlubGVs20eov0G_d1o_U9PwpCQtCBdkABx-AGJ4nNvUq8YnY-saWhvmSVEhmKCi4HywjpdWE0NK0TplfL-43ED2tSJY_X-zWr15mDj6MfG52G_vO-FDq3E
CitedBy_id crossref_primary_10_1038_s41598_022_19313_2
crossref_primary_10_1007_s11571_021_09771_1
crossref_primary_10_1007_s00521_024_09648_4
crossref_primary_10_1080_23307706_2022_2146012
crossref_primary_10_3390_pr11051502
crossref_primary_10_3390_biomimetics8020149
crossref_primary_10_1007_s11831_022_09800_0
crossref_primary_10_1007_s10586_024_04618_w
crossref_primary_10_32604_cmc_2023_036453
crossref_primary_10_1038_s41598_023_35863_5
crossref_primary_10_1109_ACCESS_2023_3283422
crossref_primary_10_32604_cmc_2022_024736
crossref_primary_10_3390_biomimetics9010008
crossref_primary_10_32604_cmc_2023_030379
crossref_primary_10_32604_cmc_2023_034695
crossref_primary_10_1109_ACCESS_2023_3327732
crossref_primary_10_1111_jph_13426
crossref_primary_10_1007_s00477_025_02955_9
crossref_primary_10_1016_j_jhydrol_2024_131347
crossref_primary_10_1109_ACCESS_2024_3486811
crossref_primary_10_1515_joc_2022_0322
crossref_primary_10_1080_01969722_2022_2157610
crossref_primary_10_7717_peerj_cs_910
crossref_primary_10_3390_s23115358
crossref_primary_10_1140_epjp_s13360_024_05916_3
crossref_primary_10_1016_j_egyr_2022_08_177
crossref_primary_10_3390_biomimetics8060470
crossref_primary_10_1007_s13198_024_02663_7
crossref_primary_10_1038_s41598_024_77523_2
crossref_primary_10_1038_s41598_024_84458_1
crossref_primary_10_1109_ACCESS_2022_3229964
crossref_primary_10_3390_biomimetics7040204
crossref_primary_10_1080_01430750_2022_2091036
crossref_primary_10_3390_biomimetics8010121
crossref_primary_10_32604_cmes_2023_029404
crossref_primary_10_3390_biomimetics8060468
crossref_primary_10_3389_fmech_2022_1126450
crossref_primary_10_3390_biomimetics8060508
crossref_primary_10_3390_biomimetics8060507
crossref_primary_10_1016_j_prime_2023_100304
crossref_primary_10_3390_biomimetics8050386
crossref_primary_10_3390_biomimetics9020065
crossref_primary_10_1016_j_jtice_2024_105796
crossref_primary_10_1016_j_matcom_2023_04_027
crossref_primary_10_1007_s10462_024_11023_7
crossref_primary_10_1038_s41598_024_79185_6
crossref_primary_10_1016_j_geits_2025_100254
crossref_primary_10_1142_S0219519424500325
crossref_primary_10_1038_s41598_022_22458_9
crossref_primary_10_1016_j_engappai_2022_104677
crossref_primary_10_1038_s41598_025_91784_5
crossref_primary_10_1007_s10462_024_11096_4
crossref_primary_10_3390_s21155214
crossref_primary_10_3390_biomimetics8020239
crossref_primary_10_1080_01430750_2022_2164353
crossref_primary_10_1016_j_engappai_2023_106959
crossref_primary_10_1177_18724981251318190
crossref_primary_10_3390_electronics11193034
crossref_primary_10_1007_s11831_023_10030_1
crossref_primary_10_1007_s13042_022_01703_7
crossref_primary_10_1038_s41598_023_48462_1
crossref_primary_10_32604_cmes_2023_025908
crossref_primary_10_7717_peerj_cs_976
crossref_primary_10_1016_j_eij_2024_100603
crossref_primary_10_1016_j_eswa_2024_124190
crossref_primary_10_37391_ijeer_100332
crossref_primary_10_1007_s00500_023_08274_x
crossref_primary_10_1038_s41598_024_80132_8
crossref_primary_10_3390_s22051795
crossref_primary_10_1016_j_knosys_2025_113020
crossref_primary_10_1109_ACCESS_2022_3208700
Cites_doi 10.3390/app11031286
10.1007/978-981-13-2414-7_5
10.1016/j.engappai.2020.103541
10.1016/j.advengsoft.2013.12.007
10.1007/BF00140399
10.1007/s00366-019-00826-w
10.1016/j.advengsoft.2016.01.008
10.1016/j.knosys.2021.106926
10.1016/j.ins.2009.03.004
10.1016/j.eswa.2020.113377
10.3390/e23040491
10.3390/app10217683
10.1109/4235.771163
10.1016/j.cad.2010.12.015
10.1162/106365600568257
10.1109/3477.484436
10.3390/app11104382
ContentType Journal Article
Copyright 2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3390/s21134567
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_e247b0b3cbfd4b668d97609cff90007a
PMC8271451
10_3390_s21134567
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
7X8
PPXIY
5PM
PJZUB
PUEGO
ID FETCH-LOGICAL-c418t-2ff4ce05cc883076d952be0baf91f4b526b1f45d6781fcadabb65bec668aabef3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:18:44 EDT 2025
Thu Aug 21 13:44:20 EDT 2025
Fri Jul 11 05:49:05 EDT 2025
Tue Jul 01 03:56:15 EDT 2025
Thu Apr 24 22:55:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-2ff4ce05cc883076d952be0baf91f4b526b1f45d6781fcadabb65bec668aabef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8992-125X
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s21134567
PMID 34283111
PQID 2553525744
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_e247b0b3cbfd4b668d97609cff90007a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8271451
proquest_miscellaneous_2553525744
crossref_citationtrail_10_3390_s21134567
crossref_primary_10_3390_s21134567
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210703
PublicationDateYYYYMMDD 2021-07-03
PublicationDate_xml – month: 7
  year: 2021
  text: 20210703
  day: 3
PublicationDecade 2020
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2021
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References Dorigo (ref_8) 1996; 26
Mirjalili (ref_17) 2016; 95
Dehghani (ref_6) 2020; 13
Rashedi (ref_14) 2009; 179
Rao (ref_15) 2011; 43
Kaur (ref_19) 2020; 90
Dhiman (ref_2) 2021; 222
Doumari (ref_1) 2021; 14
Hofmeyr (ref_10) 2000; 8
ref_13
ref_12
ref_3
ref_9
Dhiman (ref_4) 2019; 37
Yao (ref_20) 1999; 3
Faramarzi (ref_18) 2020; 152
ref_5
Craig (ref_11) 1988; 2
Mirjalili (ref_16) 2014; 69
ref_7
References_xml – volume: 13
  start-page: 364
  year: 2020
  ident: ref_6
  article-title: MLO: Multi leader optimizer
  publication-title: Int. J. Intell. Eng. Syst
– volume: 14
  start-page: 545
  year: 2021
  ident: ref_1
  article-title: Ring Toss Game-Based Optimization Algorithm for Solving Various Optimization Problems
  publication-title: Int. J. Intell. Eng. Syst.
– ident: ref_9
  doi: 10.3390/app11031286
– ident: ref_12
  doi: 10.1007/978-981-13-2414-7_5
– volume: 90
  start-page: 103541
  year: 2020
  ident: ref_19
  article-title: Tunicate swarm algorithm: A new bio-inspired based metaheuristic paradigm for global optimization
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.103541
– volume: 69
  start-page: 46
  year: 2014
  ident: ref_16
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 2
  start-page: 103
  year: 1988
  ident: ref_11
  article-title: Blackboard systems
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/BF00140399
– volume: 37
  start-page: 323
  year: 2019
  ident: ref_4
  article-title: ESA: A hybrid bio-inspired metaheuristic optimization approach for engineering problems
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-019-00826-w
– volume: 95
  start-page: 51
  year: 2016
  ident: ref_17
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 222
  start-page: 106926
  year: 2021
  ident: ref_2
  article-title: SSC: A hybrid nature-inspired meta-heuristic optimization algorithm for engineering applications
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.106926
– volume: 179
  start-page: 2232
  year: 2009
  ident: ref_14
  article-title: GSA: A gravitational search algorithm
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2009.03.004
– volume: 152
  start-page: 113377
  year: 2020
  ident: ref_18
  article-title: Marine Predators Algorithm: A nature-inspired metaheuristic
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113377
– ident: ref_13
– ident: ref_5
  doi: 10.3390/e23040491
– ident: ref_3
  doi: 10.3390/app10217683
– volume: 3
  start-page: 82
  year: 1999
  ident: ref_20
  article-title: Evolutionary programming made faster
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.771163
– volume: 43
  start-page: 303
  year: 2011
  ident: ref_15
  article-title: Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems
  publication-title: Comput. Aided Des.
  doi: 10.1016/j.cad.2010.12.015
– volume: 8
  start-page: 443
  year: 2000
  ident: ref_10
  article-title: Architecture for an artificial immune system
  publication-title: Evol. Comput.
  doi: 10.1162/106365600568257
– volume: 26
  start-page: 29
  year: 1996
  ident: ref_8
  article-title: Ant system: Optimization by a colony of cooperating agents
  publication-title: IEEE Trans. Syst. Man Cybern. Part B (Cybernetics)
  doi: 10.1109/3477.484436
– ident: ref_7
  doi: 10.3390/app11104382
SSID ssj0023338
Score 2.6088135
Snippet Population-based optimization algorithms are one of the most widely used and popular methods in solving optimization problems. In this paper, a new...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 4567
SubjectTerms optimization
optimization algorithm
optimization problem
population-based
teamwork
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJz2IT6wvVvHgJTSP3c3GWxVLEaqXFnoL-7SFNhXbgj_f2U0aGhG8eArZHUiYmd2ZbzP5BqE7k1LLKbWBkRkNIP8XAeeagUFsQhVkJNqf6Q5eWX9EXsZ0vNXqy9WElfTApeI6JiapDGWipNVEMsY1BNAwU9a6dpepT40g5m3AVAW1EkBeJY9QAqC-swSYk0CqkDaijyfpb2SWzbrIrUDTO0D7VYaIu-WbHaIdUxyhvS3ewGOkhkbMXUUVfoMVP69-pcTd2fsCsP5k_oC7GHavH7MVeziGNBX3IJz50cG0qEU6A_FV35ygUe95-NQPqm4JgSIRXwWxtUSZkCrFOSxcpjMaSxNKYbPIEkljJuFKNUSnyCqhhZSMggVBpUJIY5NT1CoWhTlDmKmIMyU4YCVNVJo4hhejHWMobIY2FG10v9FirioqcdfRYpYDpHAKz2uFt9FtLfpR8mf8JvToTFELOMprPwCOkFeOkP_lCG10szFkDkvEffcQhVmslzmgJk_6SkgbpQ0LN57YnCmmE0-2zePUNTM-_49XvEC7sSuJcafDySVqrT7X5gpympW89u77DWUf-lc
  priority: 102
  providerName: Directory of Open Access Journals
Title Teamwork Optimization Algorithm: A New Optimization Approach for Function Minimization/Maximization
URI https://www.proquest.com/docview/2553525744
https://pubmed.ncbi.nlm.nih.gov/PMC8271451
https://doaj.org/article/e247b0b3cbfd4b668d97609cff90007a
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEB5BuJRDBaUVKTRyKw69uDj2voJUoQSRRpVCESJSbtY-k0iJA0mQ4N8z6zhWjDj2Ysu7I3k149mZb3f9DcCZ5dQJSl1oVYuGmP_LUAjD0CAuoRozEpOv6fZvWG9A_g7pcAc2NTYLBS7fhXa-ntRgMf31_PhyiQ7_2yNOhOznSwQxCSYCfBf2MCBxX8igT8rNhDhBGLYmFaqKV0JRzthfSTOrhyS3ok73AD4W6WLQXtv3EHZs9gn2t0gEj0DfWznzx6uCf-j-s-K_yqA9Hc0R-I9nF0E7wKnsTW9BJR5gzhp0Mbblrf1JVoqc9-Vz-fAZBt3r-6teWJROCDVpilUYO0e0jajWQqAXM9OisbKRkq7VdETRmCm8U4Ohqum0NFIpRtGcjAkplXXJF6hl88weQ8B0UzAtBQInQzRPPN2LNZ4-FGdGF8k6_NxoMdUFr7gvbzFNEV94haelwuvwoxR9WJNpvCfU8aYoBTz_dd4wX4zSwp1SGxOuIpVo5QxROGqDaVXU0s75IqgcB_V9Y8gU_cVvgsjMzp-WKUKonAGWkDrwioUrb6z2ZJNxzrwtYu4rG3_9H0M8gQ-xPx_jl4qTU6itFk_2GyY4K9WAXT7keBXdPw3Y61zf3N418sWCRv5hvwLitARv
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Teamwork+Optimization+Algorithm%3A+A+New+Optimization+Approach+for+Function+Minimization%2FMaximization&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Mohammad+Dehghani&rft.au=Pavel+Trojovsk%C3%BD&rft.date=2021-07-03&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=21&rft.issue=13&rft.spage=4567&rft_id=info:doi/10.3390%2Fs21134567&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e247b0b3cbfd4b668d97609cff90007a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon