Coordination Number Regulation of Molybdenum Single-Atom Nanozyme Peroxidase-like Specificity

Nanozymes are promising alternatives to natural enzymes, but their use remains limited owing to poor specificity. Overcoming this and controlling the targeted enzyme-like performance of traditional nanozymes is extremely challenging due to the intrinsic structural complexity of these systems. We rep...

Full description

Saved in:
Bibliographic Details
Published inChem Vol. 7; no. 2; pp. 436 - 449
Main Authors Wang, Ying, Jia, Guangri, Cui, Xiaoqiang, Zhao, Xiao, Zhang, Qinghua, Gu, Lin, Zheng, Lirong, Li, Lu Hua, Wu, Qiong, Singh, David J., Matsumura, Daiju, Tsuji, Takuya, Cui, Yi-Tao, Zhao, Jingxiang, Zheng, Weitao
Format Journal Article
LanguageEnglish
Published Elsevier Inc 11.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nanozymes are promising alternatives to natural enzymes, but their use remains limited owing to poor specificity. Overcoming this and controlling the targeted enzyme-like performance of traditional nanozymes is extremely challenging due to the intrinsic structural complexity of these systems. We report theoretical design and experimental realization of a series of heterogeneous molybdenum single-atom nanozymes (named MoSA–Nx–C), wherein we find that the peroxidase-like specificity is well regulated by the coordination numbers of single Mo sites. The resulting MoSA–N3–C catalyst shows exclusive peroxidase-like behavior. It achieves this behavior via a homolytic pathway, whereas MoSA–N2–C and MoSA–N4–C catalysts have a different heterolytic pathway. The mechanism of this coordination-number-dependent enzymatic specificity is attributed to geometrical structure differences and orientation relationships of the frontier molecular orbitals toward these MoSA–Nx–C peroxidase mimics. This study demonstrates the rational design of peroxidase-specific nanozymes and precise regulation of their enzymatic properties. [Display omitted] •A class of MoSA–Nx–C nanozymes are designed and implemented•The peroxidase-like specificity is regulated by Mo–Nx coordination numbers•MoSA–N3–C single-atom nanozyme has superior and exclusive peroxidase-like activity•The mechanism of coordination-number-dependent POD-like specificity is elucidated Nanozymes, which are nanomaterials with enzyme-like characteristics, combine the advantages of nanomaterials and biocatalysts. Although the stability and durability of these nanozymes are comparable to those of natural enzymes, unsatisfactory specificity still limits their wide application as alternatives to natural enzymes. Controlling the targeted enzyme-like performance of traditional nanozymes is extremely challenging owing to the intrinsic structural complexity of nanomaterials. Here, we report the theoretical design and experimental realization of a series of heterogeneous molybdenum single-atom nanozymes. Their peroxidase-like specificity is well regulated by the coordination numbers of single Mo sites. A MoSA–N3–C single-atom nanozyme with superior and specific peroxidase-like activity is demonstrated. This work unravels the structure-selectivity relationships and provides an effective strategy for the rational design of targeted nanozymes. Nanozymes are promising alternatives to natural enzymes, but their use remains limited owing to poor specificity. In this context, a clear relationship between the peroxidase-like specificity and configurations of molybdenum single-atom nanozymes (MoSA–Nx–C) is established through the regulation of Mo–Nx coordination numbers at the atomic level. The resulting MoSA–N3–C nanozyme has superior and exclusive peroxidase-like activity. This work provides a strategy for the rational design and realization of selective single-atom nanozymes.
AbstractList Nanozymes are promising alternatives to natural enzymes, but their use remains limited owing to poor specificity. Overcoming this and controlling the targeted enzyme-like performance of traditional nanozymes is extremely challenging due to the intrinsic structural complexity of these systems. We report theoretical design and experimental realization of a series of heterogeneous molybdenum single-atom nanozymes (named MoSA–Nx–C), wherein we find that the peroxidase-like specificity is well regulated by the coordination numbers of single Mo sites. The resulting MoSA–N3–C catalyst shows exclusive peroxidase-like behavior. It achieves this behavior via a homolytic pathway, whereas MoSA–N2–C and MoSA–N4–C catalysts have a different heterolytic pathway. The mechanism of this coordination-number-dependent enzymatic specificity is attributed to geometrical structure differences and orientation relationships of the frontier molecular orbitals toward these MoSA–Nx–C peroxidase mimics. This study demonstrates the rational design of peroxidase-specific nanozymes and precise regulation of their enzymatic properties. [Display omitted] •A class of MoSA–Nx–C nanozymes are designed and implemented•The peroxidase-like specificity is regulated by Mo–Nx coordination numbers•MoSA–N3–C single-atom nanozyme has superior and exclusive peroxidase-like activity•The mechanism of coordination-number-dependent POD-like specificity is elucidated Nanozymes, which are nanomaterials with enzyme-like characteristics, combine the advantages of nanomaterials and biocatalysts. Although the stability and durability of these nanozymes are comparable to those of natural enzymes, unsatisfactory specificity still limits their wide application as alternatives to natural enzymes. Controlling the targeted enzyme-like performance of traditional nanozymes is extremely challenging owing to the intrinsic structural complexity of nanomaterials. Here, we report the theoretical design and experimental realization of a series of heterogeneous molybdenum single-atom nanozymes. Their peroxidase-like specificity is well regulated by the coordination numbers of single Mo sites. A MoSA–N3–C single-atom nanozyme with superior and specific peroxidase-like activity is demonstrated. This work unravels the structure-selectivity relationships and provides an effective strategy for the rational design of targeted nanozymes. Nanozymes are promising alternatives to natural enzymes, but their use remains limited owing to poor specificity. In this context, a clear relationship between the peroxidase-like specificity and configurations of molybdenum single-atom nanozymes (MoSA–Nx–C) is established through the regulation of Mo–Nx coordination numbers at the atomic level. The resulting MoSA–N3–C nanozyme has superior and exclusive peroxidase-like activity. This work provides a strategy for the rational design and realization of selective single-atom nanozymes.
Author Cui, Xiaoqiang
Wu, Qiong
Jia, Guangri
Zhang, Qinghua
Zheng, Lirong
Li, Lu Hua
Cui, Yi-Tao
Zhao, Jingxiang
Wang, Ying
Singh, David J.
Zhao, Xiao
Matsumura, Daiju
Tsuji, Takuya
Gu, Lin
Zheng, Weitao
Author_xml – sequence: 1
  givenname: Ying
  surname: Wang
  fullname: Wang, Ying
  organization: State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun 130012, China
– sequence: 2
  givenname: Guangri
  surname: Jia
  fullname: Jia, Guangri
  organization: State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun 130012, China
– sequence: 3
  givenname: Xiaoqiang
  surname: Cui
  fullname: Cui, Xiaoqiang
  email: xqcui@jlu.edu.cn
  organization: State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun 130012, China
– sequence: 4
  givenname: Xiao
  surname: Zhao
  fullname: Zhao, Xiao
  organization: State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun 130012, China
– sequence: 5
  givenname: Qinghua
  surname: Zhang
  fullname: Zhang, Qinghua
  organization: Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Laboratory of Advanced Materials and Electron Microscopy, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
– sequence: 6
  givenname: Lin
  surname: Gu
  fullname: Gu, Lin
  organization: Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Laboratory of Advanced Materials and Electron Microscopy, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
– sequence: 7
  givenname: Lirong
  surname: Zheng
  fullname: Zheng, Lirong
  organization: Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
– sequence: 8
  givenname: Lu Hua
  surname: Li
  fullname: Li, Lu Hua
  organization: Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds Campus, Waurn Ponds, VIC 3216, Australia
– sequence: 9
  givenname: Qiong
  surname: Wu
  fullname: Wu, Qiong
  organization: State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun 130012, China
– sequence: 10
  givenname: David J.
  surname: Singh
  fullname: Singh, David J.
  organization: Department of Physics and Astronomy and Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
– sequence: 11
  givenname: Daiju
  surname: Matsumura
  fullname: Matsumura, Daiju
  organization: Materials Sciences Research Center, Japan Atomic Energy Agency SPring-8, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
– sequence: 12
  givenname: Takuya
  surname: Tsuji
  fullname: Tsuji, Takuya
  organization: Materials Sciences Research Center, Japan Atomic Energy Agency SPring-8, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
– sequence: 13
  givenname: Yi-Tao
  surname: Cui
  fullname: Cui, Yi-Tao
  organization: SANKA High Technology Co. Ltd. 90-1, Kurimachi, Shingu-machi, Tatsuno, Hyogo 679-5155, Japan
– sequence: 14
  givenname: Jingxiang
  surname: Zhao
  fullname: Zhao, Jingxiang
  email: xjz_hmily@163.com
  organization: College of Chemistry and Chemical Engineering, Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, Heilongjiang 150025, P. R. China
– sequence: 15
  givenname: Weitao
  surname: Zheng
  fullname: Zheng, Weitao
  organization: State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun 130012, China
BookMark eNqFkMtOwzAURC0EEqX0D1j4BxL8SNqUBVJV8ZJKQRSWyHLs6-KS2JWTIsLXkxAWiAWs7tVIZzQzR2jfeQcInVASU0LHp5tYvUC5DTEjrJNiwvgeGrAkpdGUTZP9H_8hGlXVhhBCM0YnKRmg57n3QVsna-sdXu7KHAJ-gPWu6BVv8K0vmlyD25V4Zd26gGhW-xIvpfMfTQn4HoJ_t1pWEBX2FfBqC8oaq2zdHKMDI4sKRt93iJ4uLx7n19Hi7upmPltEKqFZHTGQYyNTTbuMIHXCc0UNn4wNpQApJSyjMud6mqqJSUEyKjMOhiiZGM4h40OU9L4q-KoKYMQ22FKGRlAiupXERvQriW6lTm1XarGzX1gb-qt3HaQt_oPPexjaYm8WgqiUBadA2wCqFtrbvw0-Aao3idk
CitedBy_id crossref_primary_10_1021_acs_est_1c01131
crossref_primary_10_3390_chemosensors10100386
crossref_primary_10_1002_smll_202204015
crossref_primary_10_1021_acscatal_4c04419
crossref_primary_10_1038_s41467_024_50123_4
crossref_primary_10_1016_j_apcatb_2021_120877
crossref_primary_10_1002_advs_202205681
crossref_primary_10_1039_D2TA08542A
crossref_primary_10_1007_s40843_021_1734_x
crossref_primary_10_1016_j_ijhydene_2024_05_151
crossref_primary_10_1039_D3NR04853E
crossref_primary_10_1039_D3SC01714A
crossref_primary_10_1007_s12274_023_5931_4
crossref_primary_10_1002_anie_202318246
crossref_primary_10_1039_D3NR03327A
crossref_primary_10_1016_j_jcis_2022_04_002
crossref_primary_10_1038_s41467_024_46528_w
crossref_primary_10_1007_s12274_023_6208_7
crossref_primary_10_1021_acsanm_3c01669
crossref_primary_10_1002_smll_202203283
crossref_primary_10_1016_j_cclet_2024_110153
crossref_primary_10_1002_adfm_202406790
crossref_primary_10_1002_anie_202116170
crossref_primary_10_1007_s11426_022_1529_y
crossref_primary_10_1007_s00216_023_04720_9
crossref_primary_10_1016_j_aca_2024_342628
crossref_primary_10_1038_s41467_023_41002_5
crossref_primary_10_1039_D1EE03194E
crossref_primary_10_1039_D1TB01654G
crossref_primary_10_1039_D2SC05679H
crossref_primary_10_1002_adma_202412368
crossref_primary_10_1016_j_bios_2024_116917
crossref_primary_10_1063_5_0061499
crossref_primary_10_1016_j_ijhydene_2025_02_234
crossref_primary_10_1038_s44160_022_00138_w
crossref_primary_10_1002_adfm_202106139
crossref_primary_10_1021_acsanm_3c02630
crossref_primary_10_1007_s40820_023_01214_2
crossref_primary_10_1039_D2QI02318K
crossref_primary_10_1039_D3NJ00127J
crossref_primary_10_1021_acs_nanolett_3c01454
crossref_primary_10_1016_j_chemosphere_2023_140557
crossref_primary_10_1016_j_jcis_2024_01_132
crossref_primary_10_1002_adfm_202203001
crossref_primary_10_1021_acs_analchem_1c04018
crossref_primary_10_1021_acs_nanolett_2c01229
crossref_primary_10_1021_acs_analchem_1c04496
crossref_primary_10_1002_SMMD_20220025
crossref_primary_10_1016_j_ccr_2025_216539
crossref_primary_10_1002_adfm_202205461
crossref_primary_10_1021_jacs_4c00791
crossref_primary_10_1021_acsnano_4c00308
crossref_primary_10_1002_ange_202424135
crossref_primary_10_1002_anie_202319108
crossref_primary_10_1016_j_bios_2024_116704
crossref_primary_10_1021_acs_analchem_3c01005
crossref_primary_10_1039_D1SC01375K
crossref_primary_10_1038_s41467_024_54868_w
crossref_primary_10_1002_adfm_202111171
crossref_primary_10_1016_j_cscee_2024_100753
crossref_primary_10_1002_smll_202101907
crossref_primary_10_1016_j_talanta_2023_124991
crossref_primary_10_1088_1361_6463_ac6464
crossref_primary_10_1002_anie_202217995
crossref_primary_10_1002_anie_202307133
crossref_primary_10_1002_anie_202300122
crossref_primary_10_1016_j_mattod_2021_10_032
crossref_primary_10_1016_j_pmatsci_2022_100959
crossref_primary_10_1021_acs_jpcc_2c06266
crossref_primary_10_1016_j_matt_2021_10_027
crossref_primary_10_1021_acsami_4c16551
crossref_primary_10_1007_s11426_022_1495_y
crossref_primary_10_1007_s12274_022_4665_z
crossref_primary_10_1016_j_nantod_2024_102236
crossref_primary_10_1039_D3TB01644G
crossref_primary_10_1016_j_jhazmat_2024_135887
crossref_primary_10_1021_jacsau_2c00495
crossref_primary_10_1002_advs_202305823
crossref_primary_10_1002_ange_202403203
crossref_primary_10_1002_eem2_12743
crossref_primary_10_1039_D3QI01576A
crossref_primary_10_1002_advs_202103977
crossref_primary_10_1002_ange_202300122
crossref_primary_10_3390_nanoenergyadv3010004
crossref_primary_10_1021_prechem_3c00022
crossref_primary_10_1002_anie_202412740
crossref_primary_10_1007_s00216_024_05280_2
crossref_primary_10_1016_j_nanoen_2023_108353
crossref_primary_10_1039_D4TB02315C
crossref_primary_10_1007_s40820_022_00828_2
crossref_primary_10_1016_j_bios_2022_114662
crossref_primary_10_1021_acsanm_4c02258
crossref_primary_10_1007_s12274_022_4150_8
crossref_primary_10_1007_s12274_024_6771_6
crossref_primary_10_1016_j_jece_2025_115760
crossref_primary_10_1016_j_jece_2022_109241
crossref_primary_10_1021_acsnano_2c12698
crossref_primary_10_1002_bio_4620
crossref_primary_10_1021_acs_analchem_3c04339
crossref_primary_10_1002_ejic_202200202
crossref_primary_10_1016_j_clay_2022_106656
crossref_primary_10_1002_adma_202313406
crossref_primary_10_1016_j_apsusc_2022_153755
crossref_primary_10_1002_adfm_202209399
crossref_primary_10_1016_j_heliyon_2024_e38057
crossref_primary_10_1016_j_ccr_2023_215517
crossref_primary_10_1021_acsami_1c25072
crossref_primary_10_1039_D1CS01106E
crossref_primary_10_1021_jacs_2c13597
crossref_primary_10_1002_anie_202208757
crossref_primary_10_1016_j_jcis_2023_10_134
crossref_primary_10_1002_advs_202416942
crossref_primary_10_1016_j_apcatb_2024_123942
crossref_primary_10_1039_D4MH00215F
crossref_primary_10_1021_acsnano_2c11923
crossref_primary_10_1002_adma_202211724
crossref_primary_10_1002_ange_202301879
crossref_primary_10_1002_ange_202112453
crossref_primary_10_1002_ange_202116170
crossref_primary_10_1002_smll_202206657
crossref_primary_10_1016_j_aca_2023_342006
crossref_primary_10_1016_j_jechem_2022_10_015
crossref_primary_10_1002_adma_202211151
crossref_primary_10_1016_j_snb_2024_136756
crossref_primary_10_1002_ange_202315933
crossref_primary_10_1016_j_cej_2023_143269
crossref_primary_10_1002_anie_202207512
crossref_primary_10_1016_j_bios_2022_114768
crossref_primary_10_1002_adma_202200255
crossref_primary_10_1002_ange_202208757
crossref_primary_10_1016_j_tifs_2025_104905
crossref_primary_10_1002_advs_202203917
crossref_primary_10_1016_j_jhazmat_2024_136148
crossref_primary_10_1007_s12274_023_5864_y
crossref_primary_10_1002_ange_202412740
crossref_primary_10_1016_j_cej_2023_148273
crossref_primary_10_1021_acs_analchem_1c05557
crossref_primary_10_1016_j_tet_2023_133444
crossref_primary_10_1021_acsanm_4c06508
crossref_primary_10_1002_adma_202403153
crossref_primary_10_1021_acs_analchem_1c02842
crossref_primary_10_1002_adfm_202408019
crossref_primary_10_1039_D4SC03101F
crossref_primary_10_1007_s12274_023_6119_7
crossref_primary_10_1016_j_cej_2023_143139
crossref_primary_10_1002_anie_202112453
crossref_primary_10_1002_smll_202302929
crossref_primary_10_1002_advs_202502664
crossref_primary_10_1002_smll_202405624
crossref_primary_10_1002_adma_202206478
crossref_primary_10_1016_j_jconrel_2022_10_013
crossref_primary_10_1002_adhm_202302056
crossref_primary_10_1186_s12951_024_02569_3
crossref_primary_10_1016_j_cej_2025_159747
crossref_primary_10_1016_j_jcis_2024_07_046
crossref_primary_10_1002_adma_202211147
crossref_primary_10_1039_D1SC04344G
crossref_primary_10_1016_j_cattod_2023_114358
crossref_primary_10_1002_smll_202300750
crossref_primary_10_1007_s12274_022_5104_x
crossref_primary_10_1021_acs_jpcc_2c05780
crossref_primary_10_1002_ange_202307133
crossref_primary_10_1016_j_apsusc_2023_158333
crossref_primary_10_1016_j_cej_2022_140808
crossref_primary_10_1016_j_saa_2022_121782
crossref_primary_10_1002_adhm_202101682
crossref_primary_10_1016_j_mcat_2024_113906
crossref_primary_10_1002_smll_202401032
crossref_primary_10_1021_acsnano_3c05409
crossref_primary_10_1016_j_cej_2025_160704
crossref_primary_10_1016_j_nanoms_2023_12_006
crossref_primary_10_1002_anie_202301879
crossref_primary_10_1007_s12274_022_4274_x
crossref_primary_10_1039_D5NR00302D
crossref_primary_10_1021_acs_analchem_4c05798
crossref_primary_10_1002_adfm_202110224
crossref_primary_10_1039_D2QI02727E
crossref_primary_10_1002_adfm_202407243
crossref_primary_10_2139_ssrn_4047527
crossref_primary_10_1002_smll_202103705
crossref_primary_10_1016_j_biosx_2022_100190
crossref_primary_10_1038_s41467_022_34619_5
crossref_primary_10_1016_j_cej_2023_142820
crossref_primary_10_1002_adhm_202401630
crossref_primary_10_1002_anie_202315933
crossref_primary_10_1021_acsnano_1c07893
crossref_primary_10_1002_adsu_202100281
crossref_primary_10_1002_ange_202207512
crossref_primary_10_1002_anie_202424135
crossref_primary_10_1021_acs_analchem_3c05245
crossref_primary_10_1002_ange_202319108
crossref_primary_10_1016_j_ccr_2024_215771
crossref_primary_10_1016_j_apcatb_2022_122012
crossref_primary_10_1016_j_foodchem_2024_140094
crossref_primary_10_1002_adhm_202201733
crossref_primary_10_1021_jacs_3c05162
crossref_primary_10_1007_s12274_023_5393_8
crossref_primary_10_1016_j_cis_2025_103404
crossref_primary_10_1002_ange_202413661
crossref_primary_10_1021_acs_analchem_1c02115
crossref_primary_10_1021_acs_nanolett_2c04697
crossref_primary_10_1016_j_snb_2025_137358
crossref_primary_10_1002_advs_202407816
crossref_primary_10_1038_s41467_024_50416_8
crossref_primary_10_1038_s41467_023_43176_4
crossref_primary_10_1007_s40820_022_00908_3
crossref_primary_10_1039_D4SC04711G
crossref_primary_10_1016_j_cej_2021_131396
crossref_primary_10_1016_j_cej_2022_136692
crossref_primary_10_1002_anie_202403203
crossref_primary_10_1039_D4BM00169A
crossref_primary_10_1039_D1CS00421B
crossref_primary_10_1002_adfm_202311664
crossref_primary_10_1002_adfm_202112428
crossref_primary_10_1002_smll_202207142
crossref_primary_10_1002_cssc_202200231
crossref_primary_10_3390_catal13040651
crossref_primary_10_1016_j_cclet_2024_109560
crossref_primary_10_1016_j_cej_2024_148888
crossref_primary_10_1016_j_cej_2024_156370
crossref_primary_10_1021_acs_nanolett_2c02183
crossref_primary_10_1021_acs_analchem_2c02511
crossref_primary_10_1016_j_cej_2022_137551
crossref_primary_10_1016_j_chempr_2021_08_020
crossref_primary_10_1016_j_snb_2024_137075
crossref_primary_10_1002_smll_202104844
crossref_primary_10_1016_j_apsusc_2023_157900
crossref_primary_10_1007_s11426_023_1677_4
crossref_primary_10_1007_s42247_024_00939_z
crossref_primary_10_1002_advs_202401975
crossref_primary_10_3390_ijms242115712
crossref_primary_10_2139_ssrn_4075508
crossref_primary_10_1021_acs_langmuir_4c01166
crossref_primary_10_1007_s40820_023_01224_0
crossref_primary_10_1002_cey2_270
crossref_primary_10_1016_j_foodchem_2023_137455
crossref_primary_10_1016_j_cclet_2025_110916
crossref_primary_10_1021_acs_nanolett_2c04944
crossref_primary_10_1021_acsami_4c06164
crossref_primary_10_1002_smll_202407747
crossref_primary_10_2139_ssrn_4187580
crossref_primary_10_1038_s41467_022_32411_z
crossref_primary_10_3390_nano13202760
crossref_primary_10_1002_ppsc_202300039
crossref_primary_10_1016_j_surfin_2023_103553
crossref_primary_10_1016_j_trac_2023_117280
crossref_primary_10_1016_j_talanta_2024_127503
crossref_primary_10_1021_acsenergylett_1c02446
crossref_primary_10_1016_j_microc_2023_109341
crossref_primary_10_1002_advs_202307424
crossref_primary_10_1002_ange_202217995
crossref_primary_10_1016_j_nantod_2023_101755
crossref_primary_10_1002_inf2_12421
crossref_primary_10_1002_adfm_202110432
crossref_primary_10_1021_acsami_2c12036
crossref_primary_10_1021_acsami_4c09208
crossref_primary_10_1016_j_nanoen_2024_109279
crossref_primary_10_1016_j_apsusc_2023_158991
crossref_primary_10_1039_D4EE02674H
crossref_primary_10_1016_j_bios_2024_116345
crossref_primary_10_1002_adma_202306602
crossref_primary_10_1002_ange_202401214
crossref_primary_10_1002_ange_202318246
crossref_primary_10_1016_j_jcis_2024_02_097
crossref_primary_10_1007_s12274_022_5266_6
crossref_primary_10_1021_acs_analchem_0c04084
crossref_primary_10_1002_adma_202205674
crossref_primary_10_1021_acsnano_5c00085
crossref_primary_10_1007_s00604_022_05421_3
crossref_primary_10_1016_j_cis_2023_102968
crossref_primary_10_1016_j_trac_2023_117399
crossref_primary_10_1016_j_cis_2021_102485
crossref_primary_10_1039_D1SC02170B
crossref_primary_10_1002_anie_202302463
crossref_primary_10_1002_anie_202413661
crossref_primary_10_1007_s00604_023_05636_y
crossref_primary_10_1021_acs_jafc_1c04309
crossref_primary_10_1016_j_cej_2022_139411
crossref_primary_10_1021_jacs_4c04322
crossref_primary_10_1002_adfm_202306392
crossref_primary_10_1002_adhm_202402544
crossref_primary_10_1021_jacs_4c16655
crossref_primary_10_1021_acsnano_3c07724
crossref_primary_10_1002_adfm_202212051
crossref_primary_10_26599_NBE_2023_9290047
crossref_primary_10_1002_anie_202401214
crossref_primary_10_1016_j_microc_2024_112032
crossref_primary_10_1038_s41467_024_53047_1
crossref_primary_10_1002_ange_202302463
crossref_primary_10_1002_smll_202408609
crossref_primary_10_1002_adfm_202314686
crossref_primary_10_1016_j_nantod_2023_102142
crossref_primary_10_1002_admt_202200238
Cites_doi 10.1021/jacs.5b10346
10.1016/j.chempr.2018.12.011
10.1002/anie.202003842
10.1021/jacs.0c03415
10.1021/acs.accounts.9b00140
10.1002/adma.202002246
10.1038/s41570-018-0010-1
10.1103/PhysRevB.71.094110
10.1021/acsnano.8b09519
10.1039/C8CS00457A
10.1021/jacs.7b06514
10.1002/anie.201914977
10.1146/annurev.arplant.57.032905.105437
10.1038/s41557-020-0473-9
10.1002/anie.201712469
10.1016/j.chempr.2019.05.023
10.1002/anie.201905645
10.1038/s41929-017-0008-y
10.1038/s41596-018-0001-1
10.1039/c3cs35486e
10.1016/j.enzmictec.2013.12.006
10.1038/s41565-020-0665-x
10.1021/acs.chemmater.8b02726
10.1021/acscatal.0c00936
10.1016/j.ccr.2020.213376
10.1038/s41929-018-0090-9
10.1002/adfm.201905410
10.1002/anie.201708573
10.1016/S1010-6030(00)00264-1
10.1016/j.apcatb.2019.117959
10.1002/anie.201913035
10.1038/ncomms4783
10.1021/ar990163w
10.1016/j.biomaterials.2015.01.012
10.1016/j.chempr.2017.12.005
10.1039/C9CC00199A
10.1016/j.chempr.2019.07.020
10.1038/s41467-019-12362-8
10.1039/C9CC01503E
10.1038/s41467-018-06869-9
10.1021/acscentsci.0c00512
10.1016/j.chempr.2020.01.013
10.1002/anie.201813994
10.1021/acscatal.0c01647
10.1007/s40820-019-0324-7
10.1146/annurev.biochem.66.1.233
10.1016/j.gca.2012.06.001
10.1038/nnano.2007.260
10.1021/acs.accounts.0c00268
10.1002/anie.201710599
10.1038/s41467-020-17231-3
10.1021/acscatal.8b03802
10.1002/adma.201905994
10.1126/sciadv.aav5490
10.1021/acs.chemrev.8b00672
10.1002/anie.201712451
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright_xml – notice: 2020 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.chempr.2020.10.023
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2451-9294
EndPage 449
ExternalDocumentID 10_1016_j_chempr_2020_10_023
S2451929420305441
GroupedDBID 0R~
AACTN
AAEDW
AALRI
AAVLU
AAXUO
ABMAC
ABVKL
ACGFS
ADJPV
AFTJW
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
O9-
OK1
AAMRU
AAYWO
AAYXX
ABDGV
ABJNI
ACVFH
ADBBV
ADCNI
ADVLN
AEUPX
AFPUW
AGCQF
AIGII
AITUG
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
EJD
SSZ
ID FETCH-LOGICAL-c418t-2ea6fa5d19294ead43bc1f376f11ee510281ab3d95c7f5ea21a83ef0ca4f33e83
ISSN 2451-9294
IngestDate Tue Jul 01 03:15:22 EDT 2025
Thu Apr 24 23:01:44 EDT 2025
Thu Jul 20 20:17:00 EDT 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords single-atom nanozyme
coordination environment
SDG3: Good health and well-being
peroxidase-like specificity
MoSA–N3–C catalyst
biocatalysis
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c418t-2ea6fa5d19294ead43bc1f376f11ee510281ab3d95c7f5ea21a83ef0ca4f33e83
OpenAccessLink http://www.cell.com/article/S2451929420305441/pdf
PageCount 14
ParticipantIDs crossref_primary_10_1016_j_chempr_2020_10_023
crossref_citationtrail_10_1016_j_chempr_2020_10_023
elsevier_sciencedirect_doi_10_1016_j_chempr_2020_10_023
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-11
PublicationDateYYYYMMDD 2021-02-11
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-11
  day: 11
PublicationDecade 2020
PublicationTitle Chem
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Gao, Zhuang, Nie, Zhang, Zhang, Gu, Wang, Feng, Yang, Perrett, Yan (bib4) 2007; 2
Lu, Gao, Lin, Yu, Han, Zhu, Bao, Yao, Chen, Shi (bib28) 2020; 32
Xiang, Feng, Chen (bib17) 2020; 32
Borg, Liu, Etschmann, Tian, Brugger (bib50) 2012; 92
Gao, Wang, Zheng, Wang, Xu, Liu, Li, Pan, Wang, Cai (bib3) 2020; 59
Hai, Zhao, Guo, Yao, Chen, Liu, Du, Yan, Li, Chen (bib38) 2020; 10
Jiao, Yan, Wu, Gu, Zhu, Du, Lin (bib16) 2020; 59
Ye, Chen, Lin, Yang, Chen, Zheng, Qi, Wang, Long, Chen (bib36) 2019; 5
Hu, Gao, Zhu, Muhammad, Tan, Cao, Lin, Jin, Gao, Wei (bib32) 2018; 30
Ishibashi, Fujishima, Watanabe, Hashimoto (bib52) 2000; 134
Li, Liu, Wu, Gao (bib10) 2015; 48
Pan, Chen, Wu, Chen, Liu, Cao, Cheong, Meng, Luo, Zheng (bib43) 2019; 10
Xiong, Dong, Huang, Xin, Chen, Wang, Li, Jin, Xing, Zhuang (bib35) 2020; 15
Zhou, Zhao, Gan, Xu, Wang, Lv, Fang, Wang, Deng, Wang (bib44) 2020; 142
Wu, Wang, Wang, Lou, Li, Zhu, Qin, Wei (bib1) 2019; 48
Li, Chen, Ji, Tang, Chen, Li, Zhao, Xiong, Wu, Gong (bib34) 2020; 12
Wang, Chen, Zhao, Yao, Chen, You, Zhao, Wu, Wang, Huang (bib37) 2018; 57
Wang, Qi, Yu, Jia, Cheng, Zheng, Wu, Bao, Wang, Zhao (bib33) 2019; 11
Schwarz, Mendel (bib29) 2006; 57
Jiao, Jiang (bib13) 2019; 5
Li, Chen, Quan, Zhan, Jia, Ai, Zhang (bib55) 2020; 6
Lian, Xue, Qiao, Liu, Zhang, Li, Huang, Song, Yang, Chen, Wang (bib6) 2019; 5
Zhang, Li, Chen, Wu, Zhou, Wu (bib20) 2020; 418
Cai, Dong, Liu, Zheng, Kaweeteerawat, Wang, Ji, Li (bib12) 2018; 9
Huang, Ren, Qu (bib2) 2019; 119
Shen, Liu, Gao, Lu, Wu, Gao (bib11) 2015; 137
Zhao, Xiong, Liu, Qiao, Li, Yuan, Wang, Qu, Wang, Zhou (bib23) 2019; 55
Jia, Wang, Cui, Yang, Liu, Zhang, Wu, Zheng, Zheng (bib56) 2019; 258
Kisker, Schindelin, Rees (bib30) 1997; 66
Funke, Scheinost, Chukalina (bib47) 2005; 71
Pundir, Devi (bib57) 2014; 57
Zhang, Jia, Gao, Yan, Chen, Chen, Soo, Wood, Yang, Du, Yao (bib41) 2018; 4
Jiao, Wu, Zhong, Zhang, Xu, Wu, Chen, Yan, Zhang, Gu (bib25) 2020; 10
Liang, Yan (bib8) 2019; 52
Cui, Li, Ryabchuk, Junge, Beller (bib14) 2018; 1
Xu, Wang, Wang, Gao, Li, Pan, Wang, Yang, Meng, Wu (bib21) 2019; 58
Huo, Wang, Wang, Chen, Shi (bib22) 2019; 13
Huang, Chen, Gan, Wang, Dong (bib27) 2019; 5
Chen, Pei, He, Wan, Ren, Zhu, Wang, Dong, Tian, Cheong (bib40) 2017; 56
Kim, Cho, Joo, Lee, Kwak, Kim, Lee (bib31) 2019; 13
Wang, Jana, Zhao (bib19) 2020; 53
Fei, Dong, Feng, Allen, Wan, Volosskiy, Li, Zhao, Wang, Sun (bib49) 2018; 1
Singh, Savanur, Srivastava, D’Silva, Mugesh (bib9) 2017; 56
Zhang, Lu, Wu, Lou (bib18) 2020; 6
Lin, Chang, Chiu, Pai, Liao, Hsu, Chiang, Tsai, Chen (bib54) 2020; 11
Wei, Wang (bib7) 2013; 42
Wang, Li, Zhang (bib15) 2018; 2
Zheng, Jiao, Zhu, Li, Han, Chen, Du, Jaroniec, Qiao (bib42) 2014; 5
Tang, Jiao, Shi, Liu, Xie, Chen, Zhang, Qiao (bib46) 2020; 59
Shao, Leung, Chau (bib48) 2003; 36
Wang, Zhang, Jia, Zheng, Zhao, Cui (bib26) 2019; 55
Gong, Jiao, Qian, Pan, Zheng, Cai, Liu, Yu, Jiang (bib39) 2020; 59
Sun, Zhou, Ren, Qu (bib5) 2018; 57
Wang, Cui, Zhao, Jia, Gu, Zhang, Meng, Shi, Zheng, Wang (bib53) 2019; 9
Zhang, Hwang, Wang, Feng, Karakalos, Luo, Qiao, Xie, Wang, Su (bib45) 2017; 139
Jiang, Duan, Gao, Zhou, Fan, Tang, Xi, Bi, Tong, Gao (bib51) 2018; 13
Kim, Lee, Kim, Cho, Shim, Le, An, Han, Kim, Lee (bib24) 2020; 30
Wang (10.1016/j.chempr.2020.10.023_bib37) 2018; 57
Wang (10.1016/j.chempr.2020.10.023_bib33) 2019; 11
Li (10.1016/j.chempr.2020.10.023_bib34) 2020; 12
Wu (10.1016/j.chempr.2020.10.023_bib1) 2019; 48
Zhang (10.1016/j.chempr.2020.10.023_bib18) 2020; 6
Lin (10.1016/j.chempr.2020.10.023_bib54) 2020; 11
Wang (10.1016/j.chempr.2020.10.023_bib26) 2019; 55
Kim (10.1016/j.chempr.2020.10.023_bib31) 2019; 13
Jiang (10.1016/j.chempr.2020.10.023_bib51) 2018; 13
Cai (10.1016/j.chempr.2020.10.023_bib12) 2018; 9
Jiao (10.1016/j.chempr.2020.10.023_bib25) 2020; 10
Zhang (10.1016/j.chempr.2020.10.023_bib45) 2017; 139
Jia (10.1016/j.chempr.2020.10.023_bib56) 2019; 258
Wei (10.1016/j.chempr.2020.10.023_bib7) 2013; 42
Gao (10.1016/j.chempr.2020.10.023_bib4) 2007; 2
Li (10.1016/j.chempr.2020.10.023_bib10) 2015; 48
Zhao (10.1016/j.chempr.2020.10.023_bib23) 2019; 55
Funke (10.1016/j.chempr.2020.10.023_bib47) 2005; 71
Schwarz (10.1016/j.chempr.2020.10.023_bib29) 2006; 57
Wang (10.1016/j.chempr.2020.10.023_bib53) 2019; 9
Chen (10.1016/j.chempr.2020.10.023_bib40) 2017; 56
Huang (10.1016/j.chempr.2020.10.023_bib2) 2019; 119
Kisker (10.1016/j.chempr.2020.10.023_bib30) 1997; 66
Li (10.1016/j.chempr.2020.10.023_bib55) 2020; 6
Zhou (10.1016/j.chempr.2020.10.023_bib44) 2020; 142
Shao (10.1016/j.chempr.2020.10.023_bib48) 2003; 36
Shen (10.1016/j.chempr.2020.10.023_bib11) 2015; 137
Xiang (10.1016/j.chempr.2020.10.023_bib17) 2020; 32
Zheng (10.1016/j.chempr.2020.10.023_bib42) 2014; 5
Gong (10.1016/j.chempr.2020.10.023_bib39) 2020; 59
Zhang (10.1016/j.chempr.2020.10.023_bib20) 2020; 418
Tang (10.1016/j.chempr.2020.10.023_bib46) 2020; 59
Fei (10.1016/j.chempr.2020.10.023_bib49) 2018; 1
Zhang (10.1016/j.chempr.2020.10.023_bib41) 2018; 4
Singh (10.1016/j.chempr.2020.10.023_bib9) 2017; 56
Ye (10.1016/j.chempr.2020.10.023_bib36) 2019; 5
Pundir (10.1016/j.chempr.2020.10.023_bib57) 2014; 57
Lu (10.1016/j.chempr.2020.10.023_bib28) 2020; 32
Jiao (10.1016/j.chempr.2020.10.023_bib13) 2019; 5
Huang (10.1016/j.chempr.2020.10.023_bib27) 2019; 5
Gao (10.1016/j.chempr.2020.10.023_bib3) 2020; 59
Hu (10.1016/j.chempr.2020.10.023_bib32) 2018; 30
Pan (10.1016/j.chempr.2020.10.023_bib43) 2019; 10
Wang (10.1016/j.chempr.2020.10.023_bib15) 2018; 2
Ishibashi (10.1016/j.chempr.2020.10.023_bib52) 2000; 134
Hai (10.1016/j.chempr.2020.10.023_bib38) 2020; 10
Xu (10.1016/j.chempr.2020.10.023_bib21) 2019; 58
Liang (10.1016/j.chempr.2020.10.023_bib8) 2019; 52
Kim (10.1016/j.chempr.2020.10.023_bib24) 2020; 30
Xiong (10.1016/j.chempr.2020.10.023_bib35) 2020; 15
Lian (10.1016/j.chempr.2020.10.023_bib6) 2019; 5
Wang (10.1016/j.chempr.2020.10.023_bib19) 2020; 53
Jiao (10.1016/j.chempr.2020.10.023_bib16) 2020; 59
Huo (10.1016/j.chempr.2020.10.023_bib22) 2019; 13
Sun (10.1016/j.chempr.2020.10.023_bib5) 2018; 57
Cui (10.1016/j.chempr.2020.10.023_bib14) 2018; 1
Borg (10.1016/j.chempr.2020.10.023_bib50) 2012; 92
References_xml – volume: 15
  start-page: 390
  year: 2020
  end-page: 397
  ident: bib35
  article-title: Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation
  publication-title: Nat. Nanotechnol.
– volume: 55
  start-page: 5271
  year: 2019
  end-page: 5274
  ident: bib26
  article-title: Elucidating the mechanism of the structure-dependent enzymatic activity of Fe-N/C oxidase mimics
  publication-title: Chem. Commun. (Camb)
– volume: 2
  start-page: 65
  year: 2018
  end-page: 81
  ident: bib15
  article-title: Heterogeneous single-atom catalysis
  publication-title: Nat. Rev. Chem.
– volume: 12
  start-page: 764
  year: 2020
  end-page: 772
  ident: bib34
  article-title: Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host-guest strategy
  publication-title: Nat. Chem.
– volume: 142
  start-page: 12643
  year: 2020
  end-page: 12650
  ident: bib44
  article-title: Cation-exchange induced precise regulation of single copper site triggers room-temperature oxidation of benzene
  publication-title: J. Am. Chem. Soc.
– volume: 42
  start-page: 6060
  year: 2013
  end-page: 6093
  ident: bib7
  article-title: Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes
  publication-title: Chem. Soc. Rev.
– volume: 56
  start-page: 14267
  year: 2017
  end-page: 14271
  ident: bib9
  article-title: A redox modulatory Mn
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 5
  start-page: 2378
  year: 2019
  end-page: 2387
  ident: bib6
  article-title: Movable hollow nanoparticles as reactive oxygen scavengers
  publication-title: Chem
– volume: 59
  start-page: 9171
  year: 2020
  end-page: 9176
  ident: bib46
  article-title: Coordination tunes selectivity: two-electron oxygen reduction on high-loading molybdenum single-atom catalysts
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 9
  start-page: 336
  year: 2019
  end-page: 344
  ident: bib53
  article-title: Rational design of Fe-N/C hybrid for enhanced nitrogen reduction electrocatalysis under ambient conditions in aqueous solution
  publication-title: ACS Catal.
– volume: 71
  start-page: 094110
  year: 2005
  ident: bib47
  article-title: Wavelet analysis of extended X-ray absorption fine structure data
  publication-title: Phys. Rev. B
– volume: 1
  start-page: 63
  year: 2018
  end-page: 72
  ident: bib49
  article-title: General synthesis and definitive structural identification of MN
  publication-title: Nat. Catal.
– volume: 9
  start-page: 4416
  year: 2018
  ident: bib12
  article-title: Multi-hierarchical profiling the structure-activity relationships of engineered nanomaterials at nano-bio interfaces
  publication-title: Nat. Commun.
– volume: 2
  start-page: 577
  year: 2007
  end-page: 583
  ident: bib4
  article-title: Intrinsic peroxidase-like activity of ferromagnetic nanoparticles
  publication-title: Nat. Nanotechnol.
– volume: 6
  start-page: 1288
  year: 2020
  end-page: 1301
  ident: bib18
  article-title: Emerging multifunctional single-atom catalysts/nanozymes
  publication-title: ACS Cent. Sci.
– volume: 5
  start-page: 786
  year: 2019
  end-page: 804
  ident: bib13
  article-title: Metal-organic-framework-based single-atom catalysts for energy applications
  publication-title: Chem
– volume: 258
  start-page: 117959
  year: 2019
  ident: bib56
  article-title: Asymmetric embedded benzene ring enhances charge transfer of carbon nitride for photocatalytic hydrogen generation
  publication-title: Appl. Catal. B
– volume: 32
  start-page: 1905994
  year: 2020
  ident: bib17
  article-title: Single-atom catalysts in catalytic biomedicine
  publication-title: Adv. Mater.
– volume: 13
  start-page: 4312
  year: 2019
  end-page: 4321
  ident: bib31
  article-title: N- and B-codoped graphene: a strong candidate to replace natural peroxidase in sensitive and selective bioassays
  publication-title: ACS Nano
– volume: 137
  start-page: 15882
  year: 2015
  end-page: 15891
  ident: bib11
  article-title: Mechanisms of oxidase and superoxide dismutation-like activities of gold, silver, platinum, and palladium, and their alloys: a general way to the activation of molecular oxygen
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 385
  year: 2018
  end-page: 397
  ident: bib14
  article-title: Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts
  publication-title: Nat. Catal.
– volume: 13
  start-page: 2643
  year: 2019
  end-page: 2653
  ident: bib22
  article-title: Nanocatalytic tumor therapy by single-atom catalysts
  publication-title: ACS Nano
– volume: 66
  start-page: 233
  year: 1997
  end-page: 267
  ident: bib30
  article-title: Molybdenum-cofactor-containing enzymes: structure and mechanism
  publication-title: Annu. Rev. Biochem.
– volume: 10
  start-page: 5862
  year: 2020
  end-page: 5870
  ident: bib38
  article-title: Engineering local and global structures of single Co atoms for a superior oxygen reduction reaction
  publication-title: ACS Catal.
– volume: 30
  start-page: 1905410
  year: 2020
  ident: bib24
  article-title: Heme cofactor-resembling Fe-N single site embedded graphene as nanozymes to selectively detect H
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: eaav5490
  year: 2019
  ident: bib27
  article-title: Single-atom nanozymes
  publication-title: Sci. Adv.
– volume: 30
  start-page: 6431
  year: 2018
  end-page: 6439
  ident: bib32
  article-title: Nitrogen-doped carbon nanomaterials as highly active and specific peroxidase mimics
  publication-title: Chem. Mater.
– volume: 134
  start-page: 139
  year: 2000
  end-page: 142
  ident: bib52
  article-title: Quantum yields of active oxidative species formed on TiO
  publication-title: J. Photochem. Photobiol. A
– volume: 4
  start-page: 285
  year: 2018
  end-page: 297
  ident: bib41
  article-title: Graphene defects trap atomic Ni species for hydrogen and oxygen evolution reactions
  publication-title: Chem
– volume: 92
  start-page: 292
  year: 2012
  end-page: 307
  ident: bib50
  article-title: An XAS study of molybdenum speciation in hydrothermal chloride solutions from 25–385°C and 600 bar
  publication-title: Geochim. Cosmochim. Acta
– volume: 32
  start-page: 2002246
  year: 2020
  ident: bib28
  article-title: Bioinspired copper single-atom catalysts for tumor parallel catalytic therapy
  publication-title: Adv. Mater.
– volume: 11
  start-page: 102
  year: 2019
  ident: bib33
  article-title: Revealing the intrinsic peroxidase-like catalytic mechanism of heterogeneous single-atom Co-MoS
  publication-title: Nano-Micro Lett.
– volume: 119
  start-page: 4357
  year: 2019
  end-page: 4412
  ident: bib2
  article-title: Nanozymes: classification, catalytic mechanisms, activity regulation, and applications
  publication-title: Chem. Rev.
– volume: 139
  start-page: 14143
  year: 2017
  end-page: 14149
  ident: bib45
  article-title: Single atomic iron catalysts for oxygen reduction in acidic media: particle size control and thermal activation
  publication-title: J. Am. Chem. Soc.
– volume: 57
  start-page: 9224
  year: 2018
  end-page: 9237
  ident: bib5
  article-title: Carbon nanozymes: enzymatic properties, catalytic mechanism, and applications
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 52
  start-page: 2190
  year: 2019
  end-page: 2200
  ident: bib8
  article-title: Nanozymes: from new concepts, mechanisms, and standards to applications
  publication-title: Acc. Chem. Res.
– volume: 36
  start-page: 276
  year: 2003
  end-page: 283
  ident: bib48
  article-title: Wavelet: a new trend in chemistry
  publication-title: Acc. Chem. Res.
– volume: 58
  start-page: 4911
  year: 2019
  end-page: 4916
  ident: bib21
  article-title: A single-atom nanozyme for wound disinfection applications
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 48
  start-page: 37
  year: 2015
  end-page: 44
  ident: bib10
  article-title: Mechanism of pH-switchable peroxidase and catalase-like activities of gold, silver, platinum and palladium
  publication-title: Biomaterials
– volume: 57
  start-page: 1944
  year: 2018
  end-page: 1948
  ident: bib37
  article-title: Regulation of coordination number over single Co sites: triggering the efficient electroreduction of CO
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 10
  start-page: 6422
  year: 2020
  end-page: 6429
  ident: bib25
  article-title: Densely isolated FeN
  publication-title: ACS Catal.
– volume: 6
  start-page: 885
  year: 2020
  end-page: 901
  ident: bib55
  article-title: Accelerated dinitrogen electroreduction to ammonia via interfacial polarization triggered by single-atom protrusions
  publication-title: Chem
– volume: 5
  start-page: 2865
  year: 2019
  end-page: 2878
  ident: bib36
  article-title: Precisely tuning the number of Fe atoms in clusters on N-doped carbon toward acidic oxygen reduction reaction
  publication-title: Chem
– volume: 59
  start-page: 2565
  year: 2020
  end-page: 2576
  ident: bib16
  article-title: When nanozymes meet single-atom catalysis
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 13
  start-page: 1506
  year: 2018
  end-page: 1520
  ident: bib51
  article-title: Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes
  publication-title: Nat. Protoc.
– volume: 57
  start-page: 55
  year: 2014
  end-page: 62
  ident: bib57
  article-title: Biosensing methods for xanthine determination: a review
  publication-title: Enzyme Microb. Technol.
– volume: 10
  start-page: 4290
  year: 2019
  ident: bib43
  article-title: Regulating the coordination structure of single-atom Fe-N
  publication-title: Nat. Commun.
– volume: 5
  start-page: 3783
  year: 2014
  ident: bib42
  article-title: Hydrogen evolution by a metal-free electrocatalyst
  publication-title: Nat. Commun.
– volume: 56
  start-page: 16086
  year: 2017
  end-page: 16090
  ident: bib40
  article-title: Rational design of single molybdenum atoms anchored on N-doped carbon for effective hydrogen evolution reaction
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 57
  start-page: 623
  year: 2006
  end-page: 647
  ident: bib29
  article-title: Molybdenum cofactor biosynthesis and molybdenum enzymes
  publication-title: Annu. Rev. Plant Biol.
– volume: 418
  start-page: 213376
  year: 2020
  ident: bib20
  article-title: Single-atom nanozymes: a rising star for biosensing and biomedicine
  publication-title: Coord. Chem. Rev.
– volume: 48
  start-page: 1004
  year: 2019
  end-page: 1076
  ident: bib1
  article-title: Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II)
  publication-title: Chem. Soc. Rev.
– volume: 53
  start-page: 1389
  year: 2020
  end-page: 1400
  ident: bib19
  article-title: Metal-organic framework derived nanozymes in biomedicine
  publication-title: Acc. Chem. Res.
– volume: 59
  start-page: 3618
  year: 2020
  end-page: 3623
  ident: bib3
  article-title: Two-dimensional tin selenide (SnSe) nanosheets capable of mimicking key dehydrogenases in cellular metabolism
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 55
  start-page: 2285
  year: 2019
  end-page: 2288
  ident: bib23
  article-title: Unraveling the enzyme-like activity of heterogeneous single atom catalyst
  publication-title: Chem. Commun. (Camb)
– volume: 11
  start-page: 3525
  year: 2020
  ident: bib54
  article-title: Operando time-resolved X-ray absorption spectroscopy reveals the chemical nature enabling highly selective CO
  publication-title: Nat. Commun.
– volume: 59
  start-page: 2705
  year: 2020
  end-page: 2709
  ident: bib39
  article-title: Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 137
  start-page: 15882
  year: 2015
  ident: 10.1016/j.chempr.2020.10.023_bib11
  article-title: Mechanisms of oxidase and superoxide dismutation-like activities of gold, silver, platinum, and palladium, and their alloys: a general way to the activation of molecular oxygen
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b10346
– volume: 5
  start-page: 786
  year: 2019
  ident: 10.1016/j.chempr.2020.10.023_bib13
  article-title: Metal-organic-framework-based single-atom catalysts for energy applications
  publication-title: Chem
  doi: 10.1016/j.chempr.2018.12.011
– volume: 59
  start-page: 9171
  year: 2020
  ident: 10.1016/j.chempr.2020.10.023_bib46
  article-title: Coordination tunes selectivity: two-electron oxygen reduction on high-loading molybdenum single-atom catalysts
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.202003842
– volume: 142
  start-page: 12643
  year: 2020
  ident: 10.1016/j.chempr.2020.10.023_bib44
  article-title: Cation-exchange induced precise regulation of single copper site triggers room-temperature oxidation of benzene
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c03415
– volume: 52
  start-page: 2190
  year: 2019
  ident: 10.1016/j.chempr.2020.10.023_bib8
  article-title: Nanozymes: from new concepts, mechanisms, and standards to applications
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00140
– volume: 32
  start-page: 2002246
  year: 2020
  ident: 10.1016/j.chempr.2020.10.023_bib28
  article-title: Bioinspired copper single-atom catalysts for tumor parallel catalytic therapy
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202002246
– volume: 2
  start-page: 65
  year: 2018
  ident: 10.1016/j.chempr.2020.10.023_bib15
  article-title: Heterogeneous single-atom catalysis
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-018-0010-1
– volume: 71
  start-page: 094110
  year: 2005
  ident: 10.1016/j.chempr.2020.10.023_bib47
  article-title: Wavelet analysis of extended X-ray absorption fine structure data
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.71.094110
– volume: 13
  start-page: 4312
  year: 2019
  ident: 10.1016/j.chempr.2020.10.023_bib31
  article-title: N- and B-codoped graphene: a strong candidate to replace natural peroxidase in sensitive and selective bioassays
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b09519
– volume: 48
  start-page: 1004
  year: 2019
  ident: 10.1016/j.chempr.2020.10.023_bib1
  article-title: Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II)
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00457A
– volume: 139
  start-page: 14143
  year: 2017
  ident: 10.1016/j.chempr.2020.10.023_bib45
  article-title: Single atomic iron catalysts for oxygen reduction in acidic media: particle size control and thermal activation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b06514
– volume: 59
  start-page: 2705
  year: 2020
  ident: 10.1016/j.chempr.2020.10.023_bib39
  article-title: Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO2 reduction
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201914977
– volume: 57
  start-page: 623
  year: 2006
  ident: 10.1016/j.chempr.2020.10.023_bib29
  article-title: Molybdenum cofactor biosynthesis and molybdenum enzymes
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.57.032905.105437
– volume: 12
  start-page: 764
  year: 2020
  ident: 10.1016/j.chempr.2020.10.023_bib34
  article-title: Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host-guest strategy
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-020-0473-9
– volume: 57
  start-page: 9224
  year: 2018
  ident: 10.1016/j.chempr.2020.10.023_bib5
  article-title: Carbon nanozymes: enzymatic properties, catalytic mechanism, and applications
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201712469
– volume: 5
  start-page: 2378
  year: 2019
  ident: 10.1016/j.chempr.2020.10.023_bib6
  article-title: Movable hollow nanoparticles as reactive oxygen scavengers
  publication-title: Chem
  doi: 10.1016/j.chempr.2019.05.023
– volume: 59
  start-page: 2565
  year: 2020
  ident: 10.1016/j.chempr.2020.10.023_bib16
  article-title: When nanozymes meet single-atom catalysis
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201905645
– volume: 1
  start-page: 63
  year: 2018
  ident: 10.1016/j.chempr.2020.10.023_bib49
  article-title: General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-017-0008-y
– volume: 13
  start-page: 1506
  year: 2018
  ident: 10.1016/j.chempr.2020.10.023_bib51
  article-title: Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes
  publication-title: Nat. Protoc.
  doi: 10.1038/s41596-018-0001-1
– volume: 42
  start-page: 6060
  year: 2013
  ident: 10.1016/j.chempr.2020.10.023_bib7
  article-title: Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c3cs35486e
– volume: 57
  start-page: 55
  year: 2014
  ident: 10.1016/j.chempr.2020.10.023_bib57
  article-title: Biosensing methods for xanthine determination: a review
  publication-title: Enzyme Microb. Technol.
  doi: 10.1016/j.enzmictec.2013.12.006
– volume: 15
  start-page: 390
  year: 2020
  ident: 10.1016/j.chempr.2020.10.023_bib35
  article-title: Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-020-0665-x
– volume: 30
  start-page: 6431
  year: 2018
  ident: 10.1016/j.chempr.2020.10.023_bib32
  article-title: Nitrogen-doped carbon nanomaterials as highly active and specific peroxidase mimics
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b02726
– volume: 10
  start-page: 5862
  year: 2020
  ident: 10.1016/j.chempr.2020.10.023_bib38
  article-title: Engineering local and global structures of single Co atoms for a superior oxygen reduction reaction
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c00936
– volume: 418
  start-page: 213376
  year: 2020
  ident: 10.1016/j.chempr.2020.10.023_bib20
  article-title: Single-atom nanozymes: a rising star for biosensing and biomedicine
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2020.213376
– volume: 1
  start-page: 385
  year: 2018
  ident: 10.1016/j.chempr.2020.10.023_bib14
  article-title: Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0090-9
– volume: 30
  start-page: 1905410
  year: 2020
  ident: 10.1016/j.chempr.2020.10.023_bib24
  article-title: Heme cofactor-resembling Fe-N single site embedded graphene as nanozymes to selectively detect H2O2 with high sensitivity
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201905410
– volume: 56
  start-page: 14267
  year: 2017
  ident: 10.1016/j.chempr.2020.10.023_bib9
  article-title: A redox modulatory Mn3O4 nanozyme with multi-enzyme activity provides efficient cytoprotection to human cells in a Parkinson’s disease model
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201708573
– volume: 134
  start-page: 139
  year: 2000
  ident: 10.1016/j.chempr.2020.10.023_bib52
  article-title: Quantum yields of active oxidative species formed on TiO2 photocatalyst
  publication-title: J. Photochem. Photobiol. A
  doi: 10.1016/S1010-6030(00)00264-1
– volume: 258
  start-page: 117959
  year: 2019
  ident: 10.1016/j.chempr.2020.10.023_bib56
  article-title: Asymmetric embedded benzene ring enhances charge transfer of carbon nitride for photocatalytic hydrogen generation
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2019.117959
– volume: 59
  start-page: 3618
  year: 2020
  ident: 10.1016/j.chempr.2020.10.023_bib3
  article-title: Two-dimensional tin selenide (SnSe) nanosheets capable of mimicking key dehydrogenases in cellular metabolism
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201913035
– volume: 13
  start-page: 2643
  year: 2019
  ident: 10.1016/j.chempr.2020.10.023_bib22
  article-title: Nanocatalytic tumor therapy by single-atom catalysts
  publication-title: ACS Nano
– volume: 5
  start-page: 3783
  year: 2014
  ident: 10.1016/j.chempr.2020.10.023_bib42
  article-title: Hydrogen evolution by a metal-free electrocatalyst
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4783
– volume: 36
  start-page: 276
  year: 2003
  ident: 10.1016/j.chempr.2020.10.023_bib48
  article-title: Wavelet: a new trend in chemistry
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar990163w
– volume: 48
  start-page: 37
  year: 2015
  ident: 10.1016/j.chempr.2020.10.023_bib10
  article-title: Mechanism of pH-switchable peroxidase and catalase-like activities of gold, silver, platinum and palladium
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2015.01.012
– volume: 4
  start-page: 285
  year: 2018
  ident: 10.1016/j.chempr.2020.10.023_bib41
  article-title: Graphene defects trap atomic Ni species for hydrogen and oxygen evolution reactions
  publication-title: Chem
  doi: 10.1016/j.chempr.2017.12.005
– volume: 55
  start-page: 2285
  year: 2019
  ident: 10.1016/j.chempr.2020.10.023_bib23
  article-title: Unraveling the enzyme-like activity of heterogeneous single atom catalyst
  publication-title: Chem. Commun. (Camb)
  doi: 10.1039/C9CC00199A
– volume: 5
  start-page: 2865
  year: 2019
  ident: 10.1016/j.chempr.2020.10.023_bib36
  article-title: Precisely tuning the number of Fe atoms in clusters on N-doped carbon toward acidic oxygen reduction reaction
  publication-title: Chem
  doi: 10.1016/j.chempr.2019.07.020
– volume: 10
  start-page: 4290
  year: 2019
  ident: 10.1016/j.chempr.2020.10.023_bib43
  article-title: Regulating the coordination structure of single-atom Fe-NxCy catalytic sites for benzene oxidation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12362-8
– volume: 55
  start-page: 5271
  year: 2019
  ident: 10.1016/j.chempr.2020.10.023_bib26
  article-title: Elucidating the mechanism of the structure-dependent enzymatic activity of Fe-N/C oxidase mimics
  publication-title: Chem. Commun. (Camb)
  doi: 10.1039/C9CC01503E
– volume: 9
  start-page: 4416
  year: 2018
  ident: 10.1016/j.chempr.2020.10.023_bib12
  article-title: Multi-hierarchical profiling the structure-activity relationships of engineered nanomaterials at nano-bio interfaces
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06869-9
– volume: 6
  start-page: 1288
  year: 2020
  ident: 10.1016/j.chempr.2020.10.023_bib18
  article-title: Emerging multifunctional single-atom catalysts/nanozymes
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.0c00512
– volume: 6
  start-page: 885
  year: 2020
  ident: 10.1016/j.chempr.2020.10.023_bib55
  article-title: Accelerated dinitrogen electroreduction to ammonia via interfacial polarization triggered by single-atom protrusions
  publication-title: Chem
  doi: 10.1016/j.chempr.2020.01.013
– volume: 58
  start-page: 4911
  year: 2019
  ident: 10.1016/j.chempr.2020.10.023_bib21
  article-title: A single-atom nanozyme for wound disinfection applications
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201813994
– volume: 10
  start-page: 6422
  year: 2020
  ident: 10.1016/j.chempr.2020.10.023_bib25
  article-title: Densely isolated FeN4 sites for peroxidase mimicking
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c01647
– volume: 11
  start-page: 102
  year: 2019
  ident: 10.1016/j.chempr.2020.10.023_bib33
  article-title: Revealing the intrinsic peroxidase-like catalytic mechanism of heterogeneous single-atom Co-MoS2
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-019-0324-7
– volume: 66
  start-page: 233
  year: 1997
  ident: 10.1016/j.chempr.2020.10.023_bib30
  article-title: Molybdenum-cofactor-containing enzymes: structure and mechanism
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.66.1.233
– volume: 92
  start-page: 292
  year: 2012
  ident: 10.1016/j.chempr.2020.10.023_bib50
  article-title: An XAS study of molybdenum speciation in hydrothermal chloride solutions from 25–385°C and 600 bar
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2012.06.001
– volume: 2
  start-page: 577
  year: 2007
  ident: 10.1016/j.chempr.2020.10.023_bib4
  article-title: Intrinsic peroxidase-like activity of ferromagnetic nanoparticles
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2007.260
– volume: 53
  start-page: 1389
  year: 2020
  ident: 10.1016/j.chempr.2020.10.023_bib19
  article-title: Metal-organic framework derived nanozymes in biomedicine
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.0c00268
– volume: 56
  start-page: 16086
  year: 2017
  ident: 10.1016/j.chempr.2020.10.023_bib40
  article-title: Rational design of single molybdenum atoms anchored on N-doped carbon for effective hydrogen evolution reaction
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201710599
– volume: 11
  start-page: 3525
  year: 2020
  ident: 10.1016/j.chempr.2020.10.023_bib54
  article-title: Operando time-resolved X-ray absorption spectroscopy reveals the chemical nature enabling highly selective CO2 reduction
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17231-3
– volume: 9
  start-page: 336
  year: 2019
  ident: 10.1016/j.chempr.2020.10.023_bib53
  article-title: Rational design of Fe-N/C hybrid for enhanced nitrogen reduction electrocatalysis under ambient conditions in aqueous solution
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b03802
– volume: 32
  start-page: 1905994
  year: 2020
  ident: 10.1016/j.chempr.2020.10.023_bib17
  article-title: Single-atom catalysts in catalytic biomedicine
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201905994
– volume: 5
  start-page: eaav5490
  year: 2019
  ident: 10.1016/j.chempr.2020.10.023_bib27
  article-title: Single-atom nanozymes
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aav5490
– volume: 119
  start-page: 4357
  year: 2019
  ident: 10.1016/j.chempr.2020.10.023_bib2
  article-title: Nanozymes: classification, catalytic mechanisms, activity regulation, and applications
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00672
– volume: 57
  start-page: 1944
  year: 2018
  ident: 10.1016/j.chempr.2020.10.023_bib37
  article-title: Regulation of coordination number over single Co sites: triggering the efficient electroreduction of CO2
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201712451
SSID ssj0001821750
Score 2.5935304
Snippet Nanozymes are promising alternatives to natural enzymes, but their use remains limited owing to poor specificity. Overcoming this and controlling the targeted...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 436
SubjectTerms biocatalysis
coordination environment
MoSA–N3–C catalyst
peroxidase-like specificity
single-atom nanozyme
Title Coordination Number Regulation of Molybdenum Single-Atom Nanozyme Peroxidase-like Specificity
URI https://dx.doi.org/10.1016/j.chempr.2020.10.023
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT9wwFLYoXNpD1VKq0k0-9OpRvM2E4wi1QkXtoQVBkVDkeKGBmTFFQSr8-j7HWcwiKFyikSd5meR98za_BaFPmofut5kmmrmMgAowJDeUEyZ5aVxpWLYRaoe_fR9v7Yqv-zLZaG-qS-pypC9vrSt5DFdhDfgaqmQfwNmeKCzAZ-AvHIHDcPwvHm96cB2rGM8Dvz_M9oD3ddRO5GqyW_zsojRNuvtPUFIzS6a1nweZ6i8v5jYkwPu_lQFVRmbViY3j6ENTifrKdm9oKzCE3qN4-NUpvZB_E1NuAW-Lo7Oq39c4b1IF9ivl_wAK-7MPfivffZFGHRgNicqtVGyEExOSEjCtRCpJJwlgWCIVBR8nClbEHqU3ZHcMIxyPAKzz09CqlYXFURbrka-2yr6mwvrEwi5n7biIVIpABZYKoPIErTDwJUAYrky3f-xtD6G4HPyyZpZv_1RdkWWTCXjzB91uxCSGyc4L9Lz1KPA0wuMlWrKLVfQs6TP5Ch2mQMERKHgACvYOD0DBCVBwBxR8DSg4Acoa2v3yeWdzi7RzNYgWNK8Js2rslDQ0PClIEsFLTR1oGkeptTKYnFSV3GxIPXHSKkZVzq3LtBKOc5vz12h54Rf2DcIsc85KqanRVDigx9Sk1NKCqB9n3Lh1xLsXVei26XyYfTIr7uLUOiL9Vaex6co95086HhSt4RgNwgKwdeeVbx94p3fo6fBveI-W67Nz-wGs0rr82KLqH6C-kE8
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coordination+Number+Regulation+of+Molybdenum+Single-Atom+Nanozyme+Peroxidase-like+Specificity&rft.jtitle=Chem&rft.au=Wang%2C+Ying&rft.au=Jia%2C+Guangri&rft.au=Cui%2C+Xiaoqiang&rft.au=Zhao%2C+Xiao&rft.date=2021-02-11&rft.issn=2451-9294&rft.volume=7&rft.issue=2&rft.spage=436&rft.epage=449&rft_id=info:doi/10.1016%2Fj.chempr.2020.10.023&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_chempr_2020_10_023
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2451-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2451-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2451-9294&client=summon