Coordination Number Regulation of Molybdenum Single-Atom Nanozyme Peroxidase-like Specificity
Nanozymes are promising alternatives to natural enzymes, but their use remains limited owing to poor specificity. Overcoming this and controlling the targeted enzyme-like performance of traditional nanozymes is extremely challenging due to the intrinsic structural complexity of these systems. We rep...
Saved in:
Published in | Chem Vol. 7; no. 2; pp. 436 - 449 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
11.02.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nanozymes are promising alternatives to natural enzymes, but their use remains limited owing to poor specificity. Overcoming this and controlling the targeted enzyme-like performance of traditional nanozymes is extremely challenging due to the intrinsic structural complexity of these systems. We report theoretical design and experimental realization of a series of heterogeneous molybdenum single-atom nanozymes (named MoSA–Nx–C), wherein we find that the peroxidase-like specificity is well regulated by the coordination numbers of single Mo sites. The resulting MoSA–N3–C catalyst shows exclusive peroxidase-like behavior. It achieves this behavior via a homolytic pathway, whereas MoSA–N2–C and MoSA–N4–C catalysts have a different heterolytic pathway. The mechanism of this coordination-number-dependent enzymatic specificity is attributed to geometrical structure differences and orientation relationships of the frontier molecular orbitals toward these MoSA–Nx–C peroxidase mimics. This study demonstrates the rational design of peroxidase-specific nanozymes and precise regulation of their enzymatic properties.
[Display omitted]
•A class of MoSA–Nx–C nanozymes are designed and implemented•The peroxidase-like specificity is regulated by Mo–Nx coordination numbers•MoSA–N3–C single-atom nanozyme has superior and exclusive peroxidase-like activity•The mechanism of coordination-number-dependent POD-like specificity is elucidated
Nanozymes, which are nanomaterials with enzyme-like characteristics, combine the advantages of nanomaterials and biocatalysts. Although the stability and durability of these nanozymes are comparable to those of natural enzymes, unsatisfactory specificity still limits their wide application as alternatives to natural enzymes. Controlling the targeted enzyme-like performance of traditional nanozymes is extremely challenging owing to the intrinsic structural complexity of nanomaterials. Here, we report the theoretical design and experimental realization of a series of heterogeneous molybdenum single-atom nanozymes. Their peroxidase-like specificity is well regulated by the coordination numbers of single Mo sites. A MoSA–N3–C single-atom nanozyme with superior and specific peroxidase-like activity is demonstrated. This work unravels the structure-selectivity relationships and provides an effective strategy for the rational design of targeted nanozymes.
Nanozymes are promising alternatives to natural enzymes, but their use remains limited owing to poor specificity. In this context, a clear relationship between the peroxidase-like specificity and configurations of molybdenum single-atom nanozymes (MoSA–Nx–C) is established through the regulation of Mo–Nx coordination numbers at the atomic level. The resulting MoSA–N3–C nanozyme has superior and exclusive peroxidase-like activity. This work provides a strategy for the rational design and realization of selective single-atom nanozymes. |
---|---|
AbstractList | Nanozymes are promising alternatives to natural enzymes, but their use remains limited owing to poor specificity. Overcoming this and controlling the targeted enzyme-like performance of traditional nanozymes is extremely challenging due to the intrinsic structural complexity of these systems. We report theoretical design and experimental realization of a series of heterogeneous molybdenum single-atom nanozymes (named MoSA–Nx–C), wherein we find that the peroxidase-like specificity is well regulated by the coordination numbers of single Mo sites. The resulting MoSA–N3–C catalyst shows exclusive peroxidase-like behavior. It achieves this behavior via a homolytic pathway, whereas MoSA–N2–C and MoSA–N4–C catalysts have a different heterolytic pathway. The mechanism of this coordination-number-dependent enzymatic specificity is attributed to geometrical structure differences and orientation relationships of the frontier molecular orbitals toward these MoSA–Nx–C peroxidase mimics. This study demonstrates the rational design of peroxidase-specific nanozymes and precise regulation of their enzymatic properties.
[Display omitted]
•A class of MoSA–Nx–C nanozymes are designed and implemented•The peroxidase-like specificity is regulated by Mo–Nx coordination numbers•MoSA–N3–C single-atom nanozyme has superior and exclusive peroxidase-like activity•The mechanism of coordination-number-dependent POD-like specificity is elucidated
Nanozymes, which are nanomaterials with enzyme-like characteristics, combine the advantages of nanomaterials and biocatalysts. Although the stability and durability of these nanozymes are comparable to those of natural enzymes, unsatisfactory specificity still limits their wide application as alternatives to natural enzymes. Controlling the targeted enzyme-like performance of traditional nanozymes is extremely challenging owing to the intrinsic structural complexity of nanomaterials. Here, we report the theoretical design and experimental realization of a series of heterogeneous molybdenum single-atom nanozymes. Their peroxidase-like specificity is well regulated by the coordination numbers of single Mo sites. A MoSA–N3–C single-atom nanozyme with superior and specific peroxidase-like activity is demonstrated. This work unravels the structure-selectivity relationships and provides an effective strategy for the rational design of targeted nanozymes.
Nanozymes are promising alternatives to natural enzymes, but their use remains limited owing to poor specificity. In this context, a clear relationship between the peroxidase-like specificity and configurations of molybdenum single-atom nanozymes (MoSA–Nx–C) is established through the regulation of Mo–Nx coordination numbers at the atomic level. The resulting MoSA–N3–C nanozyme has superior and exclusive peroxidase-like activity. This work provides a strategy for the rational design and realization of selective single-atom nanozymes. |
Author | Cui, Xiaoqiang Wu, Qiong Jia, Guangri Zhang, Qinghua Zheng, Lirong Li, Lu Hua Cui, Yi-Tao Zhao, Jingxiang Wang, Ying Singh, David J. Zhao, Xiao Matsumura, Daiju Tsuji, Takuya Gu, Lin Zheng, Weitao |
Author_xml | – sequence: 1 givenname: Ying surname: Wang fullname: Wang, Ying organization: State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun 130012, China – sequence: 2 givenname: Guangri surname: Jia fullname: Jia, Guangri organization: State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun 130012, China – sequence: 3 givenname: Xiaoqiang surname: Cui fullname: Cui, Xiaoqiang email: xqcui@jlu.edu.cn organization: State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun 130012, China – sequence: 4 givenname: Xiao surname: Zhao fullname: Zhao, Xiao organization: State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun 130012, China – sequence: 5 givenname: Qinghua surname: Zhang fullname: Zhang, Qinghua organization: Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Laboratory of Advanced Materials and Electron Microscopy, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China – sequence: 6 givenname: Lin surname: Gu fullname: Gu, Lin organization: Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Laboratory of Advanced Materials and Electron Microscopy, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China – sequence: 7 givenname: Lirong surname: Zheng fullname: Zheng, Lirong organization: Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China – sequence: 8 givenname: Lu Hua surname: Li fullname: Li, Lu Hua organization: Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds Campus, Waurn Ponds, VIC 3216, Australia – sequence: 9 givenname: Qiong surname: Wu fullname: Wu, Qiong organization: State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun 130012, China – sequence: 10 givenname: David J. surname: Singh fullname: Singh, David J. organization: Department of Physics and Astronomy and Department of Chemistry, University of Missouri, Columbia, MO 65211, USA – sequence: 11 givenname: Daiju surname: Matsumura fullname: Matsumura, Daiju organization: Materials Sciences Research Center, Japan Atomic Energy Agency SPring-8, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan – sequence: 12 givenname: Takuya surname: Tsuji fullname: Tsuji, Takuya organization: Materials Sciences Research Center, Japan Atomic Energy Agency SPring-8, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan – sequence: 13 givenname: Yi-Tao surname: Cui fullname: Cui, Yi-Tao organization: SANKA High Technology Co. Ltd. 90-1, Kurimachi, Shingu-machi, Tatsuno, Hyogo 679-5155, Japan – sequence: 14 givenname: Jingxiang surname: Zhao fullname: Zhao, Jingxiang email: xjz_hmily@163.com organization: College of Chemistry and Chemical Engineering, Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, Heilongjiang 150025, P. R. China – sequence: 15 givenname: Weitao surname: Zheng fullname: Zheng, Weitao organization: State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun 130012, China |
BookMark | eNqFkMtOwzAURC0EEqX0D1j4BxL8SNqUBVJV8ZJKQRSWyHLs6-KS2JWTIsLXkxAWiAWs7tVIZzQzR2jfeQcInVASU0LHp5tYvUC5DTEjrJNiwvgeGrAkpdGUTZP9H_8hGlXVhhBCM0YnKRmg57n3QVsna-sdXu7KHAJ-gPWu6BVv8K0vmlyD25V4Zd26gGhW-xIvpfMfTQn4HoJ_t1pWEBX2FfBqC8oaq2zdHKMDI4sKRt93iJ4uLx7n19Hi7upmPltEKqFZHTGQYyNTTbuMIHXCc0UNn4wNpQApJSyjMud6mqqJSUEyKjMOhiiZGM4h40OU9L4q-KoKYMQ22FKGRlAiupXERvQriW6lTm1XarGzX1gb-qt3HaQt_oPPexjaYm8WgqiUBadA2wCqFtrbvw0-Aao3idk |
CitedBy_id | crossref_primary_10_1021_acs_est_1c01131 crossref_primary_10_3390_chemosensors10100386 crossref_primary_10_1002_smll_202204015 crossref_primary_10_1021_acscatal_4c04419 crossref_primary_10_1038_s41467_024_50123_4 crossref_primary_10_1016_j_apcatb_2021_120877 crossref_primary_10_1002_advs_202205681 crossref_primary_10_1039_D2TA08542A crossref_primary_10_1007_s40843_021_1734_x crossref_primary_10_1016_j_ijhydene_2024_05_151 crossref_primary_10_1039_D3NR04853E crossref_primary_10_1039_D3SC01714A crossref_primary_10_1007_s12274_023_5931_4 crossref_primary_10_1002_anie_202318246 crossref_primary_10_1039_D3NR03327A crossref_primary_10_1016_j_jcis_2022_04_002 crossref_primary_10_1038_s41467_024_46528_w crossref_primary_10_1007_s12274_023_6208_7 crossref_primary_10_1021_acsanm_3c01669 crossref_primary_10_1002_smll_202203283 crossref_primary_10_1016_j_cclet_2024_110153 crossref_primary_10_1002_adfm_202406790 crossref_primary_10_1002_anie_202116170 crossref_primary_10_1007_s11426_022_1529_y crossref_primary_10_1007_s00216_023_04720_9 crossref_primary_10_1016_j_aca_2024_342628 crossref_primary_10_1038_s41467_023_41002_5 crossref_primary_10_1039_D1EE03194E crossref_primary_10_1039_D1TB01654G crossref_primary_10_1039_D2SC05679H crossref_primary_10_1002_adma_202412368 crossref_primary_10_1016_j_bios_2024_116917 crossref_primary_10_1063_5_0061499 crossref_primary_10_1016_j_ijhydene_2025_02_234 crossref_primary_10_1038_s44160_022_00138_w crossref_primary_10_1002_adfm_202106139 crossref_primary_10_1021_acsanm_3c02630 crossref_primary_10_1007_s40820_023_01214_2 crossref_primary_10_1039_D2QI02318K crossref_primary_10_1039_D3NJ00127J crossref_primary_10_1021_acs_nanolett_3c01454 crossref_primary_10_1016_j_chemosphere_2023_140557 crossref_primary_10_1016_j_jcis_2024_01_132 crossref_primary_10_1002_adfm_202203001 crossref_primary_10_1021_acs_analchem_1c04018 crossref_primary_10_1021_acs_nanolett_2c01229 crossref_primary_10_1021_acs_analchem_1c04496 crossref_primary_10_1002_SMMD_20220025 crossref_primary_10_1016_j_ccr_2025_216539 crossref_primary_10_1002_adfm_202205461 crossref_primary_10_1021_jacs_4c00791 crossref_primary_10_1021_acsnano_4c00308 crossref_primary_10_1002_ange_202424135 crossref_primary_10_1002_anie_202319108 crossref_primary_10_1016_j_bios_2024_116704 crossref_primary_10_1021_acs_analchem_3c01005 crossref_primary_10_1039_D1SC01375K crossref_primary_10_1038_s41467_024_54868_w crossref_primary_10_1002_adfm_202111171 crossref_primary_10_1016_j_cscee_2024_100753 crossref_primary_10_1002_smll_202101907 crossref_primary_10_1016_j_talanta_2023_124991 crossref_primary_10_1088_1361_6463_ac6464 crossref_primary_10_1002_anie_202217995 crossref_primary_10_1002_anie_202307133 crossref_primary_10_1002_anie_202300122 crossref_primary_10_1016_j_mattod_2021_10_032 crossref_primary_10_1016_j_pmatsci_2022_100959 crossref_primary_10_1021_acs_jpcc_2c06266 crossref_primary_10_1016_j_matt_2021_10_027 crossref_primary_10_1021_acsami_4c16551 crossref_primary_10_1007_s11426_022_1495_y crossref_primary_10_1007_s12274_022_4665_z crossref_primary_10_1016_j_nantod_2024_102236 crossref_primary_10_1039_D3TB01644G crossref_primary_10_1016_j_jhazmat_2024_135887 crossref_primary_10_1021_jacsau_2c00495 crossref_primary_10_1002_advs_202305823 crossref_primary_10_1002_ange_202403203 crossref_primary_10_1002_eem2_12743 crossref_primary_10_1039_D3QI01576A crossref_primary_10_1002_advs_202103977 crossref_primary_10_1002_ange_202300122 crossref_primary_10_3390_nanoenergyadv3010004 crossref_primary_10_1021_prechem_3c00022 crossref_primary_10_1002_anie_202412740 crossref_primary_10_1007_s00216_024_05280_2 crossref_primary_10_1016_j_nanoen_2023_108353 crossref_primary_10_1039_D4TB02315C crossref_primary_10_1007_s40820_022_00828_2 crossref_primary_10_1016_j_bios_2022_114662 crossref_primary_10_1021_acsanm_4c02258 crossref_primary_10_1007_s12274_022_4150_8 crossref_primary_10_1007_s12274_024_6771_6 crossref_primary_10_1016_j_jece_2025_115760 crossref_primary_10_1016_j_jece_2022_109241 crossref_primary_10_1021_acsnano_2c12698 crossref_primary_10_1002_bio_4620 crossref_primary_10_1021_acs_analchem_3c04339 crossref_primary_10_1002_ejic_202200202 crossref_primary_10_1016_j_clay_2022_106656 crossref_primary_10_1002_adma_202313406 crossref_primary_10_1016_j_apsusc_2022_153755 crossref_primary_10_1002_adfm_202209399 crossref_primary_10_1016_j_heliyon_2024_e38057 crossref_primary_10_1016_j_ccr_2023_215517 crossref_primary_10_1021_acsami_1c25072 crossref_primary_10_1039_D1CS01106E crossref_primary_10_1021_jacs_2c13597 crossref_primary_10_1002_anie_202208757 crossref_primary_10_1016_j_jcis_2023_10_134 crossref_primary_10_1002_advs_202416942 crossref_primary_10_1016_j_apcatb_2024_123942 crossref_primary_10_1039_D4MH00215F crossref_primary_10_1021_acsnano_2c11923 crossref_primary_10_1002_adma_202211724 crossref_primary_10_1002_ange_202301879 crossref_primary_10_1002_ange_202112453 crossref_primary_10_1002_ange_202116170 crossref_primary_10_1002_smll_202206657 crossref_primary_10_1016_j_aca_2023_342006 crossref_primary_10_1016_j_jechem_2022_10_015 crossref_primary_10_1002_adma_202211151 crossref_primary_10_1016_j_snb_2024_136756 crossref_primary_10_1002_ange_202315933 crossref_primary_10_1016_j_cej_2023_143269 crossref_primary_10_1002_anie_202207512 crossref_primary_10_1016_j_bios_2022_114768 crossref_primary_10_1002_adma_202200255 crossref_primary_10_1002_ange_202208757 crossref_primary_10_1016_j_tifs_2025_104905 crossref_primary_10_1002_advs_202203917 crossref_primary_10_1016_j_jhazmat_2024_136148 crossref_primary_10_1007_s12274_023_5864_y crossref_primary_10_1002_ange_202412740 crossref_primary_10_1016_j_cej_2023_148273 crossref_primary_10_1021_acs_analchem_1c05557 crossref_primary_10_1016_j_tet_2023_133444 crossref_primary_10_1021_acsanm_4c06508 crossref_primary_10_1002_adma_202403153 crossref_primary_10_1021_acs_analchem_1c02842 crossref_primary_10_1002_adfm_202408019 crossref_primary_10_1039_D4SC03101F crossref_primary_10_1007_s12274_023_6119_7 crossref_primary_10_1016_j_cej_2023_143139 crossref_primary_10_1002_anie_202112453 crossref_primary_10_1002_smll_202302929 crossref_primary_10_1002_advs_202502664 crossref_primary_10_1002_smll_202405624 crossref_primary_10_1002_adma_202206478 crossref_primary_10_1016_j_jconrel_2022_10_013 crossref_primary_10_1002_adhm_202302056 crossref_primary_10_1186_s12951_024_02569_3 crossref_primary_10_1016_j_cej_2025_159747 crossref_primary_10_1016_j_jcis_2024_07_046 crossref_primary_10_1002_adma_202211147 crossref_primary_10_1039_D1SC04344G crossref_primary_10_1016_j_cattod_2023_114358 crossref_primary_10_1002_smll_202300750 crossref_primary_10_1007_s12274_022_5104_x crossref_primary_10_1021_acs_jpcc_2c05780 crossref_primary_10_1002_ange_202307133 crossref_primary_10_1016_j_apsusc_2023_158333 crossref_primary_10_1016_j_cej_2022_140808 crossref_primary_10_1016_j_saa_2022_121782 crossref_primary_10_1002_adhm_202101682 crossref_primary_10_1016_j_mcat_2024_113906 crossref_primary_10_1002_smll_202401032 crossref_primary_10_1021_acsnano_3c05409 crossref_primary_10_1016_j_cej_2025_160704 crossref_primary_10_1016_j_nanoms_2023_12_006 crossref_primary_10_1002_anie_202301879 crossref_primary_10_1007_s12274_022_4274_x crossref_primary_10_1039_D5NR00302D crossref_primary_10_1021_acs_analchem_4c05798 crossref_primary_10_1002_adfm_202110224 crossref_primary_10_1039_D2QI02727E crossref_primary_10_1002_adfm_202407243 crossref_primary_10_2139_ssrn_4047527 crossref_primary_10_1002_smll_202103705 crossref_primary_10_1016_j_biosx_2022_100190 crossref_primary_10_1038_s41467_022_34619_5 crossref_primary_10_1016_j_cej_2023_142820 crossref_primary_10_1002_adhm_202401630 crossref_primary_10_1002_anie_202315933 crossref_primary_10_1021_acsnano_1c07893 crossref_primary_10_1002_adsu_202100281 crossref_primary_10_1002_ange_202207512 crossref_primary_10_1002_anie_202424135 crossref_primary_10_1021_acs_analchem_3c05245 crossref_primary_10_1002_ange_202319108 crossref_primary_10_1016_j_ccr_2024_215771 crossref_primary_10_1016_j_apcatb_2022_122012 crossref_primary_10_1016_j_foodchem_2024_140094 crossref_primary_10_1002_adhm_202201733 crossref_primary_10_1021_jacs_3c05162 crossref_primary_10_1007_s12274_023_5393_8 crossref_primary_10_1016_j_cis_2025_103404 crossref_primary_10_1002_ange_202413661 crossref_primary_10_1021_acs_analchem_1c02115 crossref_primary_10_1021_acs_nanolett_2c04697 crossref_primary_10_1016_j_snb_2025_137358 crossref_primary_10_1002_advs_202407816 crossref_primary_10_1038_s41467_024_50416_8 crossref_primary_10_1038_s41467_023_43176_4 crossref_primary_10_1007_s40820_022_00908_3 crossref_primary_10_1039_D4SC04711G crossref_primary_10_1016_j_cej_2021_131396 crossref_primary_10_1016_j_cej_2022_136692 crossref_primary_10_1002_anie_202403203 crossref_primary_10_1039_D4BM00169A crossref_primary_10_1039_D1CS00421B crossref_primary_10_1002_adfm_202311664 crossref_primary_10_1002_adfm_202112428 crossref_primary_10_1002_smll_202207142 crossref_primary_10_1002_cssc_202200231 crossref_primary_10_3390_catal13040651 crossref_primary_10_1016_j_cclet_2024_109560 crossref_primary_10_1016_j_cej_2024_148888 crossref_primary_10_1016_j_cej_2024_156370 crossref_primary_10_1021_acs_nanolett_2c02183 crossref_primary_10_1021_acs_analchem_2c02511 crossref_primary_10_1016_j_cej_2022_137551 crossref_primary_10_1016_j_chempr_2021_08_020 crossref_primary_10_1016_j_snb_2024_137075 crossref_primary_10_1002_smll_202104844 crossref_primary_10_1016_j_apsusc_2023_157900 crossref_primary_10_1007_s11426_023_1677_4 crossref_primary_10_1007_s42247_024_00939_z crossref_primary_10_1002_advs_202401975 crossref_primary_10_3390_ijms242115712 crossref_primary_10_2139_ssrn_4075508 crossref_primary_10_1021_acs_langmuir_4c01166 crossref_primary_10_1007_s40820_023_01224_0 crossref_primary_10_1002_cey2_270 crossref_primary_10_1016_j_foodchem_2023_137455 crossref_primary_10_1016_j_cclet_2025_110916 crossref_primary_10_1021_acs_nanolett_2c04944 crossref_primary_10_1021_acsami_4c06164 crossref_primary_10_1002_smll_202407747 crossref_primary_10_2139_ssrn_4187580 crossref_primary_10_1038_s41467_022_32411_z crossref_primary_10_3390_nano13202760 crossref_primary_10_1002_ppsc_202300039 crossref_primary_10_1016_j_surfin_2023_103553 crossref_primary_10_1016_j_trac_2023_117280 crossref_primary_10_1016_j_talanta_2024_127503 crossref_primary_10_1021_acsenergylett_1c02446 crossref_primary_10_1016_j_microc_2023_109341 crossref_primary_10_1002_advs_202307424 crossref_primary_10_1002_ange_202217995 crossref_primary_10_1016_j_nantod_2023_101755 crossref_primary_10_1002_inf2_12421 crossref_primary_10_1002_adfm_202110432 crossref_primary_10_1021_acsami_2c12036 crossref_primary_10_1021_acsami_4c09208 crossref_primary_10_1016_j_nanoen_2024_109279 crossref_primary_10_1016_j_apsusc_2023_158991 crossref_primary_10_1039_D4EE02674H crossref_primary_10_1016_j_bios_2024_116345 crossref_primary_10_1002_adma_202306602 crossref_primary_10_1002_ange_202401214 crossref_primary_10_1002_ange_202318246 crossref_primary_10_1016_j_jcis_2024_02_097 crossref_primary_10_1007_s12274_022_5266_6 crossref_primary_10_1021_acs_analchem_0c04084 crossref_primary_10_1002_adma_202205674 crossref_primary_10_1021_acsnano_5c00085 crossref_primary_10_1007_s00604_022_05421_3 crossref_primary_10_1016_j_cis_2023_102968 crossref_primary_10_1016_j_trac_2023_117399 crossref_primary_10_1016_j_cis_2021_102485 crossref_primary_10_1039_D1SC02170B crossref_primary_10_1002_anie_202302463 crossref_primary_10_1002_anie_202413661 crossref_primary_10_1007_s00604_023_05636_y crossref_primary_10_1021_acs_jafc_1c04309 crossref_primary_10_1016_j_cej_2022_139411 crossref_primary_10_1021_jacs_4c04322 crossref_primary_10_1002_adfm_202306392 crossref_primary_10_1002_adhm_202402544 crossref_primary_10_1021_jacs_4c16655 crossref_primary_10_1021_acsnano_3c07724 crossref_primary_10_1002_adfm_202212051 crossref_primary_10_26599_NBE_2023_9290047 crossref_primary_10_1002_anie_202401214 crossref_primary_10_1016_j_microc_2024_112032 crossref_primary_10_1038_s41467_024_53047_1 crossref_primary_10_1002_ange_202302463 crossref_primary_10_1002_smll_202408609 crossref_primary_10_1002_adfm_202314686 crossref_primary_10_1016_j_nantod_2023_102142 crossref_primary_10_1002_admt_202200238 |
Cites_doi | 10.1021/jacs.5b10346 10.1016/j.chempr.2018.12.011 10.1002/anie.202003842 10.1021/jacs.0c03415 10.1021/acs.accounts.9b00140 10.1002/adma.202002246 10.1038/s41570-018-0010-1 10.1103/PhysRevB.71.094110 10.1021/acsnano.8b09519 10.1039/C8CS00457A 10.1021/jacs.7b06514 10.1002/anie.201914977 10.1146/annurev.arplant.57.032905.105437 10.1038/s41557-020-0473-9 10.1002/anie.201712469 10.1016/j.chempr.2019.05.023 10.1002/anie.201905645 10.1038/s41929-017-0008-y 10.1038/s41596-018-0001-1 10.1039/c3cs35486e 10.1016/j.enzmictec.2013.12.006 10.1038/s41565-020-0665-x 10.1021/acs.chemmater.8b02726 10.1021/acscatal.0c00936 10.1016/j.ccr.2020.213376 10.1038/s41929-018-0090-9 10.1002/adfm.201905410 10.1002/anie.201708573 10.1016/S1010-6030(00)00264-1 10.1016/j.apcatb.2019.117959 10.1002/anie.201913035 10.1038/ncomms4783 10.1021/ar990163w 10.1016/j.biomaterials.2015.01.012 10.1016/j.chempr.2017.12.005 10.1039/C9CC00199A 10.1016/j.chempr.2019.07.020 10.1038/s41467-019-12362-8 10.1039/C9CC01503E 10.1038/s41467-018-06869-9 10.1021/acscentsci.0c00512 10.1016/j.chempr.2020.01.013 10.1002/anie.201813994 10.1021/acscatal.0c01647 10.1007/s40820-019-0324-7 10.1146/annurev.biochem.66.1.233 10.1016/j.gca.2012.06.001 10.1038/nnano.2007.260 10.1021/acs.accounts.0c00268 10.1002/anie.201710599 10.1038/s41467-020-17231-3 10.1021/acscatal.8b03802 10.1002/adma.201905994 10.1126/sciadv.aav5490 10.1021/acs.chemrev.8b00672 10.1002/anie.201712451 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Inc. |
Copyright_xml | – notice: 2020 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.chempr.2020.10.023 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2451-9294 |
EndPage | 449 |
ExternalDocumentID | 10_1016_j_chempr_2020_10_023 S2451929420305441 |
GroupedDBID | 0R~ AACTN AAEDW AALRI AAVLU AAXUO ABMAC ABVKL ACGFS ADJPV AFTJW ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS FDB O9- OK1 AAMRU AAYWO AAYXX ABDGV ABJNI ACVFH ADBBV ADCNI ADVLN AEUPX AFPUW AGCQF AIGII AITUG AKAPO AKBMS AKRWK AKYEP APXCP CITATION EJD SSZ |
ID | FETCH-LOGICAL-c418t-2ea6fa5d19294ead43bc1f376f11ee510281ab3d95c7f5ea21a83ef0ca4f33e83 |
ISSN | 2451-9294 |
IngestDate | Tue Jul 01 03:15:22 EDT 2025 Thu Apr 24 23:01:44 EDT 2025 Thu Jul 20 20:17:00 EDT 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | single-atom nanozyme coordination environment SDG3: Good health and well-being peroxidase-like specificity MoSA–N3–C catalyst biocatalysis |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c418t-2ea6fa5d19294ead43bc1f376f11ee510281ab3d95c7f5ea21a83ef0ca4f33e83 |
OpenAccessLink | http://www.cell.com/article/S2451929420305441/pdf |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1016_j_chempr_2020_10_023 crossref_citationtrail_10_1016_j_chempr_2020_10_023 elsevier_sciencedirect_doi_10_1016_j_chempr_2020_10_023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-11 |
PublicationDateYYYYMMDD | 2021-02-11 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-11 day: 11 |
PublicationDecade | 2020 |
PublicationTitle | Chem |
PublicationYear | 2021 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Gao, Zhuang, Nie, Zhang, Zhang, Gu, Wang, Feng, Yang, Perrett, Yan (bib4) 2007; 2 Lu, Gao, Lin, Yu, Han, Zhu, Bao, Yao, Chen, Shi (bib28) 2020; 32 Xiang, Feng, Chen (bib17) 2020; 32 Borg, Liu, Etschmann, Tian, Brugger (bib50) 2012; 92 Gao, Wang, Zheng, Wang, Xu, Liu, Li, Pan, Wang, Cai (bib3) 2020; 59 Hai, Zhao, Guo, Yao, Chen, Liu, Du, Yan, Li, Chen (bib38) 2020; 10 Jiao, Yan, Wu, Gu, Zhu, Du, Lin (bib16) 2020; 59 Ye, Chen, Lin, Yang, Chen, Zheng, Qi, Wang, Long, Chen (bib36) 2019; 5 Hu, Gao, Zhu, Muhammad, Tan, Cao, Lin, Jin, Gao, Wei (bib32) 2018; 30 Ishibashi, Fujishima, Watanabe, Hashimoto (bib52) 2000; 134 Li, Liu, Wu, Gao (bib10) 2015; 48 Pan, Chen, Wu, Chen, Liu, Cao, Cheong, Meng, Luo, Zheng (bib43) 2019; 10 Xiong, Dong, Huang, Xin, Chen, Wang, Li, Jin, Xing, Zhuang (bib35) 2020; 15 Zhou, Zhao, Gan, Xu, Wang, Lv, Fang, Wang, Deng, Wang (bib44) 2020; 142 Wu, Wang, Wang, Lou, Li, Zhu, Qin, Wei (bib1) 2019; 48 Li, Chen, Ji, Tang, Chen, Li, Zhao, Xiong, Wu, Gong (bib34) 2020; 12 Wang, Chen, Zhao, Yao, Chen, You, Zhao, Wu, Wang, Huang (bib37) 2018; 57 Wang, Qi, Yu, Jia, Cheng, Zheng, Wu, Bao, Wang, Zhao (bib33) 2019; 11 Schwarz, Mendel (bib29) 2006; 57 Jiao, Jiang (bib13) 2019; 5 Li, Chen, Quan, Zhan, Jia, Ai, Zhang (bib55) 2020; 6 Lian, Xue, Qiao, Liu, Zhang, Li, Huang, Song, Yang, Chen, Wang (bib6) 2019; 5 Zhang, Li, Chen, Wu, Zhou, Wu (bib20) 2020; 418 Cai, Dong, Liu, Zheng, Kaweeteerawat, Wang, Ji, Li (bib12) 2018; 9 Huang, Ren, Qu (bib2) 2019; 119 Shen, Liu, Gao, Lu, Wu, Gao (bib11) 2015; 137 Zhao, Xiong, Liu, Qiao, Li, Yuan, Wang, Qu, Wang, Zhou (bib23) 2019; 55 Jia, Wang, Cui, Yang, Liu, Zhang, Wu, Zheng, Zheng (bib56) 2019; 258 Kisker, Schindelin, Rees (bib30) 1997; 66 Funke, Scheinost, Chukalina (bib47) 2005; 71 Pundir, Devi (bib57) 2014; 57 Zhang, Jia, Gao, Yan, Chen, Chen, Soo, Wood, Yang, Du, Yao (bib41) 2018; 4 Jiao, Wu, Zhong, Zhang, Xu, Wu, Chen, Yan, Zhang, Gu (bib25) 2020; 10 Liang, Yan (bib8) 2019; 52 Cui, Li, Ryabchuk, Junge, Beller (bib14) 2018; 1 Xu, Wang, Wang, Gao, Li, Pan, Wang, Yang, Meng, Wu (bib21) 2019; 58 Huo, Wang, Wang, Chen, Shi (bib22) 2019; 13 Huang, Chen, Gan, Wang, Dong (bib27) 2019; 5 Chen, Pei, He, Wan, Ren, Zhu, Wang, Dong, Tian, Cheong (bib40) 2017; 56 Kim, Cho, Joo, Lee, Kwak, Kim, Lee (bib31) 2019; 13 Wang, Jana, Zhao (bib19) 2020; 53 Fei, Dong, Feng, Allen, Wan, Volosskiy, Li, Zhao, Wang, Sun (bib49) 2018; 1 Singh, Savanur, Srivastava, D’Silva, Mugesh (bib9) 2017; 56 Zhang, Lu, Wu, Lou (bib18) 2020; 6 Lin, Chang, Chiu, Pai, Liao, Hsu, Chiang, Tsai, Chen (bib54) 2020; 11 Wei, Wang (bib7) 2013; 42 Wang, Li, Zhang (bib15) 2018; 2 Zheng, Jiao, Zhu, Li, Han, Chen, Du, Jaroniec, Qiao (bib42) 2014; 5 Tang, Jiao, Shi, Liu, Xie, Chen, Zhang, Qiao (bib46) 2020; 59 Shao, Leung, Chau (bib48) 2003; 36 Wang, Zhang, Jia, Zheng, Zhao, Cui (bib26) 2019; 55 Gong, Jiao, Qian, Pan, Zheng, Cai, Liu, Yu, Jiang (bib39) 2020; 59 Sun, Zhou, Ren, Qu (bib5) 2018; 57 Wang, Cui, Zhao, Jia, Gu, Zhang, Meng, Shi, Zheng, Wang (bib53) 2019; 9 Zhang, Hwang, Wang, Feng, Karakalos, Luo, Qiao, Xie, Wang, Su (bib45) 2017; 139 Jiang, Duan, Gao, Zhou, Fan, Tang, Xi, Bi, Tong, Gao (bib51) 2018; 13 Kim, Lee, Kim, Cho, Shim, Le, An, Han, Kim, Lee (bib24) 2020; 30 Wang (10.1016/j.chempr.2020.10.023_bib37) 2018; 57 Wang (10.1016/j.chempr.2020.10.023_bib33) 2019; 11 Li (10.1016/j.chempr.2020.10.023_bib34) 2020; 12 Wu (10.1016/j.chempr.2020.10.023_bib1) 2019; 48 Zhang (10.1016/j.chempr.2020.10.023_bib18) 2020; 6 Lin (10.1016/j.chempr.2020.10.023_bib54) 2020; 11 Wang (10.1016/j.chempr.2020.10.023_bib26) 2019; 55 Kim (10.1016/j.chempr.2020.10.023_bib31) 2019; 13 Jiang (10.1016/j.chempr.2020.10.023_bib51) 2018; 13 Cai (10.1016/j.chempr.2020.10.023_bib12) 2018; 9 Jiao (10.1016/j.chempr.2020.10.023_bib25) 2020; 10 Zhang (10.1016/j.chempr.2020.10.023_bib45) 2017; 139 Jia (10.1016/j.chempr.2020.10.023_bib56) 2019; 258 Wei (10.1016/j.chempr.2020.10.023_bib7) 2013; 42 Gao (10.1016/j.chempr.2020.10.023_bib4) 2007; 2 Li (10.1016/j.chempr.2020.10.023_bib10) 2015; 48 Zhao (10.1016/j.chempr.2020.10.023_bib23) 2019; 55 Funke (10.1016/j.chempr.2020.10.023_bib47) 2005; 71 Schwarz (10.1016/j.chempr.2020.10.023_bib29) 2006; 57 Wang (10.1016/j.chempr.2020.10.023_bib53) 2019; 9 Chen (10.1016/j.chempr.2020.10.023_bib40) 2017; 56 Huang (10.1016/j.chempr.2020.10.023_bib2) 2019; 119 Kisker (10.1016/j.chempr.2020.10.023_bib30) 1997; 66 Li (10.1016/j.chempr.2020.10.023_bib55) 2020; 6 Zhou (10.1016/j.chempr.2020.10.023_bib44) 2020; 142 Shao (10.1016/j.chempr.2020.10.023_bib48) 2003; 36 Shen (10.1016/j.chempr.2020.10.023_bib11) 2015; 137 Xiang (10.1016/j.chempr.2020.10.023_bib17) 2020; 32 Zheng (10.1016/j.chempr.2020.10.023_bib42) 2014; 5 Gong (10.1016/j.chempr.2020.10.023_bib39) 2020; 59 Zhang (10.1016/j.chempr.2020.10.023_bib20) 2020; 418 Tang (10.1016/j.chempr.2020.10.023_bib46) 2020; 59 Fei (10.1016/j.chempr.2020.10.023_bib49) 2018; 1 Zhang (10.1016/j.chempr.2020.10.023_bib41) 2018; 4 Singh (10.1016/j.chempr.2020.10.023_bib9) 2017; 56 Ye (10.1016/j.chempr.2020.10.023_bib36) 2019; 5 Pundir (10.1016/j.chempr.2020.10.023_bib57) 2014; 57 Lu (10.1016/j.chempr.2020.10.023_bib28) 2020; 32 Jiao (10.1016/j.chempr.2020.10.023_bib13) 2019; 5 Huang (10.1016/j.chempr.2020.10.023_bib27) 2019; 5 Gao (10.1016/j.chempr.2020.10.023_bib3) 2020; 59 Hu (10.1016/j.chempr.2020.10.023_bib32) 2018; 30 Pan (10.1016/j.chempr.2020.10.023_bib43) 2019; 10 Wang (10.1016/j.chempr.2020.10.023_bib15) 2018; 2 Ishibashi (10.1016/j.chempr.2020.10.023_bib52) 2000; 134 Hai (10.1016/j.chempr.2020.10.023_bib38) 2020; 10 Xu (10.1016/j.chempr.2020.10.023_bib21) 2019; 58 Liang (10.1016/j.chempr.2020.10.023_bib8) 2019; 52 Kim (10.1016/j.chempr.2020.10.023_bib24) 2020; 30 Xiong (10.1016/j.chempr.2020.10.023_bib35) 2020; 15 Lian (10.1016/j.chempr.2020.10.023_bib6) 2019; 5 Wang (10.1016/j.chempr.2020.10.023_bib19) 2020; 53 Jiao (10.1016/j.chempr.2020.10.023_bib16) 2020; 59 Huo (10.1016/j.chempr.2020.10.023_bib22) 2019; 13 Sun (10.1016/j.chempr.2020.10.023_bib5) 2018; 57 Cui (10.1016/j.chempr.2020.10.023_bib14) 2018; 1 Borg (10.1016/j.chempr.2020.10.023_bib50) 2012; 92 |
References_xml | – volume: 15 start-page: 390 year: 2020 end-page: 397 ident: bib35 article-title: Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation publication-title: Nat. Nanotechnol. – volume: 55 start-page: 5271 year: 2019 end-page: 5274 ident: bib26 article-title: Elucidating the mechanism of the structure-dependent enzymatic activity of Fe-N/C oxidase mimics publication-title: Chem. Commun. (Camb) – volume: 2 start-page: 65 year: 2018 end-page: 81 ident: bib15 article-title: Heterogeneous single-atom catalysis publication-title: Nat. Rev. Chem. – volume: 12 start-page: 764 year: 2020 end-page: 772 ident: bib34 article-title: Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host-guest strategy publication-title: Nat. Chem. – volume: 142 start-page: 12643 year: 2020 end-page: 12650 ident: bib44 article-title: Cation-exchange induced precise regulation of single copper site triggers room-temperature oxidation of benzene publication-title: J. Am. Chem. Soc. – volume: 42 start-page: 6060 year: 2013 end-page: 6093 ident: bib7 article-title: Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes publication-title: Chem. Soc. Rev. – volume: 56 start-page: 14267 year: 2017 end-page: 14271 ident: bib9 article-title: A redox modulatory Mn publication-title: Angew. Chem. Int. Ed. Engl. – volume: 5 start-page: 2378 year: 2019 end-page: 2387 ident: bib6 article-title: Movable hollow nanoparticles as reactive oxygen scavengers publication-title: Chem – volume: 59 start-page: 9171 year: 2020 end-page: 9176 ident: bib46 article-title: Coordination tunes selectivity: two-electron oxygen reduction on high-loading molybdenum single-atom catalysts publication-title: Angew. Chem. Int. Ed. Engl. – volume: 9 start-page: 336 year: 2019 end-page: 344 ident: bib53 article-title: Rational design of Fe-N/C hybrid for enhanced nitrogen reduction electrocatalysis under ambient conditions in aqueous solution publication-title: ACS Catal. – volume: 71 start-page: 094110 year: 2005 ident: bib47 article-title: Wavelet analysis of extended X-ray absorption fine structure data publication-title: Phys. Rev. B – volume: 1 start-page: 63 year: 2018 end-page: 72 ident: bib49 article-title: General synthesis and definitive structural identification of MN publication-title: Nat. Catal. – volume: 9 start-page: 4416 year: 2018 ident: bib12 article-title: Multi-hierarchical profiling the structure-activity relationships of engineered nanomaterials at nano-bio interfaces publication-title: Nat. Commun. – volume: 2 start-page: 577 year: 2007 end-page: 583 ident: bib4 article-title: Intrinsic peroxidase-like activity of ferromagnetic nanoparticles publication-title: Nat. Nanotechnol. – volume: 6 start-page: 1288 year: 2020 end-page: 1301 ident: bib18 article-title: Emerging multifunctional single-atom catalysts/nanozymes publication-title: ACS Cent. Sci. – volume: 5 start-page: 786 year: 2019 end-page: 804 ident: bib13 article-title: Metal-organic-framework-based single-atom catalysts for energy applications publication-title: Chem – volume: 258 start-page: 117959 year: 2019 ident: bib56 article-title: Asymmetric embedded benzene ring enhances charge transfer of carbon nitride for photocatalytic hydrogen generation publication-title: Appl. Catal. B – volume: 32 start-page: 1905994 year: 2020 ident: bib17 article-title: Single-atom catalysts in catalytic biomedicine publication-title: Adv. Mater. – volume: 13 start-page: 4312 year: 2019 end-page: 4321 ident: bib31 article-title: N- and B-codoped graphene: a strong candidate to replace natural peroxidase in sensitive and selective bioassays publication-title: ACS Nano – volume: 137 start-page: 15882 year: 2015 end-page: 15891 ident: bib11 article-title: Mechanisms of oxidase and superoxide dismutation-like activities of gold, silver, platinum, and palladium, and their alloys: a general way to the activation of molecular oxygen publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 385 year: 2018 end-page: 397 ident: bib14 article-title: Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts publication-title: Nat. Catal. – volume: 13 start-page: 2643 year: 2019 end-page: 2653 ident: bib22 article-title: Nanocatalytic tumor therapy by single-atom catalysts publication-title: ACS Nano – volume: 66 start-page: 233 year: 1997 end-page: 267 ident: bib30 article-title: Molybdenum-cofactor-containing enzymes: structure and mechanism publication-title: Annu. Rev. Biochem. – volume: 10 start-page: 5862 year: 2020 end-page: 5870 ident: bib38 article-title: Engineering local and global structures of single Co atoms for a superior oxygen reduction reaction publication-title: ACS Catal. – volume: 30 start-page: 1905410 year: 2020 ident: bib24 article-title: Heme cofactor-resembling Fe-N single site embedded graphene as nanozymes to selectively detect H publication-title: Adv. Funct. Mater. – volume: 5 start-page: eaav5490 year: 2019 ident: bib27 article-title: Single-atom nanozymes publication-title: Sci. Adv. – volume: 30 start-page: 6431 year: 2018 end-page: 6439 ident: bib32 article-title: Nitrogen-doped carbon nanomaterials as highly active and specific peroxidase mimics publication-title: Chem. Mater. – volume: 134 start-page: 139 year: 2000 end-page: 142 ident: bib52 article-title: Quantum yields of active oxidative species formed on TiO publication-title: J. Photochem. Photobiol. A – volume: 4 start-page: 285 year: 2018 end-page: 297 ident: bib41 article-title: Graphene defects trap atomic Ni species for hydrogen and oxygen evolution reactions publication-title: Chem – volume: 92 start-page: 292 year: 2012 end-page: 307 ident: bib50 article-title: An XAS study of molybdenum speciation in hydrothermal chloride solutions from 25–385°C and 600 bar publication-title: Geochim. Cosmochim. Acta – volume: 32 start-page: 2002246 year: 2020 ident: bib28 article-title: Bioinspired copper single-atom catalysts for tumor parallel catalytic therapy publication-title: Adv. Mater. – volume: 11 start-page: 102 year: 2019 ident: bib33 article-title: Revealing the intrinsic peroxidase-like catalytic mechanism of heterogeneous single-atom Co-MoS publication-title: Nano-Micro Lett. – volume: 119 start-page: 4357 year: 2019 end-page: 4412 ident: bib2 article-title: Nanozymes: classification, catalytic mechanisms, activity regulation, and applications publication-title: Chem. Rev. – volume: 139 start-page: 14143 year: 2017 end-page: 14149 ident: bib45 article-title: Single atomic iron catalysts for oxygen reduction in acidic media: particle size control and thermal activation publication-title: J. Am. Chem. Soc. – volume: 57 start-page: 9224 year: 2018 end-page: 9237 ident: bib5 article-title: Carbon nanozymes: enzymatic properties, catalytic mechanism, and applications publication-title: Angew. Chem. Int. Ed. Engl. – volume: 52 start-page: 2190 year: 2019 end-page: 2200 ident: bib8 article-title: Nanozymes: from new concepts, mechanisms, and standards to applications publication-title: Acc. Chem. Res. – volume: 36 start-page: 276 year: 2003 end-page: 283 ident: bib48 article-title: Wavelet: a new trend in chemistry publication-title: Acc. Chem. Res. – volume: 58 start-page: 4911 year: 2019 end-page: 4916 ident: bib21 article-title: A single-atom nanozyme for wound disinfection applications publication-title: Angew. Chem. Int. Ed. Engl. – volume: 48 start-page: 37 year: 2015 end-page: 44 ident: bib10 article-title: Mechanism of pH-switchable peroxidase and catalase-like activities of gold, silver, platinum and palladium publication-title: Biomaterials – volume: 57 start-page: 1944 year: 2018 end-page: 1948 ident: bib37 article-title: Regulation of coordination number over single Co sites: triggering the efficient electroreduction of CO publication-title: Angew. Chem. Int. Ed. Engl. – volume: 10 start-page: 6422 year: 2020 end-page: 6429 ident: bib25 article-title: Densely isolated FeN publication-title: ACS Catal. – volume: 6 start-page: 885 year: 2020 end-page: 901 ident: bib55 article-title: Accelerated dinitrogen electroreduction to ammonia via interfacial polarization triggered by single-atom protrusions publication-title: Chem – volume: 5 start-page: 2865 year: 2019 end-page: 2878 ident: bib36 article-title: Precisely tuning the number of Fe atoms in clusters on N-doped carbon toward acidic oxygen reduction reaction publication-title: Chem – volume: 59 start-page: 2565 year: 2020 end-page: 2576 ident: bib16 article-title: When nanozymes meet single-atom catalysis publication-title: Angew. Chem. Int. Ed. Engl. – volume: 13 start-page: 1506 year: 2018 end-page: 1520 ident: bib51 article-title: Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes publication-title: Nat. Protoc. – volume: 57 start-page: 55 year: 2014 end-page: 62 ident: bib57 article-title: Biosensing methods for xanthine determination: a review publication-title: Enzyme Microb. Technol. – volume: 10 start-page: 4290 year: 2019 ident: bib43 article-title: Regulating the coordination structure of single-atom Fe-N publication-title: Nat. Commun. – volume: 5 start-page: 3783 year: 2014 ident: bib42 article-title: Hydrogen evolution by a metal-free electrocatalyst publication-title: Nat. Commun. – volume: 56 start-page: 16086 year: 2017 end-page: 16090 ident: bib40 article-title: Rational design of single molybdenum atoms anchored on N-doped carbon for effective hydrogen evolution reaction publication-title: Angew. Chem. Int. Ed. Engl. – volume: 57 start-page: 623 year: 2006 end-page: 647 ident: bib29 article-title: Molybdenum cofactor biosynthesis and molybdenum enzymes publication-title: Annu. Rev. Plant Biol. – volume: 418 start-page: 213376 year: 2020 ident: bib20 article-title: Single-atom nanozymes: a rising star for biosensing and biomedicine publication-title: Coord. Chem. Rev. – volume: 48 start-page: 1004 year: 2019 end-page: 1076 ident: bib1 article-title: Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II) publication-title: Chem. Soc. Rev. – volume: 53 start-page: 1389 year: 2020 end-page: 1400 ident: bib19 article-title: Metal-organic framework derived nanozymes in biomedicine publication-title: Acc. Chem. Res. – volume: 59 start-page: 3618 year: 2020 end-page: 3623 ident: bib3 article-title: Two-dimensional tin selenide (SnSe) nanosheets capable of mimicking key dehydrogenases in cellular metabolism publication-title: Angew. Chem. Int. Ed. Engl. – volume: 55 start-page: 2285 year: 2019 end-page: 2288 ident: bib23 article-title: Unraveling the enzyme-like activity of heterogeneous single atom catalyst publication-title: Chem. Commun. (Camb) – volume: 11 start-page: 3525 year: 2020 ident: bib54 article-title: Operando time-resolved X-ray absorption spectroscopy reveals the chemical nature enabling highly selective CO publication-title: Nat. Commun. – volume: 59 start-page: 2705 year: 2020 end-page: 2709 ident: bib39 article-title: Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO publication-title: Angew. Chem. Int. Ed. Engl. – volume: 137 start-page: 15882 year: 2015 ident: 10.1016/j.chempr.2020.10.023_bib11 article-title: Mechanisms of oxidase and superoxide dismutation-like activities of gold, silver, platinum, and palladium, and their alloys: a general way to the activation of molecular oxygen publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b10346 – volume: 5 start-page: 786 year: 2019 ident: 10.1016/j.chempr.2020.10.023_bib13 article-title: Metal-organic-framework-based single-atom catalysts for energy applications publication-title: Chem doi: 10.1016/j.chempr.2018.12.011 – volume: 59 start-page: 9171 year: 2020 ident: 10.1016/j.chempr.2020.10.023_bib46 article-title: Coordination tunes selectivity: two-electron oxygen reduction on high-loading molybdenum single-atom catalysts publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.202003842 – volume: 142 start-page: 12643 year: 2020 ident: 10.1016/j.chempr.2020.10.023_bib44 article-title: Cation-exchange induced precise regulation of single copper site triggers room-temperature oxidation of benzene publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c03415 – volume: 52 start-page: 2190 year: 2019 ident: 10.1016/j.chempr.2020.10.023_bib8 article-title: Nanozymes: from new concepts, mechanisms, and standards to applications publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.9b00140 – volume: 32 start-page: 2002246 year: 2020 ident: 10.1016/j.chempr.2020.10.023_bib28 article-title: Bioinspired copper single-atom catalysts for tumor parallel catalytic therapy publication-title: Adv. Mater. doi: 10.1002/adma.202002246 – volume: 2 start-page: 65 year: 2018 ident: 10.1016/j.chempr.2020.10.023_bib15 article-title: Heterogeneous single-atom catalysis publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-018-0010-1 – volume: 71 start-page: 094110 year: 2005 ident: 10.1016/j.chempr.2020.10.023_bib47 article-title: Wavelet analysis of extended X-ray absorption fine structure data publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.71.094110 – volume: 13 start-page: 4312 year: 2019 ident: 10.1016/j.chempr.2020.10.023_bib31 article-title: N- and B-codoped graphene: a strong candidate to replace natural peroxidase in sensitive and selective bioassays publication-title: ACS Nano doi: 10.1021/acsnano.8b09519 – volume: 48 start-page: 1004 year: 2019 ident: 10.1016/j.chempr.2020.10.023_bib1 article-title: Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II) publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00457A – volume: 139 start-page: 14143 year: 2017 ident: 10.1016/j.chempr.2020.10.023_bib45 article-title: Single atomic iron catalysts for oxygen reduction in acidic media: particle size control and thermal activation publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b06514 – volume: 59 start-page: 2705 year: 2020 ident: 10.1016/j.chempr.2020.10.023_bib39 article-title: Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO2 reduction publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201914977 – volume: 57 start-page: 623 year: 2006 ident: 10.1016/j.chempr.2020.10.023_bib29 article-title: Molybdenum cofactor biosynthesis and molybdenum enzymes publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.57.032905.105437 – volume: 12 start-page: 764 year: 2020 ident: 10.1016/j.chempr.2020.10.023_bib34 article-title: Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host-guest strategy publication-title: Nat. Chem. doi: 10.1038/s41557-020-0473-9 – volume: 57 start-page: 9224 year: 2018 ident: 10.1016/j.chempr.2020.10.023_bib5 article-title: Carbon nanozymes: enzymatic properties, catalytic mechanism, and applications publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201712469 – volume: 5 start-page: 2378 year: 2019 ident: 10.1016/j.chempr.2020.10.023_bib6 article-title: Movable hollow nanoparticles as reactive oxygen scavengers publication-title: Chem doi: 10.1016/j.chempr.2019.05.023 – volume: 59 start-page: 2565 year: 2020 ident: 10.1016/j.chempr.2020.10.023_bib16 article-title: When nanozymes meet single-atom catalysis publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201905645 – volume: 1 start-page: 63 year: 2018 ident: 10.1016/j.chempr.2020.10.023_bib49 article-title: General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities publication-title: Nat. Catal. doi: 10.1038/s41929-017-0008-y – volume: 13 start-page: 1506 year: 2018 ident: 10.1016/j.chempr.2020.10.023_bib51 article-title: Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes publication-title: Nat. Protoc. doi: 10.1038/s41596-018-0001-1 – volume: 42 start-page: 6060 year: 2013 ident: 10.1016/j.chempr.2020.10.023_bib7 article-title: Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs35486e – volume: 57 start-page: 55 year: 2014 ident: 10.1016/j.chempr.2020.10.023_bib57 article-title: Biosensing methods for xanthine determination: a review publication-title: Enzyme Microb. Technol. doi: 10.1016/j.enzmictec.2013.12.006 – volume: 15 start-page: 390 year: 2020 ident: 10.1016/j.chempr.2020.10.023_bib35 article-title: Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-0665-x – volume: 30 start-page: 6431 year: 2018 ident: 10.1016/j.chempr.2020.10.023_bib32 article-title: Nitrogen-doped carbon nanomaterials as highly active and specific peroxidase mimics publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b02726 – volume: 10 start-page: 5862 year: 2020 ident: 10.1016/j.chempr.2020.10.023_bib38 article-title: Engineering local and global structures of single Co atoms for a superior oxygen reduction reaction publication-title: ACS Catal. doi: 10.1021/acscatal.0c00936 – volume: 418 start-page: 213376 year: 2020 ident: 10.1016/j.chempr.2020.10.023_bib20 article-title: Single-atom nanozymes: a rising star for biosensing and biomedicine publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2020.213376 – volume: 1 start-page: 385 year: 2018 ident: 10.1016/j.chempr.2020.10.023_bib14 article-title: Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts publication-title: Nat. Catal. doi: 10.1038/s41929-018-0090-9 – volume: 30 start-page: 1905410 year: 2020 ident: 10.1016/j.chempr.2020.10.023_bib24 article-title: Heme cofactor-resembling Fe-N single site embedded graphene as nanozymes to selectively detect H2O2 with high sensitivity publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201905410 – volume: 56 start-page: 14267 year: 2017 ident: 10.1016/j.chempr.2020.10.023_bib9 article-title: A redox modulatory Mn3O4 nanozyme with multi-enzyme activity provides efficient cytoprotection to human cells in a Parkinson’s disease model publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201708573 – volume: 134 start-page: 139 year: 2000 ident: 10.1016/j.chempr.2020.10.023_bib52 article-title: Quantum yields of active oxidative species formed on TiO2 photocatalyst publication-title: J. Photochem. Photobiol. A doi: 10.1016/S1010-6030(00)00264-1 – volume: 258 start-page: 117959 year: 2019 ident: 10.1016/j.chempr.2020.10.023_bib56 article-title: Asymmetric embedded benzene ring enhances charge transfer of carbon nitride for photocatalytic hydrogen generation publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2019.117959 – volume: 59 start-page: 3618 year: 2020 ident: 10.1016/j.chempr.2020.10.023_bib3 article-title: Two-dimensional tin selenide (SnSe) nanosheets capable of mimicking key dehydrogenases in cellular metabolism publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201913035 – volume: 13 start-page: 2643 year: 2019 ident: 10.1016/j.chempr.2020.10.023_bib22 article-title: Nanocatalytic tumor therapy by single-atom catalysts publication-title: ACS Nano – volume: 5 start-page: 3783 year: 2014 ident: 10.1016/j.chempr.2020.10.023_bib42 article-title: Hydrogen evolution by a metal-free electrocatalyst publication-title: Nat. Commun. doi: 10.1038/ncomms4783 – volume: 36 start-page: 276 year: 2003 ident: 10.1016/j.chempr.2020.10.023_bib48 article-title: Wavelet: a new trend in chemistry publication-title: Acc. Chem. Res. doi: 10.1021/ar990163w – volume: 48 start-page: 37 year: 2015 ident: 10.1016/j.chempr.2020.10.023_bib10 article-title: Mechanism of pH-switchable peroxidase and catalase-like activities of gold, silver, platinum and palladium publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.01.012 – volume: 4 start-page: 285 year: 2018 ident: 10.1016/j.chempr.2020.10.023_bib41 article-title: Graphene defects trap atomic Ni species for hydrogen and oxygen evolution reactions publication-title: Chem doi: 10.1016/j.chempr.2017.12.005 – volume: 55 start-page: 2285 year: 2019 ident: 10.1016/j.chempr.2020.10.023_bib23 article-title: Unraveling the enzyme-like activity of heterogeneous single atom catalyst publication-title: Chem. Commun. (Camb) doi: 10.1039/C9CC00199A – volume: 5 start-page: 2865 year: 2019 ident: 10.1016/j.chempr.2020.10.023_bib36 article-title: Precisely tuning the number of Fe atoms in clusters on N-doped carbon toward acidic oxygen reduction reaction publication-title: Chem doi: 10.1016/j.chempr.2019.07.020 – volume: 10 start-page: 4290 year: 2019 ident: 10.1016/j.chempr.2020.10.023_bib43 article-title: Regulating the coordination structure of single-atom Fe-NxCy catalytic sites for benzene oxidation publication-title: Nat. Commun. doi: 10.1038/s41467-019-12362-8 – volume: 55 start-page: 5271 year: 2019 ident: 10.1016/j.chempr.2020.10.023_bib26 article-title: Elucidating the mechanism of the structure-dependent enzymatic activity of Fe-N/C oxidase mimics publication-title: Chem. Commun. (Camb) doi: 10.1039/C9CC01503E – volume: 9 start-page: 4416 year: 2018 ident: 10.1016/j.chempr.2020.10.023_bib12 article-title: Multi-hierarchical profiling the structure-activity relationships of engineered nanomaterials at nano-bio interfaces publication-title: Nat. Commun. doi: 10.1038/s41467-018-06869-9 – volume: 6 start-page: 1288 year: 2020 ident: 10.1016/j.chempr.2020.10.023_bib18 article-title: Emerging multifunctional single-atom catalysts/nanozymes publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.0c00512 – volume: 6 start-page: 885 year: 2020 ident: 10.1016/j.chempr.2020.10.023_bib55 article-title: Accelerated dinitrogen electroreduction to ammonia via interfacial polarization triggered by single-atom protrusions publication-title: Chem doi: 10.1016/j.chempr.2020.01.013 – volume: 58 start-page: 4911 year: 2019 ident: 10.1016/j.chempr.2020.10.023_bib21 article-title: A single-atom nanozyme for wound disinfection applications publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201813994 – volume: 10 start-page: 6422 year: 2020 ident: 10.1016/j.chempr.2020.10.023_bib25 article-title: Densely isolated FeN4 sites for peroxidase mimicking publication-title: ACS Catal. doi: 10.1021/acscatal.0c01647 – volume: 11 start-page: 102 year: 2019 ident: 10.1016/j.chempr.2020.10.023_bib33 article-title: Revealing the intrinsic peroxidase-like catalytic mechanism of heterogeneous single-atom Co-MoS2 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-019-0324-7 – volume: 66 start-page: 233 year: 1997 ident: 10.1016/j.chempr.2020.10.023_bib30 article-title: Molybdenum-cofactor-containing enzymes: structure and mechanism publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.66.1.233 – volume: 92 start-page: 292 year: 2012 ident: 10.1016/j.chempr.2020.10.023_bib50 article-title: An XAS study of molybdenum speciation in hydrothermal chloride solutions from 25–385°C and 600 bar publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2012.06.001 – volume: 2 start-page: 577 year: 2007 ident: 10.1016/j.chempr.2020.10.023_bib4 article-title: Intrinsic peroxidase-like activity of ferromagnetic nanoparticles publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2007.260 – volume: 53 start-page: 1389 year: 2020 ident: 10.1016/j.chempr.2020.10.023_bib19 article-title: Metal-organic framework derived nanozymes in biomedicine publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.0c00268 – volume: 56 start-page: 16086 year: 2017 ident: 10.1016/j.chempr.2020.10.023_bib40 article-title: Rational design of single molybdenum atoms anchored on N-doped carbon for effective hydrogen evolution reaction publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201710599 – volume: 11 start-page: 3525 year: 2020 ident: 10.1016/j.chempr.2020.10.023_bib54 article-title: Operando time-resolved X-ray absorption spectroscopy reveals the chemical nature enabling highly selective CO2 reduction publication-title: Nat. Commun. doi: 10.1038/s41467-020-17231-3 – volume: 9 start-page: 336 year: 2019 ident: 10.1016/j.chempr.2020.10.023_bib53 article-title: Rational design of Fe-N/C hybrid for enhanced nitrogen reduction electrocatalysis under ambient conditions in aqueous solution publication-title: ACS Catal. doi: 10.1021/acscatal.8b03802 – volume: 32 start-page: 1905994 year: 2020 ident: 10.1016/j.chempr.2020.10.023_bib17 article-title: Single-atom catalysts in catalytic biomedicine publication-title: Adv. Mater. doi: 10.1002/adma.201905994 – volume: 5 start-page: eaav5490 year: 2019 ident: 10.1016/j.chempr.2020.10.023_bib27 article-title: Single-atom nanozymes publication-title: Sci. Adv. doi: 10.1126/sciadv.aav5490 – volume: 119 start-page: 4357 year: 2019 ident: 10.1016/j.chempr.2020.10.023_bib2 article-title: Nanozymes: classification, catalytic mechanisms, activity regulation, and applications publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00672 – volume: 57 start-page: 1944 year: 2018 ident: 10.1016/j.chempr.2020.10.023_bib37 article-title: Regulation of coordination number over single Co sites: triggering the efficient electroreduction of CO2 publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201712451 |
SSID | ssj0001821750 |
Score | 2.5935304 |
Snippet | Nanozymes are promising alternatives to natural enzymes, but their use remains limited owing to poor specificity. Overcoming this and controlling the targeted... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 436 |
SubjectTerms | biocatalysis coordination environment MoSA–N3–C catalyst peroxidase-like specificity single-atom nanozyme |
Title | Coordination Number Regulation of Molybdenum Single-Atom Nanozyme Peroxidase-like Specificity |
URI | https://dx.doi.org/10.1016/j.chempr.2020.10.023 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT9wwFLYoXNpD1VKq0k0-9OpRvM2E4wi1QkXtoQVBkVDkeKGBmTFFQSr8-j7HWcwiKFyikSd5meR98za_BaFPmofut5kmmrmMgAowJDeUEyZ5aVxpWLYRaoe_fR9v7Yqv-zLZaG-qS-pypC9vrSt5DFdhDfgaqmQfwNmeKCzAZ-AvHIHDcPwvHm96cB2rGM8Dvz_M9oD3ddRO5GqyW_zsojRNuvtPUFIzS6a1nweZ6i8v5jYkwPu_lQFVRmbViY3j6ENTifrKdm9oKzCE3qN4-NUpvZB_E1NuAW-Lo7Oq39c4b1IF9ivl_wAK-7MPfivffZFGHRgNicqtVGyEExOSEjCtRCpJJwlgWCIVBR8nClbEHqU3ZHcMIxyPAKzz09CqlYXFURbrka-2yr6mwvrEwi5n7biIVIpABZYKoPIErTDwJUAYrky3f-xtD6G4HPyyZpZv_1RdkWWTCXjzB91uxCSGyc4L9Lz1KPA0wuMlWrKLVfQs6TP5Ch2mQMERKHgACvYOD0DBCVBwBxR8DSg4Acoa2v3yeWdzi7RzNYgWNK8Js2rslDQ0PClIEsFLTR1oGkeptTKYnFSV3GxIPXHSKkZVzq3LtBKOc5vz12h54Rf2DcIsc85KqanRVDigx9Sk1NKCqB9n3Lh1xLsXVei26XyYfTIr7uLUOiL9Vaex6co95086HhSt4RgNwgKwdeeVbx94p3fo6fBveI-W67Nz-wGs0rr82KLqH6C-kE8 |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coordination+Number+Regulation+of+Molybdenum+Single-Atom+Nanozyme+Peroxidase-like+Specificity&rft.jtitle=Chem&rft.au=Wang%2C+Ying&rft.au=Jia%2C+Guangri&rft.au=Cui%2C+Xiaoqiang&rft.au=Zhao%2C+Xiao&rft.date=2021-02-11&rft.issn=2451-9294&rft.volume=7&rft.issue=2&rft.spage=436&rft.epage=449&rft_id=info:doi/10.1016%2Fj.chempr.2020.10.023&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_chempr_2020_10_023 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2451-9294&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2451-9294&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2451-9294&client=summon |