Multi-Agent Reinforcement Learning for Extended Flexible Job Shop Scheduling

An extended flexible job scheduling problem is presented with characteristics of technology and path flexibility (dual flexibility), varied transportation time, and an uncertain environment. The scheduling can greatly increase efficiency and security in complex scenarios, e.g., distributed vehicle m...

Full description

Saved in:
Bibliographic Details
Published inMachines (Basel) Vol. 12; no. 1; p. 8
Main Authors Peng, Shaoming, Xiong, Gang, Yang, Jing, Shen, Zhen, Tamir, Tariku Sinshaw, Tao, Zhikun, Han, Yunjun, Wang, Fei-Yue
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.01.2024
Subjects
Online AccessGet full text
ISSN2075-1702
2075-1702
DOI10.3390/machines12010008

Cover

Loading…
Abstract An extended flexible job scheduling problem is presented with characteristics of technology and path flexibility (dual flexibility), varied transportation time, and an uncertain environment. The scheduling can greatly increase efficiency and security in complex scenarios, e.g., distributed vehicle manufacturing, and multiple aircraft maintenance. However, optimizing the scheduling puts forward higher requirements on accuracy, real time, and generalization, while subject to the curse of dimension and usually incomplete information. Various coupling relations among operations, stations, and resources aggravate the problem. To deal with the above challenges, we propose a multi-agent reinforcement learning algorithm where the scheduling environment is modeled as a decentralized partially observable Markov decision process. Each job is regarded as an agent that decides the next triplet, i.e., operation, station, and employed resource. This paper is novel in addressing the flexible job shop scheduling problem with dual flexibility and varied transportation time in consideration and proposing a double Q-value mixing (DQMIX) optimization algorithm under a multi-agent reinforcement learning framework. The experiments of our case study show that the DQMIX algorithm outperforms existing multi-agent reinforcement learning algorithms in terms of solution accuracy, stability, and generalization. In addition, it achieves better solution quality for larger-scale cases than traditional intelligent optimization algorithms.
AbstractList An extended flexible job scheduling problem is presented with characteristics of technology and path flexibility (dual flexibility), varied transportation time, and an uncertain environment. The scheduling can greatly increase efficiency and security in complex scenarios, e.g., distributed vehicle manufacturing, and multiple aircraft maintenance. However, optimizing the scheduling puts forward higher requirements on accuracy, real time, and generalization, while subject to the curse of dimension and usually incomplete information. Various coupling relations among operations, stations, and resources aggravate the problem. To deal with the above challenges, we propose a multi-agent reinforcement learning algorithm where the scheduling environment is modeled as a decentralized partially observable Markov decision process. Each job is regarded as an agent that decides the next triplet, i.e., operation, station, and employed resource. This paper is novel in addressing the flexible job shop scheduling problem with dual flexibility and varied transportation time in consideration and proposing a double Q-value mixing (DQMIX) optimization algorithm under a multi-agent reinforcement learning framework. The experiments of our case study show that the DQMIX algorithm outperforms existing multi-agent reinforcement learning algorithms in terms of solution accuracy, stability, and generalization. In addition, it achieves better solution quality for larger-scale cases than traditional intelligent optimization algorithms.
Audience Academic
Author Wang, Fei-Yue
Tamir, Tariku Sinshaw
Han, Yunjun
Xiong, Gang
Yang, Jing
Shen, Zhen
Tao, Zhikun
Peng, Shaoming
Author_xml – sequence: 1
  givenname: Shaoming
  orcidid: 0000-0002-8059-2389
  surname: Peng
  fullname: Peng, Shaoming
– sequence: 2
  givenname: Gang
  orcidid: 0000-0002-4303-5559
  surname: Xiong
  fullname: Xiong, Gang
– sequence: 3
  givenname: Jing
  orcidid: 0000-0002-5918-2991
  surname: Yang
  fullname: Yang, Jing
– sequence: 4
  givenname: Zhen
  orcidid: 0000-0002-9634-4945
  surname: Shen
  fullname: Shen, Zhen
– sequence: 5
  givenname: Tariku Sinshaw
  orcidid: 0000-0003-3700-928X
  surname: Tamir
  fullname: Tamir, Tariku Sinshaw
– sequence: 6
  givenname: Zhikun
  surname: Tao
  fullname: Tao, Zhikun
– sequence: 7
  givenname: Yunjun
  surname: Han
  fullname: Han, Yunjun
– sequence: 8
  givenname: Fei-Yue
  orcidid: 0000-0001-9185-3989
  surname: Wang
  fullname: Wang, Fei-Yue
BookMark eNp1kd1rFDEUxYNUsNa--zjg89TcJDPJPC6l1cqKYPU55ONmN8tssmayUP97s66CFCQPNzmc37lJ7mtykXJCQt4CveF8ou_3xm1jwgUYBUqpekEuGZVDD5Kyi3_2r8j1suyag07AlVCXZP35ONfYrzaYavcVYwq5ONyfTms0JcW06ZrU3T1VTB59dz_jU7Qzdp-y7R63-dA9ui3649ycb8jLYOYFr__UK_L9_u7b7cd-_eXDw-1q3TsBqvbMSzYIK1qdJoOWouNewMBAWgAjbRDjIC0CH70EL9zoBJdoAgyeD2zkV-ThnOuz2elDiXtTfupsov4t5LLRptToZtQ-DBLAcoEuiCGAMZIGJlVQwVimVMt6d846lPzjiEvVu3wsqV1fswmUlHIcTx1vzq6NaaGnX6rFuLY87qNrwwix6SupqJJKADRgPAOu5GUpGLSL1dSYUwPjrIHq0-T088k1kD4D_77vv8gvsx6eJA
CitedBy_id crossref_primary_10_3390_machines12100721
crossref_primary_10_3390_math12030452
crossref_primary_10_1016_j_rcim_2024_102923
crossref_primary_10_1016_j_cie_2025_110889
crossref_primary_10_1109_JIOT_2024_3485748
Cites_doi 10.1007/978-3-030-41913-4_1
10.1631/FITEE.1900094
10.1016/j.ijpe.2016.01.016
10.1109/TCYB.2020.3026651
10.1007/s10489-022-04105-y
10.1016/j.eswa.2022.116785
10.1016/S0921-8890(00)00087-7
10.1007/s10462-021-09996-w
10.1007/s10845-022-02037-5
10.1016/j.cor.2016.04.006
10.1109/JAS.2019.1911540
10.1016/j.comnet.2021.107969
10.1016/j.rcim.2021.102283
10.1016/j.cor.2022.105731
10.1111/itor.12199
10.1109/WSC48552.2020.9383997
10.1007/s10489-023-04479-7
10.1016/j.procir.2022.09.024
10.1016/j.rcim.2021.102202
10.1016/j.asoc.2020.106208
10.1016/j.rcim.2022.102324
10.1109/SACI.2009.5136281
10.1109/ICECCME52200.2021.9590925
10.1109/TSMC.2018.2881686
10.1109/TETCI.2022.3145706
10.1016/j.rcim.2022.102412
10.1016/j.procir.2018.03.212
10.1631/FITEE.2200055
10.3182/20090603-3-RU-2001.0280
10.1109/ICIBA52610.2021.9688235
10.1016/j.rcim.2023.102534
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOA
DOI 10.3390/machines12010008
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Engineering Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Engineering Research Database
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2075-1702
ExternalDocumentID oai_doaj_org_article_df5711b34ecf45f1aa70f278f8fab288
A780878411
10_3390_machines12010008
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABJCF
ACIWK
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
ITC
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
RNS
PMFND
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c418t-2d7254b42d799aeb0ec3d415217b11a7bf4657be136d71d4c6c437eaf15d35263
IEDL.DBID DOA
ISSN 2075-1702
IngestDate Wed Aug 27 01:32:07 EDT 2025
Fri Jul 25 09:04:36 EDT 2025
Tue Jun 10 21:19:25 EDT 2025
Tue Jul 01 02:17:58 EDT 2025
Thu Apr 24 23:08:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-2d7254b42d799aeb0ec3d415217b11a7bf4657be136d71d4c6c437eaf15d35263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4303-5559
0000-0002-8059-2389
0000-0001-9185-3989
0000-0003-3700-928X
0000-0002-5918-2991
0000-0002-9634-4945
OpenAccessLink https://doaj.org/article/df5711b34ecf45f1aa70f278f8fab288
PQID 2918777666
PQPubID 2032370
ParticipantIDs doaj_primary_oai_doaj_org_article_df5711b34ecf45f1aa70f278f8fab288
proquest_journals_2918777666
gale_infotracacademiconefile_A780878411
crossref_citationtrail_10_3390_machines12010008
crossref_primary_10_3390_machines12010008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Machines (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Wang (ref_24) 2021; 190
Rashid (ref_39) 2020; 33
Xiong (ref_2) 2022; 142
Luo (ref_21) 2020; 91
Tian (ref_13) 2021; 54
Zhou (ref_31) 2021; 72
Li (ref_42) 2016; 174
ref_36
ref_34
Aissani (ref_28) 2009; 42
ref_33
ref_10
Waschneck (ref_20) 2018; 72
ref_32
ref_30
Mahajan (ref_38) 2019; 32
ref_18
Wagner (ref_7) 2022; 112
ref_15
ref_37
Zhang (ref_8) 2022; 78
Gao (ref_12) 2019; 6
Wang (ref_9) 2022; 77
Liu (ref_27) 2022; 23
Wei (ref_4) 2022; 197
Luo (ref_3) 2023; 82
Liu (ref_44) 2020; 51
Afshin (ref_14) 2023; 53
Wang (ref_16) 2021; 33
ref_22
ref_41
ref_40
Gronauer (ref_25) 2022; 55
ref_29
Li (ref_43) 2018; 49
Chaudhry (ref_1) 2016; 23
ref_26
Liu (ref_17) 2019; 20
Zhang (ref_35) 2020; 33
Ku (ref_11) 2016; 73
Gu (ref_23) 2023; 53
Li (ref_5) 2022; 74
Aydin (ref_19) 2000; 33
Du (ref_6) 2023; 7
References_xml – ident: ref_29
  doi: 10.1007/978-3-030-41913-4_1
– volume: 20
  start-page: 1465
  year: 2019
  ident: ref_17
  article-title: A multi-agent architecture for scheduling in platform-based smart manufacturing systems
  publication-title: Front. Inf. Technol. Electron. Eng.
  doi: 10.1631/FITEE.1900094
– volume: 33
  start-page: 1621
  year: 2020
  ident: ref_35
  article-title: Learning to dispatch for job shop scheduling via deep reinforcement learning
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 174
  start-page: 93
  year: 2016
  ident: ref_42
  article-title: An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem
  publication-title: Int. J. Prod. Econ.
  doi: 10.1016/j.ijpe.2016.01.016
– volume: 51
  start-page: 4429
  year: 2020
  ident: ref_44
  article-title: A modified genetic algorithm with new encoding and decoding methods for integrated process planning and scheduling problem
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2020.3026651
– ident: ref_30
– volume: 53
  start-page: 13677
  year: 2023
  ident: ref_14
  article-title: A review of cooperative multi-agent deep reinforcement learning
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-022-04105-y
– ident: ref_26
– ident: ref_34
– volume: 197
  start-page: 116785
  year: 2022
  ident: ref_4
  article-title: Hybrid energy-efficient scheduling measures for flexible job-shop problem with variable machining speeds
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.116785
– volume: 33
  start-page: 169
  year: 2000
  ident: ref_19
  article-title: Dynamic job-shop scheduling using reinforcement learning agents
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/S0921-8890(00)00087-7
– volume: 55
  start-page: 895
  year: 2022
  ident: ref_25
  article-title: Multi-agent deep reinforcement learning: A survey
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-021-09996-w
– volume: 33
  start-page: 10199
  year: 2020
  ident: ref_39
  article-title: Weighted QMIX: Expanding monotonic value function factorisation for deep multi-agent reinforcement learning
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 33
  start-page: 2782
  year: 2021
  ident: ref_16
  article-title: Brief review on applying reinforcement learning to job shop scheduling problems
  publication-title: J. Syst. Simul.
– ident: ref_10
  doi: 10.1007/s10845-022-02037-5
– volume: 73
  start-page: 165
  year: 2016
  ident: ref_11
  article-title: Mixed integer programming models for job shop scheduling: A computational analysis
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2016.04.006
– volume: 6
  start-page: 904
  year: 2019
  ident: ref_12
  article-title: A review on swarm intelligence and evolutionary algorithms for solving flexible job shop scheduling problems
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2019.1911540
– volume: 190
  start-page: 107969
  year: 2021
  ident: ref_24
  article-title: Dynamic job-shop scheduling in smart manufacturing using deep reinforcement learning
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2021.107969
– ident: ref_40
– volume: 74
  start-page: 102283
  year: 2022
  ident: ref_5
  article-title: Real-time data-driven dynamic scheduling for flexible job shop with insufficient transportation resources using hybrid deep Q network
  publication-title: Robot. Comput.-Integr. Manuf.
  doi: 10.1016/j.rcim.2021.102283
– volume: 142
  start-page: 105731
  year: 2022
  ident: ref_2
  article-title: A survey of job shop scheduling problem: The types and models
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2022.105731
– ident: ref_37
– volume: 23
  start-page: 551
  year: 2016
  ident: ref_1
  article-title: A research survey: Review of flexible job shop scheduling techniques
  publication-title: Int. Trans. Oper. Res.
  doi: 10.1111/itor.12199
– ident: ref_22
  doi: 10.1109/WSC48552.2020.9383997
– volume: 53
  start-page: 18925
  year: 2023
  ident: ref_23
  article-title: A self-learning discrete salp swarm algorithm based on deep reinforcement learning for dynamic job shop scheduling problem
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-023-04479-7
– ident: ref_18
– volume: 112
  start-page: 57
  year: 2022
  ident: ref_7
  article-title: Multi-agent-based deep reinforcement learning for dynamic flexible job shop scheduling
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2022.09.024
– volume: 72
  start-page: 102202
  year: 2021
  ident: ref_31
  article-title: Multi-agent reinforcement learning for online scheduling in smart factories
  publication-title: Robot. Comput.-Integr. Manuf.
  doi: 10.1016/j.rcim.2021.102202
– volume: 54
  start-page: 174
  year: 2021
  ident: ref_13
  article-title: Evolutionary large-scale multi-objective optimization: A survey
  publication-title: ACM Comput. Surv.
– volume: 91
  start-page: 106208
  year: 2020
  ident: ref_21
  article-title: Dynamic scheduling for flexible job shop with new job insertions by deep reinforcement learning
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106208
– volume: 77
  start-page: 102324
  year: 2022
  ident: ref_9
  article-title: Solving job scheduling problems in a resource preemption environment with multi-agent reinforcement learning
  publication-title: Robot. Comput.-Integr. Manuf.
  doi: 10.1016/j.rcim.2022.102324
– ident: ref_15
  doi: 10.1109/SACI.2009.5136281
– ident: ref_32
  doi: 10.1109/ICECCME52200.2021.9590925
– volume: 49
  start-page: 1933
  year: 2018
  ident: ref_43
  article-title: An effective hybrid genetic algorithm and variable neighborhood search for integrated process planning and scheduling in a packaging machine workshop
  publication-title: IEEE Trans. Syst. Man, Cybern. Syst.
  doi: 10.1109/TSMC.2018.2881686
– volume: 32
  start-page: 7611
  year: 2019
  ident: ref_38
  article-title: MAVEN: Multi-agent variational exploration
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 7
  start-page: 1036
  year: 2023
  ident: ref_6
  article-title: Knowledge-based reinforcement learning and estimation of distribution algorithm for flexible job shop scheduling problem
  publication-title: IEEE Trans. Emerg. Top. Comput. Intell.
  doi: 10.1109/TETCI.2022.3145706
– ident: ref_41
– volume: 78
  start-page: 102412
  year: 2022
  ident: ref_8
  article-title: Dynamic job shop scheduling based on deep reinforcement learning for multi-agent manufacturing systems
  publication-title: Robot. Comput.-Integr. Manuf.
  doi: 10.1016/j.rcim.2022.102412
– volume: 72
  start-page: 1264
  year: 2018
  ident: ref_20
  article-title: Optimization of global production scheduling with deep reinforcement learning
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2018.03.212
– ident: ref_36
– volume: 23
  start-page: 1002
  year: 2022
  ident: ref_27
  article-title: Prospects for multi-agent collaboration and gaming: Challenge, technology, and application
  publication-title: Front. Inf. Technol. Electron. Eng.
  doi: 10.1631/FITEE.2200055
– volume: 42
  start-page: 1102
  year: 2009
  ident: ref_28
  article-title: Multi-agent reinforcement learning for adaptive scheduling: Application to multi-site company
  publication-title: IFAC Proc. Vol.
  doi: 10.3182/20090603-3-RU-2001.0280
– ident: ref_33
  doi: 10.1109/ICIBA52610.2021.9688235
– volume: 82
  start-page: 102534
  year: 2023
  ident: ref_3
  article-title: A Pareto-based two-stage evolutionary algorithm for flexible job shop scheduling problem with worker cooperation flexibility
  publication-title: Robot. Comput.-Integr. Manuf.
  doi: 10.1016/j.rcim.2023.102534
SSID ssj0000913848
Score 2.2952049
Snippet An extended flexible job scheduling problem is presented with characteristics of technology and path flexibility (dual flexibility), varied transportation...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 8
SubjectTerms Adaptability
Aircraft industry
Aircraft maintenance
Algorithms
Data mining
Decision making
Energy consumption
Fixed base operators industry
Flexibility
flexible job shop
Heuristic
Job shop scheduling
Job shops
Machine learning
Markov processes
Mathematical optimization
Mathematical programming
multi-agent reinforcement learning
Multiagent systems
Optimization
Optimization algorithms
path flexibility
Process planning
production planning and scheduling
Robots
Scheduling
technological flexibility
Transportation equipment industry
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT9swELYYvGwPCNimdcDkByS0B6tx4sTOE2pRK4QAIRgSb5Z_dg_QdLT8_9y5bocmrU-RHCdK7uzz3Xf2d4SceFn6KtaR8VgrJkzpWRsbzloVoqkK1RYW8Y7rm-biQVw-1o8ZcJvnbZUrm5gMte8cYuT9suVIXQfe9tnsD8OqUZhdzSU0PpAdMMEKgq-d4ejm9m6NsiDrpRJqmZ-sIL7vP6c9imHOMQ1cYFXJd-tRou3_n3FOK854j-xmV5EOlrrdJ1thekA-vSMQ_Eyu0vlZNsDzUfQuJBZUlwA_molTJxSa6ChD3XSM_Jf2KdDLztL7392M3oPWPG5Hn3whD-PRr_MLlusjMCe4WrASBF0LK-DatibYIrjKpwVZWs6NtFE0tbSBV42X3AvXOFHJYCKvPdLiV1_J9rSbhm-Egp-iygiTuVFOFDG0bUAqeC6dBYWZokf6Kylpl8nDsYbFk4YgAuWq_5Vrj_xcPzFbEmds6DtEwa_7IeV1auheJjrPIO1jLTm3lQguijpyY2QRS6miisaWCl5yimrTKGr4NGfy-QL4QaS40gOpCoVZVt4jRyvN6jxj5_rv-Pq--fYh-ViCY7OEYY7I9uLlNRyDY7KwP_LoewN6--L6
  priority: 102
  providerName: ProQuest
Title Multi-Agent Reinforcement Learning for Extended Flexible Job Shop Scheduling
URI https://www.proquest.com/docview/2918777666
https://doaj.org/article/df5711b34ecf45f1aa70f278f8fab288
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSyQxEC58XNbD4mNlx9UhB0E8NNPppDvJcZQZRVTEB3gLebqHcUZ09v9vKt3KIKgXTw2hG9JfVVKPpL4C2Pei8izWsaCxlgU3lS9UbGihZIiGlVKVFvMdF5fN6R0_u6_vF1p94Z2wlh64BW7gYy0otYwHF3kdqTGijJWQUUZjK5nLfJPNWwim8h6sKJNctueSLMX1g8d8NzG8UDz-LbGb5IIdynT9H23K2dKM1-Fn5yKSYTu1DVgK001YWyAO3ILzXDdbDLEuilyHzH7qcqKPdISpDyQNkVGX4iZj5L20k0DOZpbc_J09kZskLY_X0B9-wd14dHt8WnR9EQrHqZwXVQK45panp1Im2DI45rMhFpZSI2zkTS1soKzxgnruGseZCCbS2iMdPtuGlelsGn4DSf6JrGJaxI10vIxBqYAU8FQ4mwRlyh4MXlHSriMNx94VE52CB8RVv8e1B4dvXzy1hBmfvHuEwL-9h1TXeSApgO4UQH-lAD04QLFphDpNzZmuriD9IFJb6aGQpcTTVdqD3VfJ6m6lvuhKUaRETFHcznfM5g_8qJLb0yZpdmFl_vwv7CW3ZW77sCzHJ31YPRpdXl33s77-B-Tm7Vc
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFNdWsAHEOIQbfxIbB8QWqDLtt32QFupN-PnciibbXcR4k_xG_E4yVIh0VtPkRzHcsbjmfGM5xuEXnlBPYtVLEisZMEN9YWKNSmUDNGwUqrSgr_j8KienPL9s-psA_3uc2HgWmUvE7Og9o0DH_mQKgLQdcnafr-4KKBqFERX-xIaLVschF8_05Ft-W7vU1rf15SOd08-ToquqkDhOJGrgqbpVdzy9FTKBFsGx3xWY8ISYoSNvK6EDYTVXhDPXe04E8FEUnkAk2dp3FvoNmdMwY6S489rnw5gbEou22hoel8Ov-cbkWFJIOhcQg3LK9ovFwn4nyrI-m38AN3vDFM8ajnpIdoI80fo3hW4wsdomrN1ixFkY-EvIWOuuuxexB1M6wynJrzbOdbxGNA27XnA-43Fx9-aBT5OPOLh8vvsCTq9Ebo9RZvzZh62EE5WkaQxiY5aOl7GoFQA4HkinE3sYcoBGvZU0q6DKoeKGec6HVmArvpfug7Q2_UXixam45q-H4Dw634AsJ0bmsuZ7var9rEShFjGg4u8isQYUUYqZJTRWCrTIG9g2TSQOk3NmS6bIf0gAGrpkZClhJguGaCdfmV1Jx-W-i83P7v-9Ut0Z3JyONXTvaODbXSXJpOqdQDtoM3V5Y_wPJlEK_si8yFGX2-a8f8A4xkd1Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVkJwqHiK7QN8ACEO0dqOEzsHVG3prvpiVbVU6s34uRzKZttdhPhr_Do8ibNUSPTWUyTHsZLxZGY8j28QeusEc3koQkZDITOumcuqUNKskj7onMiKGPB3fJ6UBxf86LK4XEO_u1oYSKvsZGIjqF1twUc-YBUF6LpobQ9CSos43R_vzq8z6CAFkdaunUbLIsf-1894fFt8PNyPe_2OsfHoy6eDLHUYyCyncpmx-KoFNzxeq0p7Q7zNXaPShKFUCxN4WQjjaV46QR23peW58DrQwgGwfB7XfYDWRTwVkR5a3xtNTs9WHh5A3JRctrHRPK_I4HuTH-kXFELQBDpa3tKFTcuA_ymGRtuNn6CNZKbiYctXT9Ganz1Dj2-BFz5HJ03tbjaE2ix85hsEVts4G3ECbZ3iOIRHyc2Ox4C9aa48PqoNPv9Wz_F55BgHqfDTF-jiXij3EvVm9cy_QjjaSJKFKEhKaTkJvqo8wNBTYU1kFk36aNBRSdkEXA79M65UPMAAXdW_dO2jD6sn5i1oxx1z94Dwq3kAt90M1DdTlf5e5UIhKDU59zbwIlCtBQlMyCCDNkzGRd7DtikgdXw1q1NtQ_xAgNdSQyGJhAgv7aPtbmdVkhYL9Ze3N---_QY9jEyvTg4nx1voEYv2VesN2ka95c0PvxPto6V5nRgRo6_3zft_AOHpI2c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Agent+Reinforcement+Learning+for+Extended+Flexible+Job+Shop+Scheduling&rft.jtitle=Machines+%28Basel%29&rft.au=Peng%2C+Shaoming&rft.au=Xiong%2C+Gang&rft.au=Yang%2C+Jing&rft.au=Shen%2C+Zhen&rft.date=2024-01-01&rft.issn=2075-1702&rft.eissn=2075-1702&rft.volume=12&rft.issue=1&rft.spage=8&rft_id=info:doi/10.3390%2Fmachines12010008&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_machines12010008
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-1702&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-1702&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-1702&client=summon