Multi-Agent Reinforcement Learning for Extended Flexible Job Shop Scheduling
An extended flexible job scheduling problem is presented with characteristics of technology and path flexibility (dual flexibility), varied transportation time, and an uncertain environment. The scheduling can greatly increase efficiency and security in complex scenarios, e.g., distributed vehicle m...
Saved in:
Published in | Machines (Basel) Vol. 12; no. 1; p. 8 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.01.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2075-1702 2075-1702 |
DOI | 10.3390/machines12010008 |
Cover
Loading…
Abstract | An extended flexible job scheduling problem is presented with characteristics of technology and path flexibility (dual flexibility), varied transportation time, and an uncertain environment. The scheduling can greatly increase efficiency and security in complex scenarios, e.g., distributed vehicle manufacturing, and multiple aircraft maintenance. However, optimizing the scheduling puts forward higher requirements on accuracy, real time, and generalization, while subject to the curse of dimension and usually incomplete information. Various coupling relations among operations, stations, and resources aggravate the problem. To deal with the above challenges, we propose a multi-agent reinforcement learning algorithm where the scheduling environment is modeled as a decentralized partially observable Markov decision process. Each job is regarded as an agent that decides the next triplet, i.e., operation, station, and employed resource. This paper is novel in addressing the flexible job shop scheduling problem with dual flexibility and varied transportation time in consideration and proposing a double Q-value mixing (DQMIX) optimization algorithm under a multi-agent reinforcement learning framework. The experiments of our case study show that the DQMIX algorithm outperforms existing multi-agent reinforcement learning algorithms in terms of solution accuracy, stability, and generalization. In addition, it achieves better solution quality for larger-scale cases than traditional intelligent optimization algorithms. |
---|---|
AbstractList | An extended flexible job scheduling problem is presented with characteristics of technology and path flexibility (dual flexibility), varied transportation time, and an uncertain environment. The scheduling can greatly increase efficiency and security in complex scenarios, e.g., distributed vehicle manufacturing, and multiple aircraft maintenance. However, optimizing the scheduling puts forward higher requirements on accuracy, real time, and generalization, while subject to the curse of dimension and usually incomplete information. Various coupling relations among operations, stations, and resources aggravate the problem. To deal with the above challenges, we propose a multi-agent reinforcement learning algorithm where the scheduling environment is modeled as a decentralized partially observable Markov decision process. Each job is regarded as an agent that decides the next triplet, i.e., operation, station, and employed resource. This paper is novel in addressing the flexible job shop scheduling problem with dual flexibility and varied transportation time in consideration and proposing a double Q-value mixing (DQMIX) optimization algorithm under a multi-agent reinforcement learning framework. The experiments of our case study show that the DQMIX algorithm outperforms existing multi-agent reinforcement learning algorithms in terms of solution accuracy, stability, and generalization. In addition, it achieves better solution quality for larger-scale cases than traditional intelligent optimization algorithms. |
Audience | Academic |
Author | Wang, Fei-Yue Tamir, Tariku Sinshaw Han, Yunjun Xiong, Gang Yang, Jing Shen, Zhen Tao, Zhikun Peng, Shaoming |
Author_xml | – sequence: 1 givenname: Shaoming orcidid: 0000-0002-8059-2389 surname: Peng fullname: Peng, Shaoming – sequence: 2 givenname: Gang orcidid: 0000-0002-4303-5559 surname: Xiong fullname: Xiong, Gang – sequence: 3 givenname: Jing orcidid: 0000-0002-5918-2991 surname: Yang fullname: Yang, Jing – sequence: 4 givenname: Zhen orcidid: 0000-0002-9634-4945 surname: Shen fullname: Shen, Zhen – sequence: 5 givenname: Tariku Sinshaw orcidid: 0000-0003-3700-928X surname: Tamir fullname: Tamir, Tariku Sinshaw – sequence: 6 givenname: Zhikun surname: Tao fullname: Tao, Zhikun – sequence: 7 givenname: Yunjun surname: Han fullname: Han, Yunjun – sequence: 8 givenname: Fei-Yue orcidid: 0000-0001-9185-3989 surname: Wang fullname: Wang, Fei-Yue |
BookMark | eNp1kd1rFDEUxYNUsNa--zjg89TcJDPJPC6l1cqKYPU55ONmN8tssmayUP97s66CFCQPNzmc37lJ7mtykXJCQt4CveF8ou_3xm1jwgUYBUqpekEuGZVDD5Kyi3_2r8j1suyag07AlVCXZP35ONfYrzaYavcVYwq5ONyfTms0JcW06ZrU3T1VTB59dz_jU7Qzdp-y7R63-dA9ui3649ycb8jLYOYFr__UK_L9_u7b7cd-_eXDw-1q3TsBqvbMSzYIK1qdJoOWouNewMBAWgAjbRDjIC0CH70EL9zoBJdoAgyeD2zkV-ThnOuz2elDiXtTfupsov4t5LLRptToZtQ-DBLAcoEuiCGAMZIGJlVQwVimVMt6d846lPzjiEvVu3wsqV1fswmUlHIcTx1vzq6NaaGnX6rFuLY87qNrwwix6SupqJJKADRgPAOu5GUpGLSL1dSYUwPjrIHq0-T088k1kD4D_77vv8gvsx6eJA |
CitedBy_id | crossref_primary_10_3390_machines12100721 crossref_primary_10_3390_math12030452 crossref_primary_10_1016_j_rcim_2024_102923 crossref_primary_10_1016_j_cie_2025_110889 crossref_primary_10_1109_JIOT_2024_3485748 |
Cites_doi | 10.1007/978-3-030-41913-4_1 10.1631/FITEE.1900094 10.1016/j.ijpe.2016.01.016 10.1109/TCYB.2020.3026651 10.1007/s10489-022-04105-y 10.1016/j.eswa.2022.116785 10.1016/S0921-8890(00)00087-7 10.1007/s10462-021-09996-w 10.1007/s10845-022-02037-5 10.1016/j.cor.2016.04.006 10.1109/JAS.2019.1911540 10.1016/j.comnet.2021.107969 10.1016/j.rcim.2021.102283 10.1016/j.cor.2022.105731 10.1111/itor.12199 10.1109/WSC48552.2020.9383997 10.1007/s10489-023-04479-7 10.1016/j.procir.2022.09.024 10.1016/j.rcim.2021.102202 10.1016/j.asoc.2020.106208 10.1016/j.rcim.2022.102324 10.1109/SACI.2009.5136281 10.1109/ICECCME52200.2021.9590925 10.1109/TSMC.2018.2881686 10.1109/TETCI.2022.3145706 10.1016/j.rcim.2022.102412 10.1016/j.procir.2018.03.212 10.1631/FITEE.2200055 10.3182/20090603-3-RU-2001.0280 10.1109/ICIBA52610.2021.9688235 10.1016/j.rcim.2023.102534 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS DOA |
DOI | 10.3390/machines12010008 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Engineering Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Engineering Research Database ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2075-1702 |
ExternalDocumentID | oai_doaj_org_article_df5711b34ecf45f1aa70f278f8fab288 A780878411 10_3390_machines12010008 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 5VS 8FE 8FG AADQD AAFWJ AAYXX ABJCF ACIWK ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IAO ITC KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PROAC PTHSS RNS PMFND 7TB 8FD ABUWG AZQEC DWQXO FR3 PKEHL PQEST PQGLB PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c418t-2d7254b42d799aeb0ec3d415217b11a7bf4657be136d71d4c6c437eaf15d35263 |
IEDL.DBID | DOA |
ISSN | 2075-1702 |
IngestDate | Wed Aug 27 01:32:07 EDT 2025 Fri Jul 25 09:04:36 EDT 2025 Tue Jun 10 21:19:25 EDT 2025 Tue Jul 01 02:17:58 EDT 2025 Thu Apr 24 23:08:44 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c418t-2d7254b42d799aeb0ec3d415217b11a7bf4657be136d71d4c6c437eaf15d35263 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4303-5559 0000-0002-8059-2389 0000-0001-9185-3989 0000-0003-3700-928X 0000-0002-5918-2991 0000-0002-9634-4945 |
OpenAccessLink | https://doaj.org/article/df5711b34ecf45f1aa70f278f8fab288 |
PQID | 2918777666 |
PQPubID | 2032370 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_df5711b34ecf45f1aa70f278f8fab288 proquest_journals_2918777666 gale_infotracacademiconefile_A780878411 crossref_citationtrail_10_3390_machines12010008 crossref_primary_10_3390_machines12010008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Machines (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Wang (ref_24) 2021; 190 Rashid (ref_39) 2020; 33 Xiong (ref_2) 2022; 142 Luo (ref_21) 2020; 91 Tian (ref_13) 2021; 54 Zhou (ref_31) 2021; 72 Li (ref_42) 2016; 174 ref_36 ref_34 Aissani (ref_28) 2009; 42 ref_33 ref_10 Waschneck (ref_20) 2018; 72 ref_32 ref_30 Mahajan (ref_38) 2019; 32 ref_18 Wagner (ref_7) 2022; 112 ref_15 ref_37 Zhang (ref_8) 2022; 78 Gao (ref_12) 2019; 6 Wang (ref_9) 2022; 77 Liu (ref_27) 2022; 23 Wei (ref_4) 2022; 197 Luo (ref_3) 2023; 82 Liu (ref_44) 2020; 51 Afshin (ref_14) 2023; 53 Wang (ref_16) 2021; 33 ref_22 ref_41 ref_40 Gronauer (ref_25) 2022; 55 ref_29 Li (ref_43) 2018; 49 Chaudhry (ref_1) 2016; 23 ref_26 Liu (ref_17) 2019; 20 Zhang (ref_35) 2020; 33 Ku (ref_11) 2016; 73 Gu (ref_23) 2023; 53 Li (ref_5) 2022; 74 Aydin (ref_19) 2000; 33 Du (ref_6) 2023; 7 |
References_xml | – ident: ref_29 doi: 10.1007/978-3-030-41913-4_1 – volume: 20 start-page: 1465 year: 2019 ident: ref_17 article-title: A multi-agent architecture for scheduling in platform-based smart manufacturing systems publication-title: Front. Inf. Technol. Electron. Eng. doi: 10.1631/FITEE.1900094 – volume: 33 start-page: 1621 year: 2020 ident: ref_35 article-title: Learning to dispatch for job shop scheduling via deep reinforcement learning publication-title: Adv. Neural Inf. Process. Syst. – volume: 174 start-page: 93 year: 2016 ident: ref_42 article-title: An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem publication-title: Int. J. Prod. Econ. doi: 10.1016/j.ijpe.2016.01.016 – volume: 51 start-page: 4429 year: 2020 ident: ref_44 article-title: A modified genetic algorithm with new encoding and decoding methods for integrated process planning and scheduling problem publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2020.3026651 – ident: ref_30 – volume: 53 start-page: 13677 year: 2023 ident: ref_14 article-title: A review of cooperative multi-agent deep reinforcement learning publication-title: Appl. Intell. doi: 10.1007/s10489-022-04105-y – ident: ref_26 – ident: ref_34 – volume: 197 start-page: 116785 year: 2022 ident: ref_4 article-title: Hybrid energy-efficient scheduling measures for flexible job-shop problem with variable machining speeds publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.116785 – volume: 33 start-page: 169 year: 2000 ident: ref_19 article-title: Dynamic job-shop scheduling using reinforcement learning agents publication-title: Robot. Auton. Syst. doi: 10.1016/S0921-8890(00)00087-7 – volume: 55 start-page: 895 year: 2022 ident: ref_25 article-title: Multi-agent deep reinforcement learning: A survey publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-021-09996-w – volume: 33 start-page: 10199 year: 2020 ident: ref_39 article-title: Weighted QMIX: Expanding monotonic value function factorisation for deep multi-agent reinforcement learning publication-title: Adv. Neural Inf. Process. Syst. – volume: 33 start-page: 2782 year: 2021 ident: ref_16 article-title: Brief review on applying reinforcement learning to job shop scheduling problems publication-title: J. Syst. Simul. – ident: ref_10 doi: 10.1007/s10845-022-02037-5 – volume: 73 start-page: 165 year: 2016 ident: ref_11 article-title: Mixed integer programming models for job shop scheduling: A computational analysis publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2016.04.006 – volume: 6 start-page: 904 year: 2019 ident: ref_12 article-title: A review on swarm intelligence and evolutionary algorithms for solving flexible job shop scheduling problems publication-title: IEEE/CAA J. Autom. Sin. doi: 10.1109/JAS.2019.1911540 – volume: 190 start-page: 107969 year: 2021 ident: ref_24 article-title: Dynamic job-shop scheduling in smart manufacturing using deep reinforcement learning publication-title: Comput. Netw. doi: 10.1016/j.comnet.2021.107969 – ident: ref_40 – volume: 74 start-page: 102283 year: 2022 ident: ref_5 article-title: Real-time data-driven dynamic scheduling for flexible job shop with insufficient transportation resources using hybrid deep Q network publication-title: Robot. Comput.-Integr. Manuf. doi: 10.1016/j.rcim.2021.102283 – volume: 142 start-page: 105731 year: 2022 ident: ref_2 article-title: A survey of job shop scheduling problem: The types and models publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2022.105731 – ident: ref_37 – volume: 23 start-page: 551 year: 2016 ident: ref_1 article-title: A research survey: Review of flexible job shop scheduling techniques publication-title: Int. Trans. Oper. Res. doi: 10.1111/itor.12199 – ident: ref_22 doi: 10.1109/WSC48552.2020.9383997 – volume: 53 start-page: 18925 year: 2023 ident: ref_23 article-title: A self-learning discrete salp swarm algorithm based on deep reinforcement learning for dynamic job shop scheduling problem publication-title: Appl. Intell. doi: 10.1007/s10489-023-04479-7 – ident: ref_18 – volume: 112 start-page: 57 year: 2022 ident: ref_7 article-title: Multi-agent-based deep reinforcement learning for dynamic flexible job shop scheduling publication-title: Procedia CIRP doi: 10.1016/j.procir.2022.09.024 – volume: 72 start-page: 102202 year: 2021 ident: ref_31 article-title: Multi-agent reinforcement learning for online scheduling in smart factories publication-title: Robot. Comput.-Integr. Manuf. doi: 10.1016/j.rcim.2021.102202 – volume: 54 start-page: 174 year: 2021 ident: ref_13 article-title: Evolutionary large-scale multi-objective optimization: A survey publication-title: ACM Comput. Surv. – volume: 91 start-page: 106208 year: 2020 ident: ref_21 article-title: Dynamic scheduling for flexible job shop with new job insertions by deep reinforcement learning publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106208 – volume: 77 start-page: 102324 year: 2022 ident: ref_9 article-title: Solving job scheduling problems in a resource preemption environment with multi-agent reinforcement learning publication-title: Robot. Comput.-Integr. Manuf. doi: 10.1016/j.rcim.2022.102324 – ident: ref_15 doi: 10.1109/SACI.2009.5136281 – ident: ref_32 doi: 10.1109/ICECCME52200.2021.9590925 – volume: 49 start-page: 1933 year: 2018 ident: ref_43 article-title: An effective hybrid genetic algorithm and variable neighborhood search for integrated process planning and scheduling in a packaging machine workshop publication-title: IEEE Trans. Syst. Man, Cybern. Syst. doi: 10.1109/TSMC.2018.2881686 – volume: 32 start-page: 7611 year: 2019 ident: ref_38 article-title: MAVEN: Multi-agent variational exploration publication-title: Adv. Neural Inf. Process. Syst. – volume: 7 start-page: 1036 year: 2023 ident: ref_6 article-title: Knowledge-based reinforcement learning and estimation of distribution algorithm for flexible job shop scheduling problem publication-title: IEEE Trans. Emerg. Top. Comput. Intell. doi: 10.1109/TETCI.2022.3145706 – ident: ref_41 – volume: 78 start-page: 102412 year: 2022 ident: ref_8 article-title: Dynamic job shop scheduling based on deep reinforcement learning for multi-agent manufacturing systems publication-title: Robot. Comput.-Integr. Manuf. doi: 10.1016/j.rcim.2022.102412 – volume: 72 start-page: 1264 year: 2018 ident: ref_20 article-title: Optimization of global production scheduling with deep reinforcement learning publication-title: Procedia CIRP doi: 10.1016/j.procir.2018.03.212 – ident: ref_36 – volume: 23 start-page: 1002 year: 2022 ident: ref_27 article-title: Prospects for multi-agent collaboration and gaming: Challenge, technology, and application publication-title: Front. Inf. Technol. Electron. Eng. doi: 10.1631/FITEE.2200055 – volume: 42 start-page: 1102 year: 2009 ident: ref_28 article-title: Multi-agent reinforcement learning for adaptive scheduling: Application to multi-site company publication-title: IFAC Proc. Vol. doi: 10.3182/20090603-3-RU-2001.0280 – ident: ref_33 doi: 10.1109/ICIBA52610.2021.9688235 – volume: 82 start-page: 102534 year: 2023 ident: ref_3 article-title: A Pareto-based two-stage evolutionary algorithm for flexible job shop scheduling problem with worker cooperation flexibility publication-title: Robot. Comput.-Integr. Manuf. doi: 10.1016/j.rcim.2023.102534 |
SSID | ssj0000913848 |
Score | 2.2952049 |
Snippet | An extended flexible job scheduling problem is presented with characteristics of technology and path flexibility (dual flexibility), varied transportation... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 8 |
SubjectTerms | Adaptability Aircraft industry Aircraft maintenance Algorithms Data mining Decision making Energy consumption Fixed base operators industry Flexibility flexible job shop Heuristic Job shop scheduling Job shops Machine learning Markov processes Mathematical optimization Mathematical programming multi-agent reinforcement learning Multiagent systems Optimization Optimization algorithms path flexibility Process planning production planning and scheduling Robots Scheduling technological flexibility Transportation equipment industry |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT9swELYYvGwPCNimdcDkByS0B6tx4sTOE2pRK4QAIRgSb5Z_dg_QdLT8_9y5bocmrU-RHCdK7uzz3Xf2d4SceFn6KtaR8VgrJkzpWRsbzloVoqkK1RYW8Y7rm-biQVw-1o8ZcJvnbZUrm5gMte8cYuT9suVIXQfe9tnsD8OqUZhdzSU0PpAdMMEKgq-d4ejm9m6NsiDrpRJqmZ-sIL7vP6c9imHOMQ1cYFXJd-tRou3_n3FOK854j-xmV5EOlrrdJ1thekA-vSMQ_Eyu0vlZNsDzUfQuJBZUlwA_molTJxSa6ChD3XSM_Jf2KdDLztL7392M3oPWPG5Hn3whD-PRr_MLlusjMCe4WrASBF0LK-DatibYIrjKpwVZWs6NtFE0tbSBV42X3AvXOFHJYCKvPdLiV1_J9rSbhm-Egp-iygiTuVFOFDG0bUAqeC6dBYWZokf6Kylpl8nDsYbFk4YgAuWq_5Vrj_xcPzFbEmds6DtEwa_7IeV1auheJjrPIO1jLTm3lQguijpyY2QRS6miisaWCl5yimrTKGr4NGfy-QL4QaS40gOpCoVZVt4jRyvN6jxj5_rv-Pq--fYh-ViCY7OEYY7I9uLlNRyDY7KwP_LoewN6--L6 priority: 102 providerName: ProQuest |
Title | Multi-Agent Reinforcement Learning for Extended Flexible Job Shop Scheduling |
URI | https://www.proquest.com/docview/2918777666 https://doaj.org/article/df5711b34ecf45f1aa70f278f8fab288 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSyQxEC58XNbD4mNlx9UhB0E8NNPppDvJcZQZRVTEB3gLebqHcUZ09v9vKt3KIKgXTw2hG9JfVVKPpL4C2Pei8izWsaCxlgU3lS9UbGihZIiGlVKVFvMdF5fN6R0_u6_vF1p94Z2wlh64BW7gYy0otYwHF3kdqTGijJWQUUZjK5nLfJPNWwim8h6sKJNctueSLMX1g8d8NzG8UDz-LbGb5IIdynT9H23K2dKM1-Fn5yKSYTu1DVgK001YWyAO3ILzXDdbDLEuilyHzH7qcqKPdISpDyQNkVGX4iZj5L20k0DOZpbc_J09kZskLY_X0B9-wd14dHt8WnR9EQrHqZwXVQK45panp1Im2DI45rMhFpZSI2zkTS1soKzxgnruGseZCCbS2iMdPtuGlelsGn4DSf6JrGJaxI10vIxBqYAU8FQ4mwRlyh4MXlHSriMNx94VE52CB8RVv8e1B4dvXzy1hBmfvHuEwL-9h1TXeSApgO4UQH-lAD04QLFphDpNzZmuriD9IFJb6aGQpcTTVdqD3VfJ6m6lvuhKUaRETFHcznfM5g_8qJLb0yZpdmFl_vwv7CW3ZW77sCzHJ31YPRpdXl33s77-B-Tm7Vc |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFNdWsAHEOIQbfxIbB8QWqDLtt32QFupN-PnciibbXcR4k_xG_E4yVIh0VtPkRzHcsbjmfGM5xuEXnlBPYtVLEisZMEN9YWKNSmUDNGwUqrSgr_j8KienPL9s-psA_3uc2HgWmUvE7Og9o0DH_mQKgLQdcnafr-4KKBqFERX-xIaLVschF8_05Ft-W7vU1rf15SOd08-ToquqkDhOJGrgqbpVdzy9FTKBFsGx3xWY8ISYoSNvK6EDYTVXhDPXe04E8FEUnkAk2dp3FvoNmdMwY6S489rnw5gbEou22hoel8Ov-cbkWFJIOhcQg3LK9ovFwn4nyrI-m38AN3vDFM8ajnpIdoI80fo3hW4wsdomrN1ixFkY-EvIWOuuuxexB1M6wynJrzbOdbxGNA27XnA-43Fx9-aBT5OPOLh8vvsCTq9Ebo9RZvzZh62EE5WkaQxiY5aOl7GoFQA4HkinE3sYcoBGvZU0q6DKoeKGec6HVmArvpfug7Q2_UXixam45q-H4Dw634AsJ0bmsuZ7var9rEShFjGg4u8isQYUUYqZJTRWCrTIG9g2TSQOk3NmS6bIf0gAGrpkZClhJguGaCdfmV1Jx-W-i83P7v-9Ut0Z3JyONXTvaODbXSXJpOqdQDtoM3V5Y_wPJlEK_si8yFGX2-a8f8A4xkd1Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVkJwqHiK7QN8ACEO0dqOEzsHVG3prvpiVbVU6s34uRzKZttdhPhr_Do8ibNUSPTWUyTHsZLxZGY8j28QeusEc3koQkZDITOumcuqUNKskj7onMiKGPB3fJ6UBxf86LK4XEO_u1oYSKvsZGIjqF1twUc-YBUF6LpobQ9CSos43R_vzq8z6CAFkdaunUbLIsf-1894fFt8PNyPe_2OsfHoy6eDLHUYyCyncpmx-KoFNzxeq0p7Q7zNXaPShKFUCxN4WQjjaV46QR23peW58DrQwgGwfB7XfYDWRTwVkR5a3xtNTs9WHh5A3JRctrHRPK_I4HuTH-kXFELQBDpa3tKFTcuA_ymGRtuNn6CNZKbiYctXT9Ganz1Dj2-BFz5HJ03tbjaE2ix85hsEVts4G3ECbZ3iOIRHyc2Ox4C9aa48PqoNPv9Wz_F55BgHqfDTF-jiXij3EvVm9cy_QjjaSJKFKEhKaTkJvqo8wNBTYU1kFk36aNBRSdkEXA79M65UPMAAXdW_dO2jD6sn5i1oxx1z94Dwq3kAt90M1DdTlf5e5UIhKDU59zbwIlCtBQlMyCCDNkzGRd7DtikgdXw1q1NtQ_xAgNdSQyGJhAgv7aPtbmdVkhYL9Ze3N---_QY9jEyvTg4nx1voEYv2VesN2ka95c0PvxPto6V5nRgRo6_3zft_AOHpI2c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Agent+Reinforcement+Learning+for+Extended+Flexible+Job+Shop+Scheduling&rft.jtitle=Machines+%28Basel%29&rft.au=Peng%2C+Shaoming&rft.au=Xiong%2C+Gang&rft.au=Yang%2C+Jing&rft.au=Shen%2C+Zhen&rft.date=2024-01-01&rft.issn=2075-1702&rft.eissn=2075-1702&rft.volume=12&rft.issue=1&rft.spage=8&rft_id=info:doi/10.3390%2Fmachines12010008&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_machines12010008 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-1702&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-1702&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-1702&client=summon |