Recovering Within-Person Dynamics from Psychological Time Series
Idiographic modeling is rapidly gaining popularity, promising to tap into the within-person dynamics underlying psychological phenomena. To gain theoretical understanding of these dynamics, we need to make inferences from time series models about the underlying system. Such inferences are subject to...
Saved in:
Published in | Multivariate behavioral research Vol. 57; no. 5; pp. 735 - 766 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Mahwah
Routledge
03.09.2022
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Idiographic modeling is rapidly gaining popularity, promising to tap into the within-person dynamics underlying psychological phenomena. To gain theoretical understanding of these dynamics, we need to make inferences from time series models about the underlying system. Such inferences are subject to two challenges: first, time series models will arguably always be misspecified, meaning it is unclear how to make inferences to the underlying system; and second, the sampling frequency must be sufficient to capture the dynamics of interest. We discuss both problems with the following approach: we specify a toy model for emotion dynamics as the true system, generate time series data from it, and then try to recover that system with the most popular time series analysis tools. We show that making straightforward inferences from time series models about an underlying system is difficult. We also show that if the sampling frequency is insufficient, the dynamics of interest cannot be recovered. However, we also show that global characteristics of the system can be recovered reliably. We conclude by discussing the consequences of our findings for idiographic modeling and suggest a modeling methodology that goes beyond fitting time series models alone and puts formal theories at the center of theory development. |
---|---|
AbstractList | Idiographic modeling is rapidly gaining popularity, promising to tap into the within-person dynamics underlying psychological phenomena. To gain theoretical understanding of these dynamics, we need to make inferences from time series models about the underlying system. Such inferences are subject to two challenges: first, time series models will arguably always be misspecified, meaning it is unclear how to make inferences to the underlying system; and second, the sampling frequency must be sufficient to capture the dynamics of interest. We discuss both problems with the following approach: we specify a toy model for emotion dynamics as the true system, generate time series data from it, and then try to recover that system with the most popular time series analysis tools. We show that making straightforward inferences from time series models about an underlying system is difficult. We also show that if the sampling frequency is insufficient, the dynamics of interest cannot be recovered. However, we also show that global characteristics of the system can be recovered reliably. We conclude by discussing the consequences of our findings for idiographic modeling and suggest a modeling methodology that goes beyond fitting time series models alone and puts formal theories at the center of theory development. Idiographic modeling is rapidly gaining popularity, promising to tap into the within-person dynamics underlying psychological phenomena. To gain theoretical understanding of these dynamics, we need to make inferences from time series models about the underlying system. Such inferences are subject to two challenges: first, time series models will arguably always be misspecified, meaning it is unclear how to make inferences to the underlying system; and second, the sampling frequency must be sufficient to capture the dynamics of interest. We discuss both problems with the following approach: we specify a toy model for emotion dynamics as the true system, generate time series data from it, and then try to recover that system with the most popular time series analysis tools. We show that making straightforward inferences from time series models about an underlying system is difficult. We also show that if the sampling frequency is insufficient, the dynamics of interest cannot be recovered. However, we also show that global characteristics of the system can be recovered reliably. We conclude by discussing the consequences of our findings for idiographic modeling and suggest a modeling methodology that goes beyond fitting time series models alone and puts formal theories at the center of theory development.Idiographic modeling is rapidly gaining popularity, promising to tap into the within-person dynamics underlying psychological phenomena. To gain theoretical understanding of these dynamics, we need to make inferences from time series models about the underlying system. Such inferences are subject to two challenges: first, time series models will arguably always be misspecified, meaning it is unclear how to make inferences to the underlying system; and second, the sampling frequency must be sufficient to capture the dynamics of interest. We discuss both problems with the following approach: we specify a toy model for emotion dynamics as the true system, generate time series data from it, and then try to recover that system with the most popular time series analysis tools. We show that making straightforward inferences from time series models about an underlying system is difficult. We also show that if the sampling frequency is insufficient, the dynamics of interest cannot be recovered. However, we also show that global characteristics of the system can be recovered reliably. We conclude by discussing the consequences of our findings for idiographic modeling and suggest a modeling methodology that goes beyond fitting time series models alone and puts formal theories at the center of theory development. |
Author | Ryan, Oisín Haslbeck, Jonas M. B. |
Author_xml | – sequence: 1 givenname: Jonas M. B. surname: Haslbeck fullname: Haslbeck, Jonas M. B. organization: Psychological Methods Group, University of Amsterdam – sequence: 2 givenname: Oisín surname: Ryan fullname: Ryan, Oisín organization: Department of Methodology and Statistics, Utrecht University |
BookMark | eNqFkM1LwzAYh4MouE3_BKHgxUtnPpomxctkfsLAoROPIUuTLaNNZtIp_e_t2LzsoKf38jwvP54-OHbeaQAuEBwiyOE1hJgRxNAQQ4yGiBc5oeQI9BAlOGUFzI9Bb8ukW-gU9GNcQQhzmhU9MHrVyn_pYN0i-bDN0rp0qkP0LrlrnaytiokJvk6msVVLX_mFVbJKZrbWyVtn6XgGToysoj7f3wF4f7ifjZ_Sycvj8_h2kqoM8SbFCjFCy2Je5BLRoiwJY4gbbgjH2EiWMW1ohuF8DktS5tRoRZk0Sna7DYecDMDV7u86-M-Njo2obVS6qqTTfhMFplmG8gxi0qGXB-jKb4Lr1gnMuka0G5B31M2OUsHHGLQRyjaysd41QdpKICi2dcVvXbGtK_Z1O5se2Otgaxnaf73RzrPO-FDLbx-qUjSyrXwwQTployB_v_gBPDCRXA |
CitedBy_id | crossref_primary_10_1002_wps_21209 crossref_primary_10_1177_21677026221137006 crossref_primary_10_1016_j_psychsport_2024_102593 crossref_primary_10_1186_s40345_022_00258_4 crossref_primary_10_1007_s42113_022_00130_9 crossref_primary_10_1080_00332747_2022_2092828 crossref_primary_10_1142_S2010495222500348 crossref_primary_10_1177_25152459241286877 crossref_primary_10_1177_25152459241267912 crossref_primary_10_1002_mpr_2034 crossref_primary_10_1080_00273171_2024_2336178 crossref_primary_10_1177_25152459221140842 crossref_primary_10_1007_s42761_022_00101_0 crossref_primary_10_1016_j_copsyc_2021_10_002 crossref_primary_10_1002_ijop_13244 crossref_primary_10_1016_j_chb_2024_108381 crossref_primary_10_2196_57018 crossref_primary_10_1038_s41562_024_01939_z crossref_primary_10_1115_1_4063555 crossref_primary_10_1080_08870446_2024_2395854 crossref_primary_10_1177_21677026221103138 crossref_primary_10_2196_50136 crossref_primary_10_1071_AN22285 crossref_primary_10_1016_j_bbi_2023_06_002 crossref_primary_10_1080_10705511_2022_2056039 crossref_primary_10_1016_j_jrp_2024_104468 crossref_primary_10_1038_s44159_024_00369_y crossref_primary_10_1186_s12916_021_02179_y |
Cites_doi | 10.1186/s12916-020-01558-1 10.1073/pnas.1711978115 10.1016/B978-012724965-0/50007-9 10.1515/9780691218632 10.1201/b16018 10.1016/j.jad.2019.02.017 10.1093/schbul/sbw185 10.1371/journal.pone.0054653 10.18637/jss.v076.i01 10.1002/wps.20375 10.18637/jss.v032.i08 10.1371/journal.pone.0129722 10.1007/s10578-018-0784-x 10.1016/j.jpsychores.2014.12.018 10.1080/10705511.2014.979932 10.1037/12140-009 10.1037/a0038822 10.1080/10705511.2016.1253479 10.1177/0963721416666518 10.1177/1745691619855637 10.1017/S0033291718000351 10.1037/pspp0000249 10.1017/S0033291715000331 10.1037/emo0000462 10.31234/osf.io/rybh9 10.31234/osf.io/km37w 10.1080/10705511.2018.1431046 10.1037/a0024595 10.2147/NDT.S120995 10.1371/journal.pone.0060188 10.1177/2167702614540645 10.1177/1745691620974697 10.1016/j.jbtep.2018.11.002 10.1016/S1535-6108(02)00133-2 10.1177/1754073915590623 10.1002/mds.93 10.1177/1073191116632339 10.1177/1745691620969647 10.3389/fpsyt.2018.00602 10.1017/S0140525X09991567 10.1371/journal.pone.0027407 10.18637/jss.v036.i07 10.3389/fpsyg.2017.01908 10.1177/1073191116645909 10.1177/1745691612441215 10.1002/per.2109 10.1371/journal.pone.0129774 10.1080/01621459.1976.10480949 10.1016/j.jclinepi.2018.11.022 10.1371/journal.pone.0086652 10.31234/osf.io/7qbpr 10.1007/s11336-009-9113-4 10.1159/000500594 10.1007/978-3-319-77219-6_2 10.1073/pnas.1312114110 10.1371/journal.pone.0158809 10.1093/schbul/sbx037 10.31234/osf.io/5cbfw 10.1093/geroni/igy023.056 10.1207/s15366359mea0204_1 10.1111/j.2044-8317.2012.02043.x 10.1080/00273171.2017.1370364 10.1186/s12888-015-0596-5 10.1080/00332747.2016.1256143 10.1207/S15327906MBR3703_5 10.1159/000441458 10.1176/appi.books.9780890425596 10.1111/j.2517-6161.1980.tb01126.x 10.1146/annurev-clinpsy-050212-185608 10.1155/2018/2674523 10.1016/j.newideapsych.2011.02.007 10.1080/10705511.2017.1406803 10.1037/12140-011 10.1001/jamapsychiatry.2017.0001 10.1037/ccp0000469 10.1037/0033-295X.115.3.527 10.1371/journal.pone.0059559 10.3389/fpsyg.2016.01231 10.1016/j.brat.2019.01.007 10.1017/S0033291718002064 10.1038/s41598-018-25953-0 10.1201/b20790 10.1097/PSY.0000000000000378 10.1080/00273171.2018.1496813 10.1521/jscp.2017.36.3.196 10.1186/s12916-020-1500-9 10.1007/s11336-014-9417-x 10.1371/journal.pone.0162811 10.1371/journal.pone.0167490 10.1017/S0033291713001979 10.1038/srep46523 10.1016/j.psychres.2018.12.054 10.1016/j.jmp.2011.08.002 10.1002/eat.22952 10.1037/xge0000528 10.1017/CBO9780511790942 10.17505/jpor.2017.01 10.1111/jopy.12299 10.18637/jss.v077.i05 10.1016/j.physd.2005.08.014 10.1080/00273170701360423 10.1371/journal.pcbi.1005268 10.1176/ajp.149.8.999 10.1037/abn0000311 10.1371/journal.pone.0178586 |
ContentType | Journal Article |
Copyright | 2021 The Author(s). Published with license by Taylor & Francis Group, LLC. 2021 2021 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Author(s). Published with license by Taylor & Francis Group, LLC. 2021 – notice: 2021 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 0YH AAYXX CITATION 7X8 |
DOI | 10.1080/00273171.2021.1896353 |
DatabaseName | Taylor & Francis Open Access CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Psychology |
EISSN | 1532-7906 |
EndPage | 766 |
ExternalDocumentID | 10_1080_00273171_2021_1896353 1896353 |
Genre | Research Article |
GroupedDBID | --Z -~X .7I .QK 0BK 0R~ 0YH 123 4.4 5VS 8VB AAGZJ AAMFJ AAMIU AAPUL AATTQ AAZMC ABCCY ABFIM ABIVO ABJNI ABLIJ ABLJU ABPEM ABPPZ ABRYG ABTAI ABXUL ABXYU ABZLS ACGFS ACHQT ACIWK ACNCT ACTIO ACTOA ADAHI ADCVX ADKVQ AECIN AEISY AEKEX AENEX AEOZL AEPSL AEYOC AEZRU AFHDM AGDLA AGMYJ AGRBW AHDZW AIJEM AJWEG AKBVH ALMA_UNASSIGNED_HOLDINGS ALQZU AVBZW AWYRJ BEJHT BLEHA BMOTO BOHLJ CCCUG CQ1 CS3 DGFLZ DKSSO DU5 EBS EMOBN E~B E~C F5P FEDTE FXNIP G-F GTTXZ H13 HF~ HZ~ IPNFZ J.O KYCEM LJTGL M4Z MS~ NA5 NW- O9- P2P PQQKQ QWB RIG RNANH ROSJB RSYQP S-F STATR TBQAZ TDBHL TEH TFH TFL TFW TN5 TNTFI TRJHH TUROJ TWZ UT5 UT9 VAE WH7 YNT YQT ZL0 ~01 ~S~ AAGDL AAHIA AAYXX ADYSH AEFOU AFRVT AIYEW AMPGV CITATION TASJS 7X8 |
ID | FETCH-LOGICAL-c418t-2c1735d9b96a159dd37718f8f3822fa747ef5420bb0d3d65fec57afca027f8083 |
IEDL.DBID | 0YH |
ISSN | 0027-3171 1532-7906 |
IngestDate | Thu Jul 10 20:28:49 EDT 2025 Wed Aug 13 07:12:53 EDT 2025 Tue Jul 01 04:28:56 EDT 2025 Thu Apr 24 23:04:57 EDT 2025 Wed Dec 25 09:05:51 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | open-access: http://creativecommons.org/licenses/by-nc-nd/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c418t-2c1735d9b96a159dd37718f8f3822fa747ef5420bb0d3d65fec57afca027f8083 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.tandfonline.com/doi/abs/10.1080/00273171.2021.1896353 |
PQID | 2720251596 |
PQPubID | 47318 |
PageCount | 32 |
ParticipantIDs | proquest_journals_2720251596 crossref_citationtrail_10_1080_00273171_2021_1896353 proquest_miscellaneous_2544164023 informaworld_taylorfrancis_310_1080_00273171_2021_1896353 crossref_primary_10_1080_00273171_2021_1896353 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-03 |
PublicationDateYYYYMMDD | 2022-09-03 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | Mahwah |
PublicationPlace_xml | – name: Mahwah |
PublicationTitle | Multivariate behavioral research |
PublicationYear | 2022 |
Publisher | Routledge Taylor & Francis Ltd |
Publisher_xml | – name: Routledge – name: Taylor & Francis Ltd |
References | CIT0072 CIT0071 CIT0074 CIT0073 CIT0076 CIT0075 CIT0078 CIT0111 CIT0077 CIT0110 CIT0070 CIT0113 CIT0079 CIT0112 CIT0115 CIT0114 CIT0117 CIT0116 CIT0119 CIT0118 CIT0083 CIT0082 CIT0085 CIT0084 CIT0087 CIT0086 CIT0001 CIT0089 CIT0088 CIT0081 CIT0080 Hamaker E. L. (CIT0048) 2012 Box G. E. (CIT0019) 1976 CIT0003 CIT0002 CIT0005 CIT0004 CIT0006 CIT0009 CIT0008 CIT0094 CIT0096 CIT0095 CIT0010 CIT0098 CIT0097 CIT0011 CIT0099 Freedman H. I. (CIT0039) 1980; 57 CIT0090 CIT0091 CIT0014 CIT0013 CIT0016 CIT0015 CIT0018 CIT0017 CIT0021 CIT0020 CIT0023 CIT0022 Strogatz S. H. (CIT0093) 2015 CIT0025 CIT0024 CIT0027 CIT0026 CIT0029 CIT0028 CIT0030 CIT0032 CIT0031 CIT0034 CIT0033 Atkinson K. E. (CIT0007) 2008 CIT0036 CIT0035 CIT0038 CIT0037 CIT0041 CIT0043 CIT0042 CIT0045 CIT0044 Hirsch M. W. (CIT0058) 2012 CIT0047 CIT0046 CIT0049 CIT0050 CIT0052 CIT0051 CIT0054 CIT0053 Spanakis G. (CIT0092) 2015 CIT0056 CIT0055 Freeman H. L. (CIT0040) 1996 CIT0057 CIT0059 CIT0061 Boker S. M. (CIT0012) 2010 CIT0060 CIT0063 CIT0062 CIT0065 CIT0064 CIT0067 CIT0100 CIT0066 CIT0109 CIT0069 CIT0102 CIT0068 CIT0101 CIT0104 CIT0103 CIT0106 CIT0105 CIT0108 CIT0107 |
References_xml | – ident: CIT0023 doi: 10.1186/s12916-020-01558-1 – ident: CIT0037 doi: 10.1073/pnas.1711978115 – ident: CIT0098 doi: 10.1016/B978-012724965-0/50007-9 – ident: CIT0053 doi: 10.1515/9780691218632 – ident: CIT0042 doi: 10.1201/b16018 – ident: CIT0030 doi: 10.1016/j.jad.2019.02.017 – ident: CIT0064 doi: 10.1093/schbul/sbw185 – ident: CIT0114 doi: 10.1371/journal.pone.0054653 – ident: CIT0024 doi: 10.18637/jss.v076.i01 – ident: CIT0015 doi: 10.1002/wps.20375 – ident: CIT0044 doi: 10.18637/jss.v032.i08 – ident: CIT0111 doi: 10.1371/journal.pone.0129722 – start-page: 43 volume-title: A paradigmatic rationale year: 2012 ident: CIT0048 – ident: CIT0095 doi: 10.1007/s10578-018-0784-x – ident: CIT0117 doi: 10.1016/j.jpsychores.2014.12.018 – ident: CIT0035 – ident: CIT0076 doi: 10.1080/10705511.2014.979932 – ident: CIT0050 doi: 10.1037/12140-009 – ident: CIT0061 doi: 10.1037/a0038822 – volume-title: Differential equations, dynamical systems, and an introduction to chaos year: 2012 ident: CIT0058 – ident: CIT0005 doi: 10.1080/10705511.2016.1253479 – ident: CIT0049 doi: 10.1177/0963721416666518 – ident: CIT0063 doi: 10.1177/1745691619855637 – ident: CIT0045 doi: 10.1017/S0033291718000351 – ident: CIT0009 doi: 10.1037/pspp0000249 – volume-title: An introduction to numerical analysis year: 2008 ident: CIT0007 – ident: CIT0115 doi: 10.1017/S0033291715000331 – ident: CIT0010 doi: 10.1037/emo0000462 – ident: CIT0047 doi: 10.31234/osf.io/rybh9 – ident: CIT0085 doi: 10.31234/osf.io/km37w – ident: CIT0067 doi: 10.1080/10705511.2018.1431046 – ident: CIT0078 – ident: CIT0043 doi: 10.1037/a0024595 – ident: CIT0071 doi: 10.2147/NDT.S120995 – ident: CIT0021 doi: 10.1371/journal.pone.0060188 – ident: CIT0070 doi: 10.1177/2167702614540645 – ident: CIT0084 doi: 10.1177/1745691620974697 – ident: CIT0036 doi: 10.1016/j.jbtep.2018.11.002 – ident: CIT0069 doi: 10.1016/S1535-6108(02)00133-2 – ident: CIT0113 doi: 10.1177/1754073915590623 – volume-title: Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and engineering year: 2015 ident: CIT0093 – ident: CIT0099 doi: 10.1002/mds.93 – ident: CIT0051 doi: 10.1177/1073191116632339 – ident: CIT0014 doi: 10.1177/1745691620969647 – ident: CIT0056 doi: 10.3389/fpsyt.2018.00602 – ident: CIT0028 doi: 10.1017/S0140525X09991567 – ident: CIT0017 doi: 10.1371/journal.pone.0027407 – ident: CIT0104 doi: 10.18637/jss.v036.i07 – ident: CIT0055 doi: 10.3389/fpsyg.2017.01908 – ident: CIT0020 doi: 10.1177/1073191116645909 – ident: CIT0074 doi: 10.1177/1745691612441215 – ident: CIT0081 doi: 10.1002/per.2109 – ident: CIT0026 doi: 10.1371/journal.pone.0129774 – start-page: 43 volume-title: ICSH year: 2015 ident: CIT0092 – ident: CIT0018 doi: 10.1080/01621459.1976.10480949 – ident: CIT0079 doi: 10.1016/j.jclinepi.2018.11.022 – ident: CIT0100 doi: 10.1371/journal.pone.0086652 – ident: CIT0101 doi: 10.31234/osf.io/7qbpr – ident: CIT0052 doi: 10.1007/s11336-009-9113-4 – ident: CIT0089 doi: 10.1159/000500594 – ident: CIT0087 doi: 10.1007/978-3-319-77219-6_2 – ident: CIT0096 doi: 10.1073/pnas.1312114110 – ident: CIT0029 doi: 10.1371/journal.pone.0158809 – ident: CIT0086 – ident: CIT0065 doi: 10.1093/schbul/sbx037 – ident: CIT0002 doi: 10.31234/osf.io/5cbfw – ident: CIT0118 doi: 10.1093/geroni/igy023.056 – ident: CIT0054 – ident: CIT0075 doi: 10.1207/s15366359mea0204_1 – ident: CIT0105 doi: 10.1111/j.2044-8317.2012.02043.x – ident: CIT0032 doi: 10.1080/00273171.2017.1370364 – ident: CIT0060 doi: 10.1186/s12888-015-0596-5 – ident: CIT0102 doi: 10.1080/00332747.2016.1256143 – ident: CIT0011 doi: 10.1207/S15327906MBR3703_5 – ident: CIT0110 doi: 10.1159/000441458 – ident: CIT0004 doi: 10.1176/appi.books.9780890425596 – ident: CIT0094 doi: 10.1111/j.2517-6161.1980.tb01126.x – ident: CIT0016 doi: 10.1146/annurev-clinpsy-050212-185608 – volume-title: Time series analysis, forecasting and control year: 1976 ident: CIT0019 – ident: CIT0107 doi: 10.1155/2018/2674523 – ident: CIT0088 doi: 10.1016/j.newideapsych.2011.02.007 – ident: CIT0006 doi: 10.1080/10705511.2017.1406803 – ident: CIT0013 doi: 10.1037/12140-011 – ident: CIT0077 doi: 10.1001/jamapsychiatry.2017.0001 – ident: CIT0057 doi: 10.1037/ccp0000469 – ident: CIT0003 doi: 10.1037/0033-295X.115.3.527 – ident: CIT0116 doi: 10.1371/journal.pone.0059559 – ident: CIT0082 doi: 10.3389/fpsyg.2016.01231 – ident: CIT0059 doi: 10.1016/j.brat.2019.01.007 – ident: CIT0112 doi: 10.1017/S0033291718002064 – ident: CIT0073 doi: 10.1038/s41598-018-25953-0 – ident: CIT0080 – ident: CIT0119 doi: 10.1201/b20790 – ident: CIT0097 doi: 10.1097/PSY.0000000000000378 – ident: CIT0106 doi: 10.1080/00273171.2018.1496813 – ident: CIT0022 doi: 10.1521/jscp.2017.36.3.196 – ident: CIT0068 doi: 10.1186/s12916-020-1500-9 – start-page: 161 volume-title: Generalized local linear approximation of derivatives from time series year: 2010 ident: CIT0012 – ident: CIT0031 doi: 10.1007/s11336-014-9417-x – ident: CIT0008 doi: 10.1371/journal.pone.0162811 – ident: CIT0027 doi: 10.1371/journal.pone.0167490 – volume-title: Interpersonal factors in the origin and course of affective disorders year: 1996 ident: CIT0040 – ident: CIT0109 doi: 10.1017/S0033291713001979 – ident: CIT0091 doi: 10.1038/srep46523 – ident: CIT0046 doi: 10.1016/j.psychres.2018.12.054 – ident: CIT0103 doi: 10.1016/j.jmp.2011.08.002 – ident: CIT0072 doi: 10.1002/eat.22952 – ident: CIT0001 doi: 10.1037/xge0000528 – ident: CIT0041 doi: 10.1017/CBO9780511790942 – ident: CIT0066 doi: 10.17505/jpor.2017.01 – ident: CIT0090 doi: 10.1111/jopy.12299 – volume: 57 volume-title: Deterministic mathematical models in population ecology year: 1980 ident: CIT0039 – ident: CIT0034 doi: 10.18637/jss.v077.i05 – ident: CIT0108 doi: 10.1016/j.physd.2005.08.014 – ident: CIT0025 doi: 10.1080/00273170701360423 – ident: CIT0062 doi: 10.1371/journal.pcbi.1005268 – ident: CIT0083 doi: 10.1176/ajp.149.8.999 – ident: CIT0038 doi: 10.1037/abn0000311 – ident: CIT0033 doi: 10.1371/journal.pone.0178586 |
SSID | ssj0006549 |
Score | 2.521337 |
Snippet | Idiographic modeling is rapidly gaining popularity, promising to tap into the within-person dynamics underlying psychological phenomena. To gain theoretical... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 735 |
SubjectTerms | Dynamics formal theory misspecification Modelling Sampling sampling frequency Time series Time series analysis |
Title | Recovering Within-Person Dynamics from Psychological Time Series |
URI | https://www.tandfonline.com/doi/abs/10.1080/00273171.2021.1896353 https://www.proquest.com/docview/2720251596 https://www.proquest.com/docview/2544164023 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF60vfQiPrFaywpeU7vZR5KbxVqKoHiwVL0sm80uFiQVkwr-e3fywiLSg-dkEzKZxzezO98gdGGoHzOiE49Zxj1GlbO5MGCe0sDFEnMTKSjo392L6YzdPvH6NGFWHauEHNqWRBGFrwbjVnFWn4i7LDhYSADZnU8GJHQ6xOk2avugrU6lh8_TxhkLXiFgH8pxAambeP56zFp4WiMv_eWsiwg02UU7FXTEo_Jf76Etk-6jTuPBvg7QFSSTnwW5IJ4v8tdF6j0UiBqPy8HzGYZ2Erzm9TB0gWCokpnsEM0mN4_XU68akeBpRsLc8zUJKE-iOBLKAZMkoYELNja01AV-q1yuYCxn_jCOhwlNBLdG80BZrdy329DBryPUSpepOUY4EiHTOhRaUO2yJu0SIaOpJUA8GTqY00WslozUFX84jLF4k6ShGS0FKkGgshJoFw2aZe8lgcamBdFPscu8qFzYcsyIpBvW9up_JCtbzCTsNPsA20QXnTeXnRXB1ohKzXLl7oFRbMLl0vTkH68_RR0fuiNgv4n2UCv_WJkzh1nyuF9oZR-1R9Pxy_wbWRjezA |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BOcCFHVHWIHFNwfGS5AYCqrAKoVZwsxLHFhUoRTRFgq_Hk00UhDhwTpzEjmf83tjzBmBfUy9hRKUuM4y7jMbW5gKfubFCLZaE6zDGgP71jYj67OKBP3zJhcFjlcihTSkUUfhqNG4MRtdH4g4KERbiI73zSIcEdhJxOg0zPGTUErCZ3t1FFDX-WPAKBHsYkfNJncfz24MmVqgJ_dIf_rpYhLoLoOrPL8-ePHXGedJRH9-UHf_Xv0WYrzCqc1xOqiWY0tkyzDWu8n0FjpC1vhUqhs79IH8cZO5tAd2d07LC_cjBvBVnwr06mG7iYDhOj1ah3z3rnURuVYvBVYwEuesp4lOehkkoYouA0pT6dlUzgaEWYZjYkhJtOPMOk-QwpangRivux0bFtismsDhvDVrZMNPr4IQiYEoFQgmqLD1TlnFpRQ1BhcvA4qk2sHr8paqEyrFexrMkjZ5pOT4Sx0dW49OGTtPspVTq-KtB-PXnyrwIkZiynomkf7TdqmeCrIx-JHFL20N8KNqw11y25op7MHGmh2N7D9Z8E5a0041_vH4XZqPe9ZW8Or-53IQ5D1MycJOLbkErfx3rbQuU8mSnsoRPffICUA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-RAEC50BPGy6xPHHTWC14x2-pHktos6jE9EFL01SacbB5coTkZwf_1W5YWjiAfPSSfpSlX1V9VdXwHsWh6kgpnMF05IX_AEbS4KhZ8Y4mJJpY0TSuifX6jhjTi5k81pwnF9rJJiaFcRRZS-moz7KXPNibi9koOFhRTdBazPItQhyWdhTuF6hEo-d311Mhy27ljJGgMHlJALWVPG89mDphaoKfrSD-66XIMGPyFtvr46evLQnxRp3_x7R-z4rektwo8aoXp_KpVaghmbL8NC6yhfV-A3xawvJYehdzsq7ke5f1kCd--w6m8_9qhqxZtyrh4Vm3iUjLPjVbgZHF0fDP26E4NvBIsKPzAs5DKL01gliH-yjIe4prnIccQXLsGQxDopgv003c94pqSzRoaJMwlOxUWI8tagkz_mdh28WEXCmEgZxQ0GZwbjLWu4Y8RvGSGa6oJoxK9NTVNO3TL-ataymVby0SQfXcunC_122FPF0_HVgPjtv9VFmSBxVTcTzb8Y22sUQdcmP9a0oR0QOlRd2Gkvo7HSDkyS28cJ3kMd3xSG7HzjG6_fhvnLw4E-O744_QULAdVj0A4X70GneJ7YTURJRbpV28F_PI4A9A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recovering+Within-Person+Dynamics+from+Psychological+Time+Series&rft.jtitle=Multivariate+behavioral+research&rft.au=Haslbeck%2C+Jonas+M+B&rft.au=Ryan%2C+Ois%C3%ADn&rft.date=2022-09-03&rft.issn=1532-7906&rft.eissn=1532-7906&rft.volume=57&rft.issue=5&rft.spage=735&rft_id=info:doi/10.1080%2F00273171.2021.1896353&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-3171&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-3171&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-3171&client=summon |